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A BRAUER-CLIFFORD-LONG GROUP FOR THE CATEGORY OF
DYSLECTIC HOPF YETTER-DRINFEL’D (S,H)-MODULE

ALGEBRAS

THOMAS GUÉDÉNON AND ALLEN HERMAN∗

Abstract. Brauer-Clifford groups are equivariant Brauer groups for which a Hopf
algebra acts or coacts nontrivially on the base ring. Brauer-Clifford groups have been
established previously in the category of modules for a skew group ring S#G, the cat-
egory of modules for the smash product S#H over a cocommutative Hopf algebra H,
and its dual category of (S,H)-Hopf modules SMH over a commutative Hopf algebra
H. In this article the authors introduce a Brauer-Clifford group for the category of
dyslectic Hopf Yetter-Drinfel’d (S,H)-modules for an H-commutative base ring S and
quantum group H. This is the first such example in a category of modules for a quantum
group, and it gives a new example of an equivariant Brauer group in a braided monoidal
category.

Introduction

There are now several examples of Brauer groups of symmetric and braided monoidal
categories (see [vOZ]). The different examples originally arose one-by-one, beginning
with the original Brauer group of a field, until a unifying general pattern of ideas was
developed [Pareigis]. A braided monoidal category is a category C with a tensor product ⊗
that has a unit object R and has a family of isomorphisms γM,N : M⊗N → N⊗M , one for
each pair of objects in C, satisfying natural coherence conditions. If γM,N ◦γM,N = idM⊗N
always holds, then the braided monoidal category is symmetric.

Van Oystaeyen and Zhang gave a general construction for the Brauer group of a
braided monoidal category (C,⊗, R, γ) in [vOZ]. It is the group of equivalence classes
of “Azumaya algebras” in the category modulo taking braided products with “trivial”
algebras in the category that arise as EndC(M), where M is a faithfully projective R-
module in C. Braided monoidal categories frequently occur in categories related to the
actions and coactions of Hopf algebras. Caenepeel, van Oystaeyen, and Zhang were in
particular inspired by their formulation of the Brauer group in the category of Yetter-
Drinfel’d H-module algebras for a Hopf algebra H with bijective antipode. However, in
this category both the action and coaction of H on the base ring R were assumed to be
trivial.
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Brauer-Clifford groups are equivariant Brauer groups where the action or coaction
on the base ring is not assumed to be trivial. In a previous article, the authors defined
the Brauer-Clifford group of equivalence classes of (S,H)-Azumaya algebras. This is
the Brauer group for the symmetric monoidal category of S#H-modules, where S is a
commutative H-module algebra for a cocommutative Hopf algebra H acting nontrivially
on S. A dual situation was given for the Brauer-Clifford group of Azumaya algebras in the
category of (S,H)-Hopf modules, a category of S-modules with a compatible H-comodule
structure, where S is a commutative H-comodule algebra for a commutative Hopf algebra
H.

The natural next step in extending the list of Brauer-Clifford groups is to formulate one
in a category of Yetter-Drinfel’d H-modules for a Hopf algebra H with bijective antipode.
Yetter-Drinfel’d H-modules do form a braided monoidal category when the action and
coaction on the base ring is trivial. The Brauer group for the category of Yetter-Drinfel’d
H-modules was introduced by Caenepeel, van Oystaeyen, and Zhang in [CvOZ1] and
[CvOZ2]. In order to have the base ring S be a nontrivial Yetter-Drinfel’d H-module
algebra, we require the dyslectic condition introduced by Pareigis in [Pareigis2]. We will
assume S to be H-commutative (aka. quantum commutative) and restrict ourselves to the
subcategory of dyslectic Hopf Yetter-Drinfel’d (S,H)-module algebras in order to obtain
a braided monoidal category. (We do not require the base ring S to be commutative.)
The goal of this article is to give a detailed description of the Brauer group of this braided
monoidal category, which we call the Brauer-Clifford-Long group as it is a generalization
of both the Brauer-Clifford group and the Brauer-Long group.

1. Preliminaries and Notation

Let H be a Hopf algebra over a commutative ring R. We denote its comultiplication by
∆ : H → H ⊗ H, its antipode by S : H → H, and its counit by ε : H → R. We will
use Sweedler-Heyneman notation, omitting sums, so we write ∆(h) = h1⊗h2. For a Hopf
algebra with comultiplication ∆, ∆cop is defined by ∆cop(h) =

∑
h2 ⊗ h1.

We will require a sequence of definitions, all of which are standard. An R-algebra A
is an H-module algebra if A is a left H-module such that

h.(ab) = (h1.a)(h2.b) and h.1A = ε(h)a, for all a, b ∈ A, h ∈ H. (1)

H acts trivially on A when h.a = ε(h)a for all h ∈ H and a ∈ A. A homomorphism of
H-module algebras is a homomorphism of H-modules which is also a homomorphism of
R-algebras. If A is an H-module algebra, then the smash product algebra A#H is the
R-module A⊗H with multiplication

(a⊗ h)(a′ ⊗ h′) = a(h1.a
′)⊗ h2h

′, for all a, a′ ∈ A and h, h′ ∈ H. (2)

An R-module M is a left A#H-module if it is a left A-module and a left H-module for
which

h(am) = (h1.a)(h2m) for all h ∈ H, a ∈ A,m ∈M. (3)
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If A is an H-module algebra and S is a sub-H-module algebra of A, then the algebras A
and S are left S#H-modules. We will write A#HM for the category of left A#H-modules.
It was observed in [GH] that if H is cocommutative and A is a commutative H-module
algebra, then (A#HM,⊗A, A) is a symmetric monoidal category.

If H is a Hopf algebra over R, an R-module M is a right H-comodule if there exists
an R-linear map ρM : M → M ⊗H satisfying (ρM ⊗ idH) ◦ ρM = (idH ⊗∆H) ◦ ρM and
(idM ⊗ ε) ◦ ρM = idM . In Sweedler notation, we write ρM(m) = m0 ⊗m1 for all m ∈ M ,
and the right H-comodule conditions on M are

m00 ⊗m01 ⊗m1 = m0 ⊗m11 ⊗m12, and m0ε(m1) = m, for all m ∈M. (4)

H coacts trivially on M when m0 ⊗m1 = m⊗ 1H for all m ∈M . Let M and N be right
H-comodules. A homomorphism of right H-comodules (aka. a right H-colinear map) is
an R-linear map f : M → N such that ρN ◦ f = (f ⊗ idH) ◦ ρM . In Sweedler notation,
this is equivalent to

f(m)0 ⊗ f(m)1 = f(m0)⊗m1, for all m ∈M. (5)

IfM andN are rightH-comodules thenM⊗N is a rightH-comodule under the codiagonal
coaction:

(m⊗ n)0 ⊗ (m⊗ n)1 = m0 ⊗ n0 ⊗ (m1n1), for all m ∈M,n ∈ N. (6)

AnR-algebraA is anH-comodule algebra ifA is a rightH-comodule and the multiplication
in A satisfies

(ab)0 ⊗ (ab)1 = a0b0 ⊗ a1b1 and ρ(1A) = 1A ⊗ 1H , for all a, b ∈ A. (7)

A homomorphism of H-comodule algebras is a homomorphism of H-comodules which is
also a homomorphism of R-algebras.

Let A be a right H-comodule algebra. A R-module M is an (A,H)-Hopf module if M
is both a left A-module and a right H-comodule, with the property

(am)0 ⊗ (am)1 = a0m0 ⊗ a1m1, for all a ∈ A,m ∈M. (8)

A homomorphism of (A,H)-Hopf modules is a left A-linear map which is also a right
H-colinear map. We will write AMH for the category of (A,H)-Hopf modules. This
category is dual to A#HM, and when H is commutative and A is a commutative H-
comodule algebra, (AMH ,⊗A, A) is a symmetric monoidal category [GH].

Let H be a Hopf algebra with bijective antipode. A Hopf Yetter-Drinfel’d H-module
(in the literature also called a crossed H-module or a quantum Yang-Baxter H-module)
is an R-module M which is both a left H-module and a right H-comodule satisfying the
compatibility condition

(hm)0 ⊗ (hm)1 = h2m0 ⊗ h3m1S−1(h1), for all h ∈ H,m ∈M. (9)
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A Hopf Yetter-Drinfel’d H-module homomorphism between two Hopf Yetter-Drinfel’d H-
modules M and N is an R-linear map M → N which is simultaneously a left H-module
homomorphism and a right Hop-comodule homomorphism.

A Hopf Yetter-Drinfel’d H-module algebra is both a left H-module algebra and a
right Hop-comodule algebra satisfying the relation (9). A Hopf Yetter-Drinfel’d H-module
algebra homomorphism between two Yetter-Drinfel’d H-module algebras A and B is a R-
linear map A→ B which is simultaneously a Yetter-Drinfel’d H-module homomorphism
and an R-algebra homomorphism. The category of Hopf Yetter-Drinfel’d H-modules is
denotedQH [CvOZ2]. For Hopf Yetter-Drinfel’d H-modules M and N , the tensor product
M ⊗N has an H-module structure given by

h(m⊗ n) = (h1m)⊗ (h2n), for all h ∈ H,m ∈M,n ∈ N, (10)

and an H-comodule structure given by

(m⊗ n)0 ⊗ (m⊗ n)1 = m0 ⊗ n0 ⊗ n1m1, for all m ∈M,n ∈ N. (11)

These H-structures satisfy the compatibility condition (9) and make M ⊗ N a Hopf
Yetter-Drinfel’d H-module, denoted by M⊗̃N .

For Hopf Yetter-Drinfel’d H-modules M and N , there exists a Yetter-Drinfel’d H-
module isomorphism γM,N from M ⊗̃N to N ⊗̃M defined by (see [CvOZ1, (1.2.4)])

γM,N(m ⊗̃n) = n0 ⊗̃n1m, for all m ∈M,n ∈ N, (12)

with inverse
γ−1
M,N(n ⊗̃m) = SH(n1)m ⊗̃n0, for all m ∈M,n ∈ N. (13)

According to [CvOZ1, (1.2.4)] and [CvOZ2, (1.4)], (QH , ⊗̃k, γM,N , k) is a braided monoidal
category. A monoidal category (C,⊗) is braided if there are natural isomorphisms γM,N :
M ⊗ N ∼= N ⊗M in C for all M,N ∈ C, such that the following hexagonal coherence
conditions are satisfied (see [MacLane, p. 180]):

γM⊗N,P = (γM,P⊗1)◦(1⊗γN,P ) and γM,N⊗P = (1⊗γM,P )◦(γM,N⊗1), for all M,N,P ∈ C.

2. The category of Hopf Yetter-Drinfel’d (S,H)-modules

Let S be a Yetter-Drinfel’d H-module algebra. A Hopf Yetter-Drinfel’d (S,H)-module M
is a left S-module and a Yetter-Drinfel’d H-module satisfying the compatibility conditions

h(s ⇀ m) = (h1.s) ⇀ (h2m) (14)

and

(s ⇀ m)0 ⊗ (s ⇀ m)1 = (s0 ⇀ m0)⊗m1s1, for all h ∈ H, s ∈ S,m ∈M. (15)
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Equivalently, M is a left S#H-module and a right (S,Hop)-Hopf module for which relation
(9) is satisfied. A Hopf Yetter-Drinfel’d (k,H)-module is just a Hopf Yetter-Drinfel’d H-
module. Furthermore, note that if S is a Yetter-Drinfel’d H-module algebra, then S is a
Hopf Yetter-Drinfel’d (S,H)-module: the left action of S is given by s ⇀ s′ = ss′ for all
s, s′ ∈ S.

A Hopf Yetter-Drinfel’d (S,H)-module homomorphism is a Hopf Yetter-Drinfel’d H-
module map which is also left S-linear. We denote by SQH the category consisting of
Hopf Yetter-Drinfel’d (S,H)-modules and Hopf Yetter-Drinfel’d (S,H)-module homomor-
phisms.

