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DISTRIBUTORS AND THE COMPREHENSIVE FACTORIZATION
SYSTEM FOR INTERNAL GROUPOIDS

GIUSEPPE METERE

Abstract. In this note we prove that distributors between groupoids in a Barr-exact
category E form the bicategory of relations relative to the comprehensive factorization
system in Gpd(E). The case E = Set is of special interest.

1. Introduction

Distributors (also called profunctors, or bimodules) were introduced by Bénabou in [2].
A fruitful approach is that of considering distributors as kind of relations between cate-
gories (see [3], and [4, §7.8]). In the set-theoretical case, relations can be presented as
being relative to the epi/mono factorization system. As observed by Lawvere [10] such a
factorization system can be obtained from a comprehension schema: for any set Y , one
considers the comprehension adjunction

Set/Y
//

⊥ 2Yoo , (1)

where the category 2Y is the partially ordered set of the subsets of Y . For any function

X
f // Y , the (epic) unit of the adjunction provides the factorization f = m · ηf , where

m is a mono:

X

f
##

ηf // Im(f)

m
��
Y

As observed in [13], similar arguments can be used starting with the adjunction

Cat/Y
//

⊥ SetYoo ,

but climbing one dimension up produces two distinct factorizations of a given functor:
(initial/discrete opfibration) and (final/discrete fibration). The first was named compre-
hensive factorization of a functor in [13], as arising from a categorical comprehension
schema.
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A crucial point is that the two factorization systems coincide if we consider functors
between groupoids. In this note we will show that, when restricted to the category
of groupoids, distributors form a bicategory of relations relative to the comprehensive
factorization system. More precisely, we will prove this result in the case of internal
groupoids in a Barr-exact category E ; the category of groupoids is recovered for E =
Set. The key fact is the elementary observation that, for groupoids, two-sided discrete
fibrations are more simply described as usual discrete fibrations (Proposition 3.4). Then,
since distributors can be formulated in terms of two-sided discrete fibrations, we can relate
them to the comprehensive factorization system.

The internal case is of interest for some directions of research in categorical algebra
and internal category theory. For instance, concerning internal non-abelian cohomology,
Bourn has developed an intrinsic version of Schreier-Mac Lane Theorem of classification of
extensions using internal distributors in [5], and the pointed version of a class of internal
distributors, so-called butterflies, have been studied in the semi-abelian context by Abbad,
Mantovani, Metere and Vitale in [1] and by Cigoli and Metere in [6]. On the other hand,
the non-pointed version of butterflies, called fractors in [11], describe a notion of weak
map between internal groupoids, where in the case of groupoids internal in groups, one
recovers the notion of monoidal functor (see [14]).

Finally, a description of distributor composition in terms of the associated spans was
missing. With this note we aim to fill this gap, and provide a useful tool for further
investigations in the area.

2. Relations relative to a factorization system

Classically, a relation from a set A to a set B is a subset S of the cartesian product A×B.
For any two sets A and B, there is a (regular) epimorphic reflection between the preorder
of relations from A to B and the category of spans from A to B:

Rel(A,B)
iA,B

//⊥ Span(A,B) .
rA,Boo

The reflection is given by the (epi/mono) factorization: for a span

A E
e1oo e2 // B

one obtains its associated relation by taking the image rA,B(E) of the function

E
〈e1,e2〉 // A×B .

The (epi/mono) factorization system establishes also a connection between the composi-
tion of relations and the composition of spans. Indeed, given two relations, their usual
composition is precisely the reflection of their composition as spans. Globally, this means
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that there is a lax biadjunction between the 2-category of relations and the bicategory of
spans

Rel
i

//⊥ Span ,
roo

constant on objects, where only the 2-functor i is truly lax, since r is in fact a pseudo
2-functor.

