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A NOTE ON THE CATEGORICAL
CONGRUENCE DISTRIBUTIVITY

DOMINIQUE BOURN

Abstract. Having given a characterization of the categorical congruence modularity
getting rid of the assumption that the ground category is regular in [10], we give now
a characterization of the categorical congruence distributivity. We have a look as well
at the case where the congruence distributivity is only involved, in some sense, for a
subclass Γ of equivalence relations.

Introduction

In the varietal context of Universal Algebra, the notions of congruence modularity and
congruence distributivity are quite classical, see among others [20], [24], [25], [17]. Similar
categorical notions have been investigated in the context of Mal’tsev and Goursat regular
categories in [14], [13], [23], [3], [4], [19] and [6] where there is a natural notion of suprema
of pairs of equivalence relations. Later on was introduced in [10] a condition which
guarantees the existence of suprema of pairs of equivalence relations without any regularity
assumption on the ground category E. This condition led to a characterization of the
categorical congruence modular formula in a non-regular context.

The purpose of this article is twofold. First: congruence distributivity being a partic-
ular case of congruence modularity, we shall think afresh about a characterization of the
categorical congruence distributive formula in a non-regular context. It will be given by
the stability of binary infima under cocartesian maps in the category EquE (of equivalence
relations in E) with respect to the forgetful functor EquE→ E to the ground category. We
shall show that, in this case, any internal groupoid is necessarily an equivalence relation,
as it is the case in the varietal context.

Secondly, the existence of suprema of equivalence relations R∨S keeps a full meaning
when it is restricted to some subclass Γ of equivalence relations R, giving rise to Γ-
modular and Γ-distributive formula indexed by this class Γ. So that we shall investigate
what is remaining in this partial context of the global characterization of the modular
and distributive formula.

Regular Σ-Mal’tsev categories in the sense of [9] will be shown to be examples of such
Σ-modular categories. Among them, there are the categories Mon of monoids and SRg
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of semi-rings, when Σ is chosen to be the class of Schreier split epimorphisms as defined
in [11], see Section 3.8. The variety of Quandles, [18] [22], will be another interesting
example of the validity of such a Σ-modularity, when the class Σ in question is the class
of acupuncturing split epimorphisms as defined in [7], again see Section 3.8.

The category BoSrg of boolean semi-rings, again when Σ is chosen to be the class of
Schreier split epimorphisms, gives rise to an example of Σ-distributive formula. In this
restricted Σ-context, we only have: any Σ-groupoid is necessarily a Σ-equivalence relation.

A very interesting situation will emerge with the category Rg of commutative rings.
On the one hand, as any regular Mal’tsev category, it is congruence modular.

Now consider the reflection I : Rg → BoRg towards the boolean rings and the class
Σ of I-cartesian split epimorphisms (f, s) : X � Y in Rg, namely those which are such
that the following square is a pullback:

X

f

��

ηX // I(X ′)

I(f)

��
Y ηX

// I(Y )

Then, on the other hand, the category Rg will be shown to produce a congruence
distributive formula when it is restricted to the only subclass of Σ-equivalence relations.

1. Suprema of pairs of equivalence relations

1.1. Congruence modular and congruence distributive varieties. A variety
of Universal Algebra V is congruence modular when any of its algebras is such that its
lattice of congruences is modular, namely such that:

(R ∨ S) ∧ T ) = R ∨ (S ∧ T ); provided that : R ⊂ T

it is congruence distributive when this same lattice is distributive, namely such that any
of the two equivalent conditions holds:

T ∨ (R ∧ S) = (T ∨R) ∧ (T ∨ S) ; T ∧ (R ∨ S) = (T ∧R) ∨ (T ∧ S)

It is well known that the distributive formula implies de modular one.

1.2. Existence of suprema of pairs of equivalence relations. We shall be
interested in the categorical aspect of these conditions. Let E be a finitely complete
category. We shall use the simplicial notations to describe any equivalence relation R on
an object X in E, as on the left hand side, or any internal groupoid X1 in E, as on the
right hand side,:

R

dR0 //

dR1

//
XsR0

oo ; X1

d0 //

d1
//
X0s0oo
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We shall denote by EquE the category of internal equivalence relations in E and by
( )0 : EquE → E the forgetful functor associating with any equivalence relation R on X
its ground object X. It is a fibration whose cartesian maps are produced by the inverse
images of equivalence relations. Any of its fibers is a preorder. As usual, we shall denote
by R[h] the kernel equivalence relation of a map h. Let us recall from [10] the following:

1.3. Proposition. Let E be a finitely complete category. The following conditions are
equivalent:
1) any pair of equivalence relations (R, S) has a supremum R

∨
S in EquE

2) above any split epimorphism (f, s) : X � Y in E there is a cocartesian map (and hence
a regular epimorphism) (f, f̂) : W → T in EquE whichever is its domain W above X.

