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INVOLUTIVE CATEGORIES, COLORED ∗-OPERADS AND
QUANTUM FIELD THEORY

MARCO BENINI, ALEXANDER SCHENKEL AND LUKAS WOIKE

Abstract. Involutive category theory provides a flexible framework to describe invo-
lutive structures on algebraic objects, such as anti-linear involutions on complex vector
spaces. Motivated by the prominent role of involutions in quantum (field) theory, we
develop the involutive analogs of colored operads and their algebras, named colored ∗-
operads and ∗-algebras. Central to the definition of colored ∗-operads is the involutive
monoidal category of symmetric sequences, which we obtain from a general product-
exponential 2-adjunction whose right adjoint forms involutive functor categories. For
∗-algebras over ∗-operads we obtain involutive analogs of the usual change of color
and operad adjunctions. As an application, we turn the colored operads for algebraic
quantum field theory into colored ∗-operads. The simplest instance is the associative
∗-operad, whose ∗-algebras are unital and associative ∗-algebras.

1. Introduction and summary

In ordinary category theory, an involution on an object c ∈ C of a category C is an
endomorphism i : c → c that squares to the identity, i.e. i2 = idc. Unfortunately,
this concept is too rigid to describe many examples of interest. For instance, given an
associative and unital ∗-algebra A over C, e.g. the algebra of observables of a quantum
system, the involution ∗ : A→ A on its underlying vector space is not an endomorphism
in the category of complex vector spaces, but rather a complex anti-linear map.

Involutive categories [BM09, Egg11, Jac12] were developed in order to introduce the
flexibility required to resolve this insufficiency. Their definition is a particular instance of
the “microcosm principle” of Baez and Dolan [BD98], which states that certain algebraic
structures can be defined in any category equipped with a categorified version of the same
structure. Hence, an involutive category is a category C equipped with an endofunctor J :
C→ C that squares to the identity endofunctor IdC, up to a given natural isomorphism
j : IdC → J2 which has to satisfy certain coherence conditions (cf. Definition 2.2). In an
involutive category (C, J, j), one can introduce a more flexible concept of involution on
an object c ∈ C, which is given by a C-morphism ∗ : c → Jc satisfying (J∗) ∗ = jc as
morphisms from c to J2c (cf. Definition 2.16). Such objects (homotopy fixed points, as
a matter of fact) are called self-conjugates in [Jac12], involutive objects in [Egg11] and
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∗-objects in [BM09]. We shall follow the latter terminology because it seems the most
natural one to us. If a category is equipped with its trivial involutive structure J = IdC

and j = idIdC
(cf. Example 2.3), then ∗-objects are just endomorphisms squaring to the

identity, i.e. the ordinary involutions mentioned above. This framework, however, becomes
much richer and flexible by allowing for non-trivial involutive structures: For example,
endowing the category of complex vector spaces VecC with the involutive structure given
by the endofunctor that assigns to a complex vector space V its complex conjugate vector
space V , the complex anti-linear map underlying a ∗-algebra may be regarded as a ∗-object
∗ : A→ A in this involutive category (cf. Examples 2.4 and 2.19).

The observables of a quantum system form a unital and associative ∗-algebra over C.
This shows the relevance of involutive categories for general quantum theory, quantum
field theory and also noncommutative geometry. Our main motivation for this paper
stems precisely from these areas and more specifically from our recent operadic approach
to algebraic quantum field theory [BSW17]. There the axioms of algebraic quantum field
theory [HK64, BFV03] are encoded in a colored operad and generalized to richer target
categories, such as chain complexes and other symmetric monoidal categories, which are
central in modern approaches to quantum gauge theories [CG17, BSS15, BS17, BSW17,
BSW18, Yau18]. For their physical interpretation, however, it is essential that quantum
systems such as quantum field theories come equipped with involutions. These enable
us to perform the GNS construction and recover the usual probabilistic interpretation
of quantum theory. We refer to [Jac12] for a generalization of the GNS construction to
involutive symmetric monoidal categories.

The purpose of this paper is to combine the theory of colored operads and that of
involutive categories, resulting in what we shall call colored ∗-operads. Despite of our
quite concrete motivation, we believe that working out the theory of colored ∗-operads
in full generality provides an interesting and valuable addition to the largely unexplored
field of involutive category theory. On the one hand, our constructions naturally lead
to interesting new structures such as involutive functor categories, which have not been
discussed in the literature. On the other hand, our study of involutive structures on the
category of symmetric sequences, which is a monoidal category that does not admit a
braiding, provides an interesting example of an involutive monoidal category in the sense
of [Jac12], but not in the sense of [BM09, Egg11], see Remark 4.8 for details. This shows
that Jacobs’ definition of involutive monoidal categories is the one suitable to develop the
theory of colored ∗-operads, consequently we shall use this one in our paper.

The outline of the paper is as follows: Sections 2 and 3 contain a brief review of
involutive categories and involutive (symmetric) monoidal categories following mostly
[Jac12]. We shall in particular emphasize and further develop the 2-categorical aspects
of this theory, including the 2-functorial behavior of the assignments of the categories of
∗-objects and ∗-monoids. For the sake of concreteness, we also describe the most relevant
constructions and definitions arising this way in fully explicit terms. Theorems 2.25 and
3.19 establish simple criteria that are useful to detect whether an involutive ((symmetric)
monoidal) category is isomorphic to one with a trivial involutive structure. In Section
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4 we show that the category of colored symmetric sequences, which underlies colored
operad theory, carries a canonical involutive monoidal structure in the sense of [Jac12],
but not in the sense of [BM09, Egg11]. The relevant involutive structure is obtained by
employing a general construction, namely exponentiation of involutive categories, which
results in involutive structures on functor categories. Colored ∗-operads with values in any
cocomplete involutive closed symmetric monoidal category (M, J, j) are defined in Section
5 as ∗-monoids in our involutive monoidal category of colored symmetric sequences. In
Proposition 5.4 we shall prove that the resulting category is isomorphic to the category
of ordinary colored operads with values in the category of ∗-objects in (M, J, j), which
provides an alternative point of view on colored ∗-operads. The possibility to switch
between these equivalent perspectives is useful for concrete applications and also to import
techniques from ordinary operad theory to the involutive setting. In Section 6 we introduce
and study the category of ∗-algebras over colored ∗-operads. In particular, we prove that
a change of colored ∗-operad induces an adjunction between the associated categories of ∗-
algebras, which generalizes the corresponding crucial and widely used result from ordinary
to involutive category theory. Finally, in Section 7 we endow the algebraic quantum
field theory operads constructed in [BSW17] with a canonical order-reversing structure
of colored ∗-operads and provide a characterization of the corresponding categories of ∗-
algebras. As a simple example, we obtain a ∗-operad structure on the associative operad
and show that its ∗-algebras behave like ∗-algebras over C in the sense that the involution
reverses the order of multiplication (a b)∗ = b∗ a∗. It is essential to emphasize that this
order-reversal is encoded in our ∗-operad structure. This is radically different from the
approach of [BM09, Egg11], whose definition of an involutive monoidal category prescribes
that the endofunctor J reverses the monoidal structure up to natural isomorphism, thus
recovering unital and associative ∗-algebras over C directly as ∗-monoids in VecC.

Notations: We denote categories by boldface letters like C, D and E. Objects in
categories are indicated by c ∈ C and we write C(c, c′) for the set of morphisms from
c to c′ in C. Functors are denoted by capital letters like F : C → C′ or X : D → C,
and so are the identity functors IdC : C → C. Natural transformations are denoted by
Greek letters like ζ : F → G or α : X → Y . Given functors K : D′ → D, X : D → C
and J : C → C′, we denote their composition simply by juxtaposition JXK : D′ → C′.
Given also a natural transformation α : X → Y of functors X, Y : D→ C, we denote by

JαK : JXK −→ JY K

the whiskering of J , α and K. Explicitly, JαK is the natural transformation with com-
ponents

(JαK)d′ = JαKd′ : JXKd′ −→ JY Kd′ ,

for all d′ ∈ D′. For β : Y → Z another natural transformation, one easily confirms that

(JβK) (JαK) = J
(
βα
)
K : JXK −→ JZK ,
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where (vertical) composition of natural transformations is also denoted by juxtaposition.
We shall need some basic elements of (strict) 2-category theory, for which we refer to
[KS74].

2. Involutive categories

This section contains a brief review of involutive categories. We shall mostly follow the
definitions and conventions of Jacobs [Jac12] and refer to this paper for more details and
some of the proofs. We strongly emphasize and also develop further the 2-categorical
aspects of involutive category theory established in [Jac12], which will be relevant for
the development of our present paper. When it comes to notations and terminology, we
sometimes prefer the work of Beggs and Majid [BM09] and the one of Egger [Egg11].

2.1. Basic definitions and properties.

2.2. Definition. An involutive category is a triple (C, J, j) consisting of a category C,
an endofunctor J : C→ C and a natural isomorphism j : IdC → J2 satisfying

jJ = Jj : J −→ J3 .

2.3. Example. For any category C, the triple (C, IdC, idIdC
) defines an involutive cate-

gory. We call this the trivial involutive category over C.

2.4. Example. Let VecC be the category of complex vector spaces. Consider the endo-
functor (−) : VecC → VecC that assigns to any V ∈ VecC its complex conjugate vector
space V ∈ VecC and to any C-linear map f : V → W the canonically induced C-linear

map f : V → W . Notice that (−) = IdVecC , hence (VecC, (−), idIdVecC
) is an involutive

category.

2.5. Example. Let C be any non-empty set and ΣC the associated groupoid of C-profiles.
The objects of ΣC are finite sequences c = (c1, . . . , cn) of elements in C, including also
the empty sequence ∅ ∈ ΣC. We denote by |c| = n the length of the sequence. The
morphisms of ΣC are right permutations σ : c → cσ := (cσ(1), . . . , cσ(n)), with σ ∈ Σ|c| in
the symmetric group on |c| letters. We define an endofunctor Rev : ΣC → ΣC as follows:
To an object c = (c1, . . . , cn) ∈ ΣC it assigns the reversed sequence

Rev(c) := c ρ|c| := (cn, . . . , c1) ,

where ρ|c| ∈ Σ|c| denotes the order-reversal permutation. To a ΣC-morphism σ : c→ cσ it
assigns the right permutation

Rev(σ) := ρ|c| σ ρ|c| : Rev(c) −→ Rev(cσ) ,

where we also used that |cσ| = |c|. Notice that Rev2 = IdΣC
, hence (ΣC,Rev, idIdΣC

) is an
involutive category.

The following very useful result appears in [Jac12, Lemma 1].
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2.6. Lemma. For every involutive category (C, J, j), the endofunctor J : C→ C is self-
adjoint, i.e. J a J . As a consequence, J preserves all limits and colimits that exist in
C.

2.7. Definition. An involutive functor (F, ν) : (C, J, j)→ (C′, J ′, j′) consists of a func-
tor F : C→ C′ and a natural transformation ν : FJ → J ′F satisfying

F

Fj
��

F

j′F
��

FJ2
νJ
// J ′FJ

J ′ν
// J ′2F

(1)

An involutive natural transformation ζ : (F, ν) → (G,χ) between involutive functors
(F, ν), (G,χ) : (C, J, j)→ (C′, J ′, j′) is a natural transformation ζ : F → G satisfying

FJ

ν

��

ζJ
// GJ

χ

��

J ′F
J ′ζ

// J ′G

2.8. Proposition. Involutive categories, involutive functors and involutive natural trans-
formations form a 2-category ICat.

2.9. Remark. Let us describe the 2-category structure on ICat explicitly.

(i) For any involutive category (C, J, j), the identity involutive functor is given by
Id(C,J,j) := (IdC, idJ) : (C, J, j)→ (C, J, j).

(ii) For two involutive functors (F, ν) : (C, J, j)→ (C′, J ′, j′) and (F ′, ν ′) : (C′, J ′, j′)→
(C′′, J ′′, j′′), their composition is given by

(F ′, ν ′) (F, ν) :=
(
F ′F, (ν ′F ) (F ′ν)

)
: (C, J, j) −→ (C′′, J ′′, j′′) .

(iii) Vertical/horizontal composition of involutive natural transformations is given by
vertical/horizontal composition of their underlying natural transformations. (It is
easy to verify that the latter compositions define involutive natural transformations.)

The following technical lemma is proven in [Jac12, Lemma 2].

2.10. Lemma. For every involutive functor (F, ν) : (C, J, j) → (C′, J ′, j′), the natural
transformation ν : FJ → J ′F is a natural isomorphism.

As in any 2-category, there exists the concept of adjunctions in the 2-category ICat.
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2.11. Definition. An involutive adjunction

(L, λ) : (C, J, j) // (D, K, k) : (R, ρ)oo

consists of two involutive functors (L, λ) : (C, J, j) → (D, K, k) and (R, ρ) : (D, K, k) →
(C, J, j) together with two involutive natural transformations η : Id(C,J,j) → (R, ρ) (L, λ)
(called unit) and ε : (L, λ) (R, ρ) → Id(D,K,k) (called counit) that satisfy the triangle
identities

(R, ρ)

id(R,ρ)
))

η (R,ρ)
// (R, ρ) (L, λ) (R, ρ)

(R,ρ) ε

��

(R, ρ)

(L, λ)

id(L,λ)
))

(L,λ) η
// (L, λ) (R, ρ) (L, λ)

ε (L,λ)

��

(L, λ)

We also denote involutive adjunctions simply by (L, λ) a (R, ρ).

2.12. Remark. Applying the forgetful 2-functor ICat→ Cat, every involutive adjunc-
tion (L, λ) a (R, ρ) defines an ordinary adjunction L a R in the 2-category of categories
Cat. Notice that an involutive adjunction is the same thing as an ordinary adjunction
L a R (between categories equipped with an involutive structure) whose functors L and
R are equipped with involutive structures that are compatible with the unit and counit in
the sense that the latter become of involutive natural transformations. This alternative
point of view will be useful in Corollary 4.9 and Theorem 6.6 below, where we make use
of the construction in the following proposition.