More generally, one can start with any finitely complete category C endowed with
an (E/M) factorization system (see Section 5.5 in [4]). Given two objects A and B,
one defines the categories of M-relations Rel(A,B) together with the local reflections
rA,B a iA,B. Hence, it is possible to define the composition ofM-relations as the reflection
of their composition as spans, but such a composition need not be associative. As a
consequence, we do not obtain a bicategory, in general. When we do get a bicategory
Rel(C), then we call it:

the bicategory of relations in C relative to the factorization system (E/M).

This happens, for instance, when C is regular, or more generally, when (E/M) is a proper
factorization system with the class E stable under pullbacks, but these conditions are not
strictly necessary, as this article witnesses too. We will not provide further details on this
general issue, but the literature on the subject is wide. The interested reader can consult
[12] and the references therein.

3. Internal distributors and the comprehensive factorization

Distributors between internal categories have been introduced by Bénabou already in [2].
However, the cited reference is not as widely available as it would deserve, therefore we
provide a secondary source [9].

Basic facts. For the notions of internal category and internal functor in a finitely com-
plete category E , the reader can consult [9, B2.3]. An internal functor F between internal
categories C and D is represented by a diagram:

C1

d
��

c

��

F1 // D1

d
��

c

��
C0

e

OO

F0

// D0

e

OO

The functor F is a discrete fibration if and only if c · F1 = F0 · c is a pullback. It is a
discrete opfibration if and only if d · F1 = F0 · d is a pullback. Functors that are left
orthogonal to the class of discrete fibrations are called final, those that are left orthogonal
to the class of discrete opfibrations are called initial. Final functors and discrete fibrations
give a factorization system for the category of internal categories in E , and similarly so
do initial functors and discrete opfibrations.
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If C is an internal groupoid, the internal inverse map is denoted by τ : C1 → C1.
Gpd(E) is the category of internal groupoids in E . In the case of groupoids, discrete
fibrations coincide with discrete opfibrations, and final functors with initial functors.
Therefore, the two factorization systems mentioned above restrict to a single one that
we denote by (F/D). This is called comprehensive factorization system ([13]).

Let us recall that the connected components functor

Π0 : Gpd(E) // E

assigns to every internal groupoid, the coequalizer in E of its domain and codomain maps.
Since E is Barr-exact, the joint factorization of d and c through the support of the groupoid
(the image of the map 〈d, c〉) coincides with the kernel pair of such coequalizer.

Cigoli in [7] has characterized final functors between groupoids in a Barr-exact category
E .

3.1. Proposition. [7] An internal functor F : A→ B between groupoids in a Barr-exact
category E is final if and only if it is internally full and essentially surjective, i.e. if and
only if

• the canonical comparison of C1 with the joint pullback of d and c along F0 is a
regular epimorphism;

• Π0(F ) is an isomorphism.

Since we are dealing with groupoids, the first condition above can be rephrased.

3.2. Lemma. For an internal functor F : A→ B between groupoids as above, the following
statements are equivalent:

(i) the canonical comparison of C1 with the joint pullback of d and c along F0 is a
regular epimorphism;

(ii) the canonical comparison of C1 with the joint pullback of c and c along F0 is a
regular epimorphism;

(iii) the canonical comparison of C1 with the joint pullback of d and d along F0 is a
regular epimorphism.

Distributors between groupoids are discrete fibrations. The definition of
internal distributor closely follows the set-theoretical definition.

3.3. Definition. ([9]) Let A and B be internal groupoids in E. A distributor

B A�Soo

consists of the following data:
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• a span A0 S0
Loo R // B0 in E,

• a left action A1 ×
A0

S0
λS // S0 ,

• a right action S0 ×
B0

B1
ρS // S0 ,

which are associative, unital and compatible, where compatible means that the following
diagram commutes:

A1 ×
A0

S0 ×
B0

B1
1×ρS //

λS×1

��

A1 ×
A0

S0

λS

��
S0 ×

B0

B1 ρS
// S0

Distributors between two given groupoids A and B form the category Dist(A,B),
where an arrow between two distributors

α : (L, S0, R)→ (L′, S ′0, R
′)

is an arrow in the base category α : S0 → S ′0 such that L′ · α = L and R′ · α = R.
Like in the set-theoretical case, every internal distributor determines a span in Gpd(E).