Under these conditions, the map (f, f̂) : R→ T is cocartesian above (f, s) if and only
if f−1(T ) = R[f ] ∨R, while R ∨ S is obtained in the following way: first take the inverse
image (dR0 )−1(S), then take the cocartesian map above the split epimorphism (dR1 , s

R
0 )

having this domain; the codomain of this cocartesian map gives you R ∨ S:

S
dS0

��

dS1

��

(dR0 )−1(S)

δ̄R0 ��
δ̄R1��

ďR0

00

d̄1 // R ∨ S
d0
�� ��

R
dR1 //

OO

X

OO

EE

sR0

oo

From now on, we shall denote by f!(R) this cocartesian image T = R ∨ S of R along the
split epimorphism (f, s), and by fR! : R � f!(R) the induced cocartesian map in EquE.

1.4. Corollary. Given any category E and a morphism of equivalence relations:

R
dR0 �� dR1��

f̂ // // T
dT0 �� dT1��

X
f // //

OO

Y

OO

s
oo

where f is a split epimorphism in E and f̂ an extremal epimorphism in E, then it is a
regular epimorphism in EquE and we necessarily have f−1(T ) = R[f ] ∨R.

Recall now that a Mal’tsev category is a finitely complete category in which any
reflexive relation is an equivalence relation [14] and [15].

1.5. Proposition. Suppose E is a Mal’tsev category with suprema of pairs of equivalence
relations. Then a map (f, f̂) in EquE is cocartesian above the split epimorphism (f, s) if
and only if the map f̂ is an extremal epimorphism in E.
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Proof. Consider such a cocartesian map in EquE, with a factorization of f̂ through a
monomorphism m in E:

U ''
m

''

�� ��

R
dR0 �� dR1��

φ
88

f̂

// T
dT0 �� dT1��

X
f

// //

OO

Y

XX

Y

OO

Since f is a split epimorphism and m a monomorphism, the commutative upward square
with maps (sR0 , s

T
0 ) produces a factorization of sT0 through U ; this gives U a structure

of reflexive relation on Y . The Mal’tsev condition makes it an equivalence relation.
Since (f, f̂) is cocartesian in EquE, the monomorphism m of equivalence relations is an
isomorphism.

1.6. Stability under slices and coslices. Suppose that E has suprema of pairs of
equivalence relations. Then any slice category E/Y or coslice category Y/E have them.

Proof. Given any object h : W → Y in E/Y , an equivalence relation R on W lies in
E/Y if and only if R ⊂ R[h]. So, when R and S are in E/Y , we get R ∨ S ⊂ R[h] and
R ∨ S is in E/Y .

Given any object h : W → Y in W/E, any equivalence relation R on Y lies in W/E
since its domain in W/E is necessarily sR0 .h.

1.7. Categorical modularity. The existence of suprema of pairs of equivalence re-
lations being guaranteed, we can investigate the validity of the modular formula in full
generality. Again from [10], recall:

1.8. Proposition. Let E be a category with suprema of pairs of equivalence relations.
The following conditions are equivalent:
1) the modular formula holds
2) the cocartesian maps in EquE above split epimorphisms in E are stable under pullbacks
along maps in the fibres of the functor ( )0.

A category satisfying all the conditions of the previous proposition is said to be cc-
modular (i.e. categorically congruence modular).

1.9. Proposition. Let E be a Mal’tsev category with suprema of pairs of equivalence re-
lations. It is cc-modular as soon as extremal epimorphisms in E are stable under pullbacks
along monomorphisms.

Proof. Under this assumption and according to Proposition 1.5, the cocartesian mor-
phisms in EquE above split epimorphisms in E are clearly stable under pullbacks along
maps in the fibers of ( )0.
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Whence the immediate:

1.10. Corollary. Any regular Mal’tsev category is cc-modular.

This result is well-known from the introduction of regular Mal’tsev categories in [14],
but, here, we get to it only with purely categorical proofs and without any use of the
regular embedding theorem [1].