2.13. Proposition. Let (R, ρ) : (D, K, k)→ (C, J, j) be an involutive functor and sup-
pose that L : C → D is a left adjoint to the functor R : D → C. Define a natural
transformation λ by

LJ

LJη

��

λ // KL

LJRL
Lρ−1L

// LRKL

εKL

OO

where η : IdC → RL and ε : LR → IdD are the unit and counit of the adjunction L a R.
Then (L, λ) a (R, ρ) is an involutive adjunction.

Proof. The above diagram defines a natural transformation λ because ρ is a natural
isomorphism, cf. Lemma 2.10. A slightly lengthy diagram chase shows that (L, λ) :
(C, J, j) → (D, K, k) is an involutive functor. Furthermore, by the definition of λ, the
natural transformations η and ε are involutive natural transformations.
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2.14. Remark. Even though we will not need it in the following, let us briefly mention
that the dual of Proposition 2.13 also holds true: Let (L, λ) : (C, J, j) → (D, K, k) be
an involutive functor and suppose that R : D → C is a right adjoint to the functor
L : C→ D. Then (L, λ) a (R, ρ) is an involutive adjunction for ρ defined by

JR

ηJR

��

ρ−1
// RK

RLJR
RλR

// RKLR

RKε

OO

where η : IdC → RL and ε : LR→ IdD are the unit and counit of the adjunction L a R.

2.15. ∗-objects.

2.16. Definition. A ∗-object in an involutive category (C, J, j) is a C-morphism ∗ : c→
Jc satisfying

c

jc
&&

∗ // Jc

J∗
��

J2c

A ∗-morphism f : (∗ : c→ Jc)→ (∗′ : c′ → Jc′) is a C-morphism f : c→ c′ satisfying

c

∗
��

f
// c′

∗′
��

Jc
Jf

// Jc′

We denote the category of ∗-objects in (C, J, j) by ∗-Obj(C, J, j).

2.17. Remark. For any ∗-object (∗ : c→ Jc) ∈ ∗-Obj(C, J, j), the C-morphism ∗ : c→
Jc is an isomorphism with inverse given by j−1

c J∗ : Jc→ c.

2.18. Example. Consider the trivial involutive category (C, IdC, idIdC
) from Example

2.3. A ∗-object consists of an object c ∈ C equipped with a C-endomorphism ∗ : c → c
satisfying ∗2 = idc, i.e. an object equipped with an involution.

2.19. Example. Consider the involutive category (VecC, (−), idIdVecC
) from Example 2.4.

A ∗-object consists of a complex vector space V equipped with a complex anti-linear map
∗ : V → V satisfying ∗2 = idV .
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2.20. Example. Consider the involutive category (ΣC,Rev, idIdΣC
) from Example 2.5. A

∗-object consists of a C-profile c = (c1, . . . , cn) equipped with a right permutation ∗ : c→
Rev(c) = c ρ|c| satisfying ∗ρ|c|∗ρ|c| = e ∈ Σ|c|, where e denotes the identity permutation. In
particular, any object c ∈ ΣC carries a canonical ∗-object structure given by ρ|c| : c→ c ρ|c|.

The assignment c 7→ (ρ|c| : c → c ρ|c|) defines a functor ρ : ΣC → ∗-Obj(ΣC,Rev, idIdΣC
)

that is a section of the forgetful functor U : ∗-Obj(ΣC,Rev, idIdΣC
)→ ΣC.

For any (C, J, j), there exists a forgetful functor U : ∗-Obj(C, J, j)→ C specified by
(∗ : c → Jc) 7→ c. If the category C has coproducts, we can define for any object c ∈ C
a morphism

F (c) :=
(
c t Jc ∼= Jc t c idtjc

// Jc t J2c ∼= J(c t Jc)
)

(2)

in C, where in the last step we used that J preserves coproducts because of Lemma 2.6.
One can easily check that (2) defines a ∗-object in (C, J, j), i.e. F (c) ∈ ∗-Obj(C, J, j).
Another direct computation shows

2.21. Proposition. Let (C, J, j) be an involutive category that admits coproducts. The
assignment c 7→ F (c) given by (2) naturally extends to a functor F : C→ ∗-Obj(C, J, j),
which is a left adjoint of the forgetful functor U : ∗-Obj(C, J, j)→ C.

2.22. Remark. [Jac12, Lemma 5] shows that ∗-Obj(C, J, j) inherits all limits and colim-
its that exist in C. These are preserved by the forgetful functor U : ∗-Obj(C, J, j)→ C.

As noted in [Jac12, Lemma 6], the assignment of the categories of ∗-objects extends
to a 2-functor

∗-Obj : ICat −→ Cat . (3)

Concretely, this 2-functor is given by the following assignment:

• an involutive category (C, J, j) is mapped to its category of ∗-objects ∗-Obj(C, J, j);

• an involutive functor (F, ν) : (C, J, j) → (C′, J ′, j′) is mapped to the functor
∗-Obj(F, ν) : ∗-Obj(C, J, j)→ ∗-Obj(C′, J ′, j′) that acts on objects as

∗-Obj(F, ν)
(
∗ : c→ Jc

)
:=

(
Fc

F∗ // FJc
νc // J ′Fc

)
and on morphisms as F ;

• an involutive natural transformation ζ : (F, ν) → (G,χ) is mapped to the natu-
ral transformation ∗-Obj(ζ) : ∗-Obj(F, ν) → ∗-Obj(G,χ) whose components are
∗-Obj(ζ)(∗:c→Jc) := ζc, for all (∗ : c→ Jc) ∈ ∗-Obj(C, J, j).

Recalling the trivial involutive categories from Example 2.3, we obtain another 2-functor

triv : Cat −→ ICat . (4)
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This 2-functor assigns to a category C the trivial involutive category (C, IdC, idIdC
), to a

functor F : C → C′ the involutive functor (F, idF ) : (C, IdC, idIdC
) → (C′, IdC′ , idIdC′

),
and to a natural transformation ζ : F → G the involutive natural transformation ζ :
(F, idF )→ (G, idG).

2.23. Theorem. The 2-functors (3) and (4) form a 2-adjunction

triv : Cat // ICat : ∗-Obj .oo (5)

The unit η : IdCat → ∗-Obj triv and counit ε : triv ∗-Obj → IdICat 2-natural transfor-
mations are stated explicitly in the proof below.

Proof. The component at C ∈ Cat of the 2-natural transformation η is the functor

ηC : C −→ ∗-Obj
(

triv(C)
)

that equips objects with their identity involution (cf. Example 2.18), i.e. c 7→ (idc : c→ c).
The component at (C, J, j) ∈ ICat of the 2-natural transformation ε is the involutive
functor

ε(C,J,j) = (U, ν) : triv
(
∗-Obj(C, J, j)

)
−→ (C, J, j) ,

where U : ∗-Obj(C, J, j)→ C is the forgetful functor (∗ : c→ Jc) 7→ c and its involutive
structure ν : U → JU is the natural transformation defined by the components ν(∗:c→Jc) =
∗ : c→ Jc, for all (∗ : c→ Jc) ∈ ∗-Obj(C, J, j). An elementary check shows that η and
ε are indeed 2-natural transformations that satisfy the triangle identities, hence (5) is a
2-adjunction with unit η and counit ε.

2.24. Remark. Notice that both Cat and ICat carry a Cartesian monoidal structure,
which is concretely given by the product categories C × D in Cat and the product
involutive categories (C, J, j) × (D, K, k) = (C × D, J × K, j × k) in ICat. Because
∗-Obj is a right adjoint functor, it follows that there are canonical isomorphisms

∗-Obj
(
(C, J, j)× (D, K, k)

) ∼= ∗-Obj(C, J, j)× ∗-Obj(D, K, k) ,

for all involutive categories (C, J, j) and (D, K, k).

We conclude this section with a useful result that allows us to detect involutive cate-
gories carrying a trivial involutive structure.

2.25. Theorem. Let (C, J, j) be an involutive category. A section ∗ : C→ ∗-Obj(C, J, j)
of the forgetful functor U : ∗-Obj(C, J, j) → C canonically determines an isomorphism
between (C, J, j) and the trivial involutive category (C, IdC, idIdC

). In particular, if a sec-
tion of U exists, then the involutive categories (C, J, j) and (C, IdC, idIdC

) are isomorphic.
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Proof. A section ∗ : C→ ∗-Obj(C, J, j) of U assigns to each c ∈ C a ∗-object ∗c : c→ Jc
and to each C-morphism f : c→ c′ a ∗-morphism

c

∗c
��

f
// c′

∗
c′
��

Jc
Jf

// Jc′

Notice that this diagram implies that ∗c are the components of a natural transformation
∗ : IdC → J . It is straightforward to check that (IdC, ∗) : (C, IdC, idIdC

)→ (C, J, j) is an
involutive functor, which is invertible via the involutive functor (IdC, ∗−1) : (C, J, j) →
(C, IdC, idIdC

).

2.26. Corollary. The involutive category (ΣC,Rev, idIdΣC
) of C-profiles equipped with

reversal as involutive structure (cf. Examples 2.5 and 2.20) is isomorphic to the trivial
involutive category (ΣC, IdΣC

, idIdΣC
).

3. Involutive structures on monoidal categories

In this section we review involutive (symmetric) monoidal categories and ∗-monoids
therein. We again shall follow mostly the definitions and conventions of Jacobs [Jac12].
Our main goal is to clarify and work out the 2-functorial behavior of the assignment of
the categories of ∗-objects and monoids to involutive (symmetric) monoidal categories.
To fix our notations, we start with a brief review of some basic aspects of (symmetric)
monoidal categories and monoids therein.

3.1. (Symmetric) monoidal categories and monoids. Recall that a monoidal cat-
egory (C,⊗, I, α, λ, ρ) consists of a category C, a functor ⊗ : C × C → C, an object
I ∈ C and three natural isomorphisms

α : ⊗ (⊗× IdC) −→ ⊗ (IdC ×⊗) ,

λ : I ⊗ (−) −→ IdC ,

ρ : (−)⊗ I −→ IdC ,

which satisfy the pentagon and triangle identities. We follow the usual abuse of notation
and often denote a monoidal category by its underlying category C. The associator α
and the unitors λ and ρ will always be suppressed. Given two monoidal categories C and
C′, a (lax) monoidal functor from C to C′ is a triple (F, F2, F0) consisting of a functor
F : C→ C′, a natural transformation

F2 : ⊗′ (F × F ) −→ F ⊗ ,

and a C′-morphism

F0 : I ′ −→ FI ,
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which are required to satisfy the usual coherence conditions involving the associators and
unitors. We often denote a monoidal functor by its underlying functor F : C → C′. A
monoidal natural transformation ζ : F → G between monoidal functors F = (F, F2, F0)
and G = (G,G2, G0) is a natural transformation ζ : F → G satisfying

⊗′ (F × F )

F2

��

⊗′ (ζ×ζ)
// ⊗′ (G×G)

G2

��

I ′

F0

~~

G0

  

F ⊗
ζ⊗

// G⊗ FI
ζI

// GI

3.2. Proposition. Monoidal categories, (lax) monoidal functors and monoidal natural
transformations form a 2-category MCat.

A symmetric monoidal category is a monoidal category C together with a natural
isomorphism called braiding

τ : ⊗ −→ ⊗op := ⊗σ

from the tensor product to the opposite tensor product, where σ : C×C→ C×C is the
flip functor (c1, c2) 7→ (c2, c1), which satisfies the hexagon identities and the symmetry
constraint

⊗

τ
!!

id⊗
// ⊗ = ⊗σ2

⊗σ
τ σ

99

We often denote a symmetric monoidal category by its underling category C. A symmetric
monoidal functor is a monoidal functor F : C→ C′ that preserves the braidings, i.e.

⊗′ (F × F )

F2

��

τ ′ (F×F )
// ⊗′ σ(F × F ) = ⊗′ (F × F )σ

F2σ
��

F⊗
Fτ

// F ⊗ σ

commutes. A symmetric monoidal natural transformation is just a monoidal natural
transformation between symmetric monoidal functors.

3.3. Proposition. Symmetric monoidal categories, symmetric monoidal functors and
symmetric monoidal natural transformations form a 2-category SMCat.

3.4. Definition. A monoid in a (symmetric) monoidal category C is a triple (M,µ, η)
consisting of an object M ∈ C and two C-morphisms µ : M ⊗M → M (called multipli-
cation) and η : I → M (called unit) satisfying the associativity and unitality axioms. A
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monoid morphism f : (M,µ, η) → (M ′, µ′, η′) is a C-morphism f : M → M ′ preserving
multiplications and units. We denote the category of monoids in C by Mon(C).

The assignment of the categories of monoids extends to a 2-functor

Mon : (S)MCat −→ Cat . (6)

Concretely, this 2-functor is given by the following assignment:

• a (symmetric) monoidal category C is mapped to its category of monoids Mon(C);

• a (symmetric) monoidal functor F : C → C′ is mapped to the functor Mon(F ) :
Mon(C)→Mon(C′) that acts on objects as

Mon(F )
(
M,µ, η

)
:=(

FM, FM ⊗′ FM
F2M,M

// F (M ⊗M)
Fµ

// FM, I ′
F0 // FI

Fη
// FM

)
and on morphisms as F ;

• a (symmetric) monoidal natural transformation ζ : F → G is mapped to the natural
transformation Mon(ζ) : Mon(F )→Mon(G) with components Mon(ζ)(M,µ,η) :=
ζM , for all (M,µ, η) ∈Mon(C).