For instance, the distributor S above determines the span

A SLoo R // C (2)

where the internal groupoid S has S0 as the object of objects, and the object of arrows
S1 is obtained by the pullback

S1
π2 //

π1

��

S0 ×
B0

B1

ρS

��
A1 ×

A0

S0 λS
// S0

with structure maps

d : S1
π1 // A1 ×

A0

S0
π2 // S0

c : S1
π2 // S0 ×

B0

B1
π1 // S0

and
e : S0

// S1
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is the unique morphism such that π · e = 〈e, 1〉 and π2 · e = 〈1, e〉. Finally, the internal
functors L and R are described below:

S1

d

��
c

��

π1 // A1 ×
A0

S0
π1 // A1

d

��
c

��
S0

e

OO

L0

// A0

e

OO S1

d

��
c

��

π2 // S0 ×
B0

B1
π2 // A1

d

��
c

��
S0

e

OO

R0

// B0

e

OO

The following result establishes the connection between the notion of distributor in
groupoids and that of discrete fibration.

3.4. Proposition. Giving a distributor

B A�Soo

between internal groupoids in a finitely complete category is equivalent to giving an internal
discrete fibration

S 〈L,R〉 // A× B (3)

Proof. A span (L,R) as in (2) is determined by a distributor if and only if it is a
two-sided discrete fibration. For groupoids in Set, it is easy to prove that such a span
is a two-sided discrete fibration if and only if the induced functor into the product (3)
is a discrete fibration. The result for internal groupoids follows by the usual Yoneda
embedding argument.

3.5. Remark. The notion of two-sided discrete fibration appears in the literature (al-
though implicitly) as a discretization of so-called regular spans, introduced and studied
by Yoneda in [15] (see also [8]). It is relevant to our discussion to recall that Yoneda,
in Section 3.5 of the cited paper, introduces a (generalized) composition product of two
composable regular spans as a suitable discretization of their composition as spans. This
was the starting point for our investigations on the subject.

The last proposition allows us to describe the reflection of spans into distributors.
Since (F/D) is a factorization system, we need not prove the following statement.

3.6. Proposition. Let A and B be two groupoids in a finitely complete category E. The
comprehensive factorization defines the reflection R to the inclusion of distributors into
spans, and so establishes an adjoint pair

Dist(A,B)
IA,B
//⊥ Span(A,B)

RA,Boo

with RA,B · IA,B ' idDist(A,B).
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For the span (P,Q), the reflection is obtained by the factorization

E

〈P,Q〉 ""

F // R(E)

〈L,R〉
��

A× B
where F is final, and 〈L,R〉 a discrete fibration.

Composition of distributors. In this section we assume the base category E to be
Barr-exact. Since in this case the category E admits coequalizers of reflexive pairs which
are stable under pullback, distributors can be composed.

For two composable distributors T and S

C B�Too A�Soo

their composition A0 (T ⊗ S)0
Loo R // C0 is obtained by the universal property of the

coequalizer in the first line in the diagram below

S0 ×
B0

B1 ×
B0

T0

ρS×id //

id×λT
// S0 ×

B0

T0
Q0 //

((

(T ⊗ S)0

∃!
��

A0 × C0

(4)

The action ρT⊗S is induced from ρT by pulling back along c : C1 → C0; similarly, the
action λT⊗S is induced from λS by pulling back along d : A1 → A0.

The next statement is the key result of this note. It relates distributor composition to
span composition.