1.11. Categorical modularity and shifting property. In [17], Gumm charac-
terized the congruence modular varieties by the validity of the Shifting Lemma: given any
triple (R, S, T ) of equivalence relations such that S ∩ T ⊂ R the following left hand side
situation implies the right hand side one:

x
S //

R

--
T ��

y
T��

y
R

qqx′
S
// y′ y′

The categorical description of this shifting property was given in [12] and is the following
one: given any triple (R, S, T ) of equivalence relations on X such that S ∩ T ⊂ R ⊂ T ,
the following morphism of equivalence relations is fibrant, i.e. any commutative square is
a pullback:

S�R
��

S�i

��

δR0

//

δR1 //
R
��

i

��

oo

S�T
δT0

//

δT1 //
Too

A category satisfying the shifting property for any such triple of equivalence relations
was called a Gumm category in [5]. If T is any algebraic theory in the sense of Universal
algebra, let us denote by V(T) the corresponding variety of T-algebras and by T(E) the
category of internal T-algebras in the finitely complete category E. There is a natural
dotted factorization of the Yoneda embedding Y making the following square a pullback
and the functor YE a left exact conservative fully faithful functor (which consequently
reflects pullbacks).

T(E)
YE //

UT

��

F(Eop,V(T))

F(Eop,U)

��
E

Y
// F(Eop, Set)

By this factorization YE, the Gumm characterization guarantees that the category T(E)
is a Gumm category as soon as V(T) is a congruence modular variety. In the categorical
context, we only get the implication in one direction, see Proposition 2.11 in [10]:
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1.12. Proposition. Any cc-modular category E is a Gumm category.

The converse is not true in general: indeed, any category T(E) of the previous kind is
not necessarily provided with suprema of pairs of equivalence relations, and therefore is
not in a position to satisfy the modular formula.

1.13. Internal groupoids. Let us briefly recall our presentation of internal groupoids
which comes from the observation that the category GrdE of internal groupoids in E is
monadic above the category PtE of split epimorphisms in E [2]. An internal groupoid X1

is a internal reflexive graph, as on the right hand side:

R[d0]

dR0 //

dR1

//

d2

IIX1

sR0
oo d0 //

d1
//
X0s0oo

such that R[d0] is endowed with a map d2, satisfying all the simplicial identities up to level
3, when the diagram is completed by R[dR0 ]. Then necessarily all the commutative squares
of the induced 3-truncated simplicial object diagram are pullbacks. In set-theoretical
terms, d2 is defined by d2(φ, ψ) = ψ.φ−1 for any pair (φ, ψ) of morphisms in X1 having
same domain.

2. Categorical congruence distributivity

In a similar way, let us introduce the following:

2.1. Definition. Let E be a finitely complete category. We shall say it is cc-distributive
(”categorically congruence distributive”) when it has suprema of pairs of equivalence re-
lations and when the equivalent conditions of Section 1.1 holds for any triple (R, S, T ) of
equivalence relations. We shall say that it is weakly cc-distributive when only the following
implication holds:

(T ∧R = ∆X and T ∧ S = ∆X)⇒ T ∧ (R ∨ S) = ∆X

where ∆X denotes the discrete equivalence relation.

The following categories are examples of cc-distributive categories: BoRg of boolean
rings, V NRg of von Neumann regular rings, Heyt of Heyting Algebras, the dual Eop
of any topos, and in particular the dual Setop of the category of sets. According to the
equivalent conditions of Section 1.1, any cc-distributive category is weakly cc-distributive.

2.2. Weakly cc-distributive categories. The pertinence of the second definition
is based upon the three following strong results:

2.3. Theorem. In a weakly cc-distributive category, any internal groupoid is an equiva-
lence relation.



444 DOMINIQUE BOURN

Proof. Let us show first that any internal group structure in E/Y on the object f : X →
Y is trivial, namely such that f is an isomorphism. Such a structure is actually a special
case of groupoid structure:

X

d0 //

d1
//
Ys0oo

with d0 = f = d1; we shall set s0 = s for the splitting. Accordingly the following square
is a pullback of split epimorphisms:

R[f ]

df0 ��

d2 //
X

f
��

s1
oo

X

sf0

OO

df1 //
Y

s

OO

s
oo

where d2 is the division map of this group. Consequently the pair (d2, d
f
0) is jointly monic

and we get R[d2] ∧ R[df0 ] = ∆(R[f ]) (1). We get R[d2] ∧ R[df1 ] = ∆(R[f ]) (2) by duality.
Finally the following commutative square:

R[f ]

df0 ��

df1 // X

f
��

X

sf0

OO

f
// Y

s

OO

gives us R[df0 ]∨R[df1 ] = R[f.df0 ] by Corollary 2.2 in [10]; so, since we have f.d2 = f.df0 , we
get R[d2]∧(R[df0 ]∨R[df1 ]) = R[d2] (3), the map d2 being a binary operation in E/Y . By (1),
(2) and (3), the weak cc-distributivity makes R(d2) = ∆(R[f ]), and d2 a monomorphism;

being split it is an isomorphism. Now the first pullback above makes df1 an isomorphism.
Accordingly the split epimorphism f is a monomorphism as well, and consequently an
isomorphism.

