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SIX OPERATIONS FORMALISM FOR GENERALIZED OPERADS

BENJAMIN C. WARD

Abstract. This paper shows that generalizations of operads equipped with their re-
spective bar/cobar dualities are related by a six operations formalism analogous to that
of classical contexts in algebraic geometry. As a consequence of our constructions, we
prove intertwining theorems which govern derived Koszul duality of push-forwards and
pull-backs.
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1. Introduction.

The crux of the homotopical algebra of dg algebras and operads is the property of
cofibrancy. To produce explicit cofibrant resolutions of these objects one may use the
bar/cobar constructions, either by a single application to a Koszul dual object or by dou-
ble application in general. By the “Feynman transform” we refer to a generalization of
the bar/cobar construction which may be applied within categories of dg operads, cyclic
operads, modular operads, dioperads, properads, etc, and we will denote the Feynman
transform by D (a notational choice suggested by the results of this paper). We will refer
to application of the Feynman transform as (derived) Koszul duality.

The mantra of this paper holds that it is desirable to consider Koszul duality not as
an aspect of these categories separately, but rather as a construction which intertwines
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122 BENJAMIN C. WARD

the relationships (i.e. functors) between them. The paradigm is Verdier duality. Namely,
Verdier duality provides a duality theory in the category of sheaves over a fixed space, but
moreover intertwines natural operations of push-forward and pull-back associated to suit-
able continuous maps between spaces. The categorical formulations of sheaf theory and of
generalized operads via Feynman categories [KW17] tightens this analogy. In particular,
both classes of objects can be described as locally defined functors from categories whose
morphisms take a prescribed simple form. The following table presents this analogy:

Verdier Duality (sheaves) Koszul Duality (gen. operads)

Encoding Open(X), F
category category of open sets a Feynman category
Functors presheaves V-modules

Functors sheaves F-operads
+gluing axiom

Interposing Open(Y )→ Open(X) F f→ F′
functor via continuous f : X → Y

Pull-back inverse image sheaf composition
of f f ∗ − ◦ f

Push-forward direct image sheaf left Kan extension
of f f∗ Lanf (−)

Dualizing DX = RHom(−, ωX) D = (co)bar construction or
functor Feynman transform

Intertwining push-forward w/ compact support f! Novel construction
adjunction and exceptional pull-back f ! of this paper.

The existence of a pair of adjunctions intertwined by duality, along with compatible
closed monoidal structures, is sometimes known as Grothendieck’s six operations for-
malism. In the language of symmetric monoidal categories, this structure was studied
in [FHM03], who disentangled the axiomatics from their implications. Following their
work, we present the “six operations formalism” (Definition 2.1) as two pairs of adjunc-
tions which satisfy the projection formula. This structure is most useful in the presence
of compatible dualizing objects, and we call such a six operations formalism “effective”
(Definition 2.5).

To state the first result of this paper we fix a field k of characteristic zero and define
F-Ops to be the category of symmetric monoidal functors F→ dgV ectk. We recall from
[KW17] that F-Ops is a model category with level-wise weak equivalences and fibrations.
We also recall that F-Ops is a symmetric monoidal category with level-wise tensor product.
We call the unit of this monoidal structure I.
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1.1. Theorem A. Let f : F1 → F2 be a (nice) morphism of (nice) Feynman categories.
Then:

1. The standard adjunction f∗ : F1-Ops � F2-Ops : f ∗ extends to a six operations
formalism from F1-Ops to F2-Ops.

2. The six-operations formalism of (1) passes to the homotopy categories. Moreover,
it extends to an effective six-operations formalism from Ho(F1-Ops) to Ho(F2-Ops)
with dualizing object D(I2).

The appearance of the word “nice” in the theorem indicates, of course, that some
conditions are required for the theorem to hold. For the first statement, these conditions
are spelled out in Definition 4.2 and are comprised of two technical requirements about
factorization of morphisms in the image of f , along with the requirement that f is faithful
as a functor. For the second statement, we further restrict our attention to a context in-
which D is suitably defined. This context, given in [KW17], is provided by so-called
cubical Feynman categories, a notion we recall in Appendix A. While it may be possible
to weaken these requirements (discussed in section 1.13 below), we emphasize that the
theorem applies to the expected examples as we explain below in Section 9.

Let us emphasize right from the beginning that the proof of Theorem A is not sim-
ply an exercise in existence of adjoints in symmetric monoidal categories. Indeed, our
construction of the push-forward f! depends crucially on the axiomatics of a Feynman
category and uses the groupoid of vertices V ⊂ F in an essential way. This should not be
surprising in light of statement (2) of the theorem which indicates compatibility between
our constructions and the Feynman transform. However, after constructing f! we can
reduce the existence of its left adjoint f ! to an ambidexterity result at the level of the
groupoid of vertices (Lemma 3.7). After constructing the adjunction (f !, f!), the main
technical requirement is then to verify the projection formula (Proposition 4.10).

