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A MODEL STRUCTURE ON PREDERIVATORS FOR
(∞, 1)-CATEGORIES

DANIEL FUENTES-KEUTHAN, MAGDALENA K�DZIOREK AND MARTINA
ROVELLI

Abstract. By theorems of Carlson and Renaudin, the theory of (∞, 1)-categories
embeds in that of prederivators. The purpose of this paper is to give a two-fold answer to
the inverse problem: understanding which prederivators model (∞, 1)-categories, either
strictly or in a homotopical sense. First, we characterize which prederivators arise on
the nose as prederivators associated to quasicategories. Next, we put a model structure
on the category of prederivators and strict natural transformations, and prove a Quillen
equivalence with the Joyal model structure for quasicategories.

Introduction

The notion of prederivator appeared independently and with di�erent �avours in works by
Grothendieck [Gro], Heller [Hel88] and Franke [Fra96]. A prederivator is a contravariant
2-functor D : Catop → CAT , which we regard as minimally recording the homotopical
information of a given (∞, 1)-category.

The idea is that the value D(J) at a small category J represents the homotopy category
of J-shaped diagrams of the desired homotopy theory. For example: the prederivator DC
associated to any ordinary 1-category C records the functor categories DC(J) := CJ ,
the prederivator Ho(M) associated to any model categoryM, de�ned by Ho(M)(J) :=
MJ [W−1], is obtained by inverting the classW of levelwise weak equivalences of J-shaped
diagrams inM, and the prederivator Ho(X) associated to any quasi-category X can be
realized as Ho(X)(J) := ho(XJ), where ho: sSet → Cat denotes the left adjoint to the
nerve functor.

The prederivator associated to an (∞, 1)-category of some �avour is suitably homotopy
invariant. The initial intuition might suggest that passing to prederivators would cause a
signi�cant loss of information, given that it involves taking homotopy categories. However,
as pointed out in Shulman's note [Shu], �derivators seem to su�ce for all sorts of things
that one might want to do in an (∞, 1)-category�.

A heuristic explanation can be attributed to the fact that the data of the prederivator

The second author was supported by the NWOVeni grant 639.031.757. The third author was partially
funded by the Swiss National Science Foundation, grant P2ELP2_172086.

Received by the editors 2018-10-19 and, in �nal form, 2019-11-06.
Transmitted by Kate Ponto. Published on 2019-11-13.
2010 Mathematics Subject Classi�cation: 55U35, 18G30, 18A25.
Key words and phrases: prederivator, model structure, (∞, 1)-category, quasi-category.
c© Daniel Fuentes-Keuthan, Magdalena K¦dziorek and Martina Rovelli, 2019. Permission to copy for

private use granted.

1220



A MODEL STRUCTURE ON PREDERIVATORS FOR (∞, 1)-CATEGORIES 1221

associated to X records the collection ho(XJ), where the parameter J runs over Catop,
and is therefore a true enhancement of the bare homotopy category ho(X) of the (∞, 1)-
category X. Additional evidence is given in the work of Riehl-Verity [RV15, RV], who
show that much of (∞, 1)-category theory can be recovered by truncating each functor
(∞, 1)-category XY between two (∞, 1)-categories X and Y to their homotopy category
ho(XY ).

A more rigorous validation of the fact that prederivators carry all the relevant infor-
mation of a given (∞, 1)-category was given by Renaudin in [Ren09]. He proves that
the bi-localization of the 2-category of left-proper combinatorial model structures at the
class of Quillen equivalences embeds in the 2-category of prederivators and pseudonatural
transformations. Carlson shows in [Car16] an analogous result in a di�erent framework.
He proved that the functor Ho actually gives a simplicial embedding Ho : qCat → pDer st
of the category of (small) quasicategories in that of (small) prederivators and strict natural
transformations.

Inspired by the classical theorem of Brown representability, Carlson [Car16] raised
the question of whether the essential image of Ho could be characterized. In this paper,
we provide such a characterization. More precisely, we recognise that all prederivators
of the form Ho(X) meet certain conditions, which we introduce in Section 2 under the
terminology of �quasi-representability� (Section 2.8). Essentially, a prederivator is quasi-
representable if and only if its value at the level of objects commutes with certain colimits,
its value at the level of morphisms is suitably determined by that at the level of objects,
and its underlying simplicial set is a quasi-category.

One of the main results of this paper is the following theorem, which appears in the
paper as Section 2.16 and describes which prederivators arise from quasi-categories in a
strict sense.

Theorem A A prederivator D is quasi-representable if and only if it is of the form
D ∼= Ho(X) for some quasi-category X.

Next we concentrate on the homotopical analysis, identifying a suitable notion of weak
equivalence of prederivators so that the homotopy category of pDer st is equivalent to that
of qCat . We show in Section 3.6 that this class of weak equivalences is part of a model
structure on pDer st and that this model structure is equivalent to the model structure
for quasi-categories. This is the main result of the paper, and it in particular validates
prederivators as a model of (∞, 1)-categories.

Theorem B There exists a co�brantly generated model structure on the category pDer st
of (small) prederivators and strict natural transformations that is Quillen equivalent to
the Joyal model structure on the category sSet of simplicial sets.

The desired model structure is transferred from the Joyal model structure on sSet
using a certain functor R : pDer st → sSet , which will be de�ned in Construction 1.13 and
was already used to prove [Car16, Proposition 2.9]. The methods that we use to transfer
the model structure and prove the Quillen equivalence are formal, and rely on the fact
that the functor R �ts in the middle of an adjoint triple and its left adjoint is fully faithful.
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It is interesting to observe that, despite the functor Ho : sSet → pDer st having been more
extensively studied in the history of prederivators, it cannot be used to transfer a model
structure in a standard fashion given that it does not admit an adjoint on either side.

Finally, we conclude the paper with an explicit description of the generating co�bra-
tions, and a characterization of the �brant objects and the acyclic �brations in terms of
suitable lifting properties. In particular, every quasi-representable prederivator is �brant,
and any �brant prederivator is weakly equivalent to a quasi-representable one.

Outline of the paper. In Section 1 we introduce the category pDer st of small
prederivators and strict natural transformations, and the further structure that pDer st
possesses, which will be used later in the paper. In Section 2 we identify the image of

Ho : qCat → pDer st

as the class of quasi-representable prederivators. In Section 3 we right-transfer the Joyal
model structure from sSet to pDer st along the adjunction

L : sSet � pDer st : R,

study its properties, and prove the desired Quillen equivalence.
Further directions. The Quillen equivalence from Theorem B justi�es that pred-

erivators have the same homotopy theory as quasi-categories. In future work we aim to
produce a rigorous comparison of the category theory of prederivators and that of quasi-
categories1.