Now, let us consider any internal groupoid structure:

X1

d0 //

d1
//
X0s0oo

and the kernel equivalence relation of the morphism (d0, d1):

R[(d0, d1)]

dR0 //

dR1

//
X1sR0

oo (d0,d1) // X0 ×X0

We are going to show that there is an internal group structure on the object dR0 in E/X1;
this will prove that (d0, d1) : X1 → X0 ×X0 is a monomorphism, and consequently that
the groupoid in question is actually an equivalence relation.
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In set-theoretic terms, R[(d0, d1)] is the set of parallel pairs of the groupoid. Given any
pair (φ, χ), (φ, ψ) in R[(d0, d1)] with same image by dR0 , the multiplication of the group
structure is given by:

(φ, χ) ∗ (φ, ψ) = (φ, ψφ−1χ)

Clearly its unit element is (φ, φ), while the inverse of (φ, ψ) is (φ, φψ−1φ). Notice that
the definition of the unit map is precisely sR0 .

The two other results are dealing with the Mal’tsev context:

2.4. Proposition. Given any regular Mal’tsev category E, the following conditions are
equivalent:
1) E is weakly cc-distributive
2) any unital fibre PtYE has no non-trivial abelian object
3) any internal groupoid in E is an equivalence relation
4) given any regular epimorphism f : X � Y , and any pair (R, S) of equivalence relations
on X, we get:

(R[f ] ∧R = ∆X and R[f ] ∧ S = ∆X)⇒ f(R ∧ S) = f(R) ∧ f(S)

Proof. It is just Theorem 3.9 in [3], enriched with Theorem 3.1 and Theorem 3.4 in [6].

2.5. Proposition. Given any exact Mal’tsev category E, the following conditions are
equivalent:
1) E is cc-distributive
2) E is weakly cc-distributive.

Proof. It is Theorem 3.2 in [3], according to the previous proposition.

This last equivalence is valid in particular for any Mal’tsev variety V.

2.6. Characterization of the cc-distributive categories. The cc-distributivity
can be very easily characterized by the following:

2.7. Theorem. Given any category E with suprema of pairs of equivalence relations, the
following conditions are equivalent:
1) E is cc-distributive
2) given any split epimorphism (f, s) : X � Y in E, the cocartesian images above it
preserves binary infima, namely: given any pair (S, T ) of equivalence relations on X, we
get:

f!(S ∧ T ) = f!(S) ∧ f!(T )

Proof. On the one hand, we noticed that R ∨ S = (dR1 )!((d
R
0 )−1(S)). So that condition

2) applies to the split epimorphism (dR1 , s
R
0 ) and S∧T produces the distributive condition

since the inverse image (dR0 )−1 preserves intersections as well.
Conversely, when f is split, the inverse image f−1 : EquYE → EquXE between the

fibers is monomorphic; so that f!(S ∧T ) = f!(S)∧ f!(T ) is equivalent to f−1(f!(S ∧T )) =
f−1(f!(S)∧ f!(T )) = f−1(f!(S))∧ f−1(f!(T )) which is just: R[f ]∨ (S ∧T ) = (R[f ]∨S)∧
(R[f ] ∨ T ).
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2.8. Main consequences of the cc-distributivity. By Theorem 2.3, the first con-
sequence is that in any cc-distributive category E the only groupoids are the equivalence
relations.

On the other hand, we recalled that the distributive formula implies the modular one.
From that we immediately get a second important consequence:

2.9. Proposition. Suppose E is cc-distributive. Then it is cc-modular, and consequently
the cocartesian maps in EquE above split epimorphisms in E are stable under pullbacks
along maps in the fibers of the fibration ( )0.

Proof. It is a straightforward consequence of Proposition 1.8.

3. Partial cc-modularity and cc-distributivity

In this section, we shall investigate the situation where there are only cocartesian maps
above a certain class Σ of split epimorphisms.

3.1. Σ-modularity.

3.2. Definition. Given any class Σ of split epimorphisms in E, a graph X1 on an object
X will be said to be a Σ-graph when it is reflexive

X1
d1
//

d0 //
Xs0oo

and such that the split epimorphism (d0, s0) belongs to the class Σ. Similar definitions
can be given for the notions of Σ-relations, Σ-categories and Σ-groupoids.

A morphism f : X → Y is called Σ-special when its kernel relation R[f ] is a Σ-
equivalence relation. An object X is said to be Σ-special when the terminal map τX :
X → 1 is Σ-special.