Let S be a Yetter-Drinfel’d H-module algebra. We say that S is H-commutative (or
quantum commutative) if

ss′ = s′0(s′1.s), for all s, s′ ∈ S. (16)

If S is an H-commutative Yetter-Drinfel’d H-module algebra, then for every left S-action
on an M ∈ SQH there is a corresponding right S-action defined by

m ↼ s = s0 ⇀ s1.m, for all s ∈ S,m ∈M. (17)

This allows us to view M as an S-S-bimodule. Note that the left S-action and the right
S-action are also related by

s ⇀ m = S(s1)m ↼ s0, for all s ∈ S,m ∈M. (18)

Note also that we have
h(m ↼ s) = (h1m) ↼ (h2.s) (19)

and

(m ↼ s)0 ⊗ (m ↼ s)1 = (m0 ↼ s0)⊗ s1m1, for all h ∈ H,m ∈M, s ∈ S. (20)

Let S be an H-commutative Yetter-Drinfel’d H-module algebra. Then for M and
N in SQH , we can endow the tensor product M ⊗S N with the following S-action and
H-module and comodule structures:

s ⇀ (m ⊗̃n) = (s ⇀ m) ⊗̃n, (21)

h(m ⊗̃n) = h1m ⊗̃h2n, (22)

and
(m ⊗̃n)0 ⊗ (m⊗ n)1 = m0 ⊗̃n0 ⊗ n1m1, (23)

for all h ∈ H, s ∈ S, m ∈M , and n ∈ N , where m ⊗̃n = m⊗S n. According to [CvOZ2],
these structures make M ⊗S N into a Hopf Yetter-Drinfel’d (S,H)-module, denoted by
M ⊗̃S N . Note that we have

(m ⊗̃n) ↼ s = m ⊗̃ (n ↼ s), for all m ∈M,n ∈ N, s ∈ S. (24)

It follows from [CvOZ1, Theorem 3.2.3] that if S is H-commutative, then (SQH , ⊗̃S, S)
is a monoidal category.

In the remainder of the paper, if M and N are Hopf Yetter-Drinfel’d (S,H)-modules,
HomS(M,N) means HomS(MS, NS) and SHom(M,N) means SHom(SM, SN).
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2.1. Lemma. Let S be an H-commutative Yetter-Drinfel’d H-module algebra, and let M
and N be Hopf Yetter-Drinfel’d (S,H)-modules. Then the following hold:

(i) HomS(M,N) is a left S#H-module, where the action of S is defined by

(s ⇀ f)(m) = s ⇀ f(m), for all s ∈ S, f ∈ HomS(M,N),m ∈M, (25)

and the action of H is defined by

(hf)(m) = h1[f(S(h2)m)], for all f ∈ HomS(M,N), h ∈ H,m ∈M. (26)

(ii) If M is finitely generated projective as a right S-module, then HomS(M,N) is a
Hopf Yetter - Drinfel’d (S,H)- module, where the coaction of H is defined by

f0(m)⊗ f1 = f(m0)0 ⊗ S−1(m1)f(m0)1, for all f ∈ HomS(M,N),m ∈M. (27)

Proof. (i) Let f ∈ HomS(M,N), h ∈ H, s ∈ S and m ∈M . We have

(hf)(m ↼ s) = h1(f(S(h2)(m ↼ s)))
= h1(f((S(h2)1m) ↼ (S(h2)2.s)))
= h1[f((S(h22)m) ↼ (S(h21).s))]
= h1[f(S(h3)m) ↼ (S(h2).s)]
= (h11.(f(S(h3)m))) ↼ (h12.(S(h2).s))
= (h1.(f(S(h4)m))) ↼ (h2.(S(h3).s))
= (h1.(f(S(h4)m))) ↼ (h2(S(h3)).s)
= (h1(f(S(h3)m))) ↼ ε(h2)s
= ((hf)(m)) ↼ s.

So hf ∈ HomS(M,N), that is, the H-action is well defined. It is easy to see that
HomS(M,N) is a left H-module. For s′ in S, m ∈M and f ∈ HomS(M,N) we have

(s ⇀ f)(m ↼ s′) = s ⇀ (f(m ↼ s′))
= s ⇀ (f(m) ↼ s′)
= (s ⇀ (f(m)) ↼ s′

= ((s ⇀ f)(m)) ↼ s′.

So (s ⇀ f) ∈ HomS(M,N), that is, the left S-action is well defined. It is easy to see that
HomS(M,N) is a left S-module. For all f ∈ HomS(M,N), s ∈ S, h ∈ H, and m ∈ M ,
we have

[h(s ⇀ f)](m) = h1[(s ⇀ f)(S(h2)m)]
= h1[s ⇀ (f(S(h2)m))]
= (h11.s) ⇀ (h12(f(S(h2)m)))
= (h1.s) ⇀ (h21(f(S(h22)m)))
= (h1.s) ⇀ ((h2f)(m))
= [(h1.s) ⇀ (h2f)](m),

and (14) is satisfied. Therefore HomS(M,N) is a left S#H-module.
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(ii) When M is a finitely generated projective right S-module, then HomS(M,N) ⊗
H ' HomS(M,N ⊗H), so HomS(M,N) becomes an H-comodule with the given action.
We have that for all f ∈ HomS(M,N), s ∈ S, and m ∈M ,

f0(m ↼ s)⊗ f1 = f((m ↼ s)0)0 ⊗ S−1((m ↼ s)1)f((m ↼ s)0)1

= f(m0 ↼ s0)0 ⊗ S−1(s1m1)f(m0 ↼ s0)1

= (f(m0) ↼ s0)0 ⊗ S−1(s1m1)(f(m0) ↼ s0)1

= (f(m0)0 ↼ s00)⊗ S−1(m1)S−1(s1)s01f(m0)1

= (f(m0)0 ↼ s)⊗ S−1((m1)f(m0)1

= (f0(m)) ↼ s)⊗ f1.

So f0 ∈ HomS(M,N), that is, the right H-coaction is well defined. It is easy to see that
HomS(M,N) is a right Hop-comodule. We have

(s ⇀ f)0(m)⊗ (s ⇀ f)1 = ((s ⇀ f)(m0))0 ⊗ S−1(m1)((s ⇀ f)(m0))1

= (s ⇀ (f(m0)))0 ⊗ S−1(m1)(s ⇀ (f(m0)))1

= s0 ⇀ (f(m0)0))⊗ S−1(m1)f(m0)1s1

= (s0 ⇀ (f0(m))⊗ f1s1

= (s0 ⇀ f0))(m)⊗ f1s1,

for all f ∈ HomS(M,N), s ∈ S, and m ∈M , and so equation (15) is satisfied. Therefore
HomS(M,N) is a right Hop-comodule.

We have that for all f ∈ HomS(M,N), h ∈ H, and m ∈M ,

(hf)0(m)⊗ (hf)1

= ((hf)(m0))0 ⊗ S−1(m1)((hf)(m0))1

= (h1(f(S(h2)m0)))0 ⊗ S−1(m1)(h1(f(S(h2)m0)))1

= h12(f(S(h2)m0)0)⊗ S−1(m1)h13(f(S(h2)m0)1)S−1(h11)
= h2(f(S(h4)m0)0)⊗ S−1(m1)h3(f(S(h4)m0)1)S−1(h1)
= h2(f(S(h4)m0)0)⊗ h6S−1(h5)S−1(m1)h3(f(S(h4)m0)1)S−1(h1)
= h21(f(S(h222)m0)0)⊗ h3S−1(h223)S−1(m1)h221(f(S(h222)m0)1)S−1(h1)
= h21(f(S(h222)m0)0)⊗ h3S−1(S(h221)m1h223)(f(S(h222)m0)1)S−1(h1)
= h21(f(S(h22)2m0)0)⊗ h3S−1(S(h22)3m1S−1(S(h22)1)(f(S(h22)2m0)1)S−1(h1)
= h21(f((S(h22)m)0)0)⊗ h3S−1((S(h22)m)1)(f((S(h22)2m)0)1)S−1(h1)
= (h21(f0(S(h22)m)⊗ h3f1S−1(h1)
= (h2f0)(m)⊗ h3f1S−1(h1),

so equation (9) is satisfied.

Since S is not necessarily commutative, we need to consider the left and right S-module
homomorphisms separately.

2.2. Lemma. Let S be an H-commutative Yetter-Drinfel’d H-module algebra, and let M
and N be Hopf Yetter-Drinfel’d (S,H)-modules.

(i) Then SHom(M,N) is a left S#H-module, where the action of S is defined by

(s ⇀ f)(m) = f(m ↼ s), for all s ∈ S, f ∈ SHom(M,N),m ∈M, (28)
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and the action of H is defined by

(hf)(m) = h2[f(S−1(h1)m)], for all f ∈ SHom(M,N), h ∈ H,m ∈M. (29)

(ii) If M is finitely generated projective as a left S-module, then SHom(M,N) is a
Hopf Yetter-Drinfel’d (S,H)- module, where the coaction of Hop is defined by

f0(m)⊗ f1 = f(m0)0 ⊗ f(m0)1S(m1), for all f ∈ SHom(M,N),m ∈M. (30)

Proof. This proof is dual to that of Lemma 2.1.

2.3. Lemma. Assume S is an H-commutative Yetter-Drinfel’d H-module algebra. Let
M , N and P be Hopf Yetter-Drinfel’d (S,H)-modules with P finitely generated projective
as a right S-module. Then we have an R-module isomorphism

S#HHom
Hop

(N ⊗̃S P,Q) ' S#HHom
Hop

(N,HomS(P,Q)).

Proof. We consider the R-linear map

φ : S#HHom
Hop

(N ⊗̃S P,Q)→ S#HHom
Hop

(N,HomSP,Q))

given by φ(f)(n)(p) = f(n ⊗̃ p). Let f be an element of S#HHom
Hop

(N ⊗̃S P,Q). For
n ∈ N , p ∈ P , and s ∈ S, we have

φ(f)(n)(p ↼ s) = f(n ⊗̃ (p ↼ s))
= f((n ⊗̃ p) ↼ s)
= f(s0 ⇀ s1(n ⊗̃ p))
= s0[s1(f(n ⊗̃ p))]
= (f(n ⊗̃ p)) ↼ s
= [φ(f)(n)(p)] ↼ s.

So φ(f)(n) is S-linear. We also have

(φ(f)(s ⇀ n)](p) = f((s ⇀ n) ⊗̃ p)
= f(s ⇀ (n ⊗̃ p))
= s ⇀ (f(n ⊗̃ p))
= [s ⇀ φ(f)(n)](p),

so φ(f) is S-linear.
Let h ∈ H. we have

φ(f)(hn)(p) = f(hn ⊗̃ p)
= f(h1n ⊗̃ ε(h2)p)
= f(h1n ⊗̃h21S(h22)p)
= f(h11n ⊗̃h12S(h2)p)
= f(h1(n ⊗̃ S(h2)p))
= h1[f(n ⊗̃ S(h2)p)]
= h1[φ(f)(n)(S(h2)p)]
= [h(φ(f)(n))](p),
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so φ(f) is left H-linear, and therefore, φ(f) is S#H-linear.
Assume f is right Hop-colinear. Then

(φ(f)(n))0(p)⊗ (φ(f)(n))1 = [(φ(f)(n))(p0)]0 ⊗ S−1
H (p1)[(φ(f)(n))(p0)]1

= f(n ⊗̃ p0)0 ⊗ S−1
H (p1)f(n ⊗̃ p0)1

= f((n ⊗̃ p0)0)⊗ S−1
H (p1)(n ⊗̃ p0)1

= f(n0 ⊗̃ p00)⊗ S−1
H (p1)p01n1

= f(n0 ⊗̃ p0)⊗ S−1
H (p12)p11n1

= f(n0 ⊗̃ p0)⊗ ε(p1)n1

= f(n0 ⊗̃ p)⊗ n1

= φ(f)(n0)(p)⊗ n1.

We deduce that (φ(f)(n))0⊗(φ(f)(n))1 = φ(f)(n0)⊗n1, that is, φ(f) is right Hop-colinear.
It follows that φ is well defined. Let us consider the R-linear map

ψ : S#HHom
Hop

(N,HomS(P,Q))→ S#HHom
Hop

(N ⊗̃S P,Q)

defined by ψ(g)(n ⊗̃ p) = g(n)(p), for all g ∈ S#HHom
Hop

(N,HomS(P,Q)), n ∈ N , and
p ∈ P . For h ∈ H we have

ψ(g)(h(n ⊗̃ p)) = ψ(g)(h1n ⊗̃h2p)
= g(h1n)(h2p)
= [h1(g(n))](h2p)
= h11[g(n)(S(h12)h2p)]
= h1[g(n)(S(h21)h22p)]
= h1[g(n)(ε(h2)p)]
= h[g(n)(p)] = h(ψ(g)(n ⊗̃ p)),

so ψ(g) is H-linear. Let s ∈ S. We have

ψ(g)(s ⇀ (n ⊗̃ p)) = ψ(g)((s ⇀ n) ⊗̃ p)
= g(s ⇀ n)(p)
= [s ⇀ (g(n))](p)
= s ⇀ (ψ(g)(n ⊗̃ p)),

so ψ(g) is S-linear. Therefore ψ(g) is S#H-linear. Let us assume that g is right Hop-
colinear. We have

ψ(g)((n ⊗̃ p)0)⊗ (n ⊗̃ p)1 = ψ(g)(n0 ⊗̃ p0)⊗ (p1n1)
= g(n0)(p0)⊗ p1n1

= (g(n)0)(p0)⊗ p1(g(n0))1

= (g(n)(p00))0 ⊗ p1S−1(p01)(g(n)(p00))1

= (g(n)(p0))0 ⊗ p12S−1(p11)(g(n)(p0))1

= (g(n)(p0))0 ⊗ ε(p1)(g(n)(p0))1

= (g(n)(p))0 ⊗ (g(n)(p))1

= (ψ(g)(n ⊗̃ p))0 ⊗ (ψ(g)(n ⊗̃ p))1.