The standard method to access the category theory of a model of (∞, 1)-categories
presented by a model category is to upgrade the model category to an ∞-cosmos, in the
sense of Riehl-Verity. This is done by providing a model categorical enrichment over the
Joyal model structure on simplicial sets. The model structure that we construct on the
category of prederivators is unfortunately not enriched over the Joyal model structure, so
we cannot conclude easily that the category of �brant prederivators forms an ∞-cosmos.

However, given that Carlson proves that Ho : qCat → sSet is simplicially fully faithful,
the functor Ho induces an isomorphism of ∞-cosmoi onto its image. We plan to return
to this topic in a future project and compare the 2-category of quasicategories (which has
been developed e.g. in [Joy08, Lur09, RV]) with the 2-category of (quasi-representable)
prederivators (which has been developed e.g. in [Gro13, Gro12]). Many independent
results towards comparing the properties of certain 2-categorical constructions developed
in terms of prederivators and in terms of quasi-categories have already been established;
see e.g. [LV17, Lor18, Col19].

1Roughly speaking, the homotopy theory of a model of (∞, 1)-categories is comprised of the information
stored in the homotopy category of that model. It detects, for instance, when two given (∞, 1)-categories
are equivalent to one another. On the other hand, the category theory of a model of (∞, 1)-categories
focuses on the homotopy 2-category of the model. This focuses, for instance, on whether there is an
adjunction between two given (∞, 1)-categories, whether an (∞, 1)-category is stable, or whether an
element of an (∞, 1)-category Q is the limit of a given diagram in Q.
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1. The category of prederivators

A prederivator is typically de�ned as a 2-functor Catop → CAT , where Cat denotes the 2-
category of small categories and CAT denotes the very large 2-category of large categories.
Several authors (see e.g. [Ren09, Gro13, GPS14a, Car16]) have considered the (very large)
category pDERst of (large) prederivators and strict natural transformations, and the (very
large) category pDERpseudo of (large) prederivators and pseudonatural transformations. In
this paper we are concerned with the former point of view.

We aim to study the homotopy theory of prederivators and compare it to the homotopy
theory of quasi-categories, as presented by the Joyal model structure on the category sSet
of small simplicial sets. In order to employ standard references for model category theory
and enriched category theory, we will focus on a type of prederivators that assemble into a
locally small category2. To this end, we replace the large 2-category CAT with the locally
small 2-category Cat as a target category of prederivators and we follow Grothendieck's
approach from [Gro, �1.2] in replacing the (large) indexing 2-category Catop with a smaller
one: the 2-category cat of �homotopically �nite categories�, which was already considered
e.g. by Carlson [Car16] and Muro-Raptis [MR11, MR16] (under the name of ��nite
direct categories�). With these arrangements, we show that the category of 2-functors
catop → Cat will turn out to be locally small.

1.1. Definition. [Car16, De�nition 0.3] A category J is homotopy �nite, also known
as �nite direct, if the nerve NJ has �nitely many nondegenerate simplices; equivalently,
if J is �nite, skeletal, and admits no nontrivial endomorphisms. We denote by cat the
full sub-2-category of Cat consisting of homotopy �nite categories.

1.2. Example. Any category [n] is homotopically �nite, so cat includes ∆ fully faithfully.

1.3. Example. The category containing a free isomorphism is not homotopically �nite.

1.4. Example. The category associated to any in�nite group is not homotopically �nite.

1.5. Proposition. The 2-category cat is essentially small, i.e., its class of isomorphism
classes of objects is a set and all mapping categories between two objects are small cate-
gories.

2While working with a locally small category of prederivators simpli�es the exposition, this restriction
is not necessary. An alternative approach would be to de�ne prederivators to be 2-functors Catop → CAT ,
or 2-functors Catop → Cat , which assemble into a category that is not necessarily locally small, and to
compare it with the very large category sSET of large simplicial sets. To see that all of our constructions
go through unchanged upon ascending to a larger universe, see [Low13].
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Proof.We show that the class of isomorphism classes of objects of cat is countable so in
particular a set. If we denote by Cm,n the class of isomorphism classes of homotopy �nite
categories which have precisely m objects and n arrows, then each Cm,n is �nite, and the
set of objects

Ob(cat) =
∐
m,n

Cm,n,

is therefore countable.
Next, we observe that, for any homotopically �nite categories J and K, the class

Homcat(J,K) of functors J → K is a set, given it is a subset of HomSet(Mor(J),Mor(K)).
Finally, we observe that for any homotopically �nite categories J and K and functors

F,G : J → K, the class of strict natural transformations F ⇒ G is a set, given that it is
a subset of HomSet(Ob(J),Mor(K)).

We mimic the usual de�nition of prederivator in our context.

1.6. Definition.A (small) prederivator is a 2-functor catop → Cat . We denote by pDer st
the category of (small) prederivators and (strict) natural transformations. We denote by
HompDerst(D,E) the homset between two prederivators D and E.

1.7. Proposition. The category pDer st is locally small.

Proof. Given that Cat is a locally �nitely presentable, and that cat was shown to be
an essentially small 2-category in Section 1.5, the category pDer st is an instance of the
functor category as described in [Kel82, �2.2], which is locally small.

In this paper, all prederivators will be small and all natural transformations will be
strict unless speci�ed otherwise.

1.8. Remark. Since Cat is complete and cocomplete as a 2-category, as mentioned in
[Kel82, �3.3] the category pDer st of prederivators is complete and cocomplete, with limits
and colimits computed pointwise in Cat .

The category of pDer st is the underlying category of a 2-category. The hom-categories,
which we denote by MappDerst(D,E), are given by strict natural transformations D → E
and modi�cations of such. This is discussed in more detail in [Gro13, �2.1].

As pDer st is a category of enriched presheaves, standard constructions from enriched
category theory apply.

1.9. Notation. [Kel82, �2.4] Let D : Cat → pDer st denote the Yoneda embedding, with
the representable DK at a category K being the 2-functor with values

DK(J) := KJ .