3.7. Proposition. Distributor composition agrees with (the reflection of) span compo-
sition, i.e for given groupoids A, B and C, the following diagram commutes:

Dist(A,B)×Dist(B,C)
⊗ //

I×I
��

Dist(A,B)

Span(A,B)× Span(B,C) �
// Span(A,B)

R

OO

where ⊗ is the composition of distributors and � is the composition of spans.

Proof. The way the composition R · � · I×I acts on a pair of distributors S and T is
shown in the following diagram

T � S
R̄

��

L̄

��

F // R(T � S)

L̂

ww

R̂

��

S

R ��

L

��

T

R ��L��
A B C
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where the square R · L̄ = L · R̄ is a pullback in Gpd(E). Hence, we consider two factor-
izations of the functor 〈L · L̄, R · R̄〉:

T � S F //

〈L·L̄,R·R̄〉
++

Q

��

R(T � S)

〈L̂,R̂〉
��

T ⊗ S
〈L,R〉

// A× C
(5)

The first one is the comprehensive factorization, that is given by the final functor F
followed by the discrete fibration 〈L̂, R̂〉. The second one extends at the level of arrows
the factorization provided by the coequalizer diagram in (4). It consists of a functor Q
(description below) followed by the discrete fibration 〈L,R〉 representing the distributor
T ⊗S. By uniqueness of factorization, it suffices to prove that Q is final in order to prove
that these two factorizations are isomorphic.

First we need to recall that the pullback groupoid T � S is computed level wise in E ,
therefore (T � S)i = Si ×

Bi

Ti, for i = 0, 1. Moreover domain, codomain and unit maps

are given by the universal properties of such pullbacks, namely 〈d, d〉, 〈c, c〉 and 〈e, e〉
respectively.

We are ready to describe the functor Q explicitly. For internal groupoids, the internal
two-sided discrete fibration associated with T ⊗ S is a mere discrete fibration, and the
cited factorization can be represented as follows:

(T � S)1

〈d,d〉
��
〈c,c〉
��

∃!Q1 // (T ⊗ S)0 ×
A0×C0

(A1 × C1)

d̄

��
c̄

��

π2 // A1 × C1

d×d
��

c×c
��

(T � S)0 Q0

//

OO

(T ⊗ S)0 〈L0,R0〉
//

OO

A0 × C0

OO

(6)

where the downward directed squares on the right are pullbacks. By Proposition 3.1,
(Q1, Q0) is final if and only if it is internally full and essentially surjective. Therefore, the
proof of the proposition will be achieved through the proof of the following two claims.

3.8. Claim. According to Lemma 3.2 (ii) above, the comparison map K with the joint
pullback W in the diagram below is a regular epimorphism.

(T � S)1

K

((

Q1

((

〈〈c,c〉,〈c,c〉〉

&&

W

J

��

K′ // (T ⊗ S)0 ×
A0×C0

(A1 × C1)

〈c̄,c̄〉
��

(T � S)0 × (T � S)0 Q0×Q0

// (T ⊗ S)0 × (T ⊗ S)0

(7)
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Proof of Claim 3.8. Let us consider the following diagram:

(T � S)1

L

��

K

��
S0 ×

B0

B1 ×
B0

T0

H

��

W

Y

��

K′

��
Eq(Q0)

H′

��

X

��

(i)

(ii) (T ⊗ S)0 ×
A0×C0

(A1 × C1)

c̄

��

π2

��
(T � S)0 × (T � S)0

Q0×Q0

��

(iii) (T ⊗ S)0

∆

��

〈L,R〉

��

(iv) A1 × C1

c×c

��
(T ⊗ S)0 × (T ⊗ S)0 A0 × C0

The regions labelled by (ii), (iii) and (iv) are pullbacks. Indeed, (iv) is the downward
directed squares in diagram (6), (iii) defines Eq(Q0) as the kernel pair of Q0, and (ii)+(iii)
is the pullback square in diagram (7). As we observed at the beginning of this section,
Eq(Q0) is the support of the groupoid H, and the arrow H is the canonical comparison
with such a support; therefore it is a regular epimorphism. Finally, the arrow L is the
canonical projection