3.5. Involutive (symmetric) monoidal categories. The following definition of an
involutive (symmetric) monoidal category is due to [Jac12]. We prefer this definition over
the one in [Egg11, BM09] as it has the advantage that the category of ∗-objects inherits a
monoidal structure (cf. [Jac12, Proposition 1] and Proposition 3.17 in the present paper).
This has interesting consequences for the theory of involutive monads in [Jac12] and the
developments in our present paper.

3.6. Definition. An involutive (symmetric) monoidal category is a triple (C, J, j) con-
sisting of a (symmetric) monoidal category C, a (symmetric) monoidal endofunctor J =
(J, J2, J0) : C → C and a (symmetric) monoidal natural isomorphism j : IdC → J2

satisfying

jJ = Jj : J −→ J3 .

The following statement is proven in [Jac12, Lemma 7].

3.7. Lemma. For any involutive (symmetric) monoidal category (C, J, j), the (symmet-
ric) monoidal endofunctor J = (J, J2, J0) : C → C is strong, i.e. J2 : ⊗ (J × J) → J ⊗
and J0 : I → JI are isomorphisms.

3.8. Remark. Let us emphasize again and more clearly that our Definition 3.6 of invo-
lutive (symmetric) monoidal categories agrees with the one of Jacobs [Jac12]. The defini-
tions in [BM09] and [Egg11] are different because their analog of J2 is order-reversing, i.e.
a natural isomorphism ⊗op (J × J)→ J ⊗. The reason why we consider order-preserving
J2 as in [Jac12] is that this is better suited for our development of involutive operad
theory, cf. Remark 4.8 below.
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3.9. Remark. The condition for j : IdC → J2 to be a (symmetric) monoidal natural
transformation explicitly means that the diagrams

⊗

id⊗

��

⊗ (j×j)
// ⊗(J2 × J2)

J2(J×J)

��

I
J0

��

idI

��

J⊗(J × J)

J J2

��

I

idI

��

JI

JJ0

��

⊗
j⊗

// J2⊗ I
jI

// J2I

commute. One may reinterpret these diagrams as follows: The left diagram states that
(⊗, J2) : (C, J, j)× (C, J, j)→ (C, J, j) is an involutive functor on the product involutive
category (C, J, j) × (C, J, j) = (C × C, J × J, j × j), see also Remark 2.24. The right
diagram states that (J0 : I → JI) ∈ ∗-Obj(C, J, j) is a ∗-object in (C, J, j). These two
structures allow us to endow the functor I ⊗ (−) : C → C with an involutive structure
I ⊗ J(−)→ J(I ⊗ (−)) defined by the components

I ⊗ Jc J0⊗id
// JI ⊗ Jc

J2I,c
// J(I ⊗ c) ,

for all c ∈ C. An analogous statement holds true for the functor (−) ⊗ I : C → C.
The axioms for the (symmetric) monoidal structure on J can then be reinterpreted as
the equivalent property that the associator and unitors (as well as the braiding in the
symmetric case) are involutive natural transformations.

Hence, we obtain an equivalent description of an involutive (symmetric) monoidal cat-
egory in terms of the following data: An involutive category (C, J, j), an involutive functor
(⊗, J2) : (C, J, j) × (C, J, j) → (C, J, j), a ∗-object (J0 : I → JI) ∈ ∗-Obj(C, J, j) and
involutive natural transformations for the associator and unitors (as well as the braiding
in the symmetric case), which satisfy analogous axioms as those for (symmetric) monoidal
categories. This alternative point of view is useful for (9) and (10) below.

3.10. Example. For any (symmetric) monoidal category C, the triple (C, IdC, idIdC
),

with IdC the identity (symmetric) monoidal functor and idIdC
the identity (symmetric)

monoidal natural transformation, defines an involutive (symmetric) monoidal category.
We call this the trivial involutive (symmetric) monoidal category over C.

3.11. Example. Let us equip the category of complex vector spaces VecC with its stan-
dard symmetric monoidal structure where ⊗ is the usual tensor product, I = C is the
ground field and τ is given by the flip maps τV,W : V ⊗W → W ⊗ V , v ⊗ w 7→ w ⊗ v.

The endofunctor (−) : VecC → VecC from Example 2.4 can be promoted to a symmetric
monoidal functor by using the canonical maps (−)2V,W : V ⊗ W → V ⊗W and com-

plex conjugation (−)0 : C→ C. The resulting triple (VecC, (−), idIdVecC
) is an involutive

symmetric monoidal category.
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3.12. Example. Recall the groupoid of C-profiles ΣC from Example 2.5. The category
ΣC may be equipped with the symmetric monoidal structure given by concatenation of
C-profiles, i.e. c ⊗ d = (c1, . . . , cn, d1, . . . , dm), I = ∅ is the empty C-profile and τc,d :=
τ〈|c|, |d|〉 : c⊗ d→ d⊗ c is the block transposition. The reversal endofunctor Rev : ΣC →
ΣC can be promoted to a symmetric monoidal functor by using

Rev2c,d := τ〈|c|, |d|〉 : Rev(c)⊗ Rev(d) −→ Rev(c⊗ d)

and Rev0 := id∅ : ∅ → Rev(∅) = ∅. The resulting triple (ΣC,Rev, idIdΣC
) is an involutive

symmetric monoidal category.

3.13. Definition. An involutive (symmetric) monoidal functor (F, ν) : (C, J, j) →
(C′, J ′, j′) consists of a (symmetric) monoidal functor F = (F, F2, F0) : C → C′ and
a (symmetric) monoidal natural transformation ν : FJ → J ′F satisfying the analog of
diagram (1) in Definition 2.7.

An involutive (symmetric) monoidal natural transformation ζ : (F, ν) → (G,χ) be-
tween involutive (symmetric) monoidal functors (F, ν), (G,χ) : (C, J, j)→ (C′, J ′, j′) is a
natural transformation ζ : F → G that is both involutive and (symmetric) monoidal.

3.14. Proposition. Involutive (symmetric) monoidal categories, involutive (symmetric)
monoidal functors and involutive (symmetric) monoidal natural transformations form a
2-category I(S)MCat.

3.15. Remark. The condition for the natural transformation ν : FJ → J ′F to be
monoidal explicitly means that the diagrams

⊗′(FJ × FJ)
⊗′(ν×ν)

//

F2(J×J)

��

⊗′(J ′F × J ′F )

J ′2(F×F )

��

I ′

F0

~~

J ′0

!!

F ⊗ (J × J)

FJ2

��

J ′ ⊗′ (F × F )

J ′F2

��

FI

FJ0

��

J ′I ′

J ′F0

��

FJ⊗
ν⊗

// J ′F⊗ FJI νI
// J ′FI

commute. From the perspective established in Remark 3.9, one may reinterpret these di-
agrams as follows: The left diagram states that F2 is an involutive natural transformation

F2 : (⊗′, J ′2)
(
(F, ν)× (F, ν)

)
−→ (F, ν) (⊗, J2) (7)

of involutive functors from (C, J, j) × (C, J, j) to (C′, J ′, j′). The right diagram states
that F0 defines a morphism

F0 :
(
J ′0 : I ′ → J ′I ′

)
−→ ∗-Obj(F, ν)

(
J0 : I → JI

)
(8)

in the category ∗-Obj(C′, J ′, j′) of ∗-objects in (C′, J ′, j′).
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Hence, we obtain an equivalent description of an involutive (symmetric) monoidal
functor in terms of the following data: An involutive functor (F, ν) : (C, J, j)→ (C′, J ′, j),
an involutive natural transformation F2 as in (7) and a ∗-morphism F0 as in (8), which
satisfy axioms analogous to those for a (symmetric) monoidal functor. This alternative
point of view is useful for (12) and (13) below.

3.16. Remark. Let us summarize Remarks 3.9 and 3.15 by one slogan: Involutive (sym-
metric) monoidal categories are the same things as (symmetric) monoidal involutive cat-
egories.

Let (C, J, j) be an involutive (symmetric) monoidal category and consider its category
of ∗-objects ∗-Obj(C, J, j). Making use of the 2-functor ∗-Obj : ICat → Cat given in
(3), we may equip the category ∗-Obj(C, J, j) with a (symmetric) monoidal structure.
Concretely, the tensor product functor is given by

∗-Obj(C, J, j)× ∗-Obj(C, J, j)

∼=
��

⊗
// ∗-Obj(C, J, j)

∗-Obj
(
(C, J, j)× (C, J, j)

) ∗-Obj(⊗,J2)

33
(9)

where the vertical isomorphism was explained in Remark 2.24 and the involutive functor
(⊗, J2) in Remark 3.9. The unit object(

J0 : I → JI
)
∈ ∗-Obj(C, J, j) (10)

is the ∗-object constructed in Remark 3.9. The associator and unitors (as well as the
braiding in the symmetric case) are obtained by applying the 2-functor ∗-Obj to the
associator and unitors (as well as the braiding in the symmetric case) of (C, J, j), which
makes sense because Remark 3.9 shows that these are involutive natural transformations.
Let us also mention that the tensor product of two ∗-objects (∗ : c→ Jc), (∗′ : c′ → Jc′) ∈
∗-Obj(C, J, j) explicitly reads as

(∗ : c→ Jc)⊗ (∗′ : c′ → Jc′) =
(
c⊗ c′ ∗⊗∗

′
// Jc⊗ Jc′

J2c,c′
// J(c⊗ c′)

)
.

Summing up, we have proven

3.17. Proposition. Let (C, J, j) be an involutive (symmetric) monoidal category. Then
the category of ∗-objects ∗-Obj(C, J, j) is a (symmetric) monoidal category with tensor
product (9) and unit object (10). Moreover, if (C, J, j) is also closed, i.e. it has internal
homs, then ∗-Obj(C, J, j) is closed too (cf. [Jac12, Proposition 1]).

The assignment of the (symmetric) monoidal categories of ∗-objects extends to a 2-
functor

∗-Obj : I(S)MCat −→ (S)MCat , (11)

which we shall denote with an abuse of notation by the same symbol as the 2-functor in
(3). Concretely, this 2-functor is given by the following assignment:
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• an involutive (symmetric) monoidal category (C, J, j) is mapped to the (symmetric)
monoidal category ∗-Obj(C, J, j) given in Proposition 3.17;

• an involutive (symmetric) monoidal functor (F, ν) : (C, J, j)→ (C′, J ′, j′) is mapped
to the (symmetric) monoidal functor

∗-Obj(F, ν) : ∗-Obj(C, J, j) −→ ∗-Obj(C′, J ′, j′) (12)

with underlying functor as in (3) and (symmetric) monoidal structure given by

∗-Obj(F )2 := ∗-Obj(F2) , ∗-Obj(F )0 := F0 , (13)

where F2 and F0 should be interpreted according to Remark 3.15;

• an involutive (symmetric) monoidal natural transformation ζ : (F, ν) → (G,χ) is
mapped to the (symmetric) monoidal natural transformation determined by (3).

3.18. Remark. Notice that the 2-functor ∗-Obj : I(S)MCat→ (S)MCat given in (11)
is a lift of the 2-functor ∗-Obj : ICat → Cat given in (3) along the forgetful 2-functors
forget⊗ : I(S)MCat→ ICat and forget⊗ : (S)MCat→ Cat that forget the (symmetric)
monoidal structures. More precisely, using the explicit descriptions of our 2-functors, one
easily confirms that the diagram

I(S)MCat
∗-Obj

//

forget⊗
��

(S)MCat

forget⊗
��

ICat
∗-Obj

// Cat

of 2-categories and 2-functors commutes (on the nose).

We note the following useful result that generalizes Theorem 2.25 to the (symmetric)
monoidal setting. Let us first notice that the forgetful functor U : ∗-Obj(C, J, j) → C
satisfies ⊗(U × U) = U⊗ and U(J0 : I → JI) = I, hence it can be promoted to a
(symmetric) monoidal functor via the trivial (symmetric) monoidal structure U2 = idU⊗
and U0 = idI .

3.19. Theorem. Let (C, J, j) be an involutive (symmetric) monoidal category. A (sym-
metric) monoidal section ∗ : C → ∗-Obj(C, J, j) of the forgetful (symmetric) monoidal
functor U : ∗-Obj(C, J, j)→ C canonically determines an isomorphism between (C, J, j)
and the trivial involutive (symmetric) monoidal category (C, IdC, idIdC

). In particular, if
such a section of U exists, then the involutive (symmetric) monoidal categories (C, J, j)
and (C, IdC, idIdC

) are isomorphic.

Proof. Using that the (symmetric) monoidal structure on U is trivial, i.e. U2 = idU⊗ and
U0 = idI , and also that U is a faithful functor, one observes that the (symmetric) monoidal
structure on the (symmetric) monoidal section ∗ : C → ∗-Obj(C, J, j) is necessarily
trivial. The proof then proceeds analogously to the one of Theorem 2.25.
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3.20. Corollary. The involutive symmetric monoidal category (ΣC,Rev, idIdΣC
) of C-

profiles equipped with reversal as involutive structure (cf. Example 3.12) is isomorphic to
the trivial involutive symmetric monoidal category (ΣC, IdΣC

, idIdΣC
).

Proof. By Theorem 3.19, it is sufficient to construct a symmetric monoidal section
ρ = (ρ, ρ2, ρ0) : ΣC → ∗-Obj(ΣC,Rev, idIdΣC

) of the forgetful symmetric monoidal functor
U . Taking the underlying functor as in Example 2.20, i.e. ρ : c 7→ (ρ|c| : c → cρ|c|) with
the order-reversal permutations ρ|c| ∈ Σ|c|, one easily checks that ⊗(ρ × ρ) = ρ⊗ and
ρ(∅) = (id∅ : ∅ → ∅) = (Rev0 : ∅ → Rev(∅)). We choose the trivial symmetric monoidal
structure ρ2 = idρ⊗ and ρ0 = id∅.