1.10. Remark. The Yoneda embedding D : Cat → pDer st preserves binary products, i.e.,
there are isomorphisms of prederivators

DJ×K ∼= DJ ×DK .

As proven in [Hel88, �4], the category pDer st is cartesian closed.
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1.11. Proposition. The category pDer st is cartesian closed, with the internal hom DE

given by
DE(J) := MappDerst(DJ × E,D).

As proven in [MR16], the above cartesian closure can be used to enrich pDer st over
sSet .

1.12. Proposition. The category pDer st is the underlying category of a simplicial cate-
gory whose hom-simplicial sets HompDerst(D,E)• are given by

HompDerst(D,E)n := Ob(ED([n])) = HompDerst(D[n] × D,E).

We remind the reader that at this point the category pDer st has three relevant en-
richments. We write Hom pDer st(D,E) to denote the homset, HompDerst(D,E)• to denote
the simplicial enrichment, and MappDerst(D,E) to denote the categorical enrichment. The
following remark clari�es the relationship between them.

1.13. Remark. For any prederivators D and E, there is a canonical map

α : HompDerst(D,E)• → N MappDerst(D,E).

The simplicial map α is induced on the set of n-simplices by postcomposition with the
underlying diagram functors

dia
[n]
J : (ED[n])(J)→ E(J)[n],

which are natural in J and assemble into a map of prederivators ED[n] → E(•)[n]. We refer
the reader to [Gro13] for more details on the underlying diagram functors.

When E = DK is represented by a category, the underlying diagram functors can be
checked to be isomorphisms and the two enrichments agree, in the sense that α becomes
an isomorphism

α : HompDerst(D, DK)• ∼= N MappDerst(D, DK).

This is not the case in general, even when E = Ho(X) is the prederivator associated
to a quasi-category X. For instance, at the level of 1-simplices the underlying diagram
functor can be identi�ed with

ho(XJ×[1])→ ho(XJ)[1],

and the corresponding map α is not bijective.

The enriched Yoneda Lemma from [Kel82, �2.4] specializes to the following.
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1.14. Proposition. There is a natural isomorphism of categories

MappDerst(DJ ,E) ∼= E(J).

In particular, the isomorphisms induce natural bijections at the level of objects

HompDerst(DJ ,E) ∼= Ob(E(J)).

Given that ∆ is a small category, that sSet is locally small and that pDer st is cocom-
plete by Section 1.8, we use [Rie14, Construction 1.5.1], which is in turn a special case
of the construction originally presented by Kan in [Kan58, �3], to obtain the following
adjunction.

1.15. Construction. The restriction D[•] : ∆ ⊂ Cat → pDer st of the Yoneda embedding
is a cosimplicial prederivator, and therefore induces an adjunction

L : sSet � pDer st : R.
The left adjoint LX is the left Kan extension of D[•] : ∆ ⊂ Cat → pDer st along the Yoneda
embedding ∆ ⊂ sSet , explicitly

LX =

∫ [n]∈∆

HomsSet(∆[n], X) ·D[n] = colim∆[ni]→X D[ni],

and the right adjoint RD, which we call the underlying simplicial set of D, is de�ned by

(RD)n := HompDerst(D[n],D) ∼= Ob(D([n])).

We now collect three properties of the functors R and L that will be needed later.

1.16. Proposition. The functor R admits a right adjoint, and in particular it preserves
colimits.

Proof. We �rst observe that the functor R can be expressed as the following composite

pDer st → Cat∆op → Set∆op

= sSet ,
where the �rst functor is the restriction along the inclusion of the discrete 2-category ∆op

into the full 2-subcategory catop of Cat , and the second functor is induced by the functor
Ob: Cat → Set . In particular, since we are considering ∆op as a discrete 2-category, the
category Cat∆op

of ordinary functors coincides with the category of 2-functors.
Knowing from Section 1.5 that cat is an essentially small 2-category, we can evoke

[Kel82, Thorem 4.50] to say that the restriction along ∆op → catop admits a right 1-
categorical adjoint, given by the enriched right Kan extension. The adjoint pair

Ob ◦− : Cat∆op

� sSet : codisc ◦ −
and the adjoint pair

(∆op ↪→ catop)∗ : pDer st � Cat∆op

: Ran∆op↪→catop

compose to an adjoint pair

R : pDer st � Cat∆op

� sSet : G,

as desired.
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1.17. Remark. For any K ∈ Cat there is a natural isomorphism of simplicial sets

RDK
∼= NK.

The functor R is also a left inverse for L.

1.18. Proposition. For any simplicial set X, the unit of the adjunction from Sec-
tion 1.15 gives an isomorphism

ηX : X ∼= RL(X).

In particular, the functor L is fully faithful and the functor R is a left inverse for L.

Proof. We �rst prove that the unit of a representable simplicial set,

η∆[n] : ∆[n]→ RL(∆[n])

is an isomorphism. The component m of the unit map,

η∆[n]m
: ∆[n]m → (RL∆[n])m,

can be identi�ed with the canonical isomorphism

∆[n]m = HomsSet(∆[m],∆[n])
∼= HomCat([m], [n])
∼= HompDerst(D[m], D[n]))
= HompDerst(D[m], L(∆[n]))
= (RL∆[n])m.

As a consequence, the unit η∆[n] is an isomorphism.
We now show that the unit ηX is an isomorphism for any simplicial set X. Given the

canonical identi�cation
φ : colim∆[ni]→X ∆[ni] ∼= X

and the fact that both R and L respect colimits, we obtain a further identi�cation

φ′ : colim∆[ni]→X(RL∆[ni]) ∼= RL(colim∆[ni]→X ∆[ni]) ∼=
RLφ // RLX .

Using the universal property of colimits and the naturality of η, a straightforward check
shows that the following diagram commutes

colim∆[ni]→X ∆[ni]

φ∼=
��

colim η∆[ni] // colim∆[ni]→X RL∆[ni],

∼=φ′

��
X ηX

// RLX

and in particular there is an isomorphism

ηX ∼= colim∆[ni]→X η∆[ni].

The right hand map is an isomorphism, given that it is a colimit of isomorphisms, and so
we conclude that ηX is an isomorphism as well.
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The functor L does not respect products, as shown by the following example. This
obstruction will play an important role in a later discussion on the (∞, 2)-categorical
nature of pDer st. See Digression 3.18 for more details.