We deduce that ψ(g) is right Hop-colinear. It follows that ψ is well defined. It is easy to
see that φ and ψ are inverse of each other.
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From Lemma 2.3, we deduce that the functor HomS(P,−) defined from SQH to SQH
with P finitely generated projective as a right S-module is right adjoint to the functor
−⊗̃S P defined from SQH to SQH . In the notation of [vOZ], HomS(P,Q) = [P,Q]. It
also follows from Lemma 2.3 that if N and P are projective as right S-modules, then
N ⊗̃S P is projective as a right S-module.

Again, we need to consider the left S-module structures separately.

2.4. Lemma. Assume S is an H-commutative Yetter-Drinfel’d H-module algebra. Let M ,
N , and P be Hopf Yetter-Drinfel’d (S,H)-modules with P finitely generated projective as
a left S-module. Then we have an R-module isomorphism

S#HHom
Hop

(P ⊗̃S N,Q) ' S#HHom
Hop

(N, SHom(P,Q)).

Proof. Let f be an element of S#HHom
Hop

(P ⊗̃S N,Q). We consider the R-linear map

φ : S#HHom
Hop

(P ⊗̃S N,Q)→ S#HHom
Hop

(N, SHom(P,Q))

given by φ(f)(n)(p) = f(p ⊗̃n). Then φ(f)(n) is S-linear, φ(f) is S-linear, φ(f) is
H-linear and φ(f) is right Hop-colinear, therefore, φ(f) is left S#H-linear and right Hop-
colinear. It follows that φ is well defined.

Let g be an element of S#HHom
Hop

(N, SHom(P,Q)). Let us consider the R-linear
map

ψ : S#HHom
Hop

(N, SHom(P,Q))→ S#HHom
Hop

(P ⊗̃S N,Q)

defined by ψ(g)(p ⊗̃n) = g(n)(p). Then ψ(g) is S-linear, left H-linear and right H-
colinear. It follows that ψ is well defined. It is easy to see that φ and ψ are inverse of
each other.

From Lemma 2.4, we deduce that the functor SHom(P,−) defined from SQH to SQH
with P finitely generated projective as a left S-module is right adjoint to the functor
P ⊗̃S − defined from SQH to SQH . In the notation of [vOZ], SHom(P,Q) = {P,Q}.
It also follows from Lemma 2.4 that if N and P are projective as left S-modules, then
P ⊗̃S N is projective as a left S-module.

The results of the following lemma are useful for some computations.

2.5. Lemma. Assume S is an H-commutative Yetter-Drinfel’d H-module algebra. Let
M , N be Hopf Yetter-Drinfel’d (S,H)-modules.

(i) If M is finitely generated projective as a right S-module, then (f ↼ s)(m) = f(s ⇀
m) for every f ∈ HomS(M,N), m ∈M and s ∈ S.

(ii) If M is finitely generated projective as a left S-module, then (f ↼ s)(m) = f(m) ↼
s for every f ∈ SHom(M,N), m ∈M and s ∈ S.

Proof. We will prove (ii). The proof of (i) is easier. We have
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(f ↼ s)(m) = [s0(s1f)](m)
= (s1f)(m ↼ s0)
= s12[f(S−1(s11)(m ↼ s0))]
= s3[f((S−1(s2)m) ↼ (S−1(s1).s0))]
= s3[f((S−1(s1).s0)0 ⇀ ((S−1(s1).s0)1S−1(s2)m))]
= s3[f((S−1(s12).s00) ⇀ ((S−1(s11)s01S−2(s13)S−1(s2)m))]
= s6[f((S−1(s3).s0) ⇀ ((S−1(s2)s1S−2(s4)S−1(s5)m))]
= s2[f((S−1(s1).s0) ⇀ m)]
= s2[(S−1(s1).s0) ⇀ f(m)]
= (s21S−1(s1).s0) ⇀ (s22(f(m))
= s0 ⇀ (s1(f(m)))
= f(m) ↼ s.

3. The category of dyslectic Hopf Yetter-Drinfel’d (S,H) modules

In this section, H denotes a Hopf algebra with bijective antipode and S is an H-commutat-
ive Yetter-Drinfel’d H-module algebra. Our objective for this section is to define the
subcategory of dyslectic Hopf Yetter-Drinfel’d (S,H)-modules.

We do this because the category SQ
H might not be braided. It is not clear that the

analogous braiding maps γM,N : M ⊗̃S N → N ⊗̃SM defined as in (12) by m ⊗̃n 7→
n0 ⊗̃n1m will be morphisms in the SQ

H category. An object M of SQH is dyslectic if
hM ◦ γM,S ◦ γS,M = hM , where hM : S ⊗ M → M denotes the left action of S on M
[Pareigis2] . It follows that an object M of SQH is dyslectic if and only if

s ⇀ m = (m1.s)0 ⇀ ((m1.s)1m0), for all s ∈ S,m ∈M. (31)

Note that we can also use the inverse braiding to define dyslectic modules as in [Wang].
Clearly, S is a dyslectic Hopf Yetter-Drinfel’d (S,H)-module, and every Hopf Yetter-

Drinfel’d H-module can be regarded as a dyslectic Hopf Yetter-Drinfel’d (k,H)-module. A
dyslectic Hopf Yetter-Drinfel’d (S,H)-module homomorphism is a Hopf Yetter-Drinfel’d
(S,H)-module homomorphism between dyslectic modules.

Let M be a Hopf Yetter-Drinfel’d (S,H)-module and let us consider the condition

s ⇀ m = m0 ↼ (m1.s), for all s ∈ S,m ∈M, (32)

which is equivalent to the equation

m ↼ s = (S(m1).s) ⇀ m0, for all s ∈ S,m ∈M. (33)

3.1. Lemma. Let N be a Hopf Yetter-Drinfel’d (S,H)- module. Then the condition (32)
is satisfied for N if and only if γM,N is well defined for all M in SQH .
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Proof. Let m ∈M , n ∈ N and s ∈ S. If (32) is satisfied for N , then

γM,N((m ↼ s) ⊗̃n) = γM,N((s0 ⇀ (s1m)) ⊗̃n)
= n0 ⊗̃n1(s0 ⇀ (s1m))
= n0 ⊗̃ ((n11.s0) ⇀ n12(s1m))
= (n0 ↼ (n11.s0)) ⊗̃n12(s1m)
= (n00 ↼ (n01.s0)) ⊗̃n1(s1m)
= (s0 ⇀ n0) ⊗̃n1(s1m)
= (s ⇀ n)0 ⊗̃ (s ⇀ n)1m
= γM,N(m ⊗̃ (s ⇀ n)).

So γM,N is well defined. If γM,N is well-defined for all M in SQH , then γS,N is well defined.
Let n ∈ N and s ∈ S. We have

γS,N((1S ↼ s) ⊗̃n) = γS,N(1S ⊗̃ (s ⇀ n)).

But we also have
γS,N((1S ↼ s) ⊗̃n) = n0 ⊗̃n1.(1 ↼ s)

= n0 ⊗̃n1.s
= (n0 ↼ n1.s) ⊗̃ 1S

and
γS,N(1S ⊗̃ (s ⇀ n)) = (s ⇀ n)0 ⊗̃ (s ⇀ n)1.1S

= (s ⇀ n)0 ↼ (s ⇀ n)1.1S ⊗̃ 1S
= (s ⇀ n) ⊗̃ 1S.

Therefore, condition (32) is satisfied for N .

3.2. Lemma. Let M be a Hopf Yetter-Drinfel’d (S,H)- module. Then the condition (33)
is satisfied for M if and only if γ−1

M,N is well defined for all N in SQH .

Proof. Let m ∈M , n ∈ N and s ∈ S. If (33) is well-defined, we have

γ−1
M,N((m ↼ s) ⊗̃ Sn) = S((m ↼ s)1)n ⊗̃ S(m ↼ s)0

= S(s1m1)n ⊗̃ (m0 ↼ s0)
= (S(m1)S(s1))n ⊗̃ (m0 ↼ s0)
= (S(m1)S(s1))n ⊗̃ ((S(m01).s0) ⇀ m00)
= (S(m12)S(s1))n ⊗̃ ((S(m11).s0) ⇀ m0)
= (S(m1)1S(s1))n ⊗̃ ((S(m1)2.s0) ⇀ m0)
= [((S(m1)1S(s1))n) ↼ (S(m1)2.s0)] ⊗̃m0

= S(m1)((S(s1)n) ↼ s0) ⊗̃m0

= γ−1
M,N(m ⊗̃ ((S(s1)n) ↼ s0))

= γ−1
M,N(m ⊗̃ (s ⇀ n)).

So γ−1
M,N is well defined.
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If γ−1
M,N is well defined for all N in SQH , then γ−1

M,S is well defined. Let m ∈ M and
s ∈ S. We have

γ−1
M,S(m ⊗̃ (s ⇀ 1S)) = γ−1

M,S((m ↼ s) ⊗̃ S1S).

But
γ−1
M,S(m ⊗̃ (s ⇀ 1S)) = γ−1

M,S(m ⊗̃ s)
= S(m1).s ⊗̃m0

= 1S ⊗̃ (S(m1).s ⇀ m0)

and

γ−1
M,S((m ↼ s) ⊗̃ 1S) = S((m ↼ s)1).1S ⊗̃ (m ↼ s)0

= S((m ↼ s)1).1S ⊗̃ [S((m ↼ s)1).1S ⇀ (m ↼ s)0]
= 1S ⊗̃ (m ↼ s).

So condition (33) is satisfied for M .

The following lemma provides an easiest necessary and sufficient condition to show
that a Hopf Yetter-Drinfel’d (S,H)- module is dyslectic.

3.3. Lemma. Let M be a Hopf Yetter-Drinfel’d (S,H)- module. Then M is dyslectic if
and only if the condition (32) is satisfied for M .

Proof. Assume condition (32) is satisfied for M . Then we have

s ⇀ m = m0 ↼ m1.s
= (m1.s)0 ⇀ ((m1.s)1m0).

So M is dyslectic.
If M dyslectic, then

s ⇀ m = (m1.s)0 ⇀ ((m1.s)1m0)
= [S((m1.s)01)((m1.s)1m0)] ↼ (m1.s)00

= [S((m1.s)11)((m1.s)12m0)] ↼ (m1.s)0

= [ε((m1.s)1)m0] ↼ (m1.s)0

= m0 ↼ (m1.s),

and the condition (32) is satisfied for M .

Since conditions (32) and (33) are equivalent, a Hopf Yetter-Drinfel’d (S,H)- module
M is dyslectic if and only if the condition (33) is satisfied for M . However we can prove
this result directly as in Lemma 3.3.

We denote by Dys-SQH the category of dyslectic Hopf Yetter - Drinfel’d (S,H) mod-
ules with dyslectic Hopf Yetter-Drinfel’d (S,H)-modules homomorphisms; it is a full
subcategory of SQH .

3.4. Lemma. Let M and N be dyslectic Hopf Yetter-Drinfel’d (S,H)-modules. Then
M ⊗̃S N is a dyslectic Hopf Yetter - Drinfel’d (S,H)- module.
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Proof. Suppose M and N are dyslectic Hopf Yetter - Drinfel’d (S,H)- modules. Let
m ∈M , n ∈ N and s ∈ S. We have

(S((m ⊗̃n)1).s) ⇀ (m ⊗̃n)0 = (S((n1m1).s) ⇀ (m0 ⊗̃n0)
= ((S(m1)S(n1)).s) ⇀ (m0 ⊗̃n0)
= (S(m1).(S(n1).s)) ⇀ (m0 ⊗̃n0)
= ((S(m1).(S(n1).s)) ⇀ m0) ⊗̃n0

= (m ↼ (S(n1).s)) ⊗̃n0

= m ⊗̃ ((S(n1).s) ⇀ n0)
= m ⊗̃ (n ↼ s)
= (m ⊗̃n) ↼ s.

So the equation (33) is satisfied for M ⊗̃S N , and M ⊗̃S N is dyslectic.

The above Lemmas show the subcategory of dyslectic Hopf Yetter-Drinfel’d(S,H)-
modules is monoidal with respect to ⊗̃S and S. Wang showed that when H has a bijective
antipode, S is H-commutative, and all Hopf Yetter-Drinfel’d(S,H)-modules are dyslectic,
then the monoidal category is braided [Wang, Theorem 2.2] . So we deduce from the above
Lemmas that the category of dyslectic Hopf Yetter-Drinfel’d(S,H)-modules can be viewed
as a braided monoidal category.