3.21. ∗-monoids. Let us recall the 2-functors Mon : (S)MCat → Cat given in (6),
∗-Obj : ICat → Cat given in (3) and its lift ∗-Obj : I(S)MCat → S(M)Cat given in
(11). The aim of this subsection is to describe a 2-functor Mon : I(S)MCat → ICat
that lifts Mon : (S)MCat→ Cat to the involutive setting, such that the diagram

I(S)MCat
∗-Obj

//

Mon
��

(S)MCat

Mon
��

ICat
∗-Obj

// Cat

(14)

of 2-categories and 2-functors commutes (on the nose). We then define ∗-monoids in terms
of the diagonal 2-functor ∗-Mon : I(S)MCat→ Cat in this square.

Let us start with describing the 2-functor

Mon : I(S)MCat −→ ICat (15)

that lifts (6) to the involutive setting in some detail:

• an involutive (symmetric) monoidal category (C, J, j) is mapped to the involutive
category

Mon(C, J, j) :=
(
Mon(C),Mon(J),Mon(j)

)
∈ ICat

given by evaluating the 2-functor (6) on the (symmetric) monoidal category C, on
the (symmetric) monoidal endofunctor J : C→ C and on the (symmetric) monoidal
natural isomorphism j : IdC → J2;

• an involutive (symmetric) monoidal functor (F, ν) : (C, J, j)→ (C′, J ′, j′) is mapped
to the involutive functor

Mon(F, ν) :=
(
Mon(F ),Mon(ν)

)
: Mon(C, J, j) −→ Mon(C′, J ′, j′)

given by evaluating the 2-functor (6) on the (symmetric) monoidal functor F : C→
C′ and on the (symmetric) monoidal natural transformation ν : FJ → J ′F ;
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• an involutive (symmetric) monoidal natural transformation ζ : (F, ν) → (G,χ) is
mapped to the involutive natural transformation

Mon(ζ) : Mon(F, ν) −→ Mon(G,χ)

given by evaluating the 2-functor (6) on ζ.

3.22. Lemma. The diagram (14) of 2-categories and 2-functors commutes (on the nose).

Proof. This is an elementary check using the explicit definitions of the 2-functors given
in (6), (3), (11) and (15).

3.23. Definition. The 2-functor ∗-Mon : I(S)MCat→ Cat is defined as the diagonal
2-functor in the commutative square (14), i.e.

I(S)MCat

∗-Mon

))

∗-Obj
//

Mon
��

(S)MCat

Mon
��

ICat
∗-Obj

// Cat

(16)

For an involutive (symmetric) monoidal category (C, J, j), we call ∗-Mon(C, J, j) the
category of ∗-monoids in (C, J, j).

3.24. Remark. Let (C, J, j) be an involutive (symmetric) monoidal category. We pro-
vide an explicit description of the objects and morphisms in the associated category
of ∗-monoids ∗-Mon(C, J, j), which we shall call ∗-monoids and ∗-monoid morphisms.
Unpacking Definition 3.23, one obtains that a ∗-monoid is a quadruple (M,µ, η, ∗) ∈
∗-Mon(C, J, j) consisting of an object M ∈ C and three C-morphisms µ : M ⊗M →M ,
η : I →M and ∗ : M → JM , which satisfy the following conditions:

(1) (M,µ, η) is a monoid in the (symmetric) monoidal category C;

(2) ∗ : M → JM is a ∗-object in the involutive category (C, J, j);

(3) these two structures are compatible in the sense that the diagrams

I

J0

��

η
//M

∗
��

M ⊗M
µ

��

∗⊗∗
// JM ⊗ JM

J2M,M
// J(M ⊗M)

Jµ
��

JI
Jη

// JM M ∗
// JM

(17)

in C commute.

As a consequence of Lemma 3.22, these conditions have two equivalent interpretations
which correspond to the counterclockwise and clockwise paths in the commutative diagram
(16): The first option is to regard ∗ : (M,µ, η) → Mon(J)(M,µ, η) as a ∗-object in the
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involutive category Mon(C, J, j) ∈ ICat. The second option is to regard η : (J0 : I →
JI) → (∗ : M → JM) and µ : (∗ : M → JM) ⊗ (∗ : M → JM) → (∗ : M → JM) as
the structure maps of a monoid in the (symmetric) monoidal category ∗-Obj(C, J, j) ∈
(S)MCat.

A ∗-monoid morphism f : (M,µ, η, ∗)→ (M ′, µ′, η′, ∗′) is a C-morphism f : M →M ′

that preserves both the monoid structures and ∗-involutions.

3.25. Example. Let us consider a ∗-monoid (A, µ, η, ∗) in the involutive symmetric
monoidal category (VecC, (−), idIdVecC

) from Example 3.11. In particular, the triple
(A, µ, η) is an associative and unital algebra over C with multiplication a b = µ(a ⊗ b)
and unit 1 = η(1). By Example 2.19, ∗ is a complex anti-linear automorphism of A
that squares to the identity, i.e. a∗∗ = a. The compatibility conditions in (17) state that
1
∗ = 1 and (a b)∗ = a∗ b∗. We would like to emphasize that the latter condition is not the

usual axiom for associative and unital ∗-algebras over C, which is given by order-reversal
(a b)∗ = b∗ a∗. As a consequence, our concept of ∗-monoids given in Definition 3.23 does
not include the usual associative and unital ∗-algebras over C as examples. We will show
later in Example 7.9 that the usual associative and unital ∗-algebras over C are recovered
as ∗-algebras over a suitable ∗-operad, which provides a sufficiently flexible framework to
implement order-reversal (a b)∗ = b∗ a∗.

4. Involutive structures on colored symmetric sequences

Colored operads can be defined as monoids in the monoidal category of colored symmetric
sequences, see e.g. [Yau16, WY18, Yau18, GJ17] and below for a brief review. Let C ∈ Set
be any non-empty set and M any cocomplete closed symmetric monoidal category. (We
denote the monoidal structure on M by ⊗ and I, and the internal hom by [−,−] :
Mop ×M → M.) The category of C-colored symmetric sequences with values in M is
defined as the functor category

SymSeqC(M) := MΣC×C , (18)

where ΣC is the groupoid of C-profiles defined in Example 2.5 and the set C is regarded
as a discrete category. Given X ∈ SymSeqC(M), we write

X
(
t
c

)
∈M

for the evaluation of this functor on objects (c, t) ∈ ΣC × C and

X(σ) : X
(
t
c

)
−→ X

(
t
cσ

)
for its evaluation on morphisms σ : (c, t)→ (cσ, t) in ΣC × C.

The category SymSeqC(M) can be equipped with the following monoidal structure:
The tensor product is given by the circle product ◦ : SymSeqC(M) × SymSeqC(M) →
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SymSeqC(M). Concretely, the circle product of X, Y ∈ SymSeqC(M) is defined by the
coend

(X ◦ Y )
(
t
c

)
:=

∫ a ∫ (b1,...,bm)

ΣC

(
b1 ⊗ · · · ⊗ bm, c

)
⊗X

(
t
a

)
⊗ Y

(a1
b1

)
⊗ · · · ⊗ Y

(am
bm

)
,(19)

for all (c, t) ∈ ΣC × C. Two remarks are in order: (1) This expression makes use of the
symmetric monoidal structure on ΣC that we described in Example 3.12. (2) The tensor
product between the Hom-set ΣC

(
b1 ⊗ · · · ⊗ bm, c

)
∈ Set and the object X

(
t
a

)
∈ M is

given by the canonical Set-tensoring of M, i.e. S ⊗m :=
∐

s∈Sm for any S ∈ Set and
m ∈M. The circle unit is the object I◦ ∈ SymSeqC(M) defined by

I◦
(
t
c

)
:= ΣC(t, c)⊗ I , (20)

for all (c, t) ∈ ΣC × C.

4.1. Proposition. (SymSeqC(M), ◦, I◦) is a right closed monoidal category.

The aim of this section is to transfer these structures and results to the setting of
involutive categories.

4.2. Product-exponential 2-adjunction. Because the category of symmetric se-
quences (18) is defined as a functor category, we shall start with developing a notion of
functor categories in the involutive setting. For this we will first recall the relevant struc-
tures for ordinary category theory from a perspective that easily generalizes to involutive
category theory.

Let us denote by Cat ×̃Cat the 2-category with objects given by pairs (C,D) of
categories, morphisms given by pairs (F,G) of functors and 2-morphisms given by pairs
(ζ, ξ) of natural transformations, and all compositions given component-wise. (We use
the symbol ×̃ to denote the above product 2-category because we reserve the symbol ×
for the 2-functors defined below.) Notice that taking products of categories, functors and
natural transformations defines a 2-functor

× : Cat ×̃Cat −→ Cat . (21)

Let us denote by Catop the opposite 2-category, i.e. morphisms C → D are functors
F : D→ C going in the opposite direction and 2-morphisms are not reversed. We define
the exponential 2-functor

(−)(−) : Catop ×̃Cat −→ Cat (22)

as follows:

• a pair (D,C) of categories is mapped to the functor category CD;
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• a pair (G : D′ → D, F : C→ C′) of functors is mapped to the functor FG : CD →
C′D

′
that acts on objects and morphisms as

FG
(
X : D→ C

)
:= (FXG : D′ → C′) ,

FG
(
α : X → Y

)
:= (FαG : FXG→ FY G) ;

• a pair (ξ : G → G′, ζ : F → F ′) of natural transformations is mapped to the

natural transformation ζξ : FG → F ′G
′

with components given by any of the two
compositions in the commutative square

FXG
(ζξ)X

((

FXξ
��

ζXG
// F ′XG

F ′Xξ
��

FXG′
ζXG′

// F ′XG′

for all X ∈ CD.

The two 2-functors × and (−)(−) are related by a family of 2-adjunctions.

4.3. Proposition. For every D ∈ Cat, there is a 2-adjunction

(−)×D : Cat // Cat : (−)Doo .

Proof. The component at C ∈ Cat of the unit 2-natural transformation η : IdCat →
((−)×D)D is given by the functor

ηC : C −→ (C×D)D

that assigns to c ∈ C the inclusion functor ηC(c) : D → C ×D specified by d 7→ (c, d).
The component at C ∈ Cat of the counit 2-natural transformations ε : (−)D×D→ IdCat

is given by the evaluation functor

εC : CD ×D −→ C ,

that assigns to (X, d) ∈ CD × D the object Xd ∈ C. The triangle identities are a
straightforward check.

Because of their 2-functoriality, our constructions above can be immediately extended
to involutive category theory. Concretely, using the 2-functor (21), we define the product
2-functor

× : ICat ×̃ ICat −→ ICat (23)

in the involutive setting as follows:
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• a pair of involutive categories is mapped to the involutive category

(C, J, j)× (D, K, k) := (C×D, J ×K, j × k) ;

• a pair of involutive functors is mapped to the involutive functor

(F, ν)× (G,χ) := (F ×G, ν × χ) ;

• a pair of involutive natural transformations is mapped to the involutive natural
transformation ζ × ξ.

Similarly, using the 2-functor (22), we define the exponential 2-functor

(−)(−) : ICatop ×̃ ICat −→ ICat (24)

in the involutive setting as follows:

• a pair of involutive categories is mapped to the involutive category

(C, J, j)(D,K,k) :=
(
CD, JK , jk

)
;

• a pair of involutive functors is mapped to the involutive functor

(F, ν)(G,χ) :=
(
FG, νχ

−1)
;

• a pair of involutive natural transformations is mapped to the involutive natural
transformation ζξ.

Analogously to Proposition 4.3, one can prove

4.4. Proposition. For every (D, K, k) ∈ ICat, there is a 2-adjunction

(−)× (D, K, k) : ICat // ICat : (−)(D,K,k)
oo .

4.5. Involutive colored symmetric sequences. Let (M, J, j) be an involutive
closed symmetric monoidal category, which we assume to be cocomplete, and C ∈ Set
a non-empty set of colors. In order to define an involutive analog of the category of
symmetric sequences (18), one has to endow ΣC × C with the structure of an involutive
category. The simplest possible choice is the trivial involutive structure from Exam-
ple 2.3, i.e. triv(ΣC × C) = (ΣC × C, IdΣC×C, idIdΣC×C

) ∈ ICat. In particular, there is
no non-trivial interplay between the involution functor and the ordering of C-profiles
c = (c1, . . . , cn). An alternative choice that does describe a non-trivial interplay be-
tween involution and ordering of C-profiles is obtained by considering the involutive sym-
metric monoidal category (ΣC,Rev, idIdΣC

) from Examples 2.5, 2.20 and 3.12, where the
involution functor is given by order-reversal. Endowing the discrete category C with
the trivial involutive structure and using the product 2-functor (23), we may form the
involutive category (ΣC,Rev, idIdΣC

) × triv(C) ∈ ICat. Both of these natural choices
lead to the same theory of involutive colored sequences. Indeed, by Corollary 3.20,
there exists an ISMCat-isomorphism (ΣC,Rev, idIdΣC

) ∼= triv(ΣC), which implies that
(ΣC,Rev, idIdΣC

) × triv(C) ∼= triv(ΣC) × triv(C) ∼= triv(ΣC × C) in ICat. This motivates
the following
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4.6. Definition. Let C ∈ Set be a non-empty set. The involutive category of C-colored
symmetric sequences with values in a cocomplete involutive closed symmetric monoidal
category (M, J, j) is defined via the exponential 2-functor (24) by(

SymSeqC(M), J∗, j∗
)

:= (M, J, j)triv(ΣC×C) .

Concretely, the endofunctor

J∗ := J IdΣC×C : SymSeqC(M) −→ SymSeqC(M)

is given by post-composition with J : M→M, i.e.X 7→ JX, and the natural isomorphism

j∗ := j
idIdΣC×C : IdSymSeqC(M) −→ J2

∗

has components j∗X := jX given by whiskering the natural isomorphism j : IdM → J2

and the functor X : ΣC × C→M, for all X ∈ SymSeqC(M).