3.3. Proposition. Suppose E is endowed with a class Σ of split epimorphisms and is
such that, given any Σ-equivalence relation R, there is a cocartesian map in EquE above
the split epimorphism (dR1 , s

R
0 ). Then R ∨ S does exist for any pair (R, S) of equivalence

relations, provided that R is a Σ-equivalence relation. Moreover the modular formula holds
for R:

(R ∨ S) ∧ T ) = R ∨ (S ∧ T ); provided that : R ⊂ T

as soon as these cocartesian maps are stable under pullbacks along maps in the fibers of
( )0.

Proof. The first point is a consequence of Proposition 2.4 in [10], while the second one
is a consequence of Proposition 2.7.



A NOTE ON THE CATEGORICAL CONGRUENCE DISTRIBUTIVITY 447

We shall need the following specifications where ΣE denotes the full subcategory of
PtE whose objects are the split epimorphisms in Σ:

3.4. Definition. The class Σ is said to be:
1) fibrational when Σ is stable under pullbacks and contains the isomorphisms;
2) point-congruous when, in addition, ΣE is stable under finite limits in PtE.

Suppose the class Σ is fibrational. Then any Σ-special split epimorphism is in Σ. For
that consider the following pullback:

R[f ]

df0 ��

X

f
��

s1oo

X

sf0

OO

Y

s

OO

s
oo

The converse is not true in general. However any Σ-groupoid X1 is such that (d0, s0) is
actually a Σ-special split epimorphism. For that consider the following diagram which is
a pullback of split epimorphisms:

R[dR0 ]

dR0

��

d2 // X1

d0

��

sR1

oo

X1
d1 //

sR0

OO

X0

s0

OO

s0
oo

3.5. Theorem. Suppose E is endowed with a fibrational class Σ of split epimorphisms.
The following conditions are equivalent:
1) any pair (R, S) of equivalence relations admits a supremum in EquE, provided that R
is a Σ-equivalence relation;
2) above any Σ-special split epimorphism (f, s) : X � Y in E, there is a cocartesian map
(and hence a regular epimorphism) (f, f̂) : W → T in EquE above f whichever is its
domain W above X.

The modular formula holds for any Σ-equivalence relation R if and only if these co-
cartesian maps are stable under pullbacks along maps in the fibers of the fibration ( )0.

Proof. Suppose 1) and consider any Σ-special split epimorphism (f, s) : X � Y in E.
Accordingly R[f ] is a Σ-equivalence relation. Given any equivalence relation S on X,
the suprema R[f ] ∨ S does exist according to the previous proposition and the following
construction produces the desired cocartesian map above f :

S // //

dS0
��
��

f̂

��
R[f ]

∨
S //

d0

��

d1

��

V

dV0

��

dV1

��

oo

X
f //

OO^^

Y

OO

s
oo
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where we have f−1(V ) = R[f ]
∨
S or equivalently V = s−1(R[f ]

∨
S).

Conversely suppose 2). Starting with a Σ-equivalence relation R, we noticed that
(dR1 , s

R
0 ) is actually a Σ-special split epimorphism. So, there are cocartesian maps above

it, and we get R ∨ S for any equivalence relation S by the construction described below
Proposition 1.3.

The last point of the theorem is given by the proof of Proposition 2.7 in [10], since
R[f ] is a Σ-equivalence relation and consequently the modular formula holds for R[f ].

3.6. Definition. When all the conditions (including the last one) of this theorem hold,
we shall say that E is Σ-modular.

Let us recall from [9] that a Σ-Mal’tsev category is a category E in which any square
of split epimorphisms:

X ′
ḡ
//

f ′

��

X
t̄oo

f
��

Y ′
g
//

s′

OO

Y
too

s

OO

is such that the factorization φ towards the pullback of f along g is an extremal epimor-
phism as soon as the split epimorphism (f, s) is in Σ (an extremal epimorphism being a
morphism φ : U → V such that any decomposition φ = mψ with a monomorphic m makes
m an isomorphism). When E is regular, it is equivalent to saying that the rightward and
downward square is a regular pushout.

A category E is Σ-protomodular category [8] when any pullback of split epimorphisms:

X ′
ḡ //

f ′

��

X

f

��Y ′ g
//

s′

OO

s

OO

makes the pair (s, ḡ) jointly strongly epic as soon as the split epimorphism (f, s) is in Σ.
Any Σ-protomodular category is a Σ-Mal’tsev one.

3.7. Proposition. Any regular Σ-Mal’tsev category E with a fibrational class Σ of split
epimorphisms is Σ-modular.

Proof. In this case, the direct image along a Σ-special regular map f of any equivalence
relation is an equivalence relation as well [9]. So this regular direct image coincides with
the cocartesian image and produces the cocartesian map above f in EquE. Then:
1) there are cocartesian maps above Σ-special split epimorphisms and, according to the
previous theorem, there are suprema of pairs (R, S), provided that R is a Σ-equivalence
relation.
2) this same observation on direct images means that, when f is a Σ-special regular
epimorphism, the cocartesian map above it is a level wise regular epimorphisms in E. As
such, the ground category E being regular, the cocartesian maps in EquE above Σ-special
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regular epimorphisms in E are stable under pullbacks along any map in EquE. So, in
particular, E is Σ-modular.