As an immediate consequence to Theorem A we find intertwining theorems at the level
of homotopy categories which state that f !D ∼ Df ∗ and f∗D ∼ Df!. As a consequence of
the explicit nature of our constructions of f ! and f!, we are able to exhibit maps realizing
these weak equivalences and to moreover show that they are actually isomorphisms:

1.2. Theorem B. Let f : F1 → F2 be as in Theorem A. Then there are isomorphisms of
functors:

f !D ∼= Df ∗ and f∗D ∼= Df!

This theorem allows us to interpret our constructions as liftings of the intertwined
push-forward and pull-back from the homotopy categories to the naive categories:

1.3. Corollary. There exist weak equivalences:

Df !D
∼→ f ∗ and Df∗D

∼→ f!

In general, the four functors which comprise the adjunctions (f∗, f
∗) and (f !, f!) are

distinct. In many cases, however, these functors satisfy some ambidexterity which (in
Section 7.6) we characterize via:
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1.4. Theorem C. (Ambidexterity Results)

1. If for every morphism ψ ∈ Mor(F2) of the form ψ : f(X) → v there exists σ ∈
Aut(v) and φ : X → w ∈ Mor(F1) with ψ = σf(φ), then (f !, f∗, f

∗) is a triple of
adjoint functors.

2. If for every morphism ψ ∈ Mor(F2) of the form ψ : Y → f(w), there exists σ ∈
Aut(Y ) and φ : X → w ∈ Mor(F1) with ψ = f(φ)σ, then (f∗, f

∗, f!) is a triple of
adjoint functors.

In the parlance of [FHM03] the first criterion then gives a necessary condition for
the “Grothendieck context” whereas the second criterion gives a necessary condition for
the “Wirthmüller context”. Interpreting Theorem C in the examples of Feynman cate-
gories built from graphs, we develop the following heuristic: inclusions often realize the
Wirthmüller context, symmetrizations often realize the Grothendieck context. We give
specific examples of these heuristics in Section 9.

The principal notion of duality on the categories F-Ops that we consider is bar-cobar
duality. However, if we restrict our attention to sub-categories of quadratic objects,
there is another candidate namely quadratic duality, denoted (−)!. There is an analog of
Theorem A for quadratic subcategories, where ⊗-product is replaced by (a generalization
of) Manin products, see Section 6. This in particular allows us to characterize when f!

and f ! can be described by intertwining with (−)!. But we emphasize that this is not
generally the case, and the quadratic story is a specialization of the general intertwining
story summarized above.

Finally, note that the intertwining theorems above rely on the existence of dualizing
objects which we created via the Feynman transform. On the other hand, our analogy
with Verdier duality suggests a way to create a dualizing object ωF by pulling back via p!,
where p is the map to the analog of a point. In Section 8 we show that these two ways of
producing dualizing objects coincide. In particular, the analog of the Verdier dual is the
Feynman transform:

1.5. Theorem D. D(−) ∼= cohom(ωF,−) in Ho(F-ops).

Morphisms from the Feynman transform correspond to Maurer-Cartan elements in an
associated L∞ algebra and the associated deformation complexes may be studied via the
following corollary (Corollary 8.7) of Theorem D:

1.6. Corollary. Given f as in Theorem A, f ! preserves dualizing objects and f! pre-
serves deformation complexes.

1.7. Applications: an overview. Let us now discuss a few applications of our results
for particular morphisms of Feynman categories. Further results and discussion can be
found in Section 9.

The derived modular envelope. There is a morphism between Feynman categories
for cyclic and modular operads given by inclusion. In this case we find the “Wirthmüller
context” and hence the triple of adjoint functors (f∗, f

∗, f!). Our results prove:
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1.8. Corollary. Let O be a cyclic operad, let f∗ be the modular envelope construction,
and let f! be extension by zero. Then there is an isomorphism of (K-twisted) modular
operads:

f∗(D(O)) ∼= D(f!(O))

This result is most interesting in the case that O is a Koszul cyclic operad, in that it
gives us a model for the derived modular envelope:

1.9. Corollary. Let O be a Koszul cyclic operad and let Lf∗ denote the derived modular
envelope. Then

Lf∗(O!) ∼ D(f!(O))

This result is particularly interesting in view of Kontsevich’s theorem [Kon93, CV03]
and generalizations, [CKV13], which relate graph complexes associated to cyclic operads
– via the functor Df! – to homology of (generalizations of) moduli spaces of Riemann sur-
faces and outer automorphisms of free groups. Corollary 1.9 allows us to alternatively view
graph homology as measuring the failure of f∗ to preserve the Koszul weak equivalence
DO ∼→ O!. As a specific application, we consider the morphism f∗(DLie) → f∗(Com),
and using known information about the Lie graph complex and the homotopy involutivity
of the Feynman transform, we compute (Calculation 9.4):

1.10. Corollary. χ(Df∗Com(1, n)) = (−1)n(n− 1)!/2.

The input for this calculation was the calculation χ(f∗DLie(1, n)) = 2n−2 of [CHKV16],
and it agrees with the results of [CGP16] as we discuss below.

Generalized Drinfeld double. We consider now the morphism φ between the
Feynman category for dioperads and the Feynman category for cyclic operads which
forgets directions on the edges of graphs.

For a dg vector space of finite type A, let A∗ denote its linear dual and define d(A