1.19. Example. We show that the canonical map

L(∆[1]×∆[1])→ L(∆[1])× L(∆[1])

is not an isomorphism of prederivators.
First, by construction of L and by Section 1.10 we observe that

L(∆[1])× L(∆[1]) ∼= D[1] ×D[1]
∼= D[1]×[1],

while, using the fact that ∆[1]×∆[1] ∼= ∆[2]q∆[1] ∆[2], we obtain that

L(∆[1]×∆[1]) ∼= L(∆[2]q∆[1] ∆[2])
∼= L(∆[2])qL(∆[1]) L(∆[2])
∼= D[2] qD[1]

D[2].

Under these identi�cations, the comparison map can be written in the form

D[2] qD[1]
D[2] → D[1]×[1].

If we denote by Γ the span shape category • ← • → •, it is enough to show that the
induced map

f : Ob((D[2] qD[1]
D[2])(Γ))→ Ob(D[1]×[1](Γ))

which can be rewritten as

f : Ob([2]Γ)qOb([1]Γ) Ob([2]Γ)→ Ob(([1]× [1])Γ)

is not surjective. To this end, we observe that the span shape Γ→ [1]× [1], whose image
is (0, 1) ← (0, 0) → (1, 0), de�nes an object of the category ([1] × [1])Γ that is not in
the image of f . Indeed, by unravelling the de�nitions, one can see that any diagram
d′ : Γ→ [1]× [1] lying in the image of f has to factor through one of the non degenerate
2-simplices of [1]× [1].

2. Quasi-representable prederivators

The Yoneda embedding D : Cat → pDer st from Section 1.9 provides a natural way to
produce a prederivator from any category. There is in fact a canonical construction,
which appears and is an object of study in several sources such as [Gro13, GPS14b, Car16,
Len17, RV17], to extend the Yoneda embedding along the nerve inclusion N : Cat → sSet ,
and produce a prederivator from any quasi-category (and in fact from any simplicial set).
This construction makes use of the �homotopy category� of a simplicial set.
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2.1. Remark. We recall that the nerve functor admits a left adjoint ho: sSet → Cat ,
which acts as a 1-truncation, see e.g. [RV, De�nition 1.1.10] sending a simplicial set to its
homotopy category. By [RV, Lemma 1.1.12], when X is a quasi-category the homotopy
category ho(X) has as its set of objects Ob(ho(X)) := X0, and as its set of morphisms the
homotopy classes of 1-simplices of X. As de�ned in [RV, De�nition 1.1.7], two 1-simplices
f and g from x to y are homotopic if there exists a 2-simplex σ such that

d0(σ) = f, d1(σ) = g and d2(σ) = s0(x).

This set of morphisms can be described as the coequalizer

Mor(ho(X)) := coeq
(
X0 ×d2

X1
X2 ⇒ X1

)
of the structure maps induced by the faces d0, d1 : X2 → X1.

2.2. Definition. For any simplicial set X, its homotopy prederivator is the prederivator
Ho(X) that is de�ned by

Ho(X)(J) := ho(XNJ).

Upon restricting the domain, this construction de�nes a functor Ho : qCat → pDer st.

2.3. Remark. Using the isomorphism ho(NJ) ∼= J for any J ∈ Cat , one can see that
there is an isomorphism of prederivators

DJ
∼= Ho(NJ).

In [Car16], Carlson observed that this functor is simplicial when the category pDer st
is endowed with the simplicial structure recalled in Section 1.12, and he proves that it is
a simplicial embedding.

2.4. Theorem. [Car16, Theorem 2.1] The functor Ho : qCat → pDer st is simplicially
fully faithful, i.e., it induces isomorphisms of simplicial sets

Ho : MapqCat(X,X
′)• ∼= HompDerst(Ho(X),Ho(X ′))•.

The functor R provides a left simplicial inverse for Ho.

2.5. Lemma. The functor R is a left inverse for Ho, i.e., for any simplicial set X there
is a natural isomorphism of simplicial sets

RHo(X) ∼= X.

Proof. By de�nition, we obtain the natural identi�cation

(RHo(X))n := Ob(Ho(X)[n]) = Ob(ho(X∆[n])) = (X∆[n])0 = Xn,

which yields an isomorphism RHo(X) ∼= X, as desired.
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The following will be used later.

2.6. Proposition. For any simplicial set X and category K, there are isomorphisms of
prederivators

Ho(X)K ∼= Ho(XNK),

where Ho(X)K is de�ned by Ho(X)K(J) := Ho(X)(J ×K).

Proof. By direct inspection and using Section 1.10, we see that there are isomorphisms
of categories

(Ho(X)K)(J) := Ho(X)(J ×K)
∼= ho(XNJ×NK)
∼= ho((XNK)NJ)
∼= Ho(XNK)(J),

as desired.

2.7. Remark. To clarify the role played by the di�erent functors, we recap how the
di�erent functor between simplicial sets and prederivators interact with the inclusions
given by the nerve construction and the Yoneda embedding:

N : Cat → sSet and D : Cat → pDer st.

As a consequence of Sections 1.17 and 2.5, we see that the diagrams

Cat D //

N

��

pDer st

sSet
Ho

:: and Cat D //

N

��

pDer st,

Rzz
sSet

commute up to isomorphism, whereas the diagram

Cat D //

N

��

pDer st

sSet
L

::

does not. If it did, we would then obtain

L(∆[1]×∆[1]) ∼= L(N([1]× [1])) ∼= D[1]×[1]
∼= D[1] ×D[1]

∼= L∆[1]× L∆[1],

contradicting Section 1.19.

We now address the question of identifying the essential image of the functor

Ho : qCat ⊂ sSet → pDer st.

It follows from the de�nition of the functor Ho that any prederivator of the form D =
Ho(X) must send �nite coproducts to �nite products,

D(J qK) = ho(XNJqNK) ∼= ho(XNJ)× ho(XNK) = D(J)× D(K),
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but this condition is clearly not su�cient.
In this section, we will show that the prederivators of the form D = Ho(X) for some

quasi-category X are precisely the prederivators which satisfy the following three condi-
tions, which we suggestively call the �quasi-representable prederivators�.

2.8. Definition. A prederivator D : catop → Cat is quasi-representable if the following
three conditions hold.

1. For any category J ∈ cat, the counit of the adjunction (L,R)

LNJ ∼= LRHo(NJ)
εNJ−→ Ho(NJ) ∼= DJ

induces a bijection

Ob(D(J)) ∼= HompDerst(DJ ,D)
ε∗NJ−→ HompDer(LNJ,D) ∼= HomsSet(NJ,RD).