We now show that the involutive category (SymSeqC(M), J∗, j∗) given in Definition
4.6 may be promoted to an involutive monoidal category, extending the monoidal struc-
ture of Proposition 4.1 to the involutive setting. Recalling Definition 3.6, this amounts to
endowing the endofunctor J∗ : SymSeqC(M) → SymSeqC(M) with the structure of a
monoidal functor such that j∗ : IdSymSeqC(M) → J2

∗ becomes a monoidal natural isomor-
phism. We first define the natural transformation J∗2 : ◦ (J∗ × J∗)→ J∗ ◦ in terms of the
components

(
J∗X ◦ J∗Y

)(
t
c

)
(J∗2)X,Y

��

a∫ (b1,...,bm)∫
ΣC

(
b1 ⊗ · · · ⊗ bm, c

)
⊗ JX

(
t
a

)
⊗
⊗m
i=1 JY

(ai
bi

)
∫ ∫

id⊗Jm2
��(

J∗(X ◦ Y )
)(

t
c

)
∼=
//

a∫ (b1,...,bm)∫
ΣC

(
b1 ⊗ · · · ⊗ bm, c

)
⊗ J

(
X
(
t
a

)
⊗
⊗m
i=1 Y

(ai
bi

))
(25)

for all X, Y ∈ SymSeqC(M) and all (c, t) ∈ ΣC × C. For the horizontal arrows we used
the definition of the circle product (19) and the fact that J : M →M is self-adjoint (cf.
Lemma 2.6), hence it preserves coends and the Set-tensoring. In the right vertical arrow
we denoted by Jm2 the m-fold iteration of the natural transformation J2 : ⊗ (J×J)→ J ⊗
corresponding to the involutive symmetric monoidal category (M, J, j). We next define
the SymSeqC(M)-morphism J∗0 : I◦ → J∗I◦ for the circle unit (20) by

I◦
(
t
c

) J∗0 // (J∗I◦)
(
t
c

)
∼=
��

ΣC(t, c)⊗ I
id⊗J0

// ΣC(t, c)⊗ JI

(26)

for all (c, t) ∈ ΣC × C. For the right vertical arrow we used again that J : M → M
is self-adjoint and hence it preserves the Set-tensoring. In the bottom horizontal arrow
J0 : I → JI denotes the morphism corresponding to the involutive symmetric monoidal
category (M, J, j).
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4.7. Theorem. The involutive category (SymSeqC(M), J∗, j∗) becomes an involutive
right closed monoidal category when the underlying category SymSeqC(M) is equipped
with the circle monoidal structure of Proposition 4.1 and the underlying endofunctor J∗
is equipped with the monoidal functor structure (J∗2, J∗0) of (25) and (26).

Proof. It is easy to confirm that (J∗, J∗2, J∗0) : SymSeqC(M) → SymSeqC(M), as
defined in Definition 4.6, (25) and (26), is a monoidal endofunctor with respect to the
circle monoidal structure and that the natural isomorphism j∗ : IdSymSeqC(M) → J2

∗ is
monoidal.

4.8. Remark. Because SymSeqC(M) in general does not admit a braiding, the non-
reversing notion of involutive monoidal category due to [Jac12] (see also Definition 3.6)
and the reversing one considered in [Egg11, BM09] are a priori inequivalent. This is
indeed the case: While Theorem 4.7 equips the monoidal category SymSeqC(M) with
a non-reversing involutive structure, one cannot obtain a reversing one as this requires
to specify isomorphisms J∗X ◦ J∗Y ∼= J∗(Y ◦ X), which in general do not exist by the
following argument: Assume that I 6∼= ∅ in M (e.g. M = VecC) and that the set C has
cardinality ≥ 2. Define X, Y ∈ SymSeqC(M) by setting

X
(
t
c

)
=
(
ΣC(t, t0)× ΣC(t0, c)

)
⊗ I , Y

(
t
c

)
= ΣC(∅, c)⊗ I ,

for some fixed t0 ∈ C. Recalling (19) we obtain

(X ◦ Y )
(
t
c

) ∼= ΣC(t, t0)⊗ Y
(
t
c

)
, (Y ◦X)

(
t
c

) ∼= Y
(
t
c

)
.

Since J∗X ∼= X and J∗Y ∼= Y , we find for t 6= t0 that (J∗X ◦ J∗Y )
(
t
∅
) ∼= ∅ 6∼= I ∼=

J∗(Y ◦X)
(
t
∅
)
. This counterexample explains why the non-reversing involutive structures

defined by [Jac12] are better suited for developing the theory of colored ∗-operads than
the reversing ones of [Egg11, BM09].

Many interesting constructions in colored operad theory arise from changing the un-
derlying set of colors, see e.g. [BSW17] for examples inspired by quantum field theory.
We shall now generalize the relevant constructions to the setting of involutive category
theory.

Any map f : C → D of non-empty sets induces a functor f : ΣC → ΣD between
the associated groupoids of profiles. Concretely, we have that c = (c1, . . . , cn) 7→ f(c) =
(f(c1), . . . , f(cn)). This functor may be equipped with the obvious involutive symmetric
monoidal structure such that it defines an involutive symmetric monoidal functor

(f, idf ) : (ΣC, IdΣC
, idIdΣC

) −→ (ΣD, IdΣD
, idIdΣD

) .

Moreover, regarding C and D as discrete categories, we obtain an involutive functor
(denoted by the same symbol)

(f, idf ) : (C, IdC, idIdC
) −→ (D, IdD, idIdD

)
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between the associated trivial involutive categories. Using the product and exponential
2-functors (cf. (23) and (24)), we may exponentiate the identity Id(M,J,j) = (IdM, idJ) in-
volutive functor by the product involutive functor (f, idf )×(f, idf ) to obtain an involutive
functor

(f ∗, idf∗J∗) :
(
SymSeqD(M), J∗, j∗

)
−→

(
SymSeqC(M), J∗, j∗

)
(27)

describing the pullback along f of D-colored symmetric sequences to C-colored symmetric
sequences. (Notice that f ∗J∗ = J∗f

∗ as functors from SymSeqD(M) to SymSeqC(M)
because J∗ is a pushforward and f ∗ is a pullback.)

4.9. Corollary. For every map f : C → D between non-empty sets, there exists an
involutive adjunction (cf. Definition 2.11)

(f!, λf ) :
(
SymSeqC(M), J∗, j∗

)
//
(
SymSeqD(M), J∗, j∗

)
: (f ∗, idf∗J∗)oo .

Proof. By left Kan extension, the functor f ∗ has a left adjoint f!. The involutive struc-
ture λf on f! is the one described in Proposition 2.13, which implies that we have an
involutive adjunction.

The pullback functor f ∗ : SymSeqD(M)→ SymSeqC(M) may be equipped with the
following canonical monoidal structure: The components of the natural transformation
f ∗2 : ◦C(f ∗ × f ∗)→ f ∗◦D are specified by

ΣC

(
b1 ⊗ · · · ⊗ bm, c

)
⊗ f ∗X

(
t
a

)
⊗
⊗m

i=1 f
∗Y
(ai
bi

)
f⊗id

��

//
(
f ∗X ◦C f ∗Y

)(
t
c

)
(f∗2 )X,Y
��

ΣD

(
f(b1)⊗ · · · ⊗ f(bm), f(c)

)
⊗ f ∗X

(
t
a

)
⊗
⊗m

i=1 f
∗Y
(ai
bi

)
//
(
f ∗(X ◦D Y )

)(
t
c

)
(28)

for all X, Y ∈ SymSeqD(M) and all (c, t) ∈ ΣC × C. The horizontal arrows are the
canonical inclusions into the coend and the left vertical arrow denotes the action of the
functor f : ΣC → ΣD on Hom-sets. The SymSeqC(M)-morphism f ∗0 : IC◦ → f ∗ID◦ is
defined similarly by

f ∗0 : IC◦
(
t
c

)
= ΣC(t, c)⊗ I f⊗id

// ΣD

(
f(t), f(c)

)
⊗ I = f ∗(ID◦ )

(
t
c

)
, (29)

for all (c, t) ∈ ΣC × C.

4.10. Theorem. For every map f : C → D between non-empty sets, the involutive
functor (f ∗, idf∗J∗) : (SymSeqD(M), J∗, j∗)→ (SymSeqC(M), J∗, j∗) of (27) becomes an
involutive monoidal functor when equipped with the monoidal structure (f ∗2 , f

∗
0 ) of (28)

and (29).

Proof. By Definition 3.13, it remains to prove that idJ∗f∗ : J∗f
∗ → f ∗J∗ = J∗f

∗ is a
monoidal natural transformation, which is clearly the case.
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4.11. ∗-objects. We conclude this section by describing rather explicitly the monoidal
category

∗-Obj
(
SymSeqC(M), J∗, j∗

)
∈MCat (30)

of ∗-objects in the involutive monoidal category of symmetric sequences. Given any ∗-
object (∗ : X → J∗X) ∈ ∗-Obj

(
SymSeqC(M), J∗, j∗

)
, we consider its components at

(c, t) ∈ ΣC × C and observe that this is precisely the same data as a symmetric sequence
with values in ∗-Obj(M, J, j), which is a cocomplete closed symmetric monoidal category,
cf. Proposition 3.17 and Remark 2.22. Similarly, one observes that a morphism in (30) is
the same data as a morphism in SymSeqC(∗-Obj(M, J, j)), which means that these two
categories are canonically isomorphic. We now show that this isomorphism is compatible
with the monoidal structures.

4.12. Proposition. The canonical identification above defines an isomorphism

∗-Obj
(
SymSeqC(M), J∗, j∗

) ∼= SymSeqC

(
∗-Obj(M, J, j)

)
(31)

of monoidal categories.

Proof. It remains to prove that our canonical isomorphism of categories is monoidal,
i.e. that tensor products and units are preserved up to coherent isomorphisms. Given two
objects ∗ : X → J∗X and ∗′ : Y → J∗Y in ∗-Obj

(
SymSeqC(M), J∗, j∗

)
, their tensor

product reads as

(
∗ : X → J∗X

)
◦
(
∗′ : Y → J∗Y

)
=
(
X ◦ Y ∗◦∗′ // J∗X ◦ J∗Y

(J∗2)X,Y
// J∗(X ◦ Y )

)
.

By a brief calculation one shows that the composed morphism on the right-hand side of
this equation is induced by functoriality of coends and Set-tensoring via the family of
maps

X
(
t
a

)
⊗
⊗m
i=1 Y

(ai
bi

) ∗⊗⊗m
i=1 ∗′ // JX

(
t
a

)
⊗
⊗m
i=1 JY

(ai
bi

) Jm2 // J
(
X
(
t
a

)
⊗
⊗m
i=1 Y

(ai
bi

))
.(32)

Notice that (32) is the tensor product
(
∗ : X

(
t
a

)
→ JX

(
t
a

))
⊗
⊗m
i=1

(
∗′ : Y

(ai
bi

)
→ JY

(ai
bi

))
in ∗-Obj(M, J, j). Because J preserves coends and the Set-tensoring, we obtain the natu-
ral isomorphism relating the tensor products on both sides of (31). A similar construction
provides the isomorphism relating the units.

5. Colored ∗-operads

Let C ∈ Set be any non-empty set. We briefly recall the concept of C-colored operads.
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5.1. Definition. The category of C-colored operads with values in a cocomplete closed
symmetric monoidal category M is the category of monoids (cf. Definition 3.4) in the
monoidal category SymSeqC(M) (cf. (18), (19) and (20)), i.e.

OpC(M) := Mon
(
SymSeqC(M)

)
.

Using the concepts and techniques that we have developed so far in this paper, the
above definition admits the following natural generalization to involutive category theory.

5.2. Definition. The category of C-colored ∗-operads with values in a cocomplete in-
volutive closed symmetric monoidal category (M, J, j) is the category of ∗-monoids (cf.
Definition 3.23) in the involutive monoidal category (SymSeqC(M), J∗, j∗) (cf. Theorem
4.7), i.e.

∗-OpC(M, J, j) := ∗-Mon
(
SymSeqC(M), J∗, j∗

)
.

5.3. Remark. It is worth to specialize Remark 3.24 to the present case. We observe
that a C-colored ∗-operad is a quadruple (O, γ,1, ∗) consisting of a C-colored symmetric
sequence O ∈ SymSeqC(M) and three SymSeqC(M)-morphisms γ : O ◦O → O (called
operadic composition), 1 : I◦ → O (called operadic unit) and ∗ : O → J∗O (called
∗-involution), which satisfy the following conditions:

(1) (O, γ,1) is a monoid in (SymSeqC(M), ◦, I◦), i.e. the diagrams

(O ◦ O) ◦ O
γ◦id
��

∼= // O ◦ (O ◦ O)
id◦γ

// O ◦ O
γ

��

O ◦ O γ
// O

I◦ ◦ O

∼=
%%

1◦id // O ◦ O
γ

��

O ◦ I◦id◦1oo

∼=
yyO

in SymSeqC(M) commute;

(2) ∗ : O → J∗O is a ∗-object in (SymSeqC(M), J∗, j∗), i.e. the diagram

O

(j∗)O !!

∗ // J∗O
J∗∗
��

J2
∗O

in SymSeqC(M) commutes;

(3) these two structures are compatible, i.e. the diagrams

I◦

J∗0
��

1 // O
∗
��

J∗I◦ J∗1
// J∗O

O ◦ O
γ

��

∗◦∗ // J∗O ◦ J∗O
(J∗2)O,O

// J∗(O ◦ O)

J∗γ
��

O ∗
// J∗O

in SymSeqC(M) commute.
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In particular, there exist two equivalent interpretations of a colored ∗-operad: The first
option is to regard (O, γ,1) as an ordinary C-colored operad valued in (M, J, j), equipped
with an operad morphism ∗ : (O, γ,1) → Mon(J∗)(O, γ,1). The second option is to
regard ∗ : O → J∗O as a ∗-object in (SymSeqC(M), J∗, j∗), equipped with the structure
of a monoid consisting of the ∗-morphisms γ : (∗ : O → J∗O) ◦ (∗ : O → J∗O) → (∗ :
O → J∗O) and 1 : (J∗0 : I◦ → J∗I◦)→ (∗ : O → J∗O).