Accordingly the following categories are examples of Σ-modular categories.

3.8. Example. 1) The category Mon of monoids and the category SRg of semi-rings are
Σ-protomodular categories (and thus Σ-Mal’tsev categories) with respect to the class of
Schreier split epimorphisms [11], namely those split epimorphisms (f, s) which are such
that, for every y ∈ Y , the map µY : Kerf → f−1(y) defined by µY (k) = k.s(y) (resp. by
µY (k) = k + s(y)) is bijective.
2) More generally consider any Jónsson-Tarski variety V, i.e. a variety whose correspond-
ing theory has a unique constant 0 and a binary term + satisfying x + 0 = x = 0 + x.
The same definition of Schreier split epimorphisms as above makes sense in V. Then V is
Σ-protomodular for this class Σ of split epimorphisms, see [21].
3) A quandle is a set X endowed with a binary operation . : X ×X → X which is idem-
potent and such that for any object x the translation − . x : X → X is an automorphism
with respect to the binary operation .; its inverse is denoted by −.−1x. A homomorphism
of quandles is an application f : (X, .) → (Y, .) which respects the binary operations.
This defines the variety Qnd of quandles. The notion was independently introduced in
[18] and [22] in strong relationship with Knot Theory.

Any group G produces a quandle with the binary operation x . y = yxy−1. A set
endowed with the binary operation given by the first projection is a quandle, so that Set
appears as subvariety of Qnd.

In [7] a split epimorphism (f, s) : X � Y in Qnd was called an acupuncturing split
epimorphism when, for any element y ∈ Y , the application s(y) / − : f−1(y) → f−1(y)
is bijective. The class Σ of acupuncturing split epimorphisms was shown to be point-
congruous and the category Qnd to be a Σ-Mal’tsev category (but not a Σ-protomodular
one).
4) Define a prequandle as a set X endowed with an idempotent binary operation . such
that the application − . x is bijective for any object x ∈ X (the inverse operation being
again denoted by −.−1x), and denote PrQnd the associated variety. The same definition
of acupuncturing split epimorphisms obviously holds in PrQnd. It is clear that we have
Qnd ⊂ PrQnd. Actually the same proofs as in [7] show that this class Σ of acupunctur-
ing split epimorphisms is point-congruous and that the category PrQnd is a Σ-Mal’tsev
category, since these proofs do not use the ”automorphism axiom”.

3.9. Σ-modularity and Σ-shifting property. Mimicking what was done in [10] and
recalled in Proposition 1.12, we are going to show that the Σ-modularity implies some
kind of shifting property.

3.10. Definition. Let Σ be a fibrational class of split epimorphisms in E. We shall say
that E is a Σ-Gumm category when, given any triple (R, S, T ) of equivalence relations on
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X such that S ∩ T ⊂ R ⊂ T , the following morphism of equivalence relations is fibrant:

S�R
��

S�i

��

δR0

//

δR1 //
R
��

i

��

oo

S�T
δT0

//

δT1 //
Too

provided that R is a Σ-equivalence relation.

3.11. Proposition. Let Σ be a fibrational class of split epimorphisms in E. Any Σ-
modular category E is a Σ-Gumm category.

Proof. Suppose that E is Σ-modular, that R is a Σ-equivalence relation and that we
have S ∩ T ⊂ R ⊂ T ; then consider the following commutative diagram:

S�R
δR0

//

δR1 //

((
��

��

R
��

��

##

oo

S�(R
∨
S)

��

��

//
//
R
∨
S
��

i
∨
S

��

oo

S�T
(( δT0

//

δT1 //
T

$$

oo

S�∇X //
// ∇X

oo

The right hand side vertical square is a pullback by the Σ-modular law, and so is the left
hand side vertical one since inverse image preserves intersections (remind that S�R =
(dS0 )−1(R) ∩ (dS1 )−1(R) in the fiber EquSE). The front morphism of equivalence relations
is fibrant since both R

∨
S and ∇X contain S, see Lemma 1.7 in [10]. Accordingly the

back morphism of equivalence relations is fibrant as well.