2. For any category J ∈ cat the function induced by the underlying diagram functor

dia
[1]
J : D([1]× J)→ D(J)[1]

at the level of objects realizes a coequalizer diagram

Ob
(
D([0]× J)×d2

D([1]×J) D([2]× J)
)

//
// Ob(D([1]× J))

Ob(dia
[1]
J )
// Ob

(
D(J)[1]

)
for the maps induced at the level of objects by

D([0]× J)×d2

D([1]×J) D([2]× J)
pr2 // D([2]× J)

D(d0×J) //

D(d1×J)
// D([1]× J).

3. The underlying simplicial set RD is a quasi-category.

The terminology is justi�ed by the fact that we will prove in Section 2.16 that a
prederivator is quasi-representable precisely when it is represented by a quasi-category.
We start by showing the more direct implication.

2.9. Proposition. For any quasi-category X, the prederivator Ho(X) is quasi-represent-
able.

Proof. For Condition (1) of Section 2.8, we note that for any J ∈ cat Section 2.5 yields
a natural bijection

HomsSet(NJ,RHo(X)) ∼= HomsSet(NJ,X) ∼= Ob(Ho(X)(J)),

as desired.
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In order to show that Condition (2) holds for Ho(X) for any simplicial set X, we �rst
prove it for J = [0]. In this case the diagram that we ought to show is a coequalizer is

Ob
(
Ho(X)([0])×d2

Ho(X)([1]) Ho(X)([2])
)

//
// Ob(Ho(X)([1]))

Ob(dia
[1]
[0]

)

��
Ob
(
Ho(X)([0])[1]

)
.

By the de�nition of Ho(X), this diagram can be expressed as

X0 ×d2
X1
X2 ⇒ X1 → Mor(ho(X)).

which is a coequalizer diagram by the description of the homotopy category ho(X) given
in Section 2.1.

For the general case, the diagram that we need to show is a coequalizer is

Ob
(
Ho(X)([0]× J)×d2

Ho(X)([1]×J) Ho(X)([2]× J)
)

//
// Ob(Ho(X)([1]× J))

Ob(dia
[1]
J )

��
Ob
(
Ho(X)(J)[1]

)
.

By Section 2.6, this diagram can be rewritten as

Ob
(
Ho(XNJ)([0])×d2

Ho(XNJ )([1])
Ho(XNJ)([2])

)
//
// Ob(Ho(XNJ)([1]))

Ob(dia
[1]
[0]

)

��
Ob
(
Ho(XJ)([0])[1]

)
,

and this was already observed to be a coequalizer because the prederivator Ho(XNJ)
satis�es condition (2) for J = [0].

Finally, Condition (3) is a consequence of Section 2.5, which asserts that RHo(X) ∼= X.

While Condition (3) in the de�nition above is self-explanatory, we elaborate on the
meaning of conditions (1) and (2).

2.10. Remark. Given that for every prederivator D one �nds the identi�cation

Ob
(
D(J)[1]

)
= Mor(D(J)),

Condition (2) essentially describes how the value of a quasi-representable derivator D on
morphisms is completely determined by the Set-valued functor Ob ◦D.
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Condition (1), however, seems less transparent. We now explain how it can be in-
terpreted as requiring compatibility of D with a certain class of colimits at the level of
objects.

Recall that the nerve N : Cat → sSet does not respect colimits in general. Therefore,
when taking colimits of (nerves of) categories, we need to be careful. We focus on diagrams
of the following form, for which the issue does not exist.

2.11. Definition. Let {[ni]}i : I → ∆ ⊂ Cat be a diagram. We say that the colimit of the
diagram {[ni]}i is created in sSet if the colimit in sSet of the diagram {∆[ni]}i : I → sSet ,
obtained by postcomposing with the Yoneda embedding, is the nerve of some category
J ∈ cat, i.e, if there is an isomorphism of simplicial sets

colimsSet
i∈I ∆[ni] ∼= NJ.

Since the nerve is fully faithful, by applying its left adjoint ho: sSet → Cat , we in particular
get an isomorphism of categories:

colimCati∈I [ni]
∼= J,

which justi�es the terminology3.

The following remark implies on the one hand that any category J is a colimit of a dia-
gram whose colimit is created in sSet , and on the other hand that any quasi-representable
derivator is determined on objects by its value on all [n]'s.

2.12. Remark. For every category J , the nerve NJ is a presheaf and can therefore
canonically be written as a colimit of representables ∆[ni]'s,

NJ ∼= colimsSet
∆[ni]→NJ ∆[ni],

indexed over the diagram ∆ ↓ X → ∆ (see e.g. [Hov99, �3.1]). This presentation is
natural in J . By de�nition, the colimit of this diagram is created in sSet , and we obtain
the isomorphism of categories

J ∼= colimCat[ni]→J [ni].

This essentially describes the fact that the category J can be built by taking a copy of [0]
for any object of J , a copy of [1] for any morphism of J , a copy of [2] for any commutative
triangle in J , a copy of [3] for any triple of composable arrows in J , and so on.

2.13. Proposition. A prederivator D : catop → Cat satis�es Condition (1) of Section 2.8
if and only if it satis�es the following condition.

3In particular, the colimit of a diagram {[ni]}i : I → ∆ ⊂ Cat is created in sSet according to our
de�nition if and only if it is created by the nerve functor N : Cat → sSet in the sense of the more
standard de�nition from [ML98, �V.1].
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(1') For any diagram of categories {[ni]}i with colimit created in sSet , the canonical map

D(colimCat [ni]))→ lim CatD([ni]),

induced by the map
colimpDer D[ni] → Dcolimcat[ni],

induces bijections at the level of objects

Ob(D(colimCat [ni]))) ∼= Ob(lim CatD([ni])) ∼= lim Set Ob(D([ni])).

Proof. Because we can decompose any category J as a colimit created in sSet by Sec-
tion 2.12, Condition (1) becomes immediately equivalent to the assertion that for any
colimit in sSet of the form colim ∆[ni] ∼= NJ , there is an isomorphism

Ob(D(colimCat [ni]))) ∼= HomsSet(colimsSet ∆[ni]), RD).