5.4. Proposition. The category of C-colored ∗-operads with values in a cocomplete
involutive closed symmetric monoidal category (M, J, j) is isomorphic to the category
of C-colored operads with values in the cocomplete closed symmetric monoidal category
∗-Obj(M, J, j), i.e. there exists an isomorphism

∗-OpC(M, J, j) ∼= OpC

(
∗-Obj(M, J, j)

)
of categories.

Proof. This is proven by the following chain of Cat-isomorphisms

∗-OpC(M, J, j) = Mon
(
∗-Obj

(
SymSeqC(M), J∗, j∗

))
∼= Mon

(
SymSeqC

(
∗-Obj(M, J, j)

))
= OpC

(
∗-Obj(M, J, j)

)
,

where in the first step we used Definitions 5.2 and 3.23, in the second step Proposition
4.12 and in the last step Definition 5.1.

5.5. Remark. Proposition 5.4 may be summarized by the following slogan: Colored ∗-
operads are the same things as colored operads in ∗-objects. We would like to stress that
this result, whose proof relies on the whole spectrum of techniques for involutive category
theory developed in [Jac12] and in the previous sections of the present paper, does not
make the definition of operads as ∗-monoids unnecessary. Being able to switch between
these two equivalent perspectives on colored ∗-operads is valuable for various reasons.
On the one hand, when interpreted as ordinary colored operads in ∗-Obj(M, J, j), it is
straightforward to transfer structural results and techniques from ordinary operad theory
to involutive operad theory. On the other hand, when interpreted according to Definition
5.2 as ∗-monoids, it is relatively easy to equip known examples of ordinary colored operads
with a suitable ∗-involution, see Section 7 for a specific class of examples. Moreover, this
perspective relates to the involutive monoid and monad theory initiated in [Jac12], see
also Section 6 below.

We shall now study the behavior of colored ∗-operads under changing the underly-
ing set of colors. Let f : C → D be a map between non-empty sets. By Theorem
4.10, we obtain an involutive monoidal functor (f ∗, idf∗J∗) : (SymSeqD(M), J∗, j∗) →
(SymSeqC(M), J∗, j∗). As a consequence of 2-functoriality of ∗-Mon : IMCat → Cat
(cf. Definition 3.23) and the definition of colored ∗-operads (cf. Definition 5.2), we obtain
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5.6. Proposition. For every map f : C → D between non-empty sets, there exists a
functor

f ∗ := ∗-Mon(f ∗, idf∗J∗) : ∗-OpD(M, J, j) −→ ∗-OpC(M, J, j) ,

which we call the pullback functor.

Using the pullback functor, we may define the category of ∗-operads with varying
colors.

5.7. Definition. We denote by ∗-Op(M, J, j) the category of colored ∗-operads with
values in (M, J, j). The objects are pairs (C,O) consisting of a non-empty set C ∈ Set
and a C-colored ∗-operad O ∈ ∗-OpC(M, J, j). The morphisms are pairs (f, φ) : (C,O)→
(D,P) consisting of a map f : C → D between non-empty sets and a ∗-OpC(M, J, j)-
morphism φ : O → f ∗P .

5.8. Remark. There exists a projection functor π : ∗-Op(M, J, j)→ Set, given explic-
itly by (C,O) 7→ C, whose fiber π−1(C) over ∅ 6= C ∈ Set is isomorphic to the category
∗-OpC(M, J, j) of C-colored ∗-operads.

6. ∗-algebras over colored ∗-operads

A convenient description of algebras over colored operads is in terms of algebras over their
associated monads. Let us briefly review the relevant constructions before generalizing
them to the setting of involutive categories.

Let C ∈ Set be a non-empty set of colors. Recall that the category of C-colored
objects with values in M is the functor category MC. We may equivalently regard MC as
the full subcategory of SymSeqC(M) consisting of all functors X : ΣC × C → M such
that X

(
t
c

)
= ∅, for all (c, t) ∈ ΣC × C with length |c| ≥ 1. We introduce the notation

Xt := X
(
t
∅
)
, for all t ∈ C.

Given any C-colored operad O ∈ OpC(M), the endofunctor O◦(−) : SymSeqC(M)→
SymSeqC(M) restricts to an endofunctor

O ◦ (−) : MC −→ MC (33)

on the category of colored objects. Because O is by definition a monoid in SymSeqC(M),
with multiplication γ and unit 1, it follows that (33) canonically carries the structure of
a monad in the category MC. We refer to [MacL98, Chapter VI] for details on monad
theory. Concretely, the structure natural transformations γ : O ◦ (O ◦ (−)) → O ◦ (−)
and 1 : IdMC → O◦ (−), which we denote with abuse of notation by the same symbols as
the operadic composition and unit, are given by the components

O ◦ (O ◦X)
γX // O ◦X

(O ◦ O) ◦X

∼=

OO

γ◦id

88 X
1X // O ◦X

I◦ ◦X

∼=

OO

1◦id

99 (34)
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for all X ∈MC.

6.1. Definition. The category Alg(O) of algebras over a C-colored operad O ∈ OpC(M)
is the category of algebras over the monad O ◦ (−) : MC →MC. Concretely, an object of
Alg(O) is a pair (A,α) consisting of an object A ∈MC and an MC-morphism α : O◦A→
A such that α (O ◦α) = α γA and α1A = idA. An Alg(O)-morphism ϕ : (A,α)→ (B, β)
is an MC-morphism ϕ : A→ B that preserves the structure maps, i.e. β (O ◦ ϕ) = ϕα.

The assignment of the categories of algebras to colored operads is functorial

Alg : Op(M)op −→ Cat (35)

with respect to the category Op(M) of colored operads with varying colors. Concretely,
given any Op(M)-morphism (f, φ) : (C,O) → (D,P), i.e. a map of non-empty sets
f : C→ D together with an OpC(M)-morphism φ : O → f ∗P , we define a functor

(f, φ)∗ := Alg(f, φ) : Alg(P) −→ Alg(O) (36)

by setting

(f, φ)∗
(
A,α

)
:=

(
f ∗A, O ◦ f ∗A φ◦id

// f ∗P ◦ f ∗A
(f∗2 )P,A

// f ∗(P ◦ A)
f∗α

// f ∗A
)

,

for all P-algebras (A,α : P ◦ A → A) ∈ Alg(P). (The natural transformation f ∗2 was
defined in (28).) Furthermore, as a consequence of the adjoint lifting theorem [Bor94,
Chapter 4.5], it follows that the functor (f, φ)∗ admits a left adjoint (called operadic left
Kan extension), i.e. we obtain an adjunction

(f, φ)! : Alg(O) // Alg(P) : (f, φ)∗oo , (37)

for every Op(M)-morphism (f, φ) : (C,O) → (D,P). See for example [BM07, BSW17]
for further details and also [BSW17] for applications of these adjunctions to quantum field
theory.

We develop now a generalization of these definitions and constructions to the setting of
involutive categories. Let (M, J, j) be a cocomplete involutive closed symmetric monoidal
category. The involutive analog of the category of C-colored objects is obtained by using
the exponential 2-functor (24) to form (M, J, j)triv(C) ∈ ICat. Notice that the full sub-
category embedding MC ↪→ SymSeqC(M) can be equipped with an obvious involutive
structure, thus providing an ICat-isomorphism between (M, J, j)triv(C) and the involutive
category obtained by restricting the involutive structure on (SymSeqC(M), J∗, j∗) to the
full subcategory MC ⊆ SymSeqC(M). In the following we shall always suppress this
isomorphism and identify the involutive categories

(MC, J∗, j∗) ∼= (M, J, j)triv(C) .
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Given a C-colored ∗-operad O ∈ ∗-OpC(M, J, j) in the sense of Definition 5.2 (see also
Remark 5.3 for a more explicit description), we obtain an involutive endofunctor(

O ◦ (−), ν
)

: (MC, J∗, j∗) −→ (MC, J∗, j∗) (38)

with the natural transformation ν : O ◦ J∗(−)→ J∗(O ◦ (−)) defined by the components

O ◦ J∗X

∗◦id
&&

νX // J∗
(
O ◦X

)
J∗O ◦ J∗X

(J∗2)O,X

77

for all X ∈MC, where ∗ : O → J∗O denotes the ∗-involution on O.

6.2. Proposition. Given any C-colored ∗-operad (O, γ,1, ∗) ∈ ∗-OpC(M, J, j), the com-
ponents given in (34) define involutive natural transformations γ : (O ◦ (−), ν) (O ◦
(−), ν) → (O ◦ (−), ν) and 1 : (IdMC , idJ∗) → (O ◦ (−), ν) for the involutive endofunc-
tor (38). In the terminology of [Jac12, Definition 7], the triple

(
(O ◦ (−), ν), γ,1

)
is an

involutive monad in (MC, J∗, j∗).

Proof. This statement is analogous [Jac12, Example 3 (i)] and may be proven by a
slightly lengthy diagram chase argument.

The category of algebras Alg(O) (cf. Definition 6.1) over (the underlying colored
operad of) a C-colored ∗-operad O ∈ ∗-OpC(M, J, j) can be equipped with a canonical
involutive structure (

Alg(O), JO, jO
)
∈ ICat , (39)

see also [Jac12, Proposition 3] for a similar construction. Concretely, the endofunctor
JO : Alg(O)→ Alg(O) acts on objects (A,α) ∈ Alg(O) as

JO
(
A,α

)
:=

(
J∗A, O ◦ J∗A ∗◦id // J∗O ◦ J∗A

(J∗2)O,A
// J∗
(
O ◦ A

) J∗α // J∗A
)

and on morphisms as J∗. The natural transformation jO : IdAlg(O) → J2
O is defined by

the components jO(A,α) := j∗A, for all (A,α) ∈ Alg(O). This allows us to introduce the
concept of ∗-algebras over colored ∗-operads.

6.3. Definition. The category of ∗-algebras over O ∈ ∗-OpC(M, J, j) is defined by
evaluating the 2-functor ∗-Obj : ICat → Cat (cf. (3)) on the involutive category of
O-algebras (39), i.e.

∗-Alg(O) := ∗-Obj
(
Alg(O), JO, jO

)
.
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6.4. Remark. Unpacking this definition, we obtain that a ∗-algebra over O is a triple
(A,α, ∗A) ∈ ∗-Alg(O) consisting of a C-colored object A ∈ MC and two MC-morphisms
α : O ◦ A→ A and ∗A : A→ J∗A, which satisfy the following conditions:

(1) (A,α) ∈ Alg(O) is an algebra over the C-colored operad O;

(2) (∗A : A → J∗A) ∈ ∗-Obj(MC, J∗, j∗) is a ∗-object in the involutive category
(MC, J∗, j∗);

(3) these two structures are compatible, i.e. the diagram

O ◦ A
O◦∗A

��

α // A

∗A
��

O ◦ J∗A ∗◦id
// J∗O ◦ J∗A

(J∗2)O,A

// J∗(O ◦ A)
J∗α

// J∗A

in MC commutes.

A ∗-algebra morphism ϕ : (A,α, ∗A) → (B, β, ∗B) is an MC-morphism ϕ : A → B
preserving the structure maps and ∗-involutions, i.e. β (O◦ϕ) = ϕα and ∗B ϕ = (J∗ϕ) ∗A.

Similarly to (35), we observe that the assignment of the involutive categories of alge-
bras to colored ∗-operads is functorial

Alg : ∗-Op(M, J, j)op −→ ICat (40)

with respect to the category ∗-Op(M, J, j) of colored ∗-operads with varying colors (cf.
Definition 5.7). Concretely, this functor assigns to a ∗-Op(M, J, j)-morphism (f, φ) :
(C,O)→ (D,P) the involutive functor(

(f, φ)∗, id(f,φ)∗ JP

)
:
(
Alg(P), JP , jP

)
−→

(
Alg(O), JO, jO

)
, (41)

which is given by equipping the pullback functor (36) with the trivial involutive structure
id(f,φ)∗ JP : (f, φ)∗ JP → JO (f, φ)∗ = (f, φ)∗ JP . (Showing that JO (f, φ)∗ = (f, φ)∗ JP
requires a brief check.) As a consequence of (40) and (2-)functoriality of ∗-Obj : ICat→
Cat (cf. (3)), we obtain that also the assignment of the categories of ∗-algebras (cf.
Definition 6.3) to colored ∗-operad is functorial

∗-Alg : ∗-Op(M, J, j)op −→ Cat . (42)

Given any ∗-Op(M, J, j)-morphism (f, φ) : (C,O)→ (D,P), we denote the corresponding
functor simply by

(f, φ)∗ := ∗-Alg(f, φ) : ∗-Alg(P) −→ ∗-Alg(O) .

Concretely, it is given by evaluating the 2-functor ∗-Obj : ICat → Cat given in (3) on
the involutive functor (41).
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6.5. Remark. Recalling Proposition 5.4, there exists an isomorphism

∗-OpC(M, J, j) ∼= OpC

(
∗-Obj(M, J, j)

)
between the category of colored ∗-operads with values in (M, J, j) and the category of
ordinary colored operads with values in ∗-Obj(M, J, j). This isomorphism clearly extends
to the categories of colored (∗-)operads with varying colors. As a consequence, there exists
a second option for assigning categories of ∗-algebras to colored ∗-operads, which is given
by the lower path in the diagram

∗-Op(M, J, j)op

∼= **

∗-Alg
//

∼=
��

Cat

Op
(
∗-Obj(M, J, j)

)op

Alg

66 (43)

where Alg denotes the functor given in (35). Similarly to [Jac12, Proposition 3], one can
prove that the diagram (43) commutes up to a natural isomorphism, hence the second
option for assigning the categories of ∗-algebras is equivalent to our original definition in
(42).