3.12. Σ-distributivity. We are now able to specify the following:

3.13. Proposition. Suppose E is endowed with a fibrational class Σ of split epimor-
phisms and satisfies any of the equivalent conditions 1) or 2) of the previous theorem.
Then the following conditions are equivalent:
1) the following distributive formula holds:

R ∨ (S ∧ T ) = (R ∨ S) ∧ (R ∨ T )

provided that R is Σ-equivalence relation;
2) when (f, s) is a Σ-special split epimorphism, the cocartesian images above it preserve
binary infima.
Such a category E is necessarily Σ-modular.
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Proof. The proofs are exactly the same as in Theorem 2.7, once carefully checked that
all the used ingredients do exist in the present partial context.

The last point can be checked in the same way. Suppose R is any Σ-equivalence
relation satisfying R ⊂ T . Then we easily get:

R ∨ (S ∧ T ) = (R ∨ S) ∧ (R ∨ T ) = (R ∨ S) ∧ T

3.14. Definition. A category E satisfying all the conditions of the previous theorem will
be called Σ-distributive.

3.15. Proposition. The category BoSRg of boolean semi-rings is Σ-distributive with
respect to the (point-congruous) class Σ of Schreier split epimorphisms.

Proof. Recall that (f, s) : X � Y is a Schreier split epimorphism when for any x ∈ X,
there is a unique k ∈ Kerf such that x = sf(x) + k. So, a map g : X → Z is Σ-special if
and only if Kerg is a (boolean) ring. The category BoSRg being Σ-Mal’tsev according to
Proposition 3.7, the direct image of any equivalence relation along a surjective Σ-special
morphism g is actually an equivalence relation. So, let (T, S) be a pair on equivalence
relation on X. We have to show that f(T )∧ f(S) ⊂ f(T ∧ S). Suppose y(f(T )∧ f(S))y′

in Y , so that there is a quadruple (x, x′, t, t′) in X such that xSx′, tT t′, f(x) = f(t) = y
and f(x′) = f(t′) = y′. Accordingly there is a k ∈ Kerf such that t = k + x; so we get
(x+ k)S(x′ + k), namely tS(x′ + k).

Let us set x” = x′ + k. We get tSx” and tT t′ with f(x”) = y′ = f(t′). Now there
is another α ∈ Kerf such that t′ = x” + α. Consequently, on the one hand, we get
(t+αt+αt)S(x” +αt+αx′′), namely tS(x” +αt+αx”), since αt+αt = 0 in the boolean
ring Kerf . Moreover we get f(x” + αt+ αx′′) = f(x”) = y′.

On the other hand we get (t+ αt+ αt)T (x” + α + α(x” + α) + αt), namely tT (x” +
αx” + αt). In this way, we get y(f(T ∧ S))y′.

3.16. Proposition. Let V be any Mal’tsev variety with a fixed Mal’tsev term p (i.e.
satisfying p(x, y, y) = x = p(y, y, x)) and V′ be any Birkhoff subvariety in which this
same p satisfies the Pixley identity p(x, y, x) = x [24]. Let I : V → V′ be the induced
reflection and Σ the class of I-cartesian split epimorphisms in V. Then the class Σ is
point-congruous and V is Σ-distributive.

Proof. Since V is a Mal’tsev variety, the cocartesian maps above regular epimorphisms
(=surjections) in EquV are levelwise regular epimorphisms in V. A map g in V is I-
cartesian when the following square is a pullback:

X ′

g

��

ηX′ // I(X ′)

I(g)

��
X ηX

// I(X)
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Let us show that the class of I-cartesian split epimorphisms is fibrational.
First recall that V′ being a Birkhoff subcategory, any projection ηX : X � I(X) is

a regular epimorphism. Then consider the following diagram where the left hand side
square is a pullback and (f, s) is I-cartesian:

X ′
h //

f ′

����

X

f

����

ηX // // I(X)

I(f)

����
Y ′

k
//

s′

OO

Y

s

OO

ηY
// // I(Y )

I(s)

OO

Accordingly, the right hand side square is a pullback, so that the whole rectangle is a
pullback; now this rectangle is the following one as well:

X ′
ηX′ // //

f ′

����

I(X ′)

I(f ′)
����

I(h) // I(X)

I(f)

����
Y ′ ηY ′

// //

s′

OO

I(Y ′)

I(s′)

OO

I(k)
// I(Y )

I(s)

OO

Observe that the left hand square is a regular pushout since it is a levelwise regular
epimorphism of split epimorphisms in a Mal’tsev category. According to Lemma 1.1 in
[16], both squares are then pullbacks. So that (f ′, s′) is I-cartesian and the pullback in
question in D is preserved by I. The fact that the class Σ is point-congruous follows from
the following observation: a split epimorphism (f, s) is in Σ if and only if it is the pullback
of some map in V′, which is a straightforward consequence of the fact that any map in C
is I-cartesian and that the class Σ of I-cartesian split epimorphisms is fibrational.