Now observe that for any diagram {ni}i whose colimit is created in sSet there are natural
isomorphisms

HomsSet(colimsSet ∆[ni]), RD) ∼= limSet HomsSet([ni], RD)
∼= limSet(RD)n
∼= limSet Ob(D([ni])),

and so if the isomorphism

Ob(D(colimCat [ni]))) ∼= HomsSet(colimsSet ∆[ni]), RD)

of Condition (1) holds, then so must the isomorphism

Ob(D(colimCat [ni]))) ∼= lim Set Ob(D([ni]))

of Condition (1'), and vice versa.

2.14. Example. For any C ∈ Cat , the representable prederivator DC (as described in
Section 1.9) is quasi-representable.

2.15. Example. The following prederivators fail to be quasi-representable.

1. If X is a non empty quasi-category, the prederivator E := Ho(X)qD[0] fails to satisfy
condition (1) of Section 2.8. To see this, we observe for instance that this prederivator
does not send coproducts to products, even at the level of objects:

Ob(E([0]))q [0])) = Ob((ho(X [0]q[0])q [0])
∼= Ob((ho(X ×X))q [0])
∼= Ob((ho(X)× ho(X))q [0])
6∼= Ob((ho(X)q [0])× (ho(X)q [0]))
= Ob(E([0]))×Ob(E([0])).
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2. If K is a non discrete category, the functor constant at K fails to satisfy condition (2)
of Section 2.8. To see this, we observe that the diagram

Ob(K) ⇒ Ob(K)
id−→ Mor(K),

where the parallel arrows are both identities on Ob(K), is not a coequalizer.

3. If Y is a simplicial set that is not a quasi-category, the functor Ho(Y ) fails to satisfy
condition (3) of Section 2.8, given that

RHo(Y ) ∼= Y 6∈ qCat
as follows from Section 2.5.

The terminology �quasi-representable� is justi�ed by the following.

2.16. Theorem. A prederivator D is quasi-representable if and only if it lies in the image
of Ho : qCat → pDer st, i.e., if it is of the form

D ∼= Ho(X)

for a quasi-category X.

The proof makes use of a the following result, which shows how the underlying sim-
plicial set of a quasi-representable prederivator uniquely determines the prederivator.

2.17. Lemma. The functor R re�ects the existence of an isomorphism between quasi-
representable prederivators, i.e., given two quasi-representable prederivators D and E,

if RD ∼= RE then D ∼= E.

Proof. As a consequence of Condition (1) of Section 2.8 we obtain that E and D agree
at the level of objects, namely, for any J ∈ cat there are natural bijections

Ob(D(J)) ∼= HomsSet(NJ,RD)
∼= HomsSet(NJ,RE)
∼= Ob(E(J)).

As a consequence of Condition (2) of Section 2.8, we see that E and D agree at the
level of morphisms, namely, for any J ∈ cat there are natural bijections

Mor(D(J))

coeq
(

Ob(D([0]× J)×d2

Ob(D([1]×J)) Ob(D([2]× J))) ⇒ Ob(D([1]× J))
)

coeq
(

Ob(E([0]× J)×d2

Ob(E([1]×J)) Ob(E([2]× J))) ⇒ Ob(E([1]× J))
)

Mor(E(J)).

∼=

∼=

∼=
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Finally, a straightforward check shows that the natural bijections above are compatible
with identities, source and target maps, and compositions, so that for any J ∈ cat we get
natural isomorphisms of categories

D(J) ∼= E(J),

that assemble into an isomorphism of prederivators D ∼= E, as desired.

2.18. Remark. With a variation of the argument, one could also show that the functor
R is conservative on quasi-representable prederivators, i.e., given two quasi-representable
prederivators D and E a map f : D → E is an isomorphism if and only if the simplicial
map Rf : RD→ RE is an isomorphism.

Notice also that R does not re�ect isomorphisms between non quasi-representable
prederivators. Consider for instance the map

L(∆[1]×∆[1])→ L(∆[1])× L(∆[1])

from Section 1.19. It was proven not to be an isomorphism of prederivators, but it is sent
by R to an isomorphism of simplicial sets as a consequence of Section 1.18 and of the fact
that R commutes with products.

We now �nish the proof of Section 2.16 by showing that any quasi-representable pred-
erivator D is in the essential image of Ho : qCat → pDer st.

2.19. Proposition. If a prederivator D is quasi-representable, then there is an isomor-
phism of prederivators

D ∼= Ho(RD).

Proof. By the de�nition of a quasi-representable prederivator, RD is a quasi-category.
By Section 2.5, we have an isomorphism of simplicial sets

RHo(RD) ∼= RD,

and by Section 2.17 we are able to construct an isomorphism of prederivators

Ho(RD) ∼= D,

as desired.

3. The model category of prederivators

In this section, we put a model structure on pDer st by transferring the Joyal model
structure using the functor R : pDer st → sSet , and we prove that the induced Quillen
pair is in fact a Quillen equivalence. In particular, the model category of prederivators
provides a model for the homotopy theory of (∞, 1)-categories.

For further reference, we record here the main properties for the Joyal model structure.
Denote by I the free living isomorphism category, i.e., the category containing two objects
and two inverse isomorphisms between them.
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3.1. Theorem. [Joyal] There exists a co�brantly generated model structure on the cate-
gory sSet in which

• the co�bration are precisely the monomorphisms;

• the weak equivalences are precisely the categorical equivalences;

• the �brant objects are precisely the quasi-categories;

• the �brations between quasi-categories are precisely the maps between quasi-categories
that have the right lifting properties with respect to the inner horn inclusions Λk[n] ↪→
∆[n] for n > 0 and 0 < k < n and with respect to either inclusion ∆[0]→ NI;
This model structure is co�brantly generated for formal reasons. A set of generating

co�brations is given by the boundary inclusions ∂∆[n] ↪→ ∆[n] for n > 0, but there is no
explicit description of the class of generating acyclic co�brations.

The key ingredient to construct the desired Quillen equivalence between the Joyal
model structure and the category of prederivators is a general fact about transferred
model structures in presence of a triple of adjoint functors.

3.2. Theorem. Let M be a co�brantly generated model category, N a bicomplete cate-
gory, and (L,R,G) a triple of adjoint functors

N MR

G

⊥

L

⊥

with L : M → N fully faithful. The category N admits the transferred model structure
using the functor R : N → M, where by de�nition �brations and weak equivalences are
created by R. Furthermore, with respect to this model category structure, the adjunctions

L : M� N : R and R : N �M : G

are Quillen equivalences.