We would like to emphasize that the main reason why the diagram in (43) com-
mutes is that the conditions (1-3) in Remark 6.4 admit two equivalent interpretations:
The first option is to regard (A,α) ∈ Alg(O) as an algebra over the C-colored operad
O and ∗A : (A,α) → JO(A,α) as an Alg(O)-morphism. One observes that

(
∗A :

(A,α) → JO(A,α)
)
∈ ∗-Obj

(
Alg(O), JO, jO

)
is a ∗-object in the involutive category(

Alg(O), JO, jO
)
, which recovers our original Definition 6.3 and hence the upper path in

the diagram (43). The second option is to regard (∗A : A → J∗A) ∈ ∗-Obj(M, J, j)C as
a C-colored object in ∗-Obj(M, J, j) and α : (∗ : O → J∗O) ◦ (∗A : A → J∗A) → (∗A :
A→ J∗A) as a ∗-Obj(M, J, j)C-morphism. One observes that this defines an algebra over
O, regarded as an object in OpC(∗-Obj(M, J, j)), which recovers the lower path in the
diagram (43).

We conclude this section by noticing that (41) equips the right adjoint functor (f, φ)∗ :
Alg(P) → Alg(O) of the adjunction (37) with an involutive structure. Hence, applying
Proposition 2.13, we obtain a canonical involutive structure λ(f,φ) : (f, φ)! JO → JP (f, φ)!

on the left adjoint functor (f, φ)! : Alg(O) → Alg(P) together with an involutive ad-
junction(

(f, φ)!, λ(f,φ)

)
:
(
Alg(O), JO, jO

)
//
(
Alg(P), JP , jP

)
:
(
(f, φ)∗, id(f,φ)∗ JP

)
oo .(44)

Because 2-functors preserve adjunctions, we may apply the 2-functor ∗-Obj : ICat →
Cat to the involutive adjunction (44) in order to obtain an adjunction

(f, φ)! : ∗-Alg(O) // ∗-Alg(P) : (f, φ)∗oo (45)

between the categories of ∗-algebras. Summing up, we have proven
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6.6. Theorem. Associated to every ∗-Op(M, J, j)-morphism (f, φ) : (C,O) → (D,P),
there is an involutive adjunction (44) between the involutive categories of algebras and an
adjunction (45) between the categories of ∗-algebras.

7. Algebraic quantum field theory ∗-operads

As an application of the concepts and techniques developed in this paper, we study the
family of colored operads arising in algebraic quantum field theory [BSW17] within the
setting of involutive category theory. The main motivation for promoting these colored
operads to colored ∗-operads is due to quantum physics: A quantum mechanical system is
described not only by an associative and unital algebra over C, but rather by an associative
and unital ∗-algebra A over C. Here the relevant type of ∗-algebras is the reversing one,
i.e. (a b)∗ = b∗ a∗. The additional structure given by the complex anti-linear ∗-involution
is essential for quantum physics: It enters the GNS construction that is crucial to recover
the usual probabilistic interpretation of quantum theory in terms of Hilbert spaces.

Throughout this section we let (M, J, j) be any cocomplete involutive closed symmetric
monoidal category. In traditional quantum field theory, one would choose the example
given by complex vector spaces (VecC, (−), idIdVecC

), see Examples 2.4, 2.19 and 3.11 for
details. More modern approaches to quantum gauge theories, however, have lead to the
concept of homotopical quantum field theory and crucially rely on using different and
richer target categories, such as chain complexes and other monoidal model categories,
see e.g. [BSS15, BS17, BSW17, BSW18, Yau18] for algebraic quantum field theory and
also [CG17] for similar developments in factorization algebras. Hence, it is justified to
present our constructions with this high level of generality.

Let us provide a very brief review of the algebraic quantum field theory operads con-
structed in [BSW17]. We refer to this paper for more details and the physical motivations.

7.1. Definition. An orthogonality relation on a small category C is a subset ⊥ ⊆
Mor Ct×tMor C of the set of pairs of C-morphisms with coinciding target that is symmet-
ric, i.e. (f1, f2) ∈ ⊥ implies (f2, f1) ∈ ⊥, and stable under post- and pre-composition, i.e.
(f1, f2) ∈ ⊥ implies (gf1, gf2) ∈ ⊥ and (f1h1, f2h2) ∈ ⊥ for all composable C-morphisms
g, h1 and h2. We call elements (f1, f2) ∈⊥ orthogonal pairs and also write f1 ⊥ f2. A pair
(C,⊥) consisting of a small category C and an orthogonality relation ⊥ on C is called an
orthogonal category.

7.2. Example. On the terminal category C = {•} there exist precisely two different
orthogonality relations, namely ⊥= ∅ and ⊥= {(id•, id•)}. The corresponding orthogonal
categories ({•}, ∅) and ({∗}, {(id•, id•)}) will be used below to illustrate our constructions
for the simplest possible examples.

7.3. Example. The following is the prime example of an orthogonal category, see e.g.
[BFV03, BSW17] for the details. Let Loc be the category of globally hyperbolic Lorentzian
manifolds (of a fixed dimension ≥ 2) with morphisms given by causally convex and open
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isometric embeddings. Two morphisms f1 : M1 → M and f2 : M2 → M to a common
Lorentzian manifold M are declared to be orthogonal, f1 ⊥ f2, if and only if their images
are causally disjoint subsets of M , i.e. there exists no causal curve connecting f1(M1)
and f2(M2). The resulting orthogonal category (Loc,⊥) describes the physical concept
of spacetimes (in the sense of Einstein’s general relativity) and their causal relations. It
provides the foundation for formulating locally covariant algebraic quantum field theory
[BFV03].

Another related example is obtained by the following construction: Choosing any
globally hyperbolic Lorentzian manifold M ∈ Loc, consider the over category Loc/M
together with the forgetful functor U : Loc/M → Loc. The orthogonality relation ⊥
on Loc pulls back under U to an orthogonality relation ⊥M on Loc/M . Explicitly, two
morphisms g1 and g2 to a common target in Loc/M are orthogonal with respect to ⊥M if
and only if U(g1) ⊥ U(g2) in (Loc,⊥). The resulting orthogonal category (Loc/M,⊥M)
describes causally convex open subsets of the fixed globally hyperbolic Lorentzian manifold
M (interpreted physically as the universe) and their causal relations. It provides the
foundation for formulating Haag-Kastler type algebraic quantum field theories [HK64].

Let (C,⊥) be an orthogonal category and denote by C0 the set of objects of C. To
define the algebraic quantum field theory operad associated to (C,⊥) it is convenient to
introduce the following notations: Given c = (c1, . . . , cn) ∈ ΣC0 and t ∈ C, we denote by
C(c, t) :=

∏n
i=1 C(ci, t) the product of Hom-sets. Its elements will be denoted by symbols

like f = (f1, . . . , fn) ∈ C(c, t). The following definition is due to [BSW17].

7.4. Definition. Let (C,⊥) be an orthogonal category. The algebraic quantum field
theory operad of type (C,⊥) with values in M is the C0-colored operadO(C,⊥) ∈ OpC0

(M)
defined as follows:

(a) For any (c, t) ∈ ΣC0 ×C0, we set

O(C,⊥)

(
t
c

)
:=
(
Σ|c| ×C(c, t)

)/
∼⊥ ⊗ I ∈M ,

where the equivalence relation is as follows: (σ, f) ∼⊥ (σ′, f ′) if and only if (1) f = f ′

and (2) the right permutation σσ′−1 : fσ−1 → fσ′−1 is generated by transpositions
of adjacent orthogonal pairs.

(b) For any ΣC0 ×C0-morphism σ′ : (c, t)→ (cσ′, t), we set

O(C,⊥)(σ
′) : O(C,⊥)

(
t
c

)
−→ O(C,⊥)

(
t
cσ′
)

to be the M-morphism induced by the map of sets [σ, f ] 7→ [σσ′, fσ′] via functoriality
of the Set-tensoring.

(c) The operadic composition is determined by the M-morphisms

γ : O(C,⊥)

(
t
a

)
⊗

m⊗
i=1

O(C,⊥)

(ai
bi

)
−→ O(C,⊥)

(
t

b1⊗···⊗bm

)
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induced by the maps of sets

[σ, f ]⊗
m⊗
i=1

[σi, gi] 7−→
[
σ(σ1, . . . , σm), f(g

1
, . . . , g

m
)
]

.

Here σ(σ1, . . . , σm) = σ〈|bσ−1(1)|, . . . , |bσ−1(m)|〉 (σ1 ⊕ · · · ⊕ σm) denotes the group
multiplication in Σ|b1|+···+|bm| of the corresponding block permutation and block sum
permutation, and f(g

1
, . . . , g

m
) = (f1 g11, . . . , fm gm|bm|) is given by composition of

C-morphisms.

(d) The operadic unit is determined by the M-morphisms

1 : I −→ O(C,⊥)

(
t
t

)
induced by the maps of sets • 7→ (e, idt), where e ∈ Σ1 is the group unit, via
functoriality of the Set-tensoring.

The following results are proven in [BSW17].

7.5. Theorem. For any orthogonal category (C,⊥), Definition 7.4 defines a C0-colored
operad O(C,⊥) ∈ OpC0

(M). Furthermore, there exists an isomorphism

Alg(O(C,⊥)) ∼= Mon(M)(C,⊥)

between the category of O(C,⊥)-algebras and the category of ⊥-commutative functors from
C to Mon(M). Concretely, the latter is the full subcategory of the functor category
Mon(M)C consisting of all functors A : C→Mon(M) for which the diagrams

A(c1)⊗ A(c2)

A(f1)⊗A(f2)

��

A(f1)⊗A(f2)
// A(c)⊗ A(c)

µop
c

��

A(c)⊗ A(c) µc
// A(c)

(46)

in M commute, for all orthogonal pairs f1 ⊥ f2. Here µc (respectively µop
c ) denotes the

(opposite) multiplication in the monoid A(c).

7.6. Example. Recalling the orthogonal categories from Example 7.2, one easily observes
that the family of colored operads in Definition 7.4 includes the associative operad and
the commutative operad as very special cases. Concretely, O({•},∅) = As is the associative
operad and hence Alg(O({•},∅)) ∼= Mon(M) is the category of monoids in M. Simi-
larly, O({•},{(id•,id•)}) = Com is the commutative operad and hence Alg(O({•},{(id•,id•)}))

∼=
CMon(M) is the category of commutative monoids in M.
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7.7. Example. More interestingly, the colored operad O(Loc,⊥) associated to the orthog-
onal category (Loc,⊥) from Example 7.3 describes locally covariant algebraic quantum
field theories in the sense of [BFV03], i.e. Alg(O(Loc,⊥)) ∼= QFT(Loc) is the category of
such theories. The ⊥-commutativity property in (46) formalizes the Einstein causality
axiom, which states that observables localized in causally disjoint subsets commute with
each other. The colored operad O(Loc/M,⊥M ) associated to the over category describes
Haag-Kastler type algebraic quantum field theories [HK64] on the fixed Lorentzian man-
ifold M ∈ Loc, i.e. Alg(O(Loc/M,⊥M )) ∼= QFT(M) is the category of such theories. By
Theorem 7.5, these are characterized as pre-cosheaves of monoids on M satisfying Einstein
causality.

We will now endow O(C,⊥) with the structure of a colored ∗-operad. According to
Remark 5.3, this amounts to equipping the symmetric sequence underlyingO(C,⊥) with the
structure of a ∗-object in the involutive monoidal category (SymSeqC0

(M), J∗, j∗) that
is compatible with the operadic compositions and units. Let us define a SymSeqC0

(M)-
morphism ∗ : O(C,⊥) → J∗O(C,⊥) by setting, for all (c, t) ∈ ΣC0 ×C0,

O(C,⊥)

(
t
c

) ∗ // JO(C,⊥)

(
t
c

)
∼=
��(

Σ|c| ×C(c, t)
)/
∼⊥ ⊗ I ρ|c|⊗J0

//
(
Σ|c| ×C(c, t)

)/
∼⊥ ⊗ JI

(47)

to be the M-morphism induced by the map of sets ρ|c| : [σ, f ] 7→ [ρ|c|σ, f ], where ρ|c| ∈ Σ|c|
is the order-reversal permutation from Example 2.5, and the M-morphism J0 : I → JI.
(For the right vertical arrow recall that J is self-adjoint, hence it preserves the Set-
tensoring.) Evidently, (47) is equivariant with respect to the action of permutations
given in Definition 7.4 (b), hence it defines a SymSeqC0

(M)-morphism. It is, moreover,
straightforward to verify that (∗ : O(C,⊥) → J∗O(C,⊥)) ∈ ∗-Obj(SymSeqC0

(M), J∗, j∗) is
a ∗-object by using that ρ2

|c| = e is the identity permutation and that j : IdM → J2 is by
hypothesis a monoidal natural transformation.

7.8. Proposition. Endowing the colored operad (O(C,⊥), γ,1) ∈ OpC0
(M) from Defi-

nition 7.4 with the ∗-involution ∗ : O(C,⊥) → J∗O(C,⊥) defined in (47) yields a colored
∗-operad (

O(C,⊥), γ,1, ∗
)
∈ ∗-OpC0

(M, J, j) .

Proof. It remains to check the compatibility conditions in Remark 5.3 (3). This is a
straightforward calculation using standard permutation group properties.