3.5. Lemma. Let M and N be dyslectic Hopf Yetter-Drinfel’d (S,H)-modules.
(i) If M is finitely generated projective as a right S-module, then HomS(M,N) is a

dyslectic Hopf Yetter-Drinfel’d (S,H)- module.
(ii) If M is finitely generated projective as a left S-module, then SHom(M,N) is a

dyslectic Hopf Yetter-Drinfel’d (S,H)- module.

Proof. (i) Suppose M and N are dyslectic Hopf Yetter-Drinfel’d (S,H)- modules with
M finitely generated projective as a right S-module. Let f ∈ HomS(M,N), m ∈ M ,
n ∈ N and s ∈ S. We have

((S(f1).s) ⇀ f0)(m) = (S(f1).s) ⇀ f0(m)
= (S[S−1(m1)f(m0)1].s) ⇀ f(m0)0

= ([S(f(m0)1)m1].s) ⇀ f(m0)0

= (S(f(m0)1)(m1.s)) ⇀ f(m0)0

= f(m0) ↼ (m1.s)
= f(m0 ↼ (m1.s))
= f(s ⇀ m)
= f([S(s1)m] ↼ s0)
= f(S(s1)m) ↼ s0

= s00 ⇀ (s01(f(S(s1)m)))
= s0 ⇀ (s11(f(S(s12)m)))
= s0 ⇀ ((s1f)(m))
= (s0 ⇀ (s1f))(m)
= (f ↼ s)(m).
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So condition (33) is satisfied, and HomS(M,N) is dyslectic.
(ii) Suppose M and N are dyslectic Hopf Yetter-Drinfel’d (S,H)- modules with M

finitely generated projective as a left S-module. Let f ∈ SHom(M,N), m ∈ M , n ∈ N
and s ∈ S. We have

f0(m) ↼ (f1.s)
= f(m0)0 ↼ ((f(m0)1S(m1)).s)
= [(f(m0)1S(m1).s)0] ⇀ [(f(m0)1S(m1).s)1f(m0)0]
= [f(m0)12S(m12).s00] ⇀ [f(m0)13S(m11)s1S−1(f(m0)11S(m13))f(m0)0]
= [f(m0)12S(m1)][s0 ⇀ (s1m13S−1(f(m0)11)f(m0)0]
= [f(m0)12S(m1)][(m13S−1(f(m0)11)f(m0)0) ↼ s]
= [f(m0)121S(m12)m13S−1(f(m0)11)(f(m0)0)] ↼ [f(m0)122S(m1).s)]
= f(m0)0)(↼ [f(m0)1S(m1).s)]
= (S(m1).s)(f(m0))
= f [(S(m1).s) ↼ m0]
= f(m ↼ s)
= (sf)(m).

So condition (32) is satisfied, and SHom(M,N) is dyslectic.

We deduce from Lemmas 2.3, 3.4 and 3.5(i) that if P is finitely generated projective
as a right S-module, then the functor HomS(P,−) defined from Dys-SQH to Dys-SQH
is right adjoint to the functor −⊗̃S P defined from Dys-SQH to Dys-SQH . Likewise, we
deduce from Lemmas 2.4, 3.4 and 3.5(ii) that if P is finitely generated projective as a
left S-module, then the functor SHom(P,−) defined from Dys-SQH to Dys-SQH is right
adjoint to the functor −⊗̃S P defined from Dys-SQH to Dys-SQH . Since Dys-SQH is a
braided monoidal category, by [Femić], we have an isomorphism of dyslectic Hopf Yetter
-Drinfel’d (S,H)-modules HomS(P,Q) = SHom(P,Q) for all objects P,Q in Dys-SQH
with P finitely generated projective as a left and as a right S-module: more precisely, the
isomorphism is the map φ : HomS(P,Q) → SHom(P,Q) defined by φ(f)(p) = f0(f1p).
Note that in Dys-SQH , if N and P are finitely generated projective as right and left
S-modules, then N ⊗̃S P is finitely generated projective as a right and left S-module.

We know from [vOZ] that there is a Brauer group for the braided monoidal category
Dys-SQH . Most of the remainder of the paper is concerned with developing the details
of the ingredients necessary to define this Brauer group precisely.

4. Dyslectic Hopf Yetter -Drinfel’d (S,H)-module algebras

In this section, H is a Hopf algebra with bijective antipode, and S is an H-commutative
Yetter-Drinfel’d H-module algebra.

A dyslectic Hopf Yetter-Drinfel’d (S,H)-module algebra is an algebra in the braided
monoidal category Dys-SQH , that is, an object A of Dys-SQH such that there are two
dyslectic Hopf Yetter-Drinfel’d (S,H)-module homomorphisms π : A ⊗̃S A → A and
µ : S → A satisfying the associativity and the unitary conditions of usual algebras.
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Since S is H-commutative, S is a dyslectic Hopf Yetter-Drinfel’d (S,H)-module alge-
bra. Note that a dyslectic Hopf Yetter-Drinfel’d (S,H)-module algebra is an algebra in the
monoidal category SQH which is dyslectic as a Hopf Yetter-Drinfel’d (S,H)-module. Ev-
ery Yetter-Drinfel’d H-module algebra is a dyslectic Hopf Yetter-Drinfel’d (R,H)-module
algebra.

A dyslectic Hopf Yetter Drinfel’d (S,H)-module algebra homomorphism is a dyslectic
Hopf Yetter-Drinfel’d (S,H)-module homomorphism which is compatible with the product
and is a unitary algebra homomorphism.

4.1. Lemma. Assume that M is a dyslectic Hopf Yetter-Drinfel’d (S,H)-module that is
finitely generated projective as a right S-module. Then EndS(M) is a dyslectic Hopf
Yetter-Drinfel’d (S,H)-module algebra: the product map is defined by π(f ⊗̃ g) = f ◦g for
all f, g ∈ EndS(M) and the unit map µ : S → EndS(M) is defined by µ(s)(m) = s ⇀ m.

Proof. By Lemma 3.5(i), EndS(M) is a dyslectic Hopf Yetter-Drinfel’d (S,H)-module.
It is easy to see that π and µ are well-defined, left S-linear, and H-linear. Let us show
that π is Hop-colinear. We have

(f0 ◦ g0)(m)⊗ g1f1 = f0(g0(m))⊗ g1f1

= f0(g(m0)0)⊗ S−1(m1)g(m0)1f1

= f(g(m0)00)0 ⊗ S−1(m1)g(m0)1S−1(g(m0)01)f(g(m0)00)1

= f(g(m0)0)0 ⊗ S−1(m1)g(m0)12S−1(g(m0)11)f(g(m0)0)1

= f(g(m0)0)0 ⊗ S−1(m1)ε(g(m0)1)f(g(m0)0)1

= f(g(m0))0 ⊗ S−1(m1)f(g(m0))1

= ((f ◦ g)(m0))0 ⊗ S−1(m1)((f ◦ g)(m0))1

= (f ◦ g)0(m)⊗ (f ◦ g)1.

So π is Hop-colinear. We have

µ(s)0(m)⊗ µ(s)1 = (µ(s)(m0))0 ⊗ S−1(m1)(µ(s)(m0))1

= (s ⇀ m0)0 ⊗ S−1(m1)(s ⇀ m0)1

= (s0 ⇀ m00)⊗ S−1(m1)m01s1

= (s0 ⇀ m)⊗ s1

= µ(s0)(m)⊗ s1.

So µ is Hop-colinear. Clearly, h.idM = ε(h)idM and ρ(idM) = idM ⊗ 1H , where idM is the
identity element of EndS(M). It is well-known that the composition law is associative.

4.2. Lemma. Assume that M is a dyslectic Hopf Yetter-Drinfel’d (S,H)-module that is
finitely generated projective as a left S-module. Then SEnd(M) is a dyslectic Hopf Yetter-
Drinfel’d (S,H)-module algebra: the product map is defined by π(f ⊗̃ g) = fg = g ◦ f for
all f, g ∈ SEnd(M) and the unit map µ : S → SEnd(M) is defined by µ(s)(m) = s ⇀ m.
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Proof. It is easy to show µ is well-defined, S-linear, H-linear, and Hop-colinear. To show
π is well-defined, let f, g ∈ SEnd(M), s ∈ S, and m ∈M . We have

[(f ↼ s)g](m) = g((f ↼ s)(m))
= g(f(m) ↼ s)
= (s ⇀ g)(f(m))
= [f(s ⇀ g)](m),

so π is well-defined. Also

[(s ⇀ f)g](m) = g((s ⇀ f)(m))
= g(f(m ↼ s))
= [fg](m ↼ s)
= (s ⇀ [fg])(m),

so π is S-linear.
We also have (see the proof Proposition 4.1 in [CvOZ1]) h(fg) = (h1f)(h2g) and

(fg)0 ⊗ (fg)1 = (f0g0)⊗ g1f1, that is, π is H-linear and Hop-colinear.

Let A be a dyslectic Hopf Yetter-Drinfel’d (S,H)-module algebra. The H-opposite
algebra Ā of A is defined as follows: Ā = A as a dyslectic Hopf Yetter-Drinfel’d (S,H)-
module, but with multiplication mA ◦ γ, where mA is the multiplication of A (see [vOZ,
page 100]). In other words,

āā′ = a′0(a′1.a) ∀ a, a′ ∈ A.

The action of S on Ā is defined by s ⇀ ā = s ⇀ a, the H-action by h.ā = h.a, and the
H-coaction by (ā)0 ⊗ (ā)1 = a0 ⊗ a1, for all a ∈ A, h ∈ H, and s ∈ S. If the action of H
or the coaction of H is trivial, then Ā = Aop, the ordinary opposite algebra of A. Note
that S̄ ' S when S is H-commutative.

4.3. Lemma. Suppose that A is a dyslectic Hopf Yetter-Drinfel’d (S,H)-module algebra.
Then Ā is a dyslectic Hopf Yetter-Drinfel’d (S,H)-module algebra.

Proof. We need to show that the action of S is compatible with the product. Let s ∈ S,
a, b ∈ A. Then

ā(s ⇀ b̄) = ā(s ⇀ b)

= (s ⇀ b)0((s ⇀ b)1.a)

= (s0 ⇀ b0)((b1s1).a)

= s0 ⇀ (b0(b1.(s1.a)))

= s0 ⇀ b0(b1.(s1.a))

= s0 ⇀ (s1.ab)

= (s0 ⇀ (s1.a))b

= s0 ⇀ (s1.a)b

= a ↼ s)b

= (a ↼ s)b,
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so the multiplication in Ā is well-defined. On the other hand, we have

(s ⇀ ā)b̄ = (s ⇀ a)b̄

= b0.(b1.(s ⇀ a))

= b0.((b11.s) ⇀ (b12.a))

= b00.((b01.s) ⇀ (b1.a))

= (b00 ↼ (b01.s)).(b1.a))

= (s ⇀ b0).(b1.a)

= s ⇀ (b0.(b1.a))

= s ⇀ b0.(b1.a)

= s ⇀ (ab),

so the multiplication in Ā is S-linear.
Clearly, h.(āb̄) = (h1.ā)(h2.b̄) and

(āb̄)0 ⊗ (āb̄)1 = b0(b1.a)0 ⊗ b0(b1.a)1

= (b0(b1.a))0 ⊗ (b0(b1.a))1

= b00(b1.a)0 ⊗ (b1.a)1b01

= b00(b12.a0)⊗ (b13a1S−1(b11)b01)

= b0(b3.a0)⊗ (b4a1S−1(b2)b1)

= b0(b1.a0)⊗ b2a1

= b00(b01.a0)⊗ b1a1

= ā0b̄0 ⊗ b̄1ā1.

Furthermore the H-action and the H-coaction preserve the identity element of Ā.

If A and B are dyslectic Hopf Yetter-Drinfel’d (S,H)-module algebras, we define a
new multiplication in A ⊗̃S B by

(A ⊗̃S B) ⊗̃S (A ⊗̃S B)
1⊗γ⊗1→ (A ⊗̃S A) ⊗̃S (B ⊗̃S B)

mA⊗mB→ A ⊗̃S B.

In other words,

(a# b)(a′# b′) = aa′0 # (a′1.b)b
′, for all a, a′ ∈ A, b, b′ ∈ B.

This new multiplication on A ⊗̃S B is called the braided product and A ⊗̃S B with the
braided product will be denoted by A#S B.

4.4. Proposition. Let A, B and C be dyslectic Hopf Yetter-Drinfel’d (S,H)- module
algebras. Then

(i) A#S B is a dyslectic Hopf Yetter-Drinfel’d (S,H)-module algebra whose identity
element is 1A ⊗ 1B. The action of H is given by

h.(a# b) = (h1.a) # (h2.b), for all h ∈ H, a ∈ A, b ∈ B,

and the coaction of H is given by

(a# b)0 ⊗ (a# b)1 = (a0 # b0)⊗ b1a1, for all a ∈ A, b ∈ B.
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(ii) The canonical injections A → A#S B and B → A#S B are homomorphisms of
dyslectic Hopf Yetter-Drinfel’d (S,H)-module algebras.