3.3. Remark. Given adjoint triple of functors

N MR

G

⊥

L

⊥

if either L or G is fully faithful, so is the other outer adjoint (see e.g. [MLM94, �VII.4.1]).
In particular, in Section 3.2 one can replace the assumption of full faithfulness of L with
that of G.

We give a proof of Section 3.2 that makes use of the following version of the classical
transfer theorem (see e.g. [Hir03, Theorem 11.3.2]) and of a standard result about Quillen
equivalences, which we also recall. Alternatively, the existence of the transferred model
structure from Section 3.2 could also be obtained as a special case of [DCH19, Theorem
2.3].
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3.4. Theorem. [Quillen] LetM be a co�brantly generated model category with a set of
generating co�brations I and a set of generating acyclic co�brations J , let N be a complete
and cocomplete category, and let

L : M� N : R

be an adjunction. Suppose that the following conditions hold.

1. The left adjoint L preserves small objects; this is the case in particular when the right
adjoint preserves �ltered colimits.

2. The right adjoint R takes maps that can be constructed as a trans�nite compositions
of pushouts of elements of L(J) to weak equivalences.

Then, there is a co�brantly generated model category structure on N in which the weak
equivalences are the maps that R takes to weak equivalences in M and the �brations are
the maps that R takes to �brations in M. This model structure is co�brantly generated,
with L(I) as a set of generating co�brations, and L(J) as a set of generating acyclic
co�brations. Furthermore, with respect to this model category structure, the adjunction

L : M� N : R

is a Quillen pair.

3.5. Proposition. If in a Quillen pair L : M� N : R the right adjoint R creates weak
equivalences and the unit on any co�brant object is a weak equivalence, then the Quillen
pair is a Quillen equivalence.

Proof. To show that (L,R) is a Quillen equivalence it is enough to show that for a
co�brant X inM and a �brant Y in N , a map f : L(X) → Y is a weak equivalence in
N if and only if its adjoint f ] : X → R(Y ) is a weak equivalence inM.

We �rst observe that the derived unit atX coincides with the unit ηX , sinceR preserves
all weak equivalences, and it is therefore a weak equivalence. Given that the following
diagram commutes

X
ηX

'
//

f] ''

R(L(X))

R(f)
��

R(Y ),

the adjoint map f ] is a weak equivalence if and only if R(f) is a weak equivalence. Finally,
since R creates weak equivalences, this is true if and only if f is a weak equivalence.
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We can now prove Section 3.2.

Proof. We �rst check that the conditions of Section 3.4 hold for the adjunction (L,R).

(1) The functor R preserves all colimits since it has a right adjoint G, so in particular it
preserves �ltered colimits.

(2) Since R preserves all colimits, to check the second condition it is enough to show
that the image under RL of any generating trivial co�bration ofM is again a trivial
co�bration. We conclude observing that by assumption L is fully faithful, so the unit
of the adjunction (L,R) is a natural isomorphism RL ∼= idM.

So we obtain that the adjunction (L,R) is a Quillen pair, and we now show that it is
a Quillen equivalence. We already observed that the unit of the adjunction (L,R) is an
isomorphism. Since R preserves all weak equivalences the unit on any co�brant object is
also the derived unit. Given that R creates weak equivalences, it follows from Section 3.5
that the adjunction is a Quillen equivalence.

Finally, we notice that R is also a left Quillen functor. Indeed, it preserves generating
co�brations, since RL ∼= idM, and it preserves all weak equivalences by de�nition. It
follows that (R,G) is a Quillen pair, and we now show that it is a Quillen equivalence.
Since the left adjoint R creates weak equivalences, by the dual of Section 3.5 it is enough
to show that the counit of the adjunction (R,G) is an isomorphism. This is true because
by Section 3.3 the functor G is fully faithful.

By specializing the theorem to the triple of adjoints (L,R,G) between the categories
sSet and pDer st, we obtain the desired model structure on pDer st.

3.6. Theorem. The category pDer st admits the transferred model structure using the
functor R : pDer st → sSet , where by de�nition �brations and weak equivalences are created
by R. Furthermore, with respect to this model category structure, the adjunctions

L : sSet � pDer st : R and R : pDer st � sSet : G

are Quillen equivalences.

Proof. The Joyal model structure is co�brantly generated, as mentioned in Section 3.1,
and by Section 1.8, the category pDer st is complete and cocomplete. We also know from
Section 1.18 that the functor L is fully faithful. We can then apply Section 3.2 to the
triple of adjoint functors

pDer st sSetR

G

⊥

L

⊥

that was constructed in Section 1.
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3.7. Digression. Consider the adjunction

p∗1 : sSet � ssSet : i∗1

from [JT07, �4], where the right adjoint i∗1 restricts a bisimplicial set to its 0-th row. This
adjunction was proven in [JT07, Theorem 4.11] to be a Quillen equivalence between the
Joyal model structure on sSet and the Rezk model structure for complete Segal spaces
on ssSet .

Since the functor i∗1 also possesses a right adjoint and the functor p∗1 is fully faithful,
the adjunction above �ts into an adjoint triple

ssSet sSeti∗1
⊥

p∗1

⊥

that satis�es the conditions of Section 3.2. In particular, one can transfer the Joyal model
structure to the category of bisimplicial sets, using the functor i∗1, obtaining a Quillen
equivalence.

While the Rezk model structure and this transferred model structure are Quillen
equivalent via the identity functor, the two model structures are not equal. Indeed, a
bisimplicial set whose 0-th row is a quasi-category is not necessarily a complete Segal
space, and therefore the �brant objects do not coincide.

We now give a more explicit description of the model structure from Section 3.6 on
the category pDer st, starting with the class of co�brations.

Then we will characterize the �brant prederivators, the �brations between �brant
prederivators and the acyclic �brations in terms of suitable lifting properties. The follow-
ing results are straightforward consequences of Section 3.6 and the characterisations of
corresponding classes of maps in the Joyal model structure on sSet , which were recalled
in Section 3.1.

We begin by introducing some notation.

3.8. Notation. For n ≥ 0 and 0 ≤ k ≤ n, the k-th horn of the representable prederivator
D[n] is the prederivator

Λk
[n] := L(Λk[n]).

It comes with a canonical co�bration of prederivators

Λk
[n] → D[n]

induced by the simplicial horn inclusion Λk[n] ↪→ ∆[n].