Let us now study the ∗-algebras over the colored ∗-operad O(C,⊥) ∈ ∗-OpC0
(M, J, j)

defined in Proposition 7.8. Using the explicit description explained in Remark 6.4, these
are triples (A,α, ∗A) consisting of an algebra (A,α) over O(C,⊥) together with a compatible
∗-involution ∗A : A→ J∗A. Using Theorem 7.5 to identify (A,α) with a ⊥-commutative
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functor A : C →Mon(M), the ∗-involution ∗A : A → J∗A is identified with a family of
M-morphisms

∗c : A(c) −→ JA(c) ,

for all c ∈ C. As a consequence of Remark 6.4 (3), such family has to satisfy the following
basic conditions:

(1) Compatibility with monoid structure: For all c ∈ C,

A(c)⊗ A(c)

µc

��

∗c⊗∗c // JA(c)⊗ JA(c)
J2A(c),A(c)

// J
(
A(c)⊗ A(c)

)
Jµop

c

��

A(c) ∗c
// JA(c)

(48)

where µc (respectively µop
c ) is the (opposite) multiplication on A(c) ∈ Mon(M),

and

I

ηc

��

J0 // JI

Jηc
��

A(c) ∗c
// JA(c)

(49)

where ηc is the unit on A(c) ∈Mon(M).

(2) Compatibility with functor structure: For all C-morphisms f : c→ c′,

A(c)

A(f)
��

∗c // JA(c)

JA(f)
��

A(c′) ∗c′
// JA(c′)

(50)

7.9. Example. To illustrate the behavior of these ∗-involutions, consider the orthogonal
category ({•}, ∅) from Examples 7.2 and 7.6. Then O({•},∅) = As is the associative operad
and Proposition 7.8 defines a ∗-operad structure on it. For later convenience, let us denote
the corresponding category of ∗-algebras by

∗-Monrev(M, J, j) := ∗-Alg(O({•},∅)) . (51)

Using our concrete description from above, an object in this category is a quadruple
(A, µ, η, ∗) consisting of a monoid (A, µ, η) ∈ Mon(M) together with a ∗-involution ∗ :
A→ JA satisfying the compatibility conditions (48) and (49). (The conditions in (50) are
vacuous because we consider the discrete category {•} in this example.) Comparing these
structures to ∗-monoids, cf. Remark 3.24, we observe that they are very similar, up to the
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appearance of the opposite multiplication in (48). This order-reversal of the multiplication
under ∗-involution, which results from our ∗-operad structure (47), motivates our notation
∗-Monrev(M, J, j).

As a very concrete example, and referring back to Example 3.25, let us consider the
involutive symmetric monoidal category (VecC, (−), idIdVecC

) from Example 3.11. In this
case (51) describes the category of order-reversing associative and unital ∗-algebras over
C, i.e. (a b)∗ = b∗ a∗, which is of major relevance for (traditional) quantum physics.

7.10. Remark. We would like to mention that (47) is not the only possible ∗-involution
on the colored operad O(C,⊥). For example, we could replace the order-reversal permu-
tations ρ|c| in (47) by the identity permutations e. This would define another colored
∗-operad structure on O(C,⊥) that differs from our choice above. The ∗-algebras for this
alternative choice do not describe order-reversing ∗-involutions. In particular, ∗-algebras
over O({•},∅) = As for this choice of ∗-involution are non-reversing ∗-monoids as in Re-
mark 3.24. Hence, our general framework for (colored) ∗-operads is sufficiently flexible to
capture both reversing and non-reversing ∗-involutions on monoids, which correspond to
different choices of ∗-operad structures on the same underlying operad O({•},∅) = As.

In general, we have the following explicit characterization of ∗-algebras over the colored
∗-operad O(C,⊥) ∈ ∗-OpC0

(M, J, j) defined in Proposition 7.8.

7.11. Proposition. For any orthogonal category (C,⊥), there exists an isomorphism

∗-Alg(O(C,⊥)) ∼= ∗-Monrev(M, J, j)(C,⊥)

between the category of ∗-algebras over O(C,⊥) and the category of ⊥-commutative functors
from C to the category of order-reversing ∗-monoids in (M, J, j), cf. Example 7.9.

Proof. This is an immediate consequence of Theorem 7.5 together with (48), (49) and
(50).

7.12. Example. Applying this result to Example 7.7, we observe that the category of
∗-algebras over the colored ∗-operad O(Loc,⊥) is the category of locally covariant algebraic
quantum field theories endowed with ∗-involutions, ∗-Alg(O(Loc,⊥)) ∼= ∗-QFT(Loc). The
order-reversing nature of the ∗-involutions is precisely what is needed in quantum physics
[HK64, BFV03]. In complete analogy, the category of ∗-algebras over the colored ∗-operad
O(Loc/M,⊥M ) is the category of Haag-Kastler type algebraic quantum field theories on the
Lorentzian manifold M endowed with ∗-involutions, ∗-Alg(O(Loc/M,⊥M )) ∼= ∗-QFT(M).

We conclude this section with some further remarks on constructions and results that
are of interest in quantum field theory.

Change of orthogonal category adjunctions: The assignment (C,⊥) 7→ O(C,⊥) of
our colored ∗-operads is functorial

O : OrthCat −→ ∗-Op(M, J, j)
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on the category of orthogonal categories, where a morphism F : (C,⊥) → (C′,⊥′) is a
functor preserving the orthogonality relations in the sense of F (⊥) ⊆ ⊥′. Together with
Theorem 6.6, this implies

7.13. Corollary. Associated to every OrthCat-morphism F : (C,⊥)→ (C′,⊥′) there
is an adjunction

OF ! : ∗-Alg(O(C,⊥))
// ∗-Alg(O(C′,⊥′)) : OF ∗oo .

7.14. Remark. Such adjunctions have plenty of quantum field theoretic applications,
see e.g. [BSW17] and also [BDS17] for concrete examples. The results of this section
show that these adjunctions are also available in the involutive setting, which is crucial to
describe the order-reversing associative and unital ∗-algebras appearing in quantum field
theory.

States and the GNS construction: Building on the results in [Jac12], we shall briefly
explain the GNS construction for order-reversing ∗-monoids and ∗-algebraic quantum field
theories with values in an arbitrary cocomplete involutive closed symmetric monoidal
category (M, J, j). This requires some preparatory definitions and terminology.

7.15. Definition.

(a) A state (also called algebraic state) on an order-reversing ∗-monoid (A, µ, η, ∗) ∈
∗-Monrev(M, J, j) is a ∗-Obj(M, J, j)-morphism

ω :
(
∗ : A→ JA

)
−→

(
J0 : I → JI

)
.

To simplify notation, we shall write ω : A→ I for a state on A.

(b) Given any object V ∈M, define the following ∗-object structure

JV ⊗ V
τJV,V

��

∗JV⊗V
// J(JV ⊗ V )

V ⊗ JV
jV ⊗id

// J2V ⊗ JV

J2JV,V

OO

on JV ⊗ V . An inner product space in (M, J, j) is a pair (V, 〈·, ·〉) consisting of an
object V ∈M and a ∗-Obj(M, J, j)-morphism

〈·, ·〉 :
(
∗JV⊗V : JV ⊗ V → J(JV ⊗ V )

)
−→

(
J0 : I → JI

)
.

To simplify notation, we shall write 〈·, ·〉 : JV ⊗ V → I for an inner product.

(c) A ∗-representation of an order-reversing ∗-monoid (A, µ, η, ∗) ∈ ∗-Monrev(M, J, j)
on an inner product space (V, 〈·, ·〉) in (M, J, j) is a left (A, µ, η)-module structure
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` : A⊗ V → V on V that is compatible with the inner product, i.e. the diagram

JV ⊗ A⊗ V
τJV,A⊗id

��

id⊗`
// JV ⊗ V

〈·,·〉

��

A⊗ JV ⊗ V
∗⊗id⊗id

��

JA⊗ JV ⊗ V
J2A,V ⊗id

// J(A⊗ V )⊗ V
J`⊗id

// JV ⊗ V
〈·,·〉

// I

in M commutes.

7.16. Remark. Notice that there is no concept of positivity for a state ω : A→ I or an
inner product 〈·, ·〉 : JV ⊗V → I in an arbitrary involutive symmetric monoidal category
(M, J, j). That is why Definition 7.15 does not take this property into account. For certain
examples, e.g. the involutive category (VecC, (−), idIdVecC

) of complex vector spaces, one
may select positive states and positive inner products by imposing additional conditions
on the states and inner product spaces in the sense of Definition 7.15. Concretely, a state
ω : A→ C is positive if ω(a∗ a) ≥ 0, for all a ∈ A, and an inner product 〈·, ·〉 : V ⊗V → C
is positive if 〈v, v〉 ≥ 0, for all v ∈ V .

The GNS construction for order-reversing ∗-monoids in (M, J, j) is as follows.

7.17. Proposition. Let ω : A→ I be a state on (A, µ, η, ∗) ∈ ∗-Monrev(M, J, j). Then

JA⊗ A 〈·,·〉
// I

A⊗ A

∼=∗⊗id

OO

µ
// A

ω

OO

defines an inner product space structure on the underlying object A ∈ M. Moreover,
` = µ : A⊗ A→ A defines a ∗-representation of (A, µ, η, ∗) on (A, 〈·, ·〉).

Proof. This is an elementary diagram chase using in particular the property (48) for
order-reversing ∗-monoids.

7.18. Example. This concept of states and ∗-representations generalizes immediately
to ∗-algebraic quantum field theory. Let (C,⊥) be any orthogonal category and A ∈
∗-Alg(O(C,⊥)) a ∗-algebra over the corresponding algebraic quantum field theory ∗-operad.
By Proposition 7.11, A is a ⊥-commutative functor A : C → ∗-Monrev(M, J, j) with
values in the category of order-reversing ∗-monoids. The usual concept of states considered
in algebraic quantum field theory is point-wise, see e.g. [HK64, BFV03]. Concretely, we
define a state on A to be a family ωc : A(c) → I of states in the sense of Definition
7.15, for all objects c ∈ C, such that ωc′ A(f) = ωc, for every C-morphism f : c → c′.
Applying the GNS construction from Proposition 7.17, we obtain a family of inner product
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spaces (A(c), 〈·, ·〉c) and a family of ∗-representations that are functorial in c. In case C
has a terminal object t ∈ C, e.g. C = Loc/M from Example 7.3, then every choice of
state ωt : A(t) → I on the corresponding order-reversing ∗-monoid defines a state on
A via pullback ωc := ωtA(∃! : c → t) along the unique C-morphism to t. The GNS
representation for ωt : A(t)→ I then defines a ∗-representation of A on a common inner
product space (A(t), 〈·, ·〉t). Such ∗-representations are typically used for Haag-Kastler
type algebraic quantum field theories on Loc/M , cf. [HK64].

E∞-resolution and homotopy algebraic quantum field theories: The results of
this section generalize to homotopy algebraic quantum field theories [BSW18]. These
are homotopy algebras over the colored operad O(C,⊥) in the symmetric monoidal model
category ChC of chain complexes of complex vector spaces. Concretely, we shall discuss
the Σ-cofibrant resolution w : O(C,⊥) ⊗ E∞ → O(C,⊥) obtained by the component-wise
tensoring of the colored operad O(C,⊥) and the Barratt-Eccles operad E∞ from [BF04].
Algebras over the colored operadO(C,⊥)⊗E∞ play a prominent role in formalizing quantum
gauge theories, see [BSW18] for details.

As a first step, we shall equip the simplicial Barratt-Eccles operad EsSet∞ with a ∗-
structure. Transfer along the normalized chains functor N∗ : sSet → ChC then will
define a ∗-structure on the operad E∞ = N∗(EsSet∞ ) in ChC. Recall from e.g. [BF04] that
the simplicial set of n-ary operations in EsSet∞ is the nerve of the action groupoid Σn//Σn.
Explicitly, EsSet∞ (n)k := Σ×k+1

n is the set of n-ary operations of degree k. Consider now the
trivial involutive symmetric monoidal category (sSet, IdsSet, idIdsSet

) of simplicial sets. We
endow EsSet∞ with a ∗-involution similar to that on the associative operad As in Example
7.9, see also (47). Explicitly, we define ∗E : EsSet∞ → EsSet∞ as the map that sends a
tuple (σ0, . . . , σk) ∈ Σ×n+1

n to (ρnσ0, . . . , ρnσk) ∈ Σ×n+1
n , where ρn ∈ Σn is the order-

reversal permutation from Example 2.5. Clearly, this provides a ∗-object structure on the
underlying symmetric sequence, whose compatibility with the operadic composition and
unit follows from elementary properties of the permutation group.

Consider now the involutive symmetric monoidal category (ChC, (−), idIdChC
) of chain

complexes of complex vector spaces, obtained similarly to Examples 2.4 and 3.11. We
equip the symmetric monoidal normalized chains functor N∗ : sSet → ChC with the
structure of an involutive symmetric monoidal functor (N∗, ν) : (sSet, IdsSet, idIdsSet

) →
(ChC, (−), idIdChC

) by declaring νX : N∗(X)→ N∗(X) to act by complex conjugation on
C-valued chains in a simplicial set X. We define the Barratt-Eccles ∗-operad E∞ in ChC
by applying the involutive symmetric monoidal functor (N∗, ν) to the ∗-operad EsSet∞ in
simplicial sets. Combining this with the colored ∗-operad structure from Proposition 7.8,
one immediately obtains the following result.

7.19. Proposition. The component-wise tensor product of the ∗-involutions on O(C,⊥)

and E∞ defines a colored ∗-operad structure on O(C,⊥) ⊗ E∞.

7.20. Remark. Similarly to Remark 7.10, the ∗-involution on the Barratt-Eccles operad
E∞ considered above is not the only one. For example, one could replace order-reversal
permutations by identity permutations. Our choice is motivated by the fact that every
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∗-algebra over E∞ (in our sense) has an underlying order-reversing differential graded
∗-algebra. This is a consequence of the evident ∗-operad inclusion As → E∞, where As
carries the order-reversing ∗-structure from Example 7.9.
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