(iii) The canonical S-linear maps A → A#S S and A → S#S A are isomorphisms of
dyslectic Hopf Yetter-Drinfel’d (S,H)-module algebras.

(iv) The map φ : (A#S B) #S C ' A#S (B#S C) given by φ((a# b) # c) = a# (b# c),
for all a ∈ A, b ∈ B, and c ∈ C, is an isomorphism of dyslectic Hopf Yetter-Drinfel’d
(S,H)-module algebras.

(v) The map φ : B̄#S Ā→ A#S B given by φ(b̄# ā) = a0 # a1.b, for all a ∈ A, b ∈ B,
is an isomorphism of dyslectic Hopf Yetter-Drinfel’d (S,H)-module algebras.

Proof. The verifications of (i), (ii), (iii), and (iv) are long, but easy.
(v) Let a ∈ A and b ∈ B. For all s ∈ S, we have

φ((b̄ ↼ s) # ā) = φ(b ↼ s# ā)

= a0 # a1.(b ↼ s)

= a0 # ((a1.b) ↼ (a2.s))

= a0 # ((a2.s)0 ⇀ ((a2.s)1.(a1.b)))

= (a0 ↼ (a2.s)0) # ((a2.s)1.(a1.b))

= (a0 ↼ (a22.s0)) # (a23s1S−1(a21)a1).b

= (a0 ↼ (a1.s0)) # (a2s1.b)

= (a00 ↼ (a01.s0)) # (a1s1.b)

= (s0 ⇀ a0) # (a1s1.b)

= (s ⇀ a)0 # (s ⇀ a)1.b
= φ(b̄# s ⇀ a)
= φ(b̄# (s ⇀ ā)).

The map φ is left H-linear, right Hop-colinear and left S-linear, since the braiding γ
is left H-linear, right Hop-colinear and left S-linear. We can prove as in Proposition 2.4.4
of [CvOZ1] that φ is compatible with the product. Now we have φ(1B̄ # 1Ā) = 1A # 1B.

Clearly φ is a bijection: its inverse is defined by

φ−1(a# b) = S(a1).b# a0, for all a ∈ A, b ∈ B.

A Hopf Yetter-Drinfel’d (S,H) module is right faithfully projective if it is finitely
generated projective and faithful as a right S-module; or equivalently, if it is finitely
generated projective as a right S-module, and the canonical maps φ : P ⊗̃SHomS(P, S)→
EndS(P ) and ψ : HomS(P, S)⊗EndS(P ) P → S are isomorphisms, where

φ(p ⊗̃S f)(p′) = p ↼ f(p′) and ψ(f ⊗̃ p) = f(p), for all p, p′ ∈ P, f ∈ HomS(P, S).
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We define in a similar way a left faithfully projective Hopf Yetter-Drinfel’d (S,H) module.
A Hopf Yetter-Drinfel’d (S,H) module is said to be faithfully projective if it is right

and left faithfully projective. Since Dys-SQH is a braided monoidal category, by [Femić],
a dyslectic Hopf Yetter-Drinfel’d (S,H) module is right faithfully projective if and only
if it is left faithfully projective. So a dyslectic Hopf Yetter-Drinfel’d (S,H) module is
faithfully projective if it is right faithfully projective or left faithfully projective.

It follows from Lemmas 4.1 and 4.2 that EndS(P ) and SEnd(P ) are dyslectic Hopf
Yetter-Drinfel’d (S,H) module algebras for any faithfully projective dyslectic Hopf Yetter-
Drinfel’d (S,H)-module P .

For a faithfully projective dyslectic Hopf Yetter-Drinfel’d (S,H)-module M , we know
that the left dual SHom(M,S) of M and the right dual HomS(M,S) of M coincide in
Dys-SQH : we will denote these duals by M?, which we regard as dyslectic Hopf Yetter-
Drinfel’d (S,H)-modules using Lemma 3.5. Note that M? is faithfully projective. The
following proposition is an illustration of [vOZ].

4.5. Proposition. Let M be a faithfully projective dyslectic Hopf Yetter-Drinfel’d (S,H)-
module. Then

(i) EndS(M) ∼= SEnd(M?) as dyslectic Hopf Yetter-Drinfel’d (S,H) module algebras;

(ii) SEnd(M) ∼= EndS(M?) as dyslectic Hopf Yetter-Drinfel’d (S,H) module algebras;

(iii) EndS(M) ∼= SEnd(M) as dyslectic Hopf Yetter-Drinfel’d (S,H) module algebras;
and

(iv) SEnd(M) ∼= EndS(M) as dyslectic Hopf Yetter-Drinfel’d (S,H) module algebras.

Proof. (i) Define φ : EndS(M) → SEnd(M?) by φ(f)(g) = g ◦ f for all f ∈ EndS(M)
and g ∈ M? = HomS(M,S). Then φ(f)(g) is in M? since f and g are right S-linear.
Clearly φ(f) is in SEnd(M?). Therefore φ(f) is well defined. Using Lemma 4.2 and the
definition of the left S-action of SEnd(M?), we can show that φ is left S-linear. Using
the fact that h(g ◦ f) = (h1g) ◦ (h2f), it is easy to show that φ is H-linear. For every
m ∈M , we have

(φ(f)0(g))(m)⊗ φ(f)1

= (φ(f)(g0))0(m)⊗ (φ(f)(g0))1S(g1)
= (g0 ◦ f)0(m)⊗ (g0 ◦ f)1S(g1)
= ((g0 ◦ f)(m0))0 ⊗ S−1(m1)((g0 ◦ f)(m0))1S(g1)
= (g0(f(m0)))0 ⊗ S−1(m1)(g0(f(m0)))1S(g1)
= (g(f(m0)0))00 ⊗ S−1(m1)(g(f(m0)0))01S(S−1(f(m0)1)(g(f(m0)0))11)
= (g(f(m0)0))00 ⊗ S−1(m1)(g(f(m0)0))01S((g(f(m0)0))11)f(m0)1

= g(f(m0)0)⊗ S−1(m1)f(m0)1

= g(f0(m))⊗ f1

= (φ(f0)(g))(m)⊗ f1.
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This means that φ is Hop-colinear. For f, f ′ ∈ EndS(M) and g ∈M?, we have

φ(ff ′)(g) = g ◦ (ff ′) = g ◦ f ◦ f ′
= φ(f ′)(g ◦ f) = φ(f ′)(φ(f)(g))
= (φ(f ′) ◦ φ(f))(g)
= (φ(f)φ(f ′))(g).

So φ is an algebra map.
Let {m(i), f (i)} be dual bases for the S-modules M and M?, where m(i) ∈ M and

f (i) ∈ M? = HomS(M,S). Define ψ : SEnd(M?) → EndS(M) by ψ(g)(m) =
∑
m(i) ↼

[g(f (i))](m). Since
∑
m(i) ↼ f (i)(m) = m, we have

f ′(m) =
∑

f ′(m(i))f (i)(m) =
∑

(f ′(m(i)) ⇀ f (i))(m)

for every f ′ ∈ M? and m ∈ M . So f ′ =
∑
f ′(m(i)) ⇀ f (i). For every g ∈ SEnd(M?),

we have g(f ′) =
∑
f ′(m(i)) ⇀ [g(f (i))]. This proves that φ ◦ ψ is the identity map of

SEnd(M?). In a similar, way we show that ψ ◦φ is the identity map of EndS(M). So the
algebra map φ is a bijection with inverse ψ.

(ii) Define φ : SEnd(M) → EndS(M?) by φ(f)(g) = g ◦ f for all f ∈ SEnd(M) and
g ∈ M? = SHom(M,S). Here M? = SHom(M,S). We show as in (i) that φ is well
defined, left S-linear, left H-linear, right Hop-colinear, an algebra homomorphism, and
is a bijection with inverse defined by ψ : EndS(M?) → SEnd(M) such that ψ(g)(m) =
[g(f (i))(m)] ⇀ m(i), where {m(i), f (i)} is a dual basis of the left S-module M .

(iii) Define φ : EndS(M) → SEnd(M) by φ(f̄)(m) = f0(f1m), for all m ∈ M and
f ∈ SEnd(M). We already mentioned that φ is an isomorphism of dyslectic Hopf Yetter-
Drinfel’d (S,H)-module. It is easy to show that φ is an algebra map using the fact that
(g ◦ f)0 ⊗ (g ◦ f)1 = (g0 ◦ f0)⊗ f1g1 for all f, g ∈ EndS(M).

If M and N are faithfully projective dyslectic Hopf Yetter-Drinfel’d (S,H)-modules,
then M⊗̃SN is a faithfully projective dyslectic Hopf Yetter-Drinfel’d (S,H)-module.

4.6. Proposition. Let M and N be faithfully projective dyslectic Hopf Yetter-Drinfel’d
(S,H)-modules. Then

EndS(M) #S EndS(N) ' EndS(M⊗̃SN) and SEnd(M) #S SEnd(N) ' SEnd(M ⊗̃S N)

as dyslectic Hopf Yetter-Drinfel’d (S,H)-module algebras.

Proof. Define
φ : EndS(M) #S EndS(N)→ EndS(M⊗̃SN)

by

φ(f # g)(m ⊗̃n) = f(m0) ⊗̃ (m1g)(n), for all m ∈M,n ∈ N, f ∈ EndS(M), g ∈ EndS(N).
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φ(f # g) is well defined, since

φ((f # g)(m ↼ s) ⊗̃n) = f((m ↼ s)0) ⊗̃ ((m ↼ s)1.g)(n)
= f(m0 ↼ s0) ⊗̃ (s1m1.g)(n)
= f(m0) ⊗̃ (s0 ⇀ ((s1m1.g)(n)))
= f(m0) ⊗̃ [s0 ⇀ (s1m1)1(g(S((s1m1)2)n))]
= f(m0) ⊗̃ [s0 ⇀ (s11m11(g(S(s12m12)n)))]
= f(m0) ⊗̃ [s0 ⇀ (s11m11(g(S(m12)S(s12)n)))]
= f(m0) ⊗̃ [s00 ⇀ (s01m11(g(S(m12)S(s1)n)))]
= f(m0) ⊗̃ [m11(g(S(m12)S(s1)n))] ↼ s0

= f(m0) ⊗̃ [(m1.g)(S(s1)n)] ↼ s0

= f(m0) ⊗̃ [(m1.g)((S(s1)n) ↼ s0)]
= f(m0) ⊗̃ [(m1.g)(s ⇀ n)]
= φ(f # g)(m ⊗̃ (s ⇀ n)),

for all m ∈M , n ∈ N , s ∈ S, f ∈ EndS(M), and g ∈ EndS(N).
Let us show that φ is well defined. We have

φ((f ↼ s) # g)(m ⊗̃n) = (f ↼ s)(m0) ⊗̃ (m1.g)(n)
= [s0 ⇀ (s1.f)](m0) ⊗̃ (m1.g)(n)
= s0 ⇀ [(s1.f)(m0)] ⊗̃ (m1.g)(n)
= s0 ⇀ [s11(f(S(s12)m0))] ⊗̃m11(g(S(m12)n))
= (S(s01)[s11(f(S(s12)m0))]) ↼ s00 ⊗̃m11(g(S(m12)n))
= (S(s1)s2)(f(S(s3)m0)) ↼ s0 ⊗̃m11(g(S(m12)n))
= f(S(s1)m0) ↼ s0 ⊗̃m11(g(S(m12)n))
= f((S(s1)m0) ↼ s0) ⊗̃m11(g(S(m12)n))
= f(s ⇀ m0) ⊗̃m11(g(S(m12)n))
= f(m00 ↼ (m01.s)) ⊗̃m11(g(S(m12)n))
= (f(m00) ↼ (m01.s)) ⊗̃m11(g(S(m12)n))
= f(m00) ⊗̃ ((m01.s) ⇀ ((m11(g(S(m12)n))))
= f(m0) ⊗̃ ((m1.s) ⇀ (m2(g(S(m3)n))))
= f(m0) ⊗̃ ((m1.s) ⇀ (m2.g)(n))
= f(m0) ⊗̃ ((m1.s) ⇀ (m2.g)(n))
= f(m0) ⊗̃ (m1.(s ⇀ g))(n)
= φ(f # (s ⇀ g))(m ⊗̃n)

for all m ∈ M , n ∈ N , s ∈ S, f ∈ EndS(M), and g ∈ EndS(N). Clearly, φ and φ(f # g)
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are S-linear. That φ is H-linear follows from:

[h.(φ(f # g)](m ⊗̃n) = h1[φ(f # g)(S(h2)(m ⊗̃n))]
= h1[φ(f # g)(S(h22)m ⊗̃ S(h21)n))]
= h1[f((S(h22)m)0) ⊗̃ ((S(h22)m)1.g)(S(h21)n))]
= h1[f((S(h222)m0)) ⊗̃ ((S(h221)m1S−1(S(h223)).g)(S(h21)n))]
= h11[f(S(h222)m0)] ⊗̃h12[(S(h221)m1h223.g)(S(h21)n)])
= h1[f(S(h5)m0)] ⊗̃h2[((S(h4)m1h6).g)(S(h3)n)]
= h1(f(S(h4)m0)) ⊗̃ [h2S(h3)m1h5.g](n)
= h1(f(S(h2)m0)) ⊗̃ [m1h3.g](n)
= h11(f(S(h12)m0)) ⊗̃ [m1h2.g](n)
= (h1.f)(m0) ⊗̃ [m1h2.g](n)
= φ((h1.f) # (h2.g))(m⊗ n)
= φ[h.(f # g)](m⊗ n),

for all m ∈ M , n ∈ N , f ∈ EndS(M), g ∈ EndS(N), and h ∈ H. And finally, φ is
Hop-colinear, since

φ(f # g)0(m ⊗̃n)⊗ φ(f # g)1

= [φ(f # g)((m ⊗̃n)0)]0 ⊗ S−1((m ⊗̃n)1)[φ(f # g)((m ⊗̃n)0)]1
= [φ(f # g)(m0 ⊗̃n0)]0 ⊗ S−1(n1m1)[φ(f # g)(m0 ⊗̃n0)]1
= [f(m00) # (m01.g)(n0)]0 ⊗ S−1(m1)S−1(n1)[f(m00) # (m01.g)(n0)]1
= (f(m00)0 # [(m01.g)(n0)]0)⊗ (S−1(m1)S−1(n1)[(m01.g)(n0)]1f(m00)1)
= (f(m00)0 # [(m01.g)0(n)])⊗ (S−1(m1)[(m01.g)1]f(m00)1)
= (f(m00)0 # [(m012.g0)(n)])⊗ (S−1(m1)[m013.g1S−1(m011)]f(m00)1)
= (f(m0)0 # [(m2.g0)(n)])⊗ (S−1(m4)[m3g1S−1(m1)]f(m0)1)
= (f(m0)0 # [(m2.g0)(n)])⊗ (g1S−1(m1)f(m0)1)
= (f(m00)0 # [(m1.g0)(n)])⊗ (g1S−1(m01)f(m00)1)
= f0(m0) # [(m1.g0)(n)])⊗ g1f1

= φ(f0 # g0)(m ⊗̃n)⊗ g1f1

= φ((f # g)0)(m ⊗̃n)⊗ (f # g)1,

for all m ∈M , n ∈ N , f,∈ EndS(M), and g ∈ EndS(N). That φ is compatible with the
product can be shown as in [CvOZ1, Proposition 4.3]. Our assumptions imply that every
element of EndS(M ⊗̃S N) has the form f ⊗̃ g, for f ∈ EndS(M) and g ∈ EndS(N), so
it is easy to show φ−1 is given by

φ−1(f ⊗̃ g)) = f0 #S−1(f1).g.

Therefore, φ is an isomorphism of dyslectic Hopf Yetter-Drinfel’d (S,H)-modules.
To show the second isomorphism, use Lemma 4.5 and apply the first isomorphism to

the endomorphism algebras of the duals.
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4.7. Lemma. Let M be a faithfully projective dyslectic Hopf Yetter-Drinfel’d (S,H)-
module. Then

(i) M ⊗̃SM? is a faithfully projective dyslectic Hopf Yetter-Drinfel’d (S,H)-module
algebra: the multiplication in M ⊗̃SM? is defined by

(m ⊗̃ f)(m′ ⊗̃ f ′) = (m ↼ f(m′)) ⊗̃ f ′, for all m,m′ ∈M, f, f ′ ∈M?.

(ii) the natural S-linear map φ : M⊗̃SM? ' EndS(M) defined by

φ(m ⊗̃ f)(m′) = m ↼ f(m′), for all m,m′ ∈M, f ∈ EndS(M),

is an isomorphism of dyslectic Hopf Yetter-Drinfel’d (S,H)-module algebras.

Proof. (i). We know that M⊗̃SM? is a faithfully projective dyslectic Hopf Yetter-
Drinfel’d (S,H)-module. Let m, m′ ∈M , and f, f ′ ∈M?. Then we have

[(m ⊗̃ f) ↼ s](n ⊗̃ g) = [m ⊗̃ (f ↼ s)](n ⊗̃ g)
= [m ↼ ((f ↼ s)(n))] ⊗̃ g
= [m ↼ (f(s ⇀ n))] ⊗̃ g
= (m ⊗̃ f)[(s ⇀ n) ⊗̃ g]
= (m ⊗̃ f)[s ⇀ (n ⊗̃ g)].

It follows that [(m ⊗̃ f) ↼ s](n ⊗̃ g) = (m ⊗̃ f)[s ⇀ (n ⊗̃ g)].
We also have

[s ⇀ (m ⊗̃ f)](n ⊗̃ g) = [(s ⇀ m) ⊗̃ f ](n ⊗̃ g)
= [(s ⇀ m) ↼ f(n)] ⊗̃ g)
= s ⇀ [(m ↼ f(n)) ⊗̃ g]
= s ⇀ [(m ⊗̃ f)(n ⊗̃ g)].

We deduce that [s ⇀ (m ⊗̃ f)](n ⊗̃ g) = s ⇀ [(m ⊗̃ f)(n ⊗̃ g)].
The identity element of M ⊗̃SM? is

∑
m(i) ⊗̃ f (i), where {m(i)} and {f (i)} are dual

bases for M and M?. Let us show that the H-coaction is compatible with the product of
M ⊗̃SM?. We have

(m ⊗̃ f)0(m′ ⊗̃ f ′)0 ⊗ (m′ ⊗̃ f ′)1(m ⊗̃ f)1

= (m0 ⊗̃ f0)(m′0 ⊗̃ f ′0)⊗ f ′1m′1f1m1

= [(m0 ↼ f0(m′0)) ⊗̃ f ′0]⊗ f ′1m′1f1m1

= [(m0 ↼ f(m′00)0) ⊗̃ f ′0]⊗ f ′1m′1S−1(m′01)f(m′00)1m1

= [(m0 ↼ f(m′)0) ⊗̃ f ′0]⊗ f ′1f(m′)1m1

= [(m ↼ f(m′)) ⊗̃ f ′]0 ⊗ [(m ↼ f(m′)) ⊗̃ f ′]1
= [(m ⊗̃ f)(m′ ⊗̃ f ′)]0 ⊗ [(m ⊗̃ f)(m′ ⊗̃ f ′)]1.

It is easy to show that the H-action is compatible with the product of M ⊗̃SM?.
That the product is associative is well-known. So M ⊗̃SM? is a Hopf Yetter-Drinfel’d
(S,H)-module algebra.

(ii). Since M is faithfully projective, φ is an isomorphism of dyslectic Hopf Yetter-
Drinfel’d (S,H)-modules. It is easy to show that φ preserves the product and the identity
element

∑
m(i) ⊗̃ f (i) of M ⊗̃SM?, where {m(i)} and {f (i)} are dual bases of M and M?.
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4.8. Lemma. Let M be a faithfully projective dyslectic Hopf Yetter-Drinfel’d (S,H)-
module. Then

(i) M? ⊗̃SM is a faithfully projective dyslectic Hopf Yetter-Drinfel’d (S,H)-module
algebra: the multiplication in M? ⊗̃SM is defined by

(f ⊗̃m)(f ′ ⊗̃m′) = f ⊗̃ [f ′(m) ⇀ m′], for all m,m′ ∈M, f, f ′ ∈M?; and

(ii) the natural R-linear map φ : M? ⊗̃SM ' SEnd(M) defined by

φ(f ⊗m)(m′) = f(m′) ⇀ m, for all m,m′ ∈M, f ∈ SEnd(M),

is an isomorphism of dyslectic Hopf Yetter-Drinfel’d (S,H)-module algebras.

4.9. Proposition. Let A be a dyslectic Hopf Yetter-Drinfel’d (S,H)-module algebra. If
M is a dyslectic Hopf Yetter-Drinfel’d (S,H)-module that is faithfully projective as an
S-module, then A#S EndS(M) ' EndS(M) #S A and SEnd(M) #S A ' A#S SEnd(M)
as dyslectic Hopf Yetter-Drinfel’d (S,H)-module algebras.

Proof. This is shown for general braided monoidal categories in [vOZ, Proposition 2.4(i)].
There the algebra isomorphism is given by

η(a#m⊗ f) = S(a1)m⊗ f0 # f1.a0, for all a ∈ A,m ∈M, f ∈M?.

This is the composition (id⊗γA,M?)◦(γ−1
A,M⊗id), so it is certainly well-defined morphism in

the SQH category. That it is an algebra map is shown with a braiding diagram argument
in [vOZ]. Here we verify this directly.

Let a, b ∈ A, m,n ∈M , and f, g ∈M?. Consider

η((a#m⊗̃f)(b#n⊗̃g)) = η(ab0 # (b1.(m⊗̃f))(n⊗̃g))
= η(ab0 # [b1m↼ (b2f)(n)] ⊗̃ g)
= S((ab0)1).[b1m↼ (b2f)(n)] ⊗̃ g0 # g1.(ab0)0

= S(a1)S(b01).(b1m↼ (b2f)(n)) ⊗̃ g0 # g1.(a0b00)
= S(a2)m↼ (S(a1)S(b1).(b2f)(n)) ⊗̃g0 # g1.(a0b0)
= S(a2)m ⊗̃ ((S(a1)S(b1).(b2f)(n)) ⇀ g0) # g1.(a0b0)
= S(a2)m ⊗̃ (g00 ↼ (g01.(S(a1)S(b1).(b2f)(n)))) # g1.(a0b0)
= S(a2)m ⊗̃ g00 # ((g01.(S(a1)S(b1).(b2f)(n))) ⇀ g1.(a0b0))
= S(a2)m ⊗̃ g0 # g1.((S(a1)S(b1).(b2f)(n)) ⇀ a0b0)
= S(a2)m ⊗̃ g0 # g1.(((S(a1)S(b1).(b2f)(n)) ⇀ a0)b0)
= S(a1)m ⊗̃ g0 # g1.((a0 ↼ (S(b1).(b2f)(n)))b0)
= S(a1)m ⊗̃ g0 # g1.(a0((S(b1).(b2f)(n)) ⇀ b0))
= S(a1)m ⊗̃ g0 # g1.(a0(b0 ↼ ((b1f)(n))))
= S(a1)m ⊗̃ g0 # g1.((a0b0) ↼ ((b1f)(n))).
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On the other hand,

η(a#m ⊗̃ f)η(b#n ⊗̃ g) = (S(a1)m ⊗̃ f0 # f1.a0)(S(b1)n ⊗̃ g0 # g1.b0)
= (S(a1)m ⊗̃ f0)(S(b1)n ⊗̃ g0)0 # ((S(b1)n ⊗̃ g0)1.(f1.a0))(g1.b0)
= (S(a1)m ⊗̃ f0)((S(b1)n)0 ⊗̃ g00) # (g01(S(b1)n)1f1.a0)(g1.b0)
= S(a1)m ⊗̃ (f0((S(b1)n)0) ⇀ g0) # g1.(((S(b1)n)1f1.a0)b0)
= S(a1)m ⊗̃ (g00 ↼ (g01.(f0((S(b1)n)0))) # g1.(((S(b1)n)1f1.a0)b0)
= S(a1)m ⊗̃ g0 # ((g1.(f0((S(b1)n)0))) ⇀ (g2.(((S(b1)n)1f1.a0)b0)))
= S(a1)m ⊗̃ g0 # g1.((f0((S(b1)n)0) ⇀ (S(b1)n)1f1.a0)b0)
= S(a1)m ⊗̃ g0 # g1.((f0((S(b1)n)0) ⇀ (S(b1)n)1f1.a0)b0)
= S(a1)m ⊗̃ g0 # g1.((a0 ↼ f(S(b1)n))b0)
= S(a1)m ⊗̃ g0 # g1.(a0(f(S(b1)n) ⇀ b0))
= S(a1)m ⊗̃ g0 # g1.(a0(b00 ↼ b01f(S(b1)n)))
= S(a1)m ⊗̃ g0 # g1.(a0(b0 ↼ (b1f)(n)))
= S(a1)m ⊗̃ g0 # g1.((a0b0) ↼ (b1f)(n)),

as required.
That SEnd(M) #S A ' A#S SEnd(M) follows, since SEnd(M) ' EndS(M?).

5. Dyslectic Hopf Yetter-Drinfel’d (S,H)-module Azumaya algebras

In this section, H a Hopf algebra with a bijective antipode, and S is an H-commutative
Hopf Yetter-Drinfel’d H-module algebra. We will introduce the notion of a dyslectic
Hopf Yetter-Drinfel’d (S,H)-module Azumaya algebra and work from there toward our
eventual goal of defining the Brauer-Clifford-Long group.