3.9. Notation. For n ≥ 1, the boundary of the representable prederivator D[n] is the
prederivator

∂D[n] := L(∂∆[n]).
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It comes with a canonical co�bration of prederivators

∂D[n] → D[n]

induced by the simplicial boundary inclusion ∂∆[n] ↪→ ∆[n].

3.10. Corollary. A map of prederivators ϕ : D → E is a co�bration if and only if it
can be expressed as a retract of trans�nite compositions of pushouts of boundary maps
∂D[n] → D[n] for n ≥ 1.

3.11. Corollary.A prederivator D is �brant if and only if it has the right lifting property
with respect to all inner horn co�brations Λk

[n] → D[n] for n ≥ 2 and 0 < k < n.

3.12. Corollary. A map between �brant prederivators ϕ : D → E is a �bration if and
only if it has the right lifting property with respect to all inner horn co�brations Λk

[n] → D[n]

for n ≥ 2 and 0 < k < n and with respect to either of the two canonical maps D[0] → DI.

3.13. Corollary. A map of prederivators ϕ : D→ E is an acyclic �bration if and only
if it has the right lifting property with respect to all boundary co�brations ∂D[n] → D[n]

for n ≥ 1.

3.14. Proposition. Any co�bration of prederivators ϕ : D → E induces an injective
function

Ob(ϕJ) : Ob(D(J))→ Ob(E(J))

for any J ∈ cat.

Proof. The boundary co�brations ∂D[n] → D[n] induce injective functions

Ob(∂D[n](J))→ Ob(D[n](J))

for any J ∈ cat. The result now follows from the fact that the functor Ob preserves
retracts, trans�nite compositions, and pushouts.

3.15. Remark. By Condition (3) of Section 2.8, all quasi-representable prederivators are
�brant. Moreover, every prederivator is weakly equivalent to a quasi-representable one.
Indeed, if f : D → D̃ is a �brant replacement for a prederivator D, we can consider the
zig-zag

D f−→ D̃
εD̃←− LR(D̃) −→ Ho(R(D̃)),

where the last map is the adjoint of the isomorphism

R(D̃) ∼= RHo(R(D̃))

from Section 1.18. They are all weak equivalences, as a consequence of Sections 1.18
and 2.5.

Thus, the homotopy theory of (�brant) prederivators is recovered by the homotopy
theory of quasi-representable prederivators, which is isomorphic by Section 2.4 to the
homotopy theory of quasi-categories.
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Given that Ho is fully faithful from Section 2.4, the following proposition gives a
complete description of weak equivalences between prederivators that are in the image of
the functor Ho : sSet → pDer st.

3.16. Proposition. The functor Ho creates weak equivalences, i.e., a map of simplicial
sets f : X → Y is a categorical equivalence if and only if the induced map of prederivators
Ho(f) : Ho(X)→ Ho(Y ) is a weak equivalence.

Proof. Given the isomorphism RHo ∼= idsSet from Section 2.5, a map of simplicial sets
f : X → Y is a categorical equivalence if and only if

RHo(f) : RHo(X)→ RHo(Y )

is also one. Given that weak equivalences of prederivators are by de�nition created by the
functor R, this is equivalent to saying that Ho(f) : Ho(X)→ Ho(Y ) is a weak equivalence
of prederivators.

3.17. Proposition. If f : X → Y is a categorical equivalence between quasi-categories,
the induced map Ho(f) : Ho(X)→ Ho(Y ) is levelwise an equivalence of categories.

Proof. Suppose that f : X → Y is a categorical equivalence between quasi-categories.
For any category J , the induced map fNJ : XNJ → Y NJ is a categorical equivalence, since
the Joyal model structure is enriched over itself. By [Joy08, �1.12] it induces an equivalence
of homotopy categories ho(fNJ) : ho(XNJ)→ ho(Y NJ), and this is by de�nition precisely

Ho(f)(J) : Ho(X)(J)→ Ho(Y )(J),

as desired.

We conclude with a brief discussion on further directions.

3.18. Digression. With a model structure on pDer st that is Quillen equivalent to the
Joyal model structure on sSet the next natural goal is to attempt to endow the category
of �brant objects of pDer st with the structure of an ∞-cosmos, in the sense of [RV15,
De�nition 2.1.1], and to attempt to show that this ∞-cosmos is biequivalent to the ∞-
cosmos qCat of quasicategories, de�ned in [RV15, Example 2.1.4]. Having equivalent
∞-cosmoi guarantees that the 2-category theory in each ∞-cosmos is the same, so in
particular the notions of limits and colimits, adjunctions, and cartesian �brations coincide.

Mimicking what is done in similar scenarios (e.g. when starting with the model struc-
ture for complete Segal spaces, Segal categories, and 1-complicial sets, see [RV15, �2]), one
would attempt to upgrade the model structure on pDer st to one enriched over the Joyal
model structure on sSet , such that the functors L and R form a simplicial Quillen ad-
junction. The standard technique to do this is to use [RV15, Proposition 2.2.3] to transfer
the simplicial enrichment, which works whenever the left adjoint L is strong symmetric
monoidal.

However, by Section 1.19, the functor L does not preserve products. By [Rie14, Propo-
sition 3.7.10], one can deduce that the functor R is then not compatible with simplicial
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cotensors. These two equivalent conditions obstruct the simplicial enrichment on pDer st
discussed in Section 1.12 from giving an enrichment over the Joyal model structure, and
indeed prevent the simplicial lifts of L and R from even being simplicially adjoint functors.
This means that the conditions of [RV15, Proposition 2.2.3] are not satis�ed.

At this moment, the authors have been unable to provide another method to achieve
the desired∞-cosmos structure on the category of �brant prederivators using the functor
R. Nonetheless, as a consequence of Carlson's Theorem (which was stated as Section 2.4)
the simplicial category of quasi-representable prederivators is isomorphic via the functor
Ho to the simplicial category of quasicategories, which is indeed an ∞-cosmos. This in
itself allows for several interesting results, and is the subject of a future project.

In order to reconnect with the classical 2-category theory of prederivators, we also
plan to investigate Quillen equivalent variations of the model structure on prederivators,
in which there are possibly more co�brant objects and less �brant objects. The aim is
to obtain a di�erent model structure on pDer st for which the weak equivalences between
bi�brant objects are related to the well-studied 2-categorical equivalences of prederivators.
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