A1 ×
A0

S0 ×
B0

B1 ×
B0

T0 ×
C0

C1
// S0 ×

B0

B1 ×
B0

T0

Indeed, the proof of the claim now amounts to proving that the region (i) commutes: in
this case, (i) + (ii) + (iv) is precisely the definition of (T �S)1, it is a pullback, so that (i)
is a pullback too and K is a regular epimorphism (pullback of the regular epimorphism
H). The proof that (i) commutes is left to the reader, who can conveniently compose this
diagram with the monomorphism H ′.

3.9. Claim. The arrow

Π0(Q0, Q1) : Π0(T � S) // Π0(T ⊗ S)

is an isomorphism.
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Proof of Claim 3.9. Let us consider the following diagram of solid arrows, where
horizontal and vertical forks are coequalizers.

(T � S)1

〈d,d〉

��

〈c,c〉

��

Q1 // (T ⊗ S)0 ×
A0×C0

(A1 × C1)

d̄

��

c̄

��
S0 ×

B0

B1 ×
B0

T0

α

66

id×λT
//

ρS×id //
(T � S)0

Q0 //

OO

P�

��

oo (T ⊗ S)0

OO

P⊗

��

V

tt
Π0(T � S)

Π0(Q0,Q1)
// Π0(T ⊗ S)

V ′oo

(8)

Recall that (i) + (ii) + (iv) is a pullback, and let α be the canonical section of L, i.e. the
unique arrow such that

L · α = id

and
π2 ·Q1 · α = e× e · 〈L0, R0〉 ·Q0 · (id× λT )

(or equivalently,
π2 ·Q1 · α = e× e · 〈L0, R0〉 ·Q0 · (ρS × id)

since Q0 coequalizes id× λT and ρS × id).
We state the following facts.

1. Q = K ′ ·K is a regular epimorphism, since K is a regular epimorphism by Claim
1, and K ′ is the pullback of the regular epimorphism Q0 ×Q0.

2. P� coequalizes id × λT and ρS × id, since they factor through 〈d, d〉 and 〈c, c〉 via
α. Therefore, there exists a unique V as in the diagram, such that V · Q0 = P�.
Eventually, one easily check Π0(Q0, Q1) · V = P⊗.

3. V coequalizes d̄ and c̄: just precompose with the regular epimorphism Q and follow
the diagram. Therefore, there exists a unique V ′ as in the diagram, such that
V ′ · P⊗ = V .

Π0(Q0, Q1) is a regular epimorphism (since precomposed with P� is). Moreover,

V ′ · Π0(Q0, Q1) · P� = V ′ · P⊗ ·Q0 = V ·Q0 = P� ,

so that by canceling the regular epimorphism P� one sees that Π0(Q0, Q1) is also a split
monomorphism, and therefore an isomorphism.
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3.10. Remark. The arrow α described in the proof determines a natural transformation.
One can prove that α is the a 2-limit, called the identee of the internal functor 〈L·L̄, R ·R̄〉
of diagram (5). This gives a complementary viewpoint of the factorization of (5), where
the internal functor (Q0, Q1) is actually the coidentifier of α, and as such, it is at the same
time initial and final, even if we consider categories instead of groupoids. However, these
aspects will not be further examined in the present paper.

We conclude the section with the expected result.

3.11. Theorem. Let E be a Barr-exact category. Then

DistGpd(E) = Rel(Gpd(E)) w.r.t. (F/D),

i.e. the bicategory of distributors between internal groupoids in E is the bicategory of
relations in Gpd(E) relative to the (final/discrete fibration) factorization system.

Proof. Proposition 3.6 identifies D-relations, and Proposition 3.7 provides the bicategory
structure.
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Robert Paré, Dalhousie University: pare@mathstat.dal.ca
Kate Ponto, University of Kentucky: kate.ponto (at) uky.edu

Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
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