5.1. Proposition. Let A be a dyslectic Hopf Yetter-Drinfel’d (S,H) module algebra
which is faithfully projective as an S-module. We define two S-linear maps

F : A#S Ā→ EndS(A) : F (a# b̄)(c) = ac0(c1.b)

and
G : Ā#S A→ EndS(A) : G(ā# b)(c) = a0(a1.c)b

for all a, b and c in A.
Then F and G are dyslectic Hopf Yetter-Drinfel’d (S,H)-module algebra homomor-

phisms.

Proof. To see that F is well-defined, let a, b, c ∈ A and let s ∈ S. Then

F (a# b̄)(c ↼ s) = a(c ↼ s)0((c ↼ s)1).b)
= a(c0 ↼ s0)(s1.(c1.b))
= ac0(s0 ⇀ (s1.(c1.b)))
= ac0((c1.b) ↼ s)
= (ac0(c1.b)) ↼ s
= F (a# b̄)(c) ↼ s,
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so F (a# b̄) is S-linear. It is clear that F is additive. Furthermore,

F ((a ↼ s) # b̄)(c) = (a ↼ s)c0(c1.b)
= a(s ⇀ c0)(c1.b)
= a(c0 ↼ c1.s)(c2.b)
= ac0((c1.s) ⇀ (c2.b))
= ac0(c1.(s ⇀ b))

= F (a# (s ⇀ b))(c)
= F (a# (s ⇀ b̄))(c),

so F is a well-defined map from A#S Ā to EndS(A).
Next we show F is H-linear. Let a, b, c ∈ A and h ∈ H. Then

h.(F (a# b̄))(c) = h1.(F (a# b̄)(S(h2).c))
= h1.(a(S(h2).c)0((S(h2).c)1.b))
= h1.(a(S(h3).c0)(S(h2)c1h4).b)
= (h1.a)c0(c1.(h2.b))

= F (h1.a#h2.b)(c)
= F (h.(a# b̄))(c),

as required. To see that F is H-colinear, let a, b, c ∈ A. We have

(F (a# b̄))0(c)⊗ (F (a# b̄))1 = (F (a# b̄)(c0))0 ⊗ S−1(c1)(F (a# b̄)(c0))1

= (ac0(c1.b))0 ⊗ S−1(c2)(a0c0(c1.b))1

= a0c0(c3.b0)⊗ S−1(c5)c4b1S(c2)c1a1

= a0c0(c1.b0)⊗ b1a1

= F ((a# b̄)0)(c)⊗ (a# b̄)1,

so F is H-colinear. Finally, F is an algebra map, since for all a, b, c, d, e ∈ A,

F (a# b̄)F (c# d̄)(e) = F (a# b̄)(ce0(e1.d))
= a(ce0(e1.d))0((ce0(e1.d))1.b)
= ac0e0(e2.d)0((e2.d)1e1c1).b
= ac0e0(e3.d0)((e4d1S−1(e2)e1c1).b)
= ac0e0(e1.d0)((e2d1c1).b)
= (ac0e0)e1.(d0(d1.(c1.b)))

= F (ac0 # d0(d1.(c1.b)))(e)

= F (ac0 # c1.bd̄)(e)
= F ((a# b̄)(c# d̄))(e).

For the map G, we view EndS(A) as SEnd(A) and use the H-action and H-coaction
defined as in Lemma 2.2. That G is well-defined and S-linear is similar to the proof for
F . That G is H-linear, H-colinear, and an algebra map is proved exactly as in [CvOZ1,
Proposition 5.1] (see also [C, Lemma 12.2.3]).
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Let A be a faithfully projective dyslectic Hopf Yetter-Drinfel’d (S,H)-module algebra.
We say that A is a dyslectic Hopf Yetter-Drinfel’d (S,H)-module Azumaya algebra (i.e. an
Azumaya algebra in the category Dys-SQH) if A is faithfully projective, and the dyslectic
Hopf Yetter-Drinfel’d (S,H)-module algebra homomorphisms F : A#S Ā → EndS(A)
and G : Ā#S A→ EndS(A) are isomorphisms.

Let A be a dyslectic Hopf Yetter-Drinfel’d (S,H)-module algebra. If H is cocommu-
tative and the coaction of H is trivial, then S is commutative, Ā = Aop, and A is just an
S-progenerator (S,H)-algebra for which the natural map A⊗S Aop → EndS(A) is an iso-
morphism of (S,H)-algebras. So A is an (S,H)-Azumaya algebra in the sense of [GH]. If
H is commutative and the action of H is trivial, then S is commutative, Ā = Aop, A is just
an S-progenerator (S,H)-Hopf algebra such that the natural map A⊗S Aop → EndS(A)
is an isomorphism of (S,H)-Hopf algebras. So A is an (S,H)-Hopf Azumaya algebra as
in [GH].

5.2. Theorem. The following hold:

(i) If M is a faithfully projective dyslectic Hopf Yetter-Drinfel’d (S,H)-module, then
EndS(M) is a dyslectic Hopf Yetter-Drinfel’d (S,H)-module Azumaya algebra.

(ii) If A and B are faithfully projective dyslectic Hopf Yetter-Drinfel’d (S,H) module
Azumaya algebras, then A#S B is a dyslectic Hopf Yetter-Drinfel’d (S,H)-module
Azumaya algebra.

(iii) If A is a faithfully projective dyslectic Hopf Yetter-Drinfel’d (S,H)-module Azumaya
algebra, then Ā is a dyslectic Hopf Yetter-Drinfel’d (S,H)-module Azumaya algebra.

Proof. It is obvious that EndS(M) is faithfully projective. By Proposition 4.5, we have

EndS(M) ' SEnd(M) ' EndS(M?)

as dyslectic Hopf Yetter-Drinfel’d (S,H)-module algebras. Using Propositions 4.5 and
4.6, and Lemmas 4.7 and 4.8, we get the following dyslectic Hopf Yetter-Drinfel’d (S,H)-
module algebra isomorphisms:

EndS(M) #S EndS(M) ' EndS(M) #S EndS(M?)
' EndS(M ⊗̃SM?)
' EndS(EndS(M))

and
EndS(M) #S EndS(M) ' EndS(M?) #S EndS(M)

' EndS(M? ⊗̃SM)
' EndS((M ⊗̃SM?)?)
' EndS((EndS(M))?)

' EndS(EndS(M)).

So F and G are isomorphisms.
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(ii) Since A ⊗S B is faithfully projective so is A#S B. Using Propositions 4.4, 4.6,
and 4.9, we have the following dyslectic Hopf Yetter-Drinfel’d (S,H)-module algebra
isomorphisms:

(A#S B) #S A#S B ' A#S B#S B̄#S Ā
' A#S EndS(B) #S Ā
' A#S Ā#S EndS(B)
' EndS(A) #S EndS(B)
' EndS(A ⊗̃S B)
' EndS(A#S B)

and
A#S B#S (A#S B) ' B̄#S Ā#S A#S B

' B̄#S EndS(A) #S B

' B̄#S B#S EndS(A)

' EndS(B) #S EndS(A)
' EndS(B?) #S EndS(A?)
' EndS(B? ⊗̃S A?)
' EndS((A ⊗̃S B)?)

' EndS(A ⊗̃S B)

' EndS(A#S B).

so F and G are isomorphisms.
(iii) Since A is faithfully projective so is Ā. Using Propositions 4.5 and 4.4, we have

the following dyslectic Hopf Yetter-Drinfel’d (S,H)-module algebra isomorphisms:

Ā#S
¯̄A ' Ā#S A

' EndS(A)
' EndS(A)
' EndS(Ā),

and
¯̄A#S Ā ' A#S Ā

' EndS(A)

' EndS(Ā).

So F and G are isomorphisms.

We will say that a dyslectic Hopf Yetter-Drinfel’d (S,H)-module Azumaya algebra E
is trivial if E ' EndS(P ) as dyslectic Hopf Yetter-Drinfel’d (S,H)-module algebras, for
some faithfully projective dyslectic Hopf Yetter-Drinfel’d (S,H)-module P . If a dyslectic
Hopf Yetter-Drinfel’d (S,H)-module Azumaya algebra E is trivial, then so are E? and
Ē. If M and N are faithfully projective dyslectic Hopf Yetter-Drinfel’d (S,H)-modules,
then so is M ⊗̃S N . It follows from Proposition 4.6 and Theorem 5.2 that the braided
product of two trivial dyslectic Hopf Yetter-Drinfel’d (S,H)-module Azumaya algebras
is a trivial dyslectic Hopf Yetter-Drinfel’d (S,H)-module Azumaya algebra. When A
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is a dyslectic Hopf Yetter-Drinfel’d (S,H)-module Azumaya algebra, then we have that
A#S Ā and EndS(A) are isomorphic as dyslectic Hopf Yetter-Drinfel’d (S,H)-module
Azumaya algebras, and Ā#S A and EndS(A) are isomorphic as dyslectic Hopf Yetter-
Drinfel’d (S,H)-module Azumaya algebras.

We will say that two dyslectic Hopf Yetter-Drinfel’d (S,H)-module Azumaya algebras
A and B are equivalent if there exist trivial dyslectic Hopf Yetter-Drinfel’d (S,H)-module
Azumaya algebras E1 and E2 such that A#S E1 ' B#S E2 as dyslectic Hopf Yetter-
Drinfel’d (S,H)-module Azumaya algebras.

5.3. Lemma. The above relation is an equivalence relation on the collection of dyslectic
Hopf Yetter-Drinfel’d (S,H)-module Azumaya algebras.

Proof. The only thing we have to show is transitivity. Suppose A, B, and C are dyslectic
Hopf Yetter-Drinfel’d (S,H)-module Azumaya algebras for which A is equivalent to B
and B is equivalent to C. Then there exist faithfully projective dyslectic Hopf Yetter-
Drinfel’d (S,H)-module N1, N2, N3 and N4 such that A#S EndS(N1) ' B#S EndS(N2)
and B#S EndS(N3) ' C #S EndS(N4) as dyslectic Hopf Yetter-Drinfel’d (S,H)-module
Azumaya algebras. We have the following dyslectic Hopf Yetter-Drinfel’d (S,H)-module
Azumaya algebras isomorphisms:

A#S EndS(N1 ⊗S N3) ' A#S EndS(N1) #S EndS(N3)
' B#S EndS(N2) #S EndS(N3)
' B#S EndS(N3) #S EndS(N2)
' C #S EndS(N4) #S EndS(N2)
' C #S EndS(N4 ⊗S N2).

This proves the relation is transitive, and hence it is an equivalence relation.

We have now collected all of the ingredients necessary to define the Brauer group for
the braided monoidal category Dys-SQH .

5.4. Definition. The Brauer-Clifford-Long group for the category of dyslectic Hopf Yetter-
Drinfel’d (S,H)-modules Azumaya algebras is the set BQ(S,H) of equivalence classes
of dyslectic Hopf Yetter-Drinfel’d (S,H)-module Azumaya algebras modulo the relation
defined by taking #S-products with trivial dyslectic Hopf Yetter-Drinfel’d (S,H)-module
Azumaya algebras.

We remind the reader that our Azumaya algebras in Dys-SQH are assumed to be
left and right faithfully projective. From the viewpoint of [Femić], these algebras consti-
tute a closed braided monoidal category and so the Brauer-Clifford-Long group we have
described is the Brauer group of this category.

5.5. Theorem. Let H be a Hopf algebra with bijective antipode, and suppose S is an H-
commutative Yetter-Drinfel’d H-module algebra. Then BQ(S,H) is a group. If [[A]], [[B]]
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denote the equivalence classes of a dyslectic Hopf Yetter-Drinfel’d (S,H)-modules Azu-
maya algebra A and B, then in BQ(S,H) we will have [[A]] · [[B]] = [[A#S B]]. The iden-
tity of BQ(S,H) is the equivalence class [[S]] consisting of all trivial dyslectic Hopf Yetter-
Drinfel’d (S,H)-modules Azumaya algebras, and [[A]]−1 = [[Ā]] for all [[A]] ∈ BQ(S,H).

Proof. The product in BQ(S,H) is well-defined by Propositions 4.4, 4.6, 4.9, and The-
orem 5.2(ii). It follows from Proposition 4.4 that this product is associative and has
identity [[S]]. That the inverse of the class [[A]] ∈ BQ(S,H) is represented by A is [[Ā]]
follows from Theorem 5.2(iii).

BQ(R,H) is precisely the Brauer group for the category QH of Yetter-Drinfel’d H-
modules defined by Caenepeel, Van Oystaeyen, and Zhang [CvOZ1], [CvOZ2]. Several
basic properties of BQ(S,H) are immediate from the properties of Brauer groups of
braided monoidal categories discussed in [vOZ], we leave these to the reader to explore.

6. Examples

In this section we give an overview of cases where Brauer groups of braided and symmetric
monoidal categories that have been previously studied admit nontrivial generalizations to
the Brauer-Clifford-Long groups that we have presented.

6.1. Example. H is triangular. A Hopf algebra H over commutative ring R is said to
be quasitriangular if there exists an invertible element R = R1 ⊗R2 ∈ H ⊗H satisfying

(QT1) R(1)
1 ⊗R

(2)
1 ⊗R2 = (R1 ⊗ 1⊗R2)(1⊗R1 ⊗R2) := R13R23

(QT2) R1 ⊗R(1)
2 ⊗R

(2)
2 = (R1 ⊗ 1⊗R2)(R1 ⊗R2 ⊗ 1) := R13R12

(QT3) ∆cop(h) = h2 ⊗ h1 = R(h1 ⊗ h2)R−1, for all h ∈ H.

The inverse of R is R−1 = S(R1) ⊗ R2. By [Majid, Theorem 5.7], the antipode of
a quasitriangular Hopf algebra is bijective. Clearly, if H is cocommutative, then H is
quasitriangular with R = 1H ⊗ 1H . If H is quasitriangular with respect to R ∈ H ⊗H,
then every left S#H-module M becomes a Hopf Yetter-Drinfel’d (S,H)-module, with the
Hop-coaction given by

ρM(m) = (R2m)⊗R1, for all m ∈M.

A Hopf algebra H is triangular if it is quasitriangular and R−1 = R2 ⊗R1. The next
lemma shows that Hopf Yetter-Drinfel’d (S,H)-modules are dyslectic when H is trian-
gular and S is an H-commutative left H-module algebra. So in this case the ingredients
necessary to define BQ(S,H) are present.

6.2. Lemma. Let H be a triangular Hopf algebra with respect to R ∈ H ⊗ H. If S is
an H-commutative left H-module algebra, then every left S#H-module M is a dyslectic
Hopf Yetter-Drinfel’d (S,H)-module.
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Proof. Since H is triangular, we have R1R2 ⊗R2R1 = 1H ⊗ 1H .
Let m ∈M and s ∈ S. Then

m0 ↼ (m1.s) = (R2m) ↼ (R1.s)
= (R1.s)0 ⇀ ((R1.s)1(R2m)
= (R2R1.s) ⇀ (R1R2m)
= s ⇀ m,

so the equation (32) is satisfied for M .

6.3. Example. H faithfully projective with bijective antipode. Suppose H is a faithfully
projective Hopf algebra over a commutative ring R with a bijective antipode. In this case
there is a category equivalence between QH and D(H)M, where D(H) is the Drinfel’d
double of H; i.e. the bi-crossed product H ./ H∗op, where H∗ is the R-dual of H [Majid91].
When S is an H-commutative Yetter-Drinfel’d H-module algebra, the right Hop-comodule
structure on S induces a left H∗op-module algebra structure on S, and in this way S can
be viewed as a D(H)-module algebra, with

(h ./ φ).s = (h.s0)φ(s1), for all h ∈ H,φ ∈ H∗op, s ∈ S.

It is well-known that D(H) is a quasitriangular Hopf algebra in this case, whose special
element R ∈ D(H) ⊗ D(H) is constructed using dual bases (h(i), φ(i)) of H and H∗

[Majid91]:

R = R1 ⊗R2 =
∑
i

(h(i) ./ εH)⊗ (1H ./ φ(i)),

where εH is the counit of H, i.e. the unit of H∗op. We claim that the H-commutativity of S
is equivalent to D(H)-quantum commutativity in the sense of Cohen-Westreich [CohWest]
that is used in [Wang, Corollary 2.5]. D(H)-quantum commutativity of S means that for
all s, t ∈ S, ts = (R2.s)(R1.t). Using our characterization of R1 and R2, this is equivalent
to

ts = (R2.s)(R1.t)
=

∑
i((1H ./ φ(i)).s)((h(i) ./ εH).t)

=
∑

i(s0φ
(i)(s1))(h(i).t0εH(t1))

=
∑

i s0[φ(i)(s1)h(i)].[εH(t1)t0]
= s0(s1.t)
= ts,

so H-commutativity of S is equivalent to D(H)-quantum commutativity of S in the sense
of Cohen-Westreich [CohWest]. So we can conclude from Wang’s results [Wang, Lemma
2.1, Theorem 2.2, and Corollary 2.5], that S#D(H)M is a braided monoidal category. Thus
the equivalent category SQH is also braided monoidal, every M ∈ SQH will be dyslectic.
So our Brauer-Clifford-Long group BQ(S,H) will be isomorphic to BM(S,D(H)).
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6.4. Example.H is cotriangular. A Hopf algebra H over a commutative ring R is said to
be coquasitriangular if there exists a convolution invertible R-linear map R : H ⊗H → k
satisfying the following conditions:

(CQT1) R(h, gx) = R(h1, g)R(h2, x)
(CQT2) R(hg, x) = R(h, x1)R(g, x2)
(CQT3) R(h1, g1)h2g2 = g1h1R(h2, g2).

The convolution inverse of R is given by R−1(h, g) = R(S(h), g), for all g, h ∈ H. By
[Majid, Theorem 8.6], the antipode of a coquasitriangular Hopf algebra (H,R) is bijective.
If (H,R) is coquasitriangular, then every right (S,Hop)-Hopf module M becomes a Hopf
Yetter-Drinfel’d (S,H)-module; the H-action is given by

hm = m0R(h,m1) for all m ∈M.

If H is coquasitriangular and S is a right Hop-comodule algebra, then S is a Yetter-
Drinfel’d H-module algebra with H-action given by

h.s = s0R(h, s1) for all s ∈ S.

Clearly, if H is commutative, then H is coquasitriangular with R(h, g) = 1.
A coquasitriangular Hopf algebra H is cotriangular if

R(h1, g1)R(g2, h2) = ε(h)ε(g) for all h, g ∈ H.

6.5. Lemma. Suppose H is a cotriangular Hopf algebra. If S is an H-commutative right
Hop-comodule algebra, then every (S,Hop)-Hopf module M is a dyslectic Hopf Yetter-
Drinfel’d (S,H)-module.

Proof. Let m ∈M and s ∈ S. Then

m0 ↼ (m1.s) = m0 ↼ (s0R(m1, s1))
= s00 ⇀ (s01m0)R(m1, s1)
= s0 ⇀ (s11m0)R(m1, s12)
= s0 ⇀ (m00R(s11,m01)R(m1, s12)
= (s0 ⇀ m0)R(s11,m11)R(m12, s12)
= (s0 ⇀ m0)ε(s1)ε(m1)
= s ⇀ m,

so equation (32) is satisfied for M .

If H is cotriangular and S is an H-commutative right Hop-comodule algebra, then S
is a dyslectic Hopf Yetter-Drinfel’d (S,H)-module algebra. So the ingredients necessary
to define BQ(S,H) are present in this situation as well.
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7. Elementary homomorphisms between Brauer-Clifford-Long groups

We conclude the article by presenting some elementary homomorphisms between Brauer-
Clifford-Long groups that are induced by scalar extensions and central twists.

We first consider scalar extensions. Let R′ be a commutative ring with trivial H-action
and H-coaction. Fix a ring homomorphism from R′ to R. Then H ′ = R′ ⊗H equipped
with its natural R′-module structure is a Hopf algebra over R′. If M is a Hopf Yetter-
Drinfel’d H-module, then R′ ⊗ M is a Hopf Yetter-Drinfel’d (R′ ⊗ S,H ′)-module in a
natural way. Let S be an H-commutative Hopf Yetter-Drinfel’d H-module algebra. Then
R′⊗S is an H ′-commutative Hopf Yetter-Drinfel’d H ′-module algebra. Let M be a Hopf
Yetter-Drinfel’d (S,H)-module. Then R′ ⊗M equipped with its natural R′ ⊗ S-module
structure is a Hopf Yetter-Drinfel’d (R′⊗S,H ′)-module. IfM is dyslectic then so isR′⊗M .
If M is faithfully projective as an S-module, then R′ ⊗M is faithfully projective as an
R′ ⊗ S-module. Furthermore, if A is a Hopf Yetter-Drinfel’d (S,H)-module (Azumaya)
algebra, then R′ ⊗ A will be a Hopf Yetter-Drinfel’d (R′ ⊗ S,H ′)- module (Azumaya)
algebra, and R′ ⊗ A ' R′ ⊗ Ā. The canonical nature of these identifications allows us to
lift this to a homomorphism between the Brauer-Clifford groups.

7.1. Proposition. Let S be an H-commutative Hopf Yetter-Drinfel’d H-module algebra.
Suppose that R′ is a commutative ring with trivial H-action and H-coaction and there is
a homomorphism ring from R′ to R. Then the map BQ(S,H) → BQ(R′ ⊗ S,R′ ⊗ H)
given by [[A]] 7→ [[R′⊗A]], for all Hopf Yetter-Drinfel’d (S,H)-module Azumaya algebras
A, is a group homomorphism.

Central twists also induce homomorphisms between Brauer-Clifford-Long groups. Let
S be an H-commutative Hopf Yetter-Drinfel’d H-module algebra. Let H-AutR(S) be
the group of Hopf Yetter-Drinfel’d H-module algebra automorphisms of S. We claim
there is an action of H-AutR(S) on the Brauer-Clifford-Long group. For M ∈ SQH and
τ ∈ H-AutR(S), let τM be equal to M as a Hopf Yetter-Drinfel’d H-module, but has
left S-module structure given by s I m = τ−1(s) ⇀ m for all s ∈ S, m ∈ M . Using the
H-linearity and the colinearity of τ , we can see that τM ∈ SQH . The corresponding right
S-module structure on τM is given by m J s = m ↼ τ−1(s). Using the H-linearity and
the H-colinearity of τ , we can show that if M is an object of Dys-SQH then so is τM .

7.2. Lemma. Let S be an H-commutative Hopf Yetter-Drinfel’d H-module algebra. Let
τ ∈ H-AutR(S). Let M,N ∈ SQH . Then the following hold.

(i) τ (M ⊗̃S N) = τM⊗̃SτN ;

(ii) M is finitely generated projective as a right (left) S-module if and only if τM is
finitely generated projective as a right (left) S-module;

(iii) If M is finitely generated projective as a right S-module, then τHomS(M,N) and
HomS(τM, τN) are isomorphic in SQH ;
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(iv) If M is finitely generated projective as a left S-module, then τ (SHom(M,N)) and

SHom(τM, τN) are isomorphic in SQH ; and

(v) M is S-faithfully projective in Dys-SQH if and only if τM is S-faithfully projective
in Dys-SQH .

Proof. (i) The identity map is linear from τ (M ⊗̃S N) to τM ⊗̃S τN .
Clearly, M is finitely generated as a right (left) S-module if and only if τM is finitely

generated as a (right) (left) S-module. A map f is right S-linear from M to N if and
only if it is right S-linear from τM to τN and s I f = s ⇀ f . Likewise, f is H-
colinear (H-linear) from M to N if and only if it is H-colinear (H-linear) from τM to

τN . So the identity map is S-linear from τHomS(M,N) to HomS(τM, τN), and from

τ (SHom(M,N)) to SHom(τM, τN). The functor τ preserves exact sequences and τ ◦ τ is
the identity. Using these facts, we can show our results.

7.3. Definition. Let S be an H-commutative Yetter-Drinfel’d module algebra. Let A be
an algebra in Dys-SQH . For any τ ∈ H-AutR(S), we define τA to be equal to A as a
Hopf Yetter-Drinfel’d H-module algebra, but equal to τA as an S-module.

7.4. Lemma. Let S be a fixed H-commutative Hopf Yetter-Drinfel’d H-module algebra.
Let τ ∈ H-AutR(S). Let A be an algebra in Dys-SQH . Then τA is an algebra in Dys-

SQH .

7.5. Lemma. Let S be an H-commutative Yetter-Drinfel’d module algebra. Let τ ∈ H-
AutR(S). Then the following hold.

(i) If M is faithfully projective as an S-module in Dys-SQH , then τEndS(M) ' EndS(τM)
and τ (SEnd(M)) ' SEnd(τM) as algebras in Dys-SQH ;

(ii) if A is an algebra in Dys-SQH , then τA is an algebra in Dys-SQH , and τA = τ Ā
as algebras in Dys-SQH ;

(iii) if A and B are algebras in Dys-SQH , then τ (A#S B) is an algebra in Dys-SQH
and τ (A#S B) ' τA#S τB as algebras in Dys-SQH ; and

(iv) if A is an Azumaya algebra in Dys-SQH , then so is τA.

7.6. Proposition.H-AutR(S) acts by automorphisms on BQ(S,H). The action is given
by τ.[[A]] = [[τA]], for any Azumaya algebra A in Dys-SQH and τ ∈ H-AutR(S).
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[Femić] B. Femić, Some remarks on Morita theory, Azumaya algebras and center of an
algebra in braided monoidal categories, Revista de la Union Matemática Argentina,
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