Now let (T, S) be a pair of equivalence relations on the domain X of a I-cartesian split
epimorphism (f, s). Let us show that f(T )∧ f(S) ⊂ f(T ∧S). Suppose y(f(T )∧ f(S))y′

in Y , so that there is a quadruple (x, x′, t, t′) in X such that xSx′, tT t′, f(x) = f(t) = y
and f(x′) = f(t′) = y′. Let us consider α = p(t, p(t, x, x′), t′). We have tSp(t, x, x′),
whence αSt′. We have also f(p(t, x, x′)) = f(t′) = y′ and f(α) = f(t) = y.

We get also αTp(t′, p(t, x, x′), t′), with f(p(t′, p(t, x, x′), t′)) = p(y′, y′, y′) = y′. To
conclude, it remains to show that p(t′, p(t, x, x′), t′) = t′. We know that their images by
f are equal to y′. Since f is I-cartesian, its pullback definition implies now that we get
p(t′, p(t, x, x′), t′) = t′ if and only if their images by ηX are equal as well. But the codomain
of ηX is in V′ which satisfies the Pixley identity for p. This guarantees the equality of
these images.

So V happens to be, on the one hand, a cc-modular category since it is a regular
Mal’tsev one, which, on the other hand, appears to be Σ-distributive with respect to
some specific class of Σ-equivalence relations.

This situation is the source of many examples. Take for instance the variety V = Rg of
commutative rings with Mal’tsev term defined by p(x, y, z) = (x−y)(z−y)+x−y+z, and
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V′ = BoRg the subvariety of boolean rings where the previous term becomes p(x, y, z) =
x+ xy + yz + zx+ z, which satisfies the Pixley identity in BoRg.

Similarly, you can choose V as a variety of R-algebras for a given ring R, while V′ is
the subvariety of its idempotent R-algebras.

3.17. Σ-distributivity and Σ-groupoids. The equivalence between the two condi-
tions given at the beginning of Section 1.1 is broken if the first one is only valid when R
is supposed to be a Σ-equivalence relation. However we can get the following:

3.18. Proposition. Given any Σ-distributive category E, then we get:

T ∧ (R ∨ S) = (T ∧R) ∨ (T ∧ S)

provided that T ∧R and S are Σ-equivalence relations.

Proof. We get: (T ∧R)∨ (T ∧S) = ((T ∧R)∨T ))∧ ((T ∧R)∨S)) = T ∧ ((T ∧R)∨S))
since T ∧R is a Σ-equivalence relation. Moreover we get:
T ∧ ((T ∧ R) ∨ S)) = T ∧ ((T ∨ S) ∧ (R ∨ S)) = T ∧ (R ∨ S) since S is a Σ-equivalence
relation.

Whence the following:

3.19. Definition. Suppose Σ is a class of split epimorphisms and E is such that any
pair (R, S) of equivalence relations admits a supremum in EquE, provided that S is a
Σ-equivalence relation. We shall say that E is weakly Σ-distributive when the following
implication holds:

(T ∧R = ∆X and T ∧ S = ∆X)⇒ T ∧ (R ∨ S) = ∆X

provided that S is a Σ-equivalence relation.

The previous proposition shows that any Σ-distributive category E is a weakly Σ-
distributive one.

3.20. Proposition. Suppose that the class Σ is point-congruous and E is weakly Σ-
distributive. Then the only Σ-groupoids are the Σ-equivalence relations.

Proof. We shall re-read the proof of Theorem 2.3. As for the groups in E/Y , we need
that R[df0 ] is a Σ-equivalence relation, which means that f is Σ-special. This is the case
as soon as (f, s) is in Σ and is underlying a group structure. So, any group structure on
a split epimorphism (f, s) : X � Y in Σ is trivial.

Now starting with a groupoid X1, we need to show that R[(d0, d1)] is a Σ-equivalence
relation. For that consider the following commutative factorization diagram where the
right hand side square is a pullback:

X1
(d0,d1)//

s
X1
0 ��

d0
��

R[d0] // //

f.df0
��

X1 ×X1

d0×d0
��

X0

s0

OO

X0
//

sX0

//

sf0 .s0

OO

X0 ×X0

s0×s0

OO
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Since Σ is point-congruous, the right hand side vertical split epimorphism is Σ-special,
since so is (d0, s0); accordingly so is the middle one as well. The factorization (d0, d1) is
then a morphism in E/X0 between Σ-special maps. According to [9], it is Σ-special.

Whence the following:

3.21. Corollary. In any Σ-distributive category E, where Σ is point-congruous, the
only Σ-groupoids are the Σ-equivalence relations.

Accordingly, all the examples produced by the results following Section 3.12 satisfy
this property.
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