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A TANGENT CATEGORY ALTERNATIVE TO THE FAÀ DI BRUNO
CONSTRUCTION

JEAN-SIMON P. LEMAY

Abstract. The Faà di Bruno construction, introduced by Cockett and Seely, con-
structs a comonad Faà whose coalgebras are precisely Cartesian differential categories.
In other words, for a Cartesian left additive category X, Faà(X) is the cofree Cartesian
differential category over X. Composition in these cofree Cartesian differential categories
is based on the Faà di Bruno formula, and corresponds to composition of differential
forms. This composition, however, is somewhat complex and difficult to work with. In
this paper we provide an alternative construction of cofree Cartesian differential cate-
gories inspired by tangent categories. In particular, composition defined here is based on
the fact that the chain rule for Cartesian differential categories can be expressed using
the tangent functor, which simplifies the formulation of the higher order chain rule.

1. Introduction

Cartesian differential categories [2] were introduced by Blute, Cockett, and Seely to study
the coKleisli category of a “tensor” differential category [3] and to provide the categorical
semantics of Ehrhard and Regnier’s differential λ-calculus [10]. In particular, a Cartesian
differential category admits a differential combinator D (see Definition 2.6 below) whose
axioms are based on the basic properties of the directional derivative from multivariable
calculus such as the chain rule, linearity, and the symmetry of the second derivative.
There are many interesting examples of Cartesian differential categories which originate
from a wide range of different fields such as, to list a few, classical differential calculus on
Euclidean spaces, functor calculus [1], and linear logic [3, 9]. Generalizations of Cartesian
differential categories include a restriction category version [6] to study differentiating
partial functions, and Cruttwell’s generalized Cartesian differential categories [8] which
drops the additive structure requirement of a Cartesian differential category. Even more
surprising is that there is a notion of a cofree Cartesian differential category!

Shortly after the introduction of Cartesian differential categories, Cockett and Seely in-
troduced the Faà di Bruno construction [7] which provides a comonad Faà on the category
of Cartesian left additive categories (see Definition 2.3 below) such that the Faà-coalgebras
are precisely Cartesian differential categories. Therefore the Eilenberg-Moore category of
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Faà-coalgebras is equivalent to the category of Cartesian differential categories [7, Theo-
rem 3.2.6], which implies that there are as many Cartesian differential categories as there
are Cartesian left additive categories.

In particular, for a Cartesian left additive category X, Faà(X) is the cofree Carte-
sian differential categories over X. This came as a total surprise to Cockett and Seely.
Briefly, for a Cartesian left additive category X, Faà(X) has the same objects as X, but
its morphisms are sequences (f0, f1, . . .) where fn : A× . . .× A︸ ︷︷ ︸

n−times

→ B is symmetric and

multilinear in its last n − 1 arguments. The idea here is that fn should be thought of
as a differential form but where we’ve replaced antisymmetry by symmetry. Therefore,
as differentiating twice does not result in zero, fn+1 should be thought of as the partial
derivative of the non-linear part of fn. Though as far as Faà(X) is concerned, there need
not be any relation between fn and fn+1. Composition in Faà(X) [7, Section 2.1] is based
on the famous Faà di Bruno formula for the higher-order chain rule, and furthermore
relates to the idea of composing differential forms. Cruttwell also generalized the Faà
di Bruno construction for generalized Cartesian differential categories [8, Section 2.1] to
provide a comonad on the category of categories with finite products.

Surprisingly, while the Faà di Bruno construction is an important result, it seems to
have slipped under the radar and not much work has been done with Faà(X). Cruttwell
even mentions that: “A more in-depth investigation of such cofree generalized Cartesian
differential categories is clearly required” [8, Page 8]. Then one is left to wonder why
Faà(X) has been left mostly unstudied. One possibility as to why is because the compo-
sition of Faà(X) and its differential combinator (which we haven’t even mentioned above)
is somewhat complex and very combinatorial, making use of symmetric trees [7, Section
1.1], and is therefore very notation-heavy. This is due in part that the Faà di Bruno
formula itself is very combinatorial in nature and even its simplest expressions depend
heavily on combinatorial notation. While we applaud Cockett and Seely for defining and
working with the composition of Faà(X), one has to admit that it is indeed difficult to
work with. But, as with all universal constructions, the concept of cofree Cartesian dif-
ferential categories are very important and should not be abandoned! Here we suggest
an alternative construction of cofree Cartesian differential categories inspired by tangent
categories.

The concept of a tangent category originate backs to Rosickỳ [12], and was later
generalized by Cockett and Cruttwell [5]. It should be mentioned that the Faà di Bruno
construction predates Cockett and Cruttwell’s notion of a tangent category. Of particular
importance to us here is that tangent categories come equipped with a tangent bundle
endofunctor T, and that every Cartesian differential category is in fact a tangent category.
For Cartesian differential categories, the relation between the tangent functor T and the
differential combinator D is captured by the chain rule, expressed here (1), which then
provides a very simple expression of the higher-order chain rule, expressed here (2). This
higher-order version of the chain rule will be our inspiration for composition in our new
presentation of cofree Cartesian differential categories.
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Just like Faà(X), maps of the cofree Cartesian differential category will be special
sequences of maps which we call D-sequences (Definition 4.2). However, it turns out that
most of this construction (such as the differential combinator, composition, etc.) can be
done with more generalized sort sequences called pre-D-sequences (Definition 3.2). Pre-
D-sequences can be defined for arbitrary categories with finite products – no additive
structure required. We construct a category of pre-D-sequences (Definition 3.6), and
which provides us with a comonad on the category of categories with finite products
(Section 3.14). Briefly, a pre-D-sequence is a sequence of maps (f0, f1, . . .) where fn :
A× . . .× A︸ ︷︷ ︸

2n−times

→ B. The intuition here is that fn should be thought of as the nth total

derivative of f0, which is similar to the idea for Faà di Bruno construction but where we
also derive the linear arguments. Composition of pre-D-sequences (Definition 3.6 (iv)) is
based on the higher-order chain rule using the tangent functor, while the differential of a
pre-D-sequence (Definition 3.4 (ii)) is simply the sequence shifted to the left. Compared to
the Faà di Bruno construction, this composition and differential can be defined without
the need of an additive structure and is quite simple to work with. However, even in
the presence of additive structure, the category of pre-D-sequence is not a Cartesian
differential category, simply because a pre-D-sequence is too arbitrary a sequence. By
considering pre-D-sequences which satisfy extra conditions, based on the axioms of a
Cartesian differential category (which now requires an additive structure), we obtain D-
sequences, and it follows that the category of D-sequences (Definition 4.7) will be the
cofree Cartesian differential category. Indeed, D-sequences provide us with a comonad
(D, δ, ε) on the category of Cartesian left additive categories (Section 4.9), such that the
D-coalgebras are precisely the Cartesian differential categories (Theorem 4.24). Therefore
we have that the category of D-sequences of X will be equivalent as a Cartesian differential
category to Faà(X) (Corollary 4.27). The construction provided here also generalizes to
constructing cofree generalized Cartesian differential categories (Appendix A). Though, as
Cartesian differential categories are more prominent then generalized Cartesian differential
categories (at the time of writing this paper), we’ve elected to go straight to building
Cartesian differential categories.

It is always an advantage and very useful to be able to construct and describe a
concept in different ways. It allows one to have options to best suit one’s needs and
interest. Though, it is true that up til now not much work has been done with cofree
Cartesian differential categories, and sadly, other then the construction itself, is not done
here either. However, we hope that this alternative construction will open the door and
inspire future developments in this direction.

Conventions: In this paper, we will use diagrammatic order for composition: this
means that the composite map fg is the map which first does f then g.
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2. Cartesian Differential Categories

In this section, we review Cartesian differential categories [2], and a bit of tangent cat-
egories [5, 4], to help better understand and motivate pre-D-sequences (Section 3) and
D-sequences (Section 4). In particular, we introduce notation and conventions which
simplify working with D-sequences.

2.1. Cartesian Left Additive Categories. We begin with the definition of Carte-
sian left additive categories [2]. Here “additive” is meant being skew enriched over com-
mutative monoids, which in particular means that we do not assume negatives – this
differs from additive categories in the sense of [11].

2.2. Definition. A left additive category [2, Definition 1.1.1] is a category such that
each hom-set is a commutative monoid, with addition + and zero 0, such that composition
on the left preserves the additive structure, that is f(g+h) = fg+fh and f0 = 0. A map
h in a left additive category is additive [2] if composition on the right by h preserves the
additive structure, that is (f + g)h = fh+ gh and 0h = 0.

2.3. Definition. A Cartesian left additive category [2, Definition 1.2.1] is a left
additive category with finite products such that all projections πi are additive.

Note that the definition given here of a Cartesian left additive category is slightly
different from the one found in [2, Definition 1.2.1]. Indeed, we require only that the
projections maps be additive and not that pairing of additive is again additive, or equiv-
alently by [2, Proposition 1.2.2], that the diagonal map is additive and that product of
additive maps is additive. We now show that requiring the projection maps be additive
is sufficient:

2.4. Lemma. In a Cartesian left additive category (as defined in Definition 2.3):

(i) 〈f, g〉+ 〈h, k〉 = 〈f + h, g + k〉 and 〈0, 0〉 = 0;

(ii) If f and g are additive then 〈f, g〉 is additive;

(iii) The diagonal map ∆ is additive;

(iv) If f and g are additive then f × g is additive.

Proof. The proof of (i) is the same as the one found in [2, Lemma 1.2.3] and uses only
that the projections πi are additive. Then (ii) follows from (i), that is, assuming f and g
are additive:

(h+k)〈f, g〉 = 〈(h+k)f, (h+k)g〉 = 〈hf+kf, hg+kg〉 = 〈hf, hg〉+〈kf, kg〉 = h〈f, g〉+k〈f, g〉

0〈f, g〉 = 〈0f, 0g〉 = 〈0, 0〉 = 0

and therefore 〈f, g〉 is additive. For (iii), [2, Proposition 1.1.2] tells us that all identity
maps are additive, and therefore by (ii), ∆ = 〈1, 1〉 is additive. For (iv), [2, Proposition
1.1.2] also tells us that additive maps are closed under composition, so if f and g are
additive, then so is π0f and π1g. Then again by (ii), f × g = 〈π0f, π1g〉 is additive.
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2.5. Cartesian Differential Categories. There are various (but equivalent) ways
of expressing the axioms of a Cartesian differential category. We’ve chosen the one found in
[4, Section 3.4] as it is the most closely relates to tangent categories. In particular, we will
express the axioms of a Cartesian differential category using the natural transformations
of its tangent category structure [5]. The maps of these natural transformations can be
defined without the differential combinator – though they loose their naturality!

2.6. Definition. A Cartesian differential category [2, Definition 2.1.1] is a Carte-
sian left additive category with a combinator D on maps – called the differential com-
binator – which written as an inference rule gives:

f : A→ B

D[f ] : A× A→ B

such that D satisfies the following:

[CD.1] D[f + g] = D[f ] + D[g] and D[0] = 0;

[CD.2] (1× (π0 + π1)) D[f ] = (1× π0)D[f ] + (1× π1)D[f ] and 〈1, 0〉D[f ] = 0;

[CD.3] D[1] = π1 and D[πj] = π1πj (with j ∈ {0, 1});

[CD.4] D[〈f, g〉] = 〈D[f ],D[g]〉;

[CD.5] D[fg] = 〈π0f,D[f ]〉D[g];

[CD.6] `D2[f ] = D[f ] where ` := 〈1, 0〉 × 〈0, 1〉 : A× A→ A× A× A× A;

[CD.7] cD2[f ] = D2[f ] where c := 1× 〈π1, π0〉 × 1 : A× A× A× A→ A× A× A× A.

In a Cartesian differential category, a map f is said to be linear [2, Definition 2.2.1] if
D[f ] = π1f .

2.7. Remark. Note that here we’ve flipped the convention found in [2, 4, 5]. Here
we’ve elected to have the linear argument in the second argument rather then in the first
argument. The convention used here follows that of the more recent work on Cartesian
differential categories, and is closer to the conventions used for the classical notion of the
directional derivative such as ∇(f)(~x) · ~y or D[f ](~x) · ~y.

Many examples of Cartesian differential categories can be found throughout the liter-
ature. Some intuition for these axioms can be found in [2, Remark 2.1.3]. In particular,
[CD.5] is the chain rule – which plays a fundamental role in the main constructions of
this paper. We first observe that [CD.4] is in fact redundant (simplifying what we need
check later on):

2.8. Lemma. [CD.4] follows from [CD.3] and [CD.5].
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Proof. Assuming only [CD.3] and [CD.5], we have that:

D[〈f, g〉] = D[〈f, g〉]〈π0, π1〉
= 〈D[〈f, g〉]π0,D[〈f, g〉]π1〉
= 〈〈π0〈f, g〉,D[〈f, g〉〉π1π0, 〈π0〈f, g〉,D[〈f, g〉〉π1π1〉
= 〈〈π0〈f, g〉,D[〈f, g〉〉D[π0], 〈π0〈f, g〉,D[〈f, g〉〉D[π1]〉
= 〈D[〈f, g〉π0],D[〈f, g〉π1]〉
= 〈D[f ],D[g]〉

It is important to note 〈1, 0〉, (1× (π0 + π1)), `, and c in the axioms [CD.2], [CD.6],
and [CD.7], as they will play fundamental roles in our construction (see Section 4). First
note that they can all be defined without the need of a differential combinator. Second,
while c is a natural transformation in the sense that (f × f × f × f)c = c(f × f × f × f),
the other three 〈1, 0〉, (1× (π0 + π1)) and ` are not natural transformations in this same
sense (though they are natural for additive maps). However, 〈1, 0〉, (1× (π0 + π1)), `, and
c are natural transformations for the induced tangent functor of a Cartesian differential
category.

While we will not review the full definition of a tangent category (we invite the curious
readers to read more on tangent categories here [4, 5]), a key observation to this paper is
that every differential combinator induces a functor:

2.9. Proposition. [5, Proposition 4.7] Every Cartesian differential category X is a
tangent category where the tangent functor T : X → X is defined on objects as
T(A) := A × A and on morphisms as T(f) := 〈π0f,D[f ]〉. Furthermore, if f is lin-
ear then T(f) = f × f .

For the tangent functor T, we have that 〈1, 0〉, (1× (π0 + π1)), `, and c are all natural
transformations. In fact, these are all natural transformations of the tangent category
structure of a Cartesian differential category [5, Proposition 4.7]. In tangent category
terminology [5, Definition 2.3]: π0 is the projection from the tangent bundle, 〈1, 0〉 is
the zero vector field, (1× (π0 + π1)) is the sum of tangent vectors, ` is the vertical lift,
and c is the canonical flip. We again note that these natural transformations were all
defined without the need of a differential combinator, though the differential combinator
was necessary for their naturality (in particular in defining the tangent functor).

Using the tangent functor, the chain rule [CD.5] can be expressed as:

D[fg] = T(f)D[g] (1)

This then gives a very clean expression for the higher-order chain rule for all n ∈ N:

Dn[fg] = Tn(f)Dn[g] (2)

This simple expression of the higher-order chain rule is key and will allow us to avoid
most (if not all) the combinatorial complexities of the Faà di Bruno formula as in [7].
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3. Pre-D-Sequences

In this section we introduce and study pre-D-sequences. Composition of pre-D-sequences
– defined below in (4) – is based on the higher-order chain rule of Cartesian differential
categories involving the tangent functor (2). While the category of pre-D-sequences is
not a Cartesian differential category, most of the construction of the cofree Cartesian
differential category comonad can be done in this weaker setting. In particular, in Section
3.14 we provide a comonad on the category of categories with finite products (Proposition
3.21), and later extend it to the category of Cartesian left additive categories (Proposition
3.28).

3.1. Pre-D-Sequences. For a category X with finite products, consider the endofunctor
P : X→ X (where P is for product) which is defined on objects as P(A) := A×A and on
maps as P(f) := f × f . The projection maps give natural transformations πj : P ⇒ 1X
(with j ∈ {0, 1}).

3.2. Definition. In a category with finite products, a pre-D-sequence from A to B,
which we denote as f• : A→ B, is a sequence of maps f• = (f0, f1, f2, . . .) where the n-th
term is a map of type fn : Pn(A)→ B.

The intuition for pre-D-sequences are sequences of the form (f,D[f ],D[D[f ]] , . . .). This
is similar to the intuition for the maps of the Faà di Bruno construction [7], but instead of
only taking partial derivatives à la de Rham cohomology, we’ve taken the full derivative.
In the following, we will often wish to prove that two pre-D-sequences are equal to one
another, where f• = g• means that fn = gn for all n ∈ N. We achieve this by either
the “internal” method, where we directly show that fn = gn for all n, or by using the
“external” method, where we use identities of pre-D-sequences which we will come across
throughout this paper.

One can “scalar multiply” pre-D-sequences on the left and on the right by maps of
the base category. Given maps h : A′ → A and k : B → C in X, and a pre-D-sequence
f• : A → B of X, we define new pre-D-sequences h · f• : A′ → B and f• · k : A → C,
respectively as follows:

(h · f•)n := Pn(A′)
Pn(h) // Pn(A)

fn // B (f• · k)n := Pn(A)
fn // B

k // C

One can easily check the following identities:

3.3. Lemma. The following equalities hold:

(i) h1 · (h2 · f•) = (h1h2) · f•;

(ii) 1 · f• = f• = f• · 1;

(iii) (f• · k1) · k2 = f• · (k1k2);

(iv) h · (f• · k) = (h · f•) · k

Even at this early stage, we can already define a differential and tangent:
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3.4. Definition. For a pre-D-sequence f• : A → B we define the following two pre-D-
sequences:

(i) Its tangent pre-D-sequence T(f•) : P(A)→ P(B) where:

T(f•)n := Pn+1(A)
〈Pn(π0)fn,fn+1〉 // P(B)

(ii) Its differential pre-D-sequence D[f•] : P(A)→ B where D[f•]n := fn+1.

Looking forward, D will indeed provide the desired differential combinator, and T will
be its the induced tangent functor (Corollary 4.25).

3.5. Lemma. The following equalities hold:

(i) T(h · f•) = P(h) · T(f•);

(ii) T(f• · k) = T(f•) · P(k);

(iii) π0 · f• = T(f•) · π0;

(iv) T(f•) · π1 = D[f•];

(v) D[h · f•] = P(h) · D[f•];

(vi) D[f• · k] = D[f•] · k.

Proof.

(i) Here we use the naturality of π0 with respect to P:

T(h · f•)n = 〈Pn(π0)(h · f•)n, (h · f•)n+1〉
= 〈Pn(π0)Pn(h)fn,P

n+1(h)fn+1〉
= 〈Pn+1(h)Pn(π0)fn,P

n+1(h)fn+1〉
= Pn+1(h)〈Pn(π0)fn, fn+1〉
= Pn+1(h)T(f•)n

= (P(h) · T(f•))n

(ii) Follows mostly by definition:

T(f• · k)n = 〈Pn(π0)(f• · k)n, (f• · k)n+1〉
= 〈Pn(π0)fnk, fn+1k〉
= 〈Pn(π0)fn, fn+1〉(k × k)

= T(f•)nP(k)

= (T(f•) · P(k))n
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(iii) Follows by definition:

(T(f•) · π0)n = T(f•)nπ0 = 〈Pn(π0)fn, fn+1〉π0 = Pn(π0)fn = (π0 · f•)n

(iv) Follows by definition:

(T(f•) · π1)n = T(f•)nπ1 = 〈Pn(π0)fn, fn+1〉π1 = fn+1 = D[f•]n

(v) Follows from (iv), (i), and Lemma 3.3 (iv):

D[h · f•] = T(h · f•) · π1 = (P(h) · T(f•)) · π1 = P(h) · (T(f•) · π0) = P(h) · f•

(vi) Here we use naturality of π1, (iv), (ii), and Lemma 3.3 (iii):

D[f• · k] = T(f• · k) · π1
= (T(f•) · P(k)) · π1
= T(f•) · (P(k)π1)

= T(f•) · (π1k)

= (T(f•) · π1) · k
= D[f•] · k

3.6. Definition. For a category X with finite products, we define its category of pre-D-
sequences D[X] as follows:

1. Objects of D[X] are objects of X;

2. Maps of D[X] are pre-D-sequences f• : A→ B;

3. The identity is the pre-D-sequence i• : A→ A where for n ≥ 1:

in := Pn(A)
π1 // Pn−1(A)

π1 // . . .
π1 // P(A)

π1 // A (3)

and i0 := 1A.

4. Composition of pre-D-sequences f• : A → B and g• : B → C is the pre-D-sequence
f• ∗ g• : A→ C where:

(f• ∗ g•)n := Pn(A)
Tn(f•)0 // Pn(B)

gn // C (4)

Recall that pre-D-sequences should be thought of as f• = (f,D[f ], . . .). By [CD.3],
the identity i• is precisely (1,D[1], . . .). The composition (f• ∗ g•)n is the analogue of the
higher-order chain rule Dn[fg] = Tn(f)Dn[g]. At first glance, Tn(f•)0 in the composition
may seem intimidating, however by the functorial properties of T, the composition of
pre-D-sequences is easy to work with, and will allow us to avoid the combinatorics of [7].

Strangely, before proving that D[X] is a well-defined category, we show the functorial
properties of T:
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3.7. Lemma. The following equalities hold:

(i) T(i•) = i•;

(ii) T(f• ∗ g•) = T(f•) ∗ T(g•).

Proof.

(i) Notice that for each n ∈ N, we have a natural transformation in : Pn ⇒ 1X and that
in+1 = inπ1. Therefore, we obtain the following:

T(i•)n = 〈Pn(π0)in, in+1〉 = 〈inπ0, inπ1〉 = in〈π0, π1〉 = in

(ii) Here we use identities from Lemma 3.5:

T(f• ∗ g•)n = 〈Pn(π0) (f• ∗ g•)n , (f• ∗ g•)n+1〉
= 〈Pn(π0)Tn(f•)0gn,T

n+1(f•)0gn+1〉
= 〈Tn(π0 · f•)0gn,Tn+1(f•)0gn+1〉 (Lemma 3.5 (i))

= 〈Tn (T(f•) · π0)0 gn,T
n+1(f•)0gn+1〉 (Lemma 3.5 (iii))

= 〈
(
Tn+1(f•) · Pn(π0)

)
0
gn,T

n+1(f•)0gn+1〉 (Lemma 3.5 (i))

= 〈Tn+1(f•)0Pn(π0)gn,T
n+1(f•)0gn+1〉

= Tn+1(f•)0〈Pn(π0)gn, gn+1〉
= Tn (T(f•))0 T(g•)n

= (T(f•) ∗ T(g•))n

3.8. Proposition. D[X] is a category.

Proof. First we prove associativity, f• ∗ (g• ∗ h•) = (f• ∗ g•) ∗ h•, using Lemma 3.7 (ii):

(f• ∗ (g• ∗ h•))n = Tn(f•)0(g• ∗ h•)n = Tn(f•)0Tn(g•)0hn = Tn(f• ∗ g•)0hn = ((f• ∗ g•) ∗ h•)n

Now we prove that (i• ∗ f•) = f• using Lemma 3.7 (i):

(i• ∗ f•)n = Tn(i•)0fn = i0fn = fn

Lastly we show that (f• ∗ i•) = f• by looking at when n = 0 or when n ≤ 1. The case
n = 0 is automatic since i0 = 1:

(f• ∗ i•)0 = f0i0 = f0

For the remaining cases, we have that:

(f• ∗ i•)n+1 = Tn+1(f•)0in+1
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= 〈π0Tn(f)0,T
n(f)1〉 π1 . . . π1︸ ︷︷ ︸

n+1 times

= Tn(f)1 π1 . . . π1︸ ︷︷ ︸
n times

= . . .

= T(f)nπ1

= fn+1

By Lemma 3.7, we also obtain a proper endofunctor T : D[X] → D[X] defined on
objects as T(A) := P(A) = A× A and mapping pre-D-sequences to their tangent pre-D-
sequence.

3.9. Corollary. T : D[X]→ D[X] is a functor.

Composition of pre-D-sequences is compatible with scalar multiplication (which we
leave as an exercise to the reader):

3.10. Lemma. The following equalities hold:

(i) h · i• = i• · h;

(ii) (h · f•) ∗ g• = h · (f• ∗ g•);

(iii) f• ∗ (g• · k) = (f• ∗ g•) · k;

(iv) (f• · k) ∗ g• = f• ∗ (k · g•);

(v) (h · i•) ∗ f• = h · f•;

(vi) f• ∗ (i• · k) = f• · k.

We now give a finite product structure on D[X]:

3.11. Proposition. D[X] is a category with finite products where:

1. The product of objects is the product of objects in X;

2. The projections are the pre-D-sequences i• ·π0 : A×B → A and i• ·π1 : A×B → B;

3. The pairing of pre-D-sequences f• : C → A and g• : C → B is 〈f•, g•〉 : C → A×B
where 〈f•, g•〉n := 〈fn, gn〉;

4. The terminal object is 1, the terminal object of X;

5. The unique map to the terminal object is the pre-D-sequence i• · t : A→ 1.
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Proof. Uniqueness of the maps to the terminal object and the pairing of maps follow
directly from the finite product structure of X. Therefore, it remains only to show that
〈f•, g•〉 ∗ (i• · π0) = f• and 〈f•, g•〉 ∗ (i• · π1) = g•. However both follow immediately from
Lemma 3.10 (vi):

(〈f•, g•〉 ∗ (i• · π0))n = (〈f•, g•〉 · π0)n = 〈f•, g•〉nπ0 = 〈fn, gn〉π0 = fn

and similarly for 〈f•, g•〉 ∗ (i• · π1) = g•.

3.12. Lemma. The following equalities hold:

(i) h · 〈f•, g•〉 = 〈h · f•, h · g•〉;

(ii) f• · 〈h, k〉 = 〈f• · h, f• · k〉;

(iii) 〈f• · k1, g• · k2〉 = 〈f•, g•〉 · (k1 × k2);

(iv) 〈f•, g•〉 · π0 = f• and 〈f•, g•〉 · π1 = g•;

(v) f• × g• = 〈π0 · f•, π1 · g•〉;

(vi) (f• × g•) · π0 = π0 · f• and (f• × g•) · π1 = π1 · g•;

(vii) (f• × g•) · (h× k) = (f• · h)× (g• · k);

(viii) 〈〈f•, f ′•〉, 〈g•, g′•〉〉 · c = 〈〈f•, g•〉, 〈f ′•, g′•〉〉.

Notice that Lemma 3.12 involves the canonical flip c from the differential combinator
axiom [CD.7]. This identity will come into play in Section 4.

We can now observe the following relations between D and T:

3.13. Proposition. The following equalities hold:

(i) T(f•) = 〈π0 · f•,D[f•]〉;

(ii) D[i•] = i• · π1;

(iii) D[i• · πj] = i• · (π1πj);

(iv) D[f• ∗ g•] = T(f•) ∗ D[g•];

(v) D[〈f•, g•〉] = 〈D[f•],D[g•]〉.
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Proof.

(i) By Lemma 3.3 (iv), Lemma 3.12 (iii) and Lemma 3.5 (iii) and (iv) we have that:

T(f•) = T(f•) · 1 = T(f•) · 〈π0, π1〉 = 〈T(f•) · π0,T(f•) · π1〉 = 〈π0 · f•,D[f•]〉

(ii) By the functoriality of T and Lemma 3.5 (iv) we have that:

D[i•] = T(ı•) · π1 = i• · π1

(iii) By (iii), Lemma 3.5 (vi), and Lemma 3.3 (iii) we have that:

D[i• · πj] = D[i•] · πj = (i• · π1) · πj = i• · (π1πj)

(iv) By functoriality of T, Lemma 3.5 (iv), and Lemma 3.10 (iii) we have that:

D[f• ∗ g•] = T(f• ∗ g•) · π1 = (T(f•) ∗T(g•)) · π1 = T(f•) ∗ (T(g•) · π1) = T(f•) ∗D[g•]

Note that Proposition 3.13 shows that D already satisfies some of the differential
combinator axioms (Definition 2.6). Indeed, (ii) and (iii) are [CD.3], (v) is [CD.4],
and (iv) is the chain rule [CD.5]. Also, (i) says that T is indeed the tangent functor
(Proposition 2.9) obtained from D.

3.14. Comonad of Pre-D-Sequences. We now show that pre-D-sequences already
give us a comonad. Let CART (for Cartesian) be the category of all categories with finite
products and functors between them which preserves the product structure strictly – which
we shall call here a strict Cartesian functor. Explicitly, for the sake of clarity, for a
functor F to be a strict Cartesian functor we must have for objects F(A×B) = F(A)×F(B),
F preserves the terminal object, and that for the projections F(πj) = πj. It then follows
that F(〈f, g〉) = 〈F(f),F(g)〉 and that F(f × g) = F(f) × F(g). Therefore, FP = PF, for
the product functor P as defined at the beginning of Section 3.1.

Let F : X → Y be a strict Cartesian functor. Define the functor D[F] : D[X] → D[Y]
on objects as D[F](A) = F(A) and for a pre-D-sequence f• of X, define the pre-D-sequence
D[F](f•) of Y by D[F](f•)n = F(fn).

3.15. Lemma. D[F] : D[X]→ D[Y] is a strict Cartesian functor.

Proof. That D[F] preserves the identity follows from that fact that F preserves projec-
tions:

D[F](i•)n = F(in) = F(π1 . . . π1︸ ︷︷ ︸
n−times

) = F(π1) . . . F(π1)︸ ︷︷ ︸
n−times

= π1 . . . π1︸ ︷︷ ︸
n−times

= in

To show that D[F] also preserves composition, notice the following compatibility between
F and T:

F(T(f•)n) = F(〈Pn(π0)fn, fn+1〉)
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= 〈F(Pn(π0)fn),F(fn+1)〉 (F preserves product structure strictly)

= 〈F(Pn(π0))F(fn),F(fn+1)〉
= 〈Pn(F(π0))F(fn),F(fn+1)〉 (F commutes with P)

= 〈Pn(π0)F(fn),F(fn+1)〉 (F preserves product structure strictly)

= 〈Pn(π0)D[F](f•)n,D[F](f•)n+1〉
= T

(
D[F](f•)

)
n

Then by this above equality and the fact that F is functor itself, we have that:

D[F](f• ∗ g•)n = F ((f• ∗ g•)n)

= F (Tn(f•)0gn)

= F (Tn(f•)0) F (gn)

= Tn
(
D[F](f•)

)
0
D[F](g•)n

=
(
D[F](f•) ∗ D[F](g•)

)
n

Lastly, D[F] preserves projections since F preserves projections:

D[F](i• · πj)n = F((i• · πj)n) = F(inπj) = F(in)F(πj) = inπj = (i• · πj)n

3.16. Lemma. D : CART→ CART is a functor.

Proof. That D is well defined on objects is given by Proposition 3.11, while being well
defined on maps is given by Lemma 3.15. It is straightforward to see that by definition
D preserves identity functors and composition of functors.

We now define a comonad structure on D. Starting with the counit, define the functor
ε : D[X]→ X defined on objects as ε(A) := A and on pre-D-sequences as ε(f•) := f0.

3.17. Lemma. ε : D[X]→ X is a strict Cartesian functor.

Proof. That ε is a functor follows mostly by definition of D[X]:

ε(i•) = i0 = 1 ε(f• ∗ g•) = (f• ∗ g•)0 = f0g0 = ε(f•)ε(g•)

While for the projection maps we have (recall that i0 = 1):

ε(i• · πj) = (i• · πj)0 = i0πj = πj
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3.18. Lemma. ε : D ⇒ 1CART is a natural transformation.

Proof. ε is well defined by Lemma 3.17. We must show that for a strict Cartesian functor
F : X→ Y, the following diagram commutes:

D[X]

ε
��

D[F] // D[Y]

ε
��

X
F

// Y

On objects this is clear, while for a pre-D-sequence f•, we have that:

ε
(
D[F](f•)

)
= D[F](f•)0 = F(f0) = F (ε(f•))

The comultiplication of the comonad is defined as the functor δ : D[X] → D
[
D[X]

]
defined on objects as δ(A) := A and for a pre-D-sequence f• of X, δ(f•) is the pre-
D-sequence of D[X] defined as δ(f•)n := Dn[f•] for n ≥ 1 and δ(f•)0 = f•. Note the
similarity between δ(f•) and the intuition given for pre-D-sequences after Definition 3.2.

3.19. Lemma. δ : D[X]→ D
[
D[X]

]
is a strict Cartesian functor.

Proof. To help us distinguish between working in D[X] and D
[
D[X]

]
, we will use the

following notation:

1. i• for the identities of D[X] and I• for the identities of D
[
D[X]

]
;

2. ∗ for composition in D[X] and ? for composition in D
[
D[X]

]
;

3. · for scalar multiplication between maps of D[X] and maps of X, and � for scalar
multiplication between maps of D

[
D[X]

]
and maps of D[X].

Note that by definition (3) and Lemma 3.10 (i), (v), and (vi), for I• we have that:

In = (i• · π1) ∗ . . . ∗ (i• · π1)︸ ︷︷ ︸
n−times

= i• · (π1 . . . π1︸ ︷︷ ︸
n−times

)

while for the projections I• � (i• · πj) of D
[
D[X]

]
we have that:

(I• � (i• · πj))n = In ∗ (i• · πj) =

i• · (π1 . . . π1︸ ︷︷ ︸
n−times

)

 ∗ (i• · πj) = i• · (π1 . . . π1︸ ︷︷ ︸
n−times

πj)

Now using multiple iterations of Proposition 3.13 (ii) and (iii), we can easily check that δ
preserves the identities and projections:

δ(i•)n = Dn[i•] = i• · (π1 . . . π1︸ ︷︷ ︸
n−times

) = In
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δ(i• · πj)n = Dn[i• · πj] = i• · (π1 . . . π1︸ ︷︷ ︸
n−times

πj) = (I• � (i• ∗ πj))n

To show that δ preserves composition, first consider the product functor P : D[X]→ D[X]
as defined at the beginning of Section 3.1. In particular using Lemma 3.5 (ii), functoriality
of T, and Lemma 3.12 (vii) we have that:

T(i• · k) = T(i•) · P(k) = i• · P(k) = (i• × i•) · (k × k) = (i• · k)× (i• · k) = P(i• · k)

Then it follows that:

T(δ(f•))n = 〈Pn(i• · π0)δ(f•)n, δ(f•)n+1〉
= 〈Tn(i• · π0)Dn[f•],D

n+1[f•]〉
= 〈Dn[π0 · f•],Dn+1[f•]〉
= Dn[〈π0 · f•,D[f•]〉]
= Dn[T(f•)]

= δ(T(f•))n

Finally using this identity that δT = Tδ and the higher order version of Proposition 3.13
(iv), we obtain that: (

δ(f•) ? δ(g•)
)
n

= Tn(δ(f•))0 ∗ δ(g•)n
= δ (Tn(f•))0 ∗ δ(g•)n
= Tn(f•) ∗ Dn[g•]

= Dn[f• ∗ g•]
= δ(f• ∗ g•)n

3.20. Lemma. δ : D ⇒ DD is a natural transformation.

Proof. δ is well defined by Lemma 3.19. We must show the for a strict Cartesian functor
F : X→ Y, the following diagram commutes:

D[X]

δ
��

D[F] // D[Y]

δ
��

D
[
D[X]

]
D[D[F]]

// D
[
D[Y]

]
On objects this is clear, while for a pre-D-sequence f•, note that Dn[f•]m = fn+m. Then
getting our hands dirty a bit with double indexing, we have that:(

D
[
D[F]

] (
δ(f•)

)
n

)
m

=
(
D[F](δ(f•)n)

)
m
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=
(
D[F](Dn[f ])

)
m

= F(Dn[f ]m)

= F(fn+m)

= D[F](f•)n+m

=
(
Dn[D[F](f•)]

)
m

=
(
δ
(
D[F](f•)

)
n

)
m

Now we check that we have indeed a comonad:

3.21. Proposition. (D, δ, ε) is a comonad on CART.

Proof. This is a matter of checking that the following two diagrams commute:

D[X]

δ
��

δ // D
[
D[X]

]
D[ε]
��

D[X]

δ
��

δ // D
[
D[X]

]
δ
��

D
[
D[X]

]
ε

// D[X] D
[
D[X]

]
D[δ]

// D
[
D
[
D[X]

]]
These all follow by definition. Starting with the lower triangle:

ε(δ(f•)) = δ(f•)0 = f•

then the upper triangle:

D[ε](δ(f•))n = ε(δ(f•)n) = ε(Dn[f•]) = Dn[f•]0 = fn

and lastly the right square – getting our hands dirty again with double indexing:(
D[δ](δ(f•))n

)
m

=
(
δ(δ(f•)n)

)
m

=
(
δ(Dn[f•])

)
m

= Dn+m[f•]

= δ(f•)n+m

= Dn[δ(f•)]m

=
(
δ(δ(f•))n

)
m



TANGENT CATEGORY ALTERNATIVE TO THE FAÀ DI BRUNO CONSTRUCTION 1089

3.22. Cartesian Left Additive Structure of Pre-D-Sequences. When the base
category is a Cartesian left additive category, one can also sum pre-D-sequences pointwise.

3.23. Proposition. If X is a Cartesian left additive category, then so is D[X] where:

1. The zero map is the pre-D-sequence 0• : A→ B where 0n = 0;

2. The sum of pre-D-sequences f• : A→ B and g• : A→ B is f• + g• : A→ B where
(f• + g•)n := fn + gn.

Proof. This is straightforward by the Cartesian left additive structure of X.

3.24. Lemma. The following equalities hold:

(i) h · 0• = 0•;

(ii) f• · 0 = 0•;

(iii) f• · (h+ k) = (f• · h) + (g• · k);

(iv) h · (f• + g•) = (h · f•) + (h · g•);

(v) If k is additive, 0• · k = 0•;

(vi) If k is additive, (f• + g•) · k = (f• · k) + (g• · k);

(vii) f• · 〈1, 0〉 = 〈f•, 0•〉;

(viii) 〈f•, 〈g•, g′•〉〉 · (1× (π0 + π1)) = 〈f•, g• + g′•〉;

(ix) 〈f•, g•〉 · ` = 〈〈f•, 0•〉, 〈0•, g•〉〉.

Notice that Lemma 3.24 (vii), (viii), and (ix) involve 〈1, 0〉, (1× (π0 + π1)) and ` from
the differential combinator axioms [CD.2] and [CD.6]. These, along with Lemma 3.10
(viii), will be crucial tools for certain proofs in Section 4.

The additive structure is also compatible with the differential and tangent of pre-D-
sequences:

3.25. Proposition. The following equalities hold:

(i) D[0•] = 0•;

(ii) D[f• + g•] = D[f•] + D[g•];

(iii) T(0•) = 0•;

(iv) T(f• + g•) = T(f•) + T(g•).
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Proof.

(i) Follows by definition:
D[0•]n = 0n+1 = 0 = 0n

(ii) Also follows by definition:

D[f• + g•] = (f• + g•)n+1 = fn+1 + gn+1 = D[f•]n + D[g•]n = (D[f•] + D[g•])n

(iii) Using (i), Proposition 3.13 (i), Lemma 3.24 (i), and Lemma 2.4 (i) we have that:

T(0•) = 〈π0 · 0•,D[0•]〉 = 〈0•, 0•〉 = 0•

(iv) Using (ii), Proposition 3.13 (i), Lemma 3.24 (iv), and Lemma 2.4 (i) we have that:

T(f•+g•) = 〈π0 ·(f•+g•),D[f•+g•]〉 = 〈π0 ·f•,D[f•]〉+〈π0 ·g•,D[g•]〉 = T(f•)+T(g•)

Note that we have shown another differential combinator axiom: Proposition 3.25 (i)
and (ii) are precisely [CD.1]. Therefore the only axioms remaining are [CD.2], [CD.6],
and [CD.7]. To obtaining these last three axioms, we will have to consider special kinds
of pre-D-sequences which we shall call D-sequences (Definition 4.2) and are discussed in
the next section.

The comonad from Section 3.14 extends to the category of Cartesian left additive cat-
egories. Let CLAC be the category of Cartesian left additive category and strict Cartesian
functors between them which preserve the additive structure – which we will call strict
Cartesian left additive functors. Again, to make things explicit, a strict Cartesian
functor F preserves the additive structure if F(f + g) = F(f) + F(g) and F(0) = 0.

3.26. Lemma. If F is a strict Cartesian left additive functor, then so is D[F].

Proof. By Lemma 3.15, we need only show that D[F] preserves the additive structure –
which follows from the fact that F does:

D[F](0•)n = F(0n) = F(0) = 0

D[F](f• + g•)n = F((f• + g•)n)

= F(fn + gn) = F(fn) + F(gn)

= D[F](f•)n +D[F](g•)n

=
(
D[F](f•) +D[F](g•)

)
n
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Abusing notation, we have that D is a well-defined endofunctor on CLAC.

3.27. Lemma. For Cartesian left additive categories, ε and δ are both strict Cartesian
left additive functors.

Therefore we obtain a comonad on CLAC:

3.28. Proposition. (D, δ, ε) is a comonad on CLAC.

4. D-Sequences and Cofree Cartesian Differential Categories

4.1. D-Sequences. In this section we introduce D-sequences and use the category of D-
sequences to construct the cofree Cartesian differential categories comonad on the category
of Cartesian left additive categories.

4.2. Definition. For a Cartesian left additive category, a D-sequence is a pre-D-
sequence f• such that for each n ∈ N the following equalities hold:

[DS.1] 〈1, 0〉 · Dn+1[f•] = 0•;

[DS.2] (1× (π0 + π1)) · Dn+1[f•] = ((1× π0) · Dn+1[f•]) + ((1× π1) · Dn+1[f•]);

[DS.3] ` · Dn+2[f•] = Dn+1[f•];

[DS.4] c · Dn+2[f•] = Dn+2[f•];

where recall that ` : P(A) → P2(A) and c : P2(A) → P2(A) (from Definition 2.6) are
defined respectively as ` := 〈1, 0〉 × 〈0, 1〉 and c := 1× 〈π1, π0〉 × 1.

Before providing some intuition on D-sequences, we provide an equivalent definition
which gives a slightly more explicit description of the maps of the sequence themselves:

4.3. Proposition. For a pre-D-sequence f• : A → B of a Cartesian left additive cate-
gory, the following are equivalent:

(i) f• is a D-sequence;

(ii) For each n ∈ N and k ≤ n, f• satisfies the following equalities:

[DS.1′] Pk(〈1, 0〉)fn+1 = 0;

[DS.2′] Pk (1× (π0 + π1)) fn+1 = Pk(1× π0)fn+1 + Pk(1× π1)fn+1;

[DS.3′] Pk(`)fn+2 = fn+1 with ` : Pn−k+1(A)→ Pn−k+1(A);

[DS.4′] Pk(c)fn+2 = fn+2 with c : Pn−k+2(A)→ Pn−k+2(A).
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Proof. In both directions, we use the trick that Dn[f ]m = fn+m.

(i)⇒ (ii): Suppose that f• is a D-sequence. For the following, let k ≤ n:

[DS.1′] Here we use [DS.1] at n− k:

Pk(〈1, 0〉)fn+1 = Pk(〈1, 0〉)Dn−k+1[f•]k =
(
〈1, 0〉 · Dn−k+1[f•]

)
k

= (0•)k = 0

[DS.2′] Here we use [DS.2] at n− k:

Pk((1× (π0 + π1)))fn+1 = Pk (1× (π0 + π1)) Dn−k+1[f•]k

=
(
(1× (π0 + π1)) · Dn−k+1[f•]

)
k

=
((

(1× π0) · Dn−k+1[f•]
)

+
(
(1× π1) · Dn−k+1[f•]

))
k

=
(
(1× π0) · Dn−k+1[f•]

)
k

+
(
(1× π1) · Dn−k+1[f•]

)
k

= Pk(1× π0)Dn−k+1[f•]k + Pk(1× π1)Dn−k+1[f•]k

= Pk(1× π0)fn+1 + Pk(1× π1)fn+1

[DS.3′] Here we use [DS.3] at n− k:

Pk(`)fn+2 = Pk(`)Dn−k+2[f•]k =
(
` · Dn−k+2[f•]

)
k

= Dn−k+1[f•]k = fn+1

[DS.4′] Here we use [DS.4] at n− k:

Pk(c)fn+2 = Pk(c)Dn−k+2[f•]k =
(
c · Dn−k+2[f•]

)
k

= Dn−k+2[f•]k = fn+2

(ii)⇒ (i): Suppose that f• satisfies [DS.1′] to [DS.4′] for each n ∈ N and k ≤ n.

[DS.1] Here we use [DS.1′] with k ≤ n+ k:

(〈1, 0〉 · Dn+1[f•])k = Pk(〈1, 0〉)Dn+1[f•]k = Pk(〈1, 0〉)fn+k+1 = 0 = 0k

[DS.2] Here we use [DS.2′] with k ≤ n+ k:

((1× (π0 + π1)) · Dn+1[f•])k = Pk (1× (π0 + π1)) Dn+1[f•]k

= Pk (1× (π0 + π1)) fn+k+1

= Pk(1× π0)fn+k+1 + Pk(1× π1)fn+k+1

= Pk(1× π0)Dn+1[f•]k + Pk(1× π1)Dn+1[f•]k

=
(
(1× π0) · Dn+1[f•]

)
k

+
(
(1× π1) · Dn+1[f•]

)
k

=
((

(1× π0) · Dn+1[f•]
)

+
(
(1× π1) · Dn+1[f•]

))
k

[DS.3] Here we use [DS.3′] with k ≤ n+ k:

(` · Dn+2[f•])k = Pk(`)Dn+2[f•]k = Pk(`)fn+k+2 = fn+k+1 = Dn+1[f•]k

[DS.4] Here we use [DS.4′] with k ≤ n+ k:

(c · Dn+2[f•])k = Pk(c)Dn+2[f•]k = Pk(c)fn+k+2 = fn+k+2 = Dn+2[f•]k
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Now to provide some explanation on the axioms of D-sequences. The axioms [DS.1]
to [DS.4] are analogues of higher-order versions of [CD.2], [CD.6], and [CD.7] – which
are respectively:

[CD.2.a] ((1× (π0 + π1)) Dn+1[f ] = (1× π0)Dn+1[f ] + (1× π1)Dn+1[f ]

[CD.2.b] 〈1, 0〉Dn+1[f ] = 0

[CD.6] `Dn+2[f ] = Dn+1[f ]

[CD.7] cDn+2[f ] = Dn+2[f ]

As for [DS.1′] to [DS.4′], recall that one should think of pre-D-sequences as

(f,D[f ],D2[f ], . . .).

By the higher-order chain rule (2), there are in fact k ≤ n possible equalities of the order
n versions of [CD.2], [CD.6], and [CD.7]. For example, consider [CD.6]:

Tk(`)Dn+2[f ] = Tk(`)Dk
[
D2
[
Dn−k[f ]

]]
= Dk

[
`D2

[
Dn−k[f ]

]]
= Dk

[
D
[
Dn−k[f ]

]]
= Dn+1[f ]

and since ` is linear, T(`) = ` × ` = P(`), and we obtain [DS.3′] that Pk(`)fn+2 = fn+1.
The rest are obtained in similar fashions and are derived in the proof of Lemma 4.18.

To compare with the Faà di Bruno construction [7]: the requirements of sequences
for the Faà di Bruno construction were multi-additivity and symmetry in the last n-
arguments. Here [DS.1′] and [DS.2′] correspond to the multi-additivity in certain argu-
ments, and [DS.4′] is symmetry in those same arguments. The major difference between
D-sequences and sequences of the Faà di Bruno construction is [DS.3′]. For the Faà di
Bruno construction, there was no necessary connection between fn+1 and fn+2 for arbi-
trary sequences, while for a D-sequence we ask that there be a relation between the fn.
This extra requirement shouldn’t be surprising as we are working with the full derivative
which involves differentiating the linear argument of D[f ], instead of only partial deriva-
tives. Thus an added requirement explaining this phenomena was to be expected. In
summary: in exchange for a simpler composition, we require an added axiom.

There is a bit of work to do in order to show that the category of D-sequences is well
defined: in particular proving that the composite of D-sequences is again a D-sequence.
We first observe the following (which we leave to the reader to check for themselves as
they are all straightforward):

4.4. Lemma. For a Cartesian left additive category:

(i) 0• is a D-sequence;

(ii) i• is a D-sequence;

(iii) If f• is a D-sequence and h is additive then h · f• is a D-sequence;
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(iv) If f• is a D-sequence and k is additive then f• · k is a D-sequence;

(v) i• · πi is a D-sequence;

(vi) If f• and g• are D-sequences then 〈f•, g•〉 is a D-sequence;

(vii) If f• and g• are D-sequences then f• + g• is a D-sequence.

Next we show that D-sequences are closed under the differential and tangent.

4.5. Proposition. If f• is a D-sequence then:

(i) D[f•] is a D-sequence;

(ii) T(f•) is a D-sequence.

and also the following equalities hold:

(iii) 〈1, 0〉 · T(f•) = f• · 〈1, 0〉;

(iv) (1×πi)·T(f•) = T2(f•)·(1×πi) where T2(f•) := 〈π0 · f, 〈(1× π0) · D[f•], (1× π1) · D[f•]〉〉;

(v) (1× (π0 + π1)) · T(f•) = T2(f•) · (1× (π0 + π1));

(vi) ` · T2(f•) = T(f•) · `;

(vii) c · T2(f•) = T2(f•) · c.

Proof. Suppose that f• is a D-sequence:

(i) Automatic by the definition of a D-sequence.

(ii) By Lemma 4.4 (iii), since π0 is additive, π0 · f• is a D-sequence. By (i) and Lemma
4.4 (vi), it then follows that 〈π0 · f•,D[f•]〉 is also a D-sequence. Therefore since
T(f•) = 〈π0 · f•,D[f•]〉 (Proposition 3.13 (i)), T(f•) is a D-sequence.

(iii) Here we use Lemma 3.12 (i), Lemma 3.24 (vii), and [DS.1] at n = 0:

〈1, 0〉 · T(f•) = 〈1, 0〉 · 〈π0 · f•,D[f•]〉 = 〈(〈1, 0〉π0) · f•, 〈1, 0〉 · D[f•]〉
= 〈f•, 0•〉 = f• · 〈1, 0〉

(iv) Here we use Lemma 3.12 (i) and (vi):

T2(f•) · (1× πi) = 〈π0 · f, 〈(1× π0) · D[f•], (1× π1) · D[f•]〉〉 · (1× πi)
= 〈π0 · f•, 〈(1× π0) · D[f•], (1× π1) · D[f•]〉 · πi〉
= 〈π0 · f•, (1× πi) · D[f•]〉
= (1× πi) · 〈π0 · f•,D[f•]〉
= (1× πi) · T(f•)
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(v) Here we use Lemma 3.12 (iii), Lemma 3.24 (viii), and [DS.2] at n = 0:

(1× (π0 + π1)) · T(f•) = (1× (π0 + π1)) · 〈π0 · f•,D[f•]〉
= 〈((1× (π0 + π1))π0) · f•, (1× (π0 + π1)) · D[f•]〉
= 〈π0 · f•, ((1× π0) · D[f•]) + ((1× π1) · D[f•])〉
= 〈π0 · f, 〈(1× π0) · D[f•], (1× π1) · D[f•]〉〉 · (1× (π0 + π1))

= T2(f•) · (1× (π0 + π1))

(vi) Here we use Lemma 3.12 (i), Lemma 3.24 (ix), and [DS.3] at n = 0:

` · T2(f•) = ` · 〈π0 · T(f•),D[T(f•)]〉
= ` · 〈π0 · 〈π0 · f•,D[f•]〉,D[〈π0 · f•,D[f•]〉]〉
= ` ·

〈
π0 · 〈π0 · f•,D[f•]〉, 〈D[π0 · f•],D2[f•]〉

〉
= ` ·

〈
π0 · 〈π0 · f•,D[f•]〉, 〈P(π0) · D[f•],D

2[f•]〉
〉

=
〈
(`π0) · 〈π0 · f•,D[f•]〉, ` · 〈P(π0) · D[f•],D

2[f•]〉
〉

=
〈
(π0〈1, 0〉) · 〈π0 · f•,D[f•]〉 ,

〈
(`P(π0)) · D[f•], ` · D2[f•]

〉〉
= 〈π0 · 〈(〈1, 0〉π0) · f•, 〈1, 0〉 · D[f•]〉 , 〈(π0〈1, 0〉) · D[f•],D[f•]〉〉
= 〈π0 · 〈1 · f•, 0•〉, 〈π0 · (〈1, 0〉 · D[f•]),D[f•]〉〉
= 〈〈π0 · f•, π0 · 0•〉, 〈π0 · 0•,D[f•]〉〉
= 〈〈π0 · f•, 0•〉, 〈0•,D[f•]〉〉
= 〈π0 · f•,D[f•]〉 · `
= T(f•) · `

(vii) Here we use Lemma 3.12 (i) and (viii), and [DS.4] at n = 0:

c · T2(f•) = c ·
〈
π0 · 〈π0 · f•,D[f•]〉, 〈P(π0) · D[f•],D

2[f•]〉
〉

=
〈
(cπ0) · 〈π0 · f•,D[f•]〉, c · 〈P(π0) · D[f•],D

2[f•]〉
〉

=
〈

P(π0) · 〈π0 · f•,D[f•]〉 ,
〈
(cP(π0)) · D[f•], c · D2[f•]

〉〉
=
〈
〈(P(π0)π0) · f•,P(π0) · D[f•]〉 ,

〈
π0 · D[f•],D

2[f•]
〉〉

=
〈
〈(π0π0) · f•,P(π0) · D[f•]〉 ,

〈
π0 · D[f•],D

2[f•]
〉〉

=
〈
〈(π0π0) · f•, π0 · D[f•]〉 ,

〈
P(π0) · D[f•],D

2[f•]
〉〉
· c

=
〈
π0 · 〈π0 · f•,D[f•]〉 ,

〈
P(π0) · D[f•],D

2[f•]
〉〉
· c

= T2(f•) · c
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4.6. Lemma. If f• and g• are D-sequences then f• ∗ g• is a D-sequence.

Proof. We will show [DS.1] to [DS.4] using the identities from Proposition 4.5, and in
particular the higher-order version of Proposition 3.13 (iv):

[DS.1] Here we use Lemma 3.12 (i), Lemma 3.10 (ii), Proposition 3.13 (iv), Proposition
4.5 (iii), and [DS.1] for g•:

〈1, 0〉 · Dn+1[f• ∗ g•] = 〈1, 0〉 · (Tn+1(f•) ∗ Dn+1[g•])

= (〈1, 0〉 · Tn+1(f•)) ∗ Dn+1[g•]

= (Tn(f•) · 〈1, 0〉) ∗ Dn+1[g•]

= Tn(f•) ∗ (〈1, 0〉 · Dn+1[g•])

= Tn(f•) ∗ 0•

= 0•

[DS.2] Here we use Lemma 3.12 (i), Lemma 3.10 (ii), Proposition 3.13 (iv), Proposition
4.5 (iv) and (v), the additive structure, and [DS.2] for g•:

(1× (π0 + π1)) · Dn+1[f• ∗ g•] = (1× (π0 + π1)) · (Tn+1(f•) ∗ Dn+1[g•])

=
(
(1× (π0 + π1)) · Tn+1(f•)

)
∗ Dn+1[g•]

= (T2(Tn(f•)) · (1× (π0 + π1))) ∗ Dn+1[g•]

= T2(Tn(f•)) ∗
(
(1× (π0 + π1)) · Dn+1[g•]

)
= T2(Tn(f•)) ∗

((
(1× π1) · Dn+1[g•]

)
+
(
(1× π1) · Dn+1[g•]

))
=
(
T2(Tn(f•)) ∗

(
(1× π1) · Dn+1[g•]

))
+
(
T2(Tn(f•)) ∗

(
(1× π1) · Dn+1[g•]

))
=
(

(T2(Tn(f•)) · (1× π0)) ∗ Dn+1[g•]
)

+
(

(T2(Tn(f•)) · (1× π1)) ∗ Dn+1[g•]
)

=
( (

(1× π0) · Tn+1(f•)
)
∗ Dn+1[g•]

)
+
( (

(1× π1) · Tn+1(f•)
)
∗ Dn+1[g•]

)
=
(
(1× π0) · (Tn+1(f•) ∗ Dn+1[g•])

)
+
(
(1× π1) · (Tn+1(f•) ∗ Dn+1[g•])

)
=
(
(1× π0) · (Tn+1(f•) ∗ Dn+1[g•])

)
+
(
(1× π1) · (Tn+1(f•) ∗ Dn+1[g•])

)
=
(
(1× π1) · Dn+1[f• ∗ g•]

)
+
(
(1× π1) · Dn+1[f• ∗ g•]

)
[DS.3] Here we use Lemma 3.12 (i), Lemma 3.10 (ii), Proposition 3.13 (iv), Proposition

4.5 (vi), and [DS.3] for g•:

` · Dn+2[f• ∗ g•] = ` · (Tn+2(f•) ∗ Dn+2[g•])

= (` · Tn+2(f•)) ∗ Dn+2[g•]

= (Tn+1(f•) · `) ∗ Dn+2[g•]

= Tn+1(f•) ∗ (` · Dn+2[g•])

= Tn+1(f•) ∗ Dn+1[g•]

= Dn+1[f• ∗ g•]
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[DS.4] Here we use Lemma 3.12 (i), Lemma 3.10 (ii), Proposition 3.13 (iv), Proposition
4.5 (vii), and [DS.4] for g•:

c · Dn+2[f• ∗ g•] = c · (Tn+2(f•) ∗ Dn+2[g•])

= (c · Tn+2(f•)) ∗ Dn+2[g•]

= (Tn+2(f•) · c) ∗ Dn+2[g•]

= Tn+2(f•) ∗ (c · Dn+2[g•])

= Tn+2(f•) ∗ Dn+2[g•]

= Dn+2[f• ∗ g•]

Finally we may properly state that we obtain a category of D-sequences:

4.7. Definition. Let X be a Cartesian left additive category. Then we denote D[X] as
the sub-Cartesian left additive category of D[X] of D-sequences of X.

4.8. Proposition. D[X] is a Cartesian left additive category.

Proof. Composition is well defined by Lemma 4.6, and the identities are well defined by
Lemma 4.4 (ii). The left additive structure is well defined by Lemma 4.4 (i) and (vii).
The finite product structure is well defined by Lemma 4.4 (v) and (vi). Then that D[X]
is a Cartesian left additive category follows from being a subcategory of D[X].

4.9. Comonad of D-Sequences. In this section we show that the category of D-
sequences does indeed provide a comonad on the category of Cartesian left additive cate-
gories CLAC (as defined in Section 3.22). In particular, as we will show in the next section,
the coalgebras of this comonad are precisely Cartesian differential categories. While most
of the work in showing that we have a comonad was done in Section 3.14, we still need
to show that the D-sequence axioms are well preserved.

Let F : X → Y be a strict Cartesian left additive functor, then define the functor
D[F] : D[X] → D[Y] to be the restriction of D[F] (as defined in Lemma 3.15) to the
category of D-sequences. Explicitly, on objects D[F](A) = F(A) = D[F](A), while on
D-sequences, D[F](f•) = D[F](f•).

4.10. Lemma. If F : X→ Y is a strict Cartesian left additive functor, then D[F] : D[X]→
D[Y] is a strict Cartesian left additive functor.

Proof. By Lemma 3.26, we only need to check that when f• is a D-sequence, then so is
D[F](f•). Note that since F is a strict Cartesian left additive functor, we have that:

F(〈1, 0〉) = 〈1, 0〉 F(1× (π0 + π1)) = 1× (π0 + π1) F(1× πj) = 1× πj
F(`) = ` F(c) = c

And recall that FP = PF. Therefore it is easier to check that D[F](f•) satisfies [DS.1′] to
[DS.4′]. In the following, let k ≤ n:
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[DS.1′] Here we use [DS.1′] for f•:

Pk(〈1, 0〉)D[F](f•)n+1 = Pk(F(〈1, 0〉))F(fn+1)

= F(Pk(〈1, 0〉))F(fn+1)

= F(Pk(〈1, 0〉)fn+1)

= F(0)

= 0

[DS.2′] Here we use [DS.2′] for f•:

Pk(1× (π0 + π1))D[F](f•)n+1 = Pk (F(1× (π0 + π1))) F(fn+1)

= F
(
Pk(1× (π0 + π1))

)
F(fn+1)

= F
(
Pk(1× (π0 + π1))fn+1

)
= F

(
Pk(1× π0)fn+1 + Pk(1× π1)fn+1

)
= F

(
Pk(1× π0)fn+1

)
+ F

(
Pk(1× π1)fn+1

)
= F

(
Pk(1× π0)

)
F(fn+1) + F

(
Pk(1× π1)

)
F(fn+1)

= Pk (F(1× π0)) F(fn+1) + Pk (F(1× π1)) F(fn+1)

= Pk(1× π0)D[F](f•)n+1 + Pk(1× π1)D[F](f•)n+1

[DS.3′] Here we use [DS.3′] for f•:

Pk(`)D[F](f•)n+2 = Pk(F(`))F(fn+2)

= F(Pk(`))F(fn+2)

= F(Pk(`)fn+2)

= F(fn+1)

= D[F](f•)n+1

[DS.4′] Here we use [DS.4′] for f•:

Pk(c)D[F](f•)n+2 = Pk(F(c))F(fn+2)

= F(Pk(c))F(fn+2)

= F(Pk(c)fn+2)

= F(fn+2)

= D[F](f•)n+2

4.11. Lemma. D : CLAC→ CLAC is a functor.

Proof. That D is well defined on objects (Cartesian left additive categories) follows from
Proposition 4.8, while Lemma 4.10 says that D is well defined on maps (strict Cartesian
left additive functors). That D preserves identities and composition follows from Lemma
3.16.
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The comonad structure on D is precisely the same as the comonad structure on D,
that is, the counit is defined as ε := ε (as defined in Lemma 3.17) and the comultiplication
is defined as δ := δ (as defined in Lemma 3.19). We still have to check however that δ is
well defined.

4.12. Lemma. ε : D[X]→ X is a strict Cartesian left additive functor.

Proof. Follows immediately from Lemma 3.27.

To check that δ indeed maps D-sequences to D-sequences, we will need the following
useful identities (which are straightforward to check):

4.13. Lemma. The following equalities hold:

(i) 〈i•, 0•〉 = i• · 〈1, 0〉;

(ii) (i• × (i• · π0)× (i• · π1)) = i• · (1× (π0 + π1));

(iii) 〈i•, 0•〉 × 〈0•, i•〉 = i• · `;

(iv) i• × 〈i• · π1, i• · π0〉 × i• = i• · c;

4.14. Lemma. δ : D[X]→ D [D[X]] is a strict Cartesian left additive functor.

Proof. We will use the same notation for D [D[X]] as introduced in the proof of Lemma
3.19. Using that P(i• ·k) = T(i• ·k) (as shown in the proof of Lemma 3.19) and the higher
order version of Proposition 3.13 (iv), we have that:(

(i• · k)� Dn+q[δ(f•)]
)
m

= Pm(i• · k) ∗ Dn+q[δ(f•)]m

= Pm(i• · k) ∗ δ(f•)n+m+q

= Pm(i• · k) ∗ Dn+m+q[f•]

= Dm
[
(i• · k) ∗ Dn+q[f ]

]
= Dm

[
k · Dn+q[f ]

]
Using the identities of Lemma 4.13 and this above identity, we check [DS.1] to [DS.4].

[DS.1] Here we use Lemma 4.13 (i) and [DS.1] for f•:(
〈i•, 0•〉 � Dn+1[δ(f•)]

)
m

=
(
(i• · 〈1, 0〉)� Dn+1[δ(f•)]

)
m

= Dm
[
〈1, 0〉 · Dn+1[f ]

]
= Dm[0•]

= 0•

[DS.2] Here we use Lemma 4.13 (ii) and [DS.2] for f•:(
(i• × ((i• · π0) + (i• · π1)))� Dn+1[δ(f•)]

)
m

=
(
(i• · (1× (π0 + π1)))� Dn+1[δ(f•)]

)
m
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= Dm
[
(1× (π0 + π1)) · Dn+1[f•]

]
= Dm

[
(1× π0) · Dn+1[f•] + (1× π1) · Dn+1[f•]

]
= Dm

[
(1× π0) · Dn+1[f•]

]
+ Dm

[
(1× π1) · Dn+1[f•]

]
=
(
(i• · (1× π0))� Dn+1[δ(f•)]

)
m

+
(
(i• · (1× π1))� Dn+1[δ(f•)]

)
m

=
(
(i• × (i• · π0))� Dn+1[δ(f•)]

)
m

+
(
(i• × (i• · π1))� Dn+1[δ(f•)]

)
m

=
(
(i• × (i• · π0))� Dn+1[δ(f•)] + (i• × (i• · π1))� Dn+1[δ(f•)]

)
m

[DS.3] Here we use Lemma 4.13 (iii) and [DS.3] for f•:(
(〈i•, 0•〉 × 〈0•, i•〉)� Dn+2[δ(f•)]

)
m

=
(
(i• · `)� Dn+2[δ(f•)]

)
m

= Dm
[
` · Dn+2[f•]

]
= Dm[Dn+1[f•]]

= Dn+m+1[f•]

= δ(f•)n+m+1

=
(
Dn+1[δ(f•)]

)
m

[DS.4] Here we use Lemma 4.13 (iv) and [DS.4] for f•:(
(i• × 〈i• · π1, i• · π0〉 × i•)� Dn+2[δ(f•)]

)
m

=
(
(i• · c)� Dn+2[δ(f•)]

)
m

= Dm
[
c · Dn+2[f•]

]
= Dm[Dn+2[f•]]

= Dn+m+2[f•]

= δ(f•)n+m+2

=
(
Dn+2[δ(f•)]

)
m

4.15. Lemma. ε : D ⇒ 1CLAC and δ : D ⇒ DD are both natural transformations.

Proof. ε and δ are well defined by Lemma 4.12 and Lemma 4.14, while their naturality
were shown in Lemma 3.18 and Lemma 3.20.

Finally we obtain the desired comonad on CLAC:

4.16. Proposition. (D, δ, ε) is a comonad on CLAC.

Proof. That (D, δ, ε) is a comonad follows immediately from Proposition 3.28.
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4.17. Cofree Cartesian Differential Categories. In this section we prove the
main result of this paper: that D-coalgebras of the comonad (D, δ, ε) are precisely Carte-
sian differential categories, or in other words, the category of D-coalgebras is equivalent
to the category of Cartesian differential categories. This then implies that for a Cartesian
left additive category X, its category of D-sequences D[X] is indeed the cofree Cartesian
differential category over X.

Recall that a D-coalgebra is a pair (X, ω) consisting of a Cartesian left additive cat-
egory X and strict Cartesian left additive functor ω : X → D[X] such that the following
diagrams commute:

X ω // D[X]

ε

��

X
ω

��

ω // D[X]

δ
��

X D[X]
D[ω]

// D [D[X]]

And that a D-coalgebra morphism F : (X, ω) → (Y, ω′) is a strict Cartesian left additive
functor F : X→ Y such that the following diagram commutes:

X
ω

��

F // Y
ω′

��
D[X]

D[F]
// D[Y]

We start by showing that every Cartesian differential category is a D-coalgebra. Let X
be a Cartesian differential category with differential combinator D (the author apologizes
in advance for the repetitive notation). Define the functor ωD : X → D[X] on objects
as ωD(A) := A and for maps f , ωD(f)• is the D-sequence defined as ωD(f)n := Dn[f ]
for n ≥ 1 and ωD(f)0 = f . Note that ωD(f)• is precisely the intuition we gave for
D-sequences.

4.18. Lemma. ωD(f)• is a D-sequence of X.

Proof. The proof follows the same arguments that was provided when giving intuition
for the D-sequence axioms [DS.1′] to [DS.4′]. The key is that 〈1, 0〉, (1× (π0 + π1)),
1× πi, `, and c are all linear in the Cartesian differential category sense. And recall that
for a linear map h, by Proposition 2.9, we have that T(h) = h×h = P(h). Then using the
higher-order chain rule that Dn[fg] = Tn(f)Dn[g], we can easily check [DS.1′] to [DS.4′]:

[DS.1′]: Here we use [CD.2], that 〈1, 0〉 is linear, and the higher-order chain rule [CD.5]:

Pk(〈1, 0〉)ωD(f)n+1 = Tk(〈1, 0〉)Dn+1[f ]

= Dk
[
〈1, 0〉Dn+1−k[f ]

]
= Dk

[
〈1, 0〉D

[
Dn−k[f ]

]]
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= Dk[0]

= 0

[DS.2′]: Here we again use [CD.2], that (1× (π0 + π1)) and 1 × πi are linear, and the
higher-order chain rule [CD.5]:

Pk (1× (π0 + π1))ω
D(f)n+1 = Tk (1× (π0 + π1)) Dn+1[f ]

= Dk
[
(1× (π0 + π1)) Dn+1−k[f ]

]
= Dk

[
(1× (π0 + π1)) D

[
Dn−k[f ]

]]
= Dk

[
(1× π0)D

[
Dn−k[f ]

]
+ (1× π1)D

[
Dn−k[f ]

]]
= Dk

[
(1× π0)D

[
Dn−k[f ]

]]
+ Dk

[
(1× π1)D

[
Dn−k[f ]

]]
= Tk (1× π0) Dk

[
D
[
Dn−k[f ]

]]
+ Tk (1× π1) Dk

[
D
[
Dn−k[f ]

]]
= Pk (1× π0)ωD(f)n+1 + Pk (1× π1)ωD(f)n+1

[DS.3′]: Here we use [CD.6], that ` is linear, and the higher-order chain rule [CD.5]:

Pk(`)ωD(f)n+2 = Tk(`)Dn+2[f ]

= Dk
[
`Dn+2−k[f ]

]
= Dk

[
`D2

[
Dn−k[f ]

]]
= Dk

[
D
[
Dn−k[f ]

]]
= ωD(f)n+1

[DS.4′]: Here we use [CD.7], that c is linear, and the higher-order chain rule [CD.5]:

Pk(c)ωD(f)n+2 = Tk(c)Dn+2[f ]

= Dk
[
cDn+2−k[f ]

]
= Dk

[
cD2

[
Dn−k[f ]

]]
= Dk

[
D2
[
Dn−k[f ]

]]
= ωD(f)n+2

4.19. Lemma. ωD : X→ D[X] is a strict Cartesian left additive functor.

Proof. That ωD is well-defined follows from Lemma 4.18. Now we must check that ωD

is indeed is a strict Cartesian left additive functor. Using the higher-order version of
[CD.3], we start by showing ωD preserves identities and projections:

ωD(1)n = Dn[1] = π1 . . . π1︸ ︷︷ ︸
n−times

= in
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ωD(πj)n = Dn[πj] = π1 . . . π1︸ ︷︷ ︸
n−times

πj = inπj = (i• · πj)n

Now using the higher-order version of [CD.1], we have that ωD preserves the additive
structure:

ωD(0)n = Dn[0] = 0 = 0n

ωD(f + g)n = Dn[f + g] = Dn[f ] + Dn[g] = ωD(f)n + ωD(g)n =
(
ωD(f)• + ωD(g)•

)
n

Lastly, to show that ωD preserves composition, notice that ωD also preserve the tangent
functors immediately by definition:

T(ωD(f)•)0 = 〈π0ωD(f)0, ω
D(f)1〉 = 〈π0f,D[f ]〉 = T(f)

Now using that ωD preserves tangent functors and the higher-order version of [CD.5], we
have that:

ωD(fg)n = Dn[fg] = Tn(f)Dn[g] = Tn(f)Dn[g] = T(ωD(f)•)0ω
D(g)n = (ωD(f)• ∗ ωD(g)•)n

4.20. Proposition. If X is a Cartesian differential category, then (X, ωD) is a D-
coalgebra.

Proof. We must check the two diagrams of a D-coalgebra. Though these are in fact
automatic by definition. Starting with the triangle:

ε(ωD(f)•) = ωD(f)0 = f

and now the square (working again with double indexing):(
D[ωD](ωD(f)•)n

)
m

= ωD(ωD(f)n)m

= ωD(Dn[f ])m

= Dn+m[f ]

= ωD(f)n+m

= Dn[ωD(f)•]m

=
(
δ(ωD(f)•)n

)
m

A strict Cartesian differential functor between Cartesian differential categories
is a strict Cartesian left additive functor F which also preserves the differential combi-
nator strictly in the sense that: F(D[f ]) = D[F(f)]. We now show that strict Cartesian
differential functors are in fact D-coalgebra morphisms:

4.21. Lemma. If F : X→ Y is a strict Cartesian differential functor, then F : (X, ωD)→
(Y, ωD) is a D-coalgebra morphism.
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Proof. This is again straightforward by definition:

ωD(F(f))n = (D)n[F(f)] = F(Dn[f ]) = F(ωD(f)n) = D[F](ωD(f)•)n

Now for the converse, we will show that a D-coalgebra is a Cartesian differential
category and that D-coalgebra morphisms are strict Cartesian differential functors.

4.22. Proposition. If (X, ω) is a D-coalgebra, then X is a Cartesian differential category
with differential combinator defined as Dω[f ] = ω(f)1.

Proof. We must show that Dω satisfies [CD.1] to [CD.7] (though recall that by Lemma
2.8: [CD.4] is redundant).

[CD.1]: Since ω preserves the additive structure strictly we have that ω(0)• = 0• and
ω(f + g)• = ω(f)• + ω(g)•. Therefore it follows that:

Dω[0] = ω(0)1 = 01 = 0 Dω[f + g] = ω(f + g)1 = ω(f)1 + ω(g)1 = Dω[f ] + Dω[g]

[CD.2]: Here we use [DS.1′] and [DS.2′] for ω(f)• at n = 1:

〈1, 0〉Dω[f ] = 〈1, 0〉ω(f)1 = 0

(1× (π0 + π1)) Dω[f ] = (1× (π0 + π1))ω(f)1

= (1× π0)ω(f)1 + (1× π1)ω(f)1

= (1× π0)Dω[f ] + (1× π1)Dω[f ]

[CD.3]: Since ω is a strict Cartesian functor, we have that ω(1)• = i• and ω(πj)• = i• ·πj.
Therefore it follows that:

Dω[1] = ω(1)1 = i1 = π1 Dω[πj] = ω(πj)1 = (i• · πj)1 = i1πj = π1πj

[CD.5]: By the functoriality of ω, we have that ω(fg)• = ω(f)• ∗ ω(g)•. By the D-
coalgebra structure, we also have that f = ε(ω(f)•) = ω(f)0. Therefore it follows that:

Dω[fg] = ω(fg)1

= (ω(f)• ∗ ω(g)•)1
= T(ω(f)•)0ω(g)1

= 〈π0ω(f)0, ω(f)1〉ω(g)1

= 〈π0f,Dω[f ]〉Dω[g]

For the remaining two axioms, which involve the higher order derivative (Dω)2, notice
that by the D-coalgebra structure, we have the following equality:

(Dω)n+m[f ] = ω ((Dω)n[f ])m
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= ω(ω(f)n)m = (D[ω](ω(f)•)n)m
= (δ(ω(f)•)n)m
= (Dω)n [ω(f)•]m

= ω(f)n+m

In particular when n = m = 1, we have that (Dω)2[f ] = ω(f)2.

[CD.6]: Here we use [DS.3′] for ω(f)• at n = 1:

`(Dω)2[f ] = `ω(f)2 = ω(f)1 = Dω[f ]

[CD.7]: Here we use [DS.4′] for ω(f)• at n = 1:

c(Dω)2[f ] = cω(f)2 = ω(f)2 = (Dω)2[f ]

4.23. Lemma. If F : (X, ω) → (Y, ω′) is a D-coalgebra morphism, then F is a strict
Cartesian differential functor with respect to differential combinators of Proposition 4.22.

Proof. Straightforward by definition of the differential combinators and D-coalgebra
morphisms:

F(Dω[f ]) = F(ω(f)1) = D[F](ω(f)•)1 = ω′(F(f))1 = Dω′ [F(f)]

Finally we show that we indeed have an equivalence between D-coalgebras and Carte-
sian differential categories.

4.24. Theorem. The category of D-coalgebras of the comonad (D, δ, ε) is equivalent to
the category of Cartesian differential categories and strict Cartesian differential functors
between them.

Proof. It is sufficient to show that constructions of Proposition 4.20 and Proposition
4.22 are inverse to each other. Starting with a Cartesian differential category X with
differential combinator D, we have that:

DωD

[f ] = ωD(f)1 = D[f ]

Conversely, let (X, ω) be a D-coalgebra, and recall that (Dω)n+m[f ] = ω(f)n+m (as shown
in the proof of Proposition 4.22). Then when m = 0, we obtain that:

ωDω

(f)n = (Dω)n[f ] = ω(f)n

As D-coalgebra morphisms are precisely strict Cartesian differential functors (Lemma 4.21
and Lemma 4.23), we obtain the desired equivalence of categories.
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As an immediate consequence of Theorem 4.24, since the categories of D-sequences
are in fact the cofree D-coalgebras, we obtain that:

4.25. Corollary. For a Cartesian left additive category X, its category of D-sequences
D[X] is a Cartesian differential category whose differential combinator induced by δ (as
defined in Proposition 4.22) is precisely given by the differential of pre-D-sequences (as
defined in Definition 3.4 (ii)), i.e.:

Dδ[f•] = D[f•]

Furthermore, the tangent functor of D[X] induced by Proposition 2.9 is precisely given by
the tangent of pre-D-sequences as defined in Definition 3.4 (i).

The curious reader may wonder what are the linear maps of D[X]. Recall that a
D-sequence f• is said to be linear if D[f•] = (i• · π1) ∗ f• = π1 · f•.

4.26. Lemma. A D-sequence f• is linear if and only if f• = i• · f0.

Proof.⇒: Suppose that f• is linear. In particular this implies that:

fn+1 = D[f•]n = (π1 · f•)n = Pn(π1)fn

We now show by induction on n that fn = (i• · f0)n. When n = 0, we have that
f0 = i0f0 = (i• · f0)0. Now suppose the desired equality holds for k ≤ n, we now show it
for n+ 1:

fn+1 = Pn(π1)fn

= Pn(π1)(i• · f0)n
= Pn(π1)inf0

= Pn(π1) π1 . . . π1︸ ︷︷ ︸
n times

f0

= π1 . . . π1︸ ︷︷ ︸
n+1 times

f0

= in+1f0

= (i• · f0)n+1

⇐: Suppose that f• = i• · f0.

D[f•] = D[i• · f0] = D[i•] · f0 = (i• · π1) · f0 = (π1 · i•) · f0 = π1 · (i• · f0) = π1 · f•
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For the comonad Faà of the Faà di Bruno construction, Faà-coalgebras are precisely
Cartesian differential categories [7, Theorem 3.2.6]. Then as another consequence of
Theorem 4.24, D-coalgebras are equivalent to Faà-coalgebras, and in particular:

4.27. Corollary. For a Cartesian left additive category X, Faà(X) (as defined in [7,
Section 2]) and its category of D-sequences D[X], are equivalent as Cartesian differential
categories.

5. Conclusion

The main goal of this paper was to develop an alternative construction to the Faà di
Bruno construction for building cofree Cartesian differential categories. In particular, this
constructions avoids the combinatorics of the Faà di Bruno formula by instead considering
an expression of the higher-order chain rule which involves the tangent functor (2). And
as Robert Seely once told the author: “this construction clears away all the (symmetric)
trees that hid the real structure”.

It is interesting to note that pre-D-sequences and much of their structure (such as
composition and differentiation) can be defined for arbitrary categories with finite prod-
ucts – which provides the possibility of studying differentiation and the chain rule in
contexts without an additive structure. Hopefully this new construction will pave the
way for future study on cofree Cartesian differential categories. For example, one could
study the category of pre-D-sequences and D-sequences for specific categories. Such as
what is the category of pre-D-sequences for the category of sets? Or what is the category
of D-sequences of the category of commutative monoids?

Finally, as suggested by one of the reviewers, there is another possible approach in-
volving axiomatizing sequences of the form (f,T(f),T2(f), . . .), where T is the tangent
functor of a Cartesian differential category. Composition of these sequences, which would
correspond to functoriality of the tangent functor (T(fg) = T(f)T(g)), is simpler as it is
given by point-wise composition. However, the differential of these sequences is no longer
given by a simple shift, and the product structure is no longer given point-wise but now
involving the permutation P(A × B) ∼= P(A) × P(B). For the purpose of this paper,
D-sequences are the more natural choice as they focus on the Cartesian differential cate-
gory structure (particularly the differential combinator) rather than the tangent category
structure (which in a certain sense “hides” the differential combinator).
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A. Generalized Pre-D-Sequences and Generalized D-Sequences

In this appendix, we very briefly explain how to generalize pre-D-sequences and D-
sequences to construct cofree generalized Cartesian differential categories. We elected
to focus on constructing cofree Cartesian differential categories in this paper instead since
the construction is simpler and more enlightening. We begin with the definition of a
generalized Cartesian differential category.
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A.1. Definition. A generalized Cartesian differential category [8, Definition
2.1] is a category X with finite products such that:

(i) For each object A, there is a chosen commutative monoid (L(A),+A, 0A), where

+A : L(A)× L(A)→ L(A) 0A : 1→ L(A)

and such that these choices satisfy L(L(A)) = L(A) and L(A×B) = L(A)× L(B).

(ii) And X comes equipped with a combinator D on maps, which written as an inference
rule gives:

f : A→ B

D[f ] : A× L(A)→ L(B)

such that D satisfies the equalities found in [8, Definition 2.1].

In particular, generalized Cartesian differential categories replace the requirement of
having a left additive structure with requiring each object comes paired with a com-
mutative monoid. There is also a Faà di Bruno construction for generalized Cartesian
differential categories [8, Section 2.1]. Following that Faà di Bruno construction, we con-
sider a generalization of pre-D-sequences and D-sequences where the maps of the sequences
are of type A×M × . . .M → N , where M will play the role of the monoid L(A).

Let X be a category with finite products and consider the category X×X, whose objects
and maps are pairs of objects and maps of X. Define the functor P̃ : X × X → X × X
on objects as P̃(A,M) := (A ×M,M ×M) and on maps as P̃(f, g) := (f × g, g × g).
Now define the functor U : X×X→ X on objects as U(A,M) := A×M and on maps as
U(f, g) := f × g.

A.2. Definition. For a category X with finite products, a generalized pre-D-sequence
between pairs of objects (A,M) and (B,N), denoted f• : (A,M)→ (B,N), is a sequence

of maps of f• := (f0, f1, . . .), where f0 : A → B and fn+1 : U
(

P̃n(A,M)
)
→ N for all

n ∈ N.

Explicitly, a generalized pre-D-sequence f• : (A,M) → (B,N) is a sequence of maps
f0 : A→ B, f1 : A ×M → N , f2 : A ×M ×M ×M → N , etc. Every pre-D-sequence
f• : A→ B is a generalized pre-D-sequence f• : (A,A)→ (B,B). Just by the definition,
one can see why generalized pre-D-sequences are slightly more trickier to work with then
pre-D-sequence. However, the differential, tangent, and composition of generalized pre-
D-sequences are defined essentially the same way as they were for pre-D-sequences. And
therefore, for a category X with finite products, we obtain its category of generalized
pre-D-sequences GD[X]. It is interesting to note that D[X] is to GD[X], what Faà(X) was
to BFaà(X) (as defined in [7, Section 2]).

From here one can construct a comonad GD on CART given by the category of gen-
eralized pre-D-sequences (similar to the comonad defined in Section 3.14). As before,
generalized pre-D-sequences are too arbitrary to give cofree generalized Cartesian differ-
ential categories. In particular, generalized pre-D-sequences do not require any added
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requirements on M . Generalized D-sequence will require that M comes equipped with a
commutative monoid structure, in order to play the role of L(A).

A.3. Definition. For a category X with finite products, a generalized D-sequence,
denoted by f• : (A, (M,+M , 0M)) → (B, (N,+N , 0N)) – where A and B are arbitrary
objects of X, while (M,+M , 0M) and (N,+N , 0N) are commutative monoids of X – is a
generalized pre-D-sequence f• : (A,M)→ (B,N) such that for each n ∈ N and k ≤ n, the
following equalities hold:

[GDS.1′] 〈1A, 0M〉f1 = 0 and U
(

P̃k (〈1A, 0M〉, 〈1M , 0M〉)
)
fn+2 = 0;

[GDS.2′] U
(

P̃k (1A,+M)
)
fn+1 =

〈
U
(

P̃k (1A, π0)
)
fn+1,U

(
P̃k (1A, π1)

)
fn+1

〉
+M ;

[GDS.3′] U
(

P̃k (〈1A, 0M〉, 〈0M , 1A〉)
)
fn+2 = fn+1;

[GDS.4′] cf2 = f2 and U
(

P̃k (c, c)
)
fn+3 = fn+3.

Here, one can clearly see that our simple notation for pre-D-sequences falls apart for
generalized D-sequences. Note that generalized D-sequences can be defined for any cat-
egory with finite products, where D-sequences could only be defined for Cartesian left
additive categories. Indeed given a category X, we obtain its category of generalized
D-sequences GD[X]. From here, following the same constructions and arguments as in
Section 4.9, one can see that generalized D-sequences induce a comonad GD on CART
whose coalgebras are precisely generalized Cartesian differential categories. In particu-
lar, in the category of generalized D-sequences, the chosen monoid (of the generalized
Cartesian differential category structure) for the object (A, (M,+, 0)) is (M, (M,+, 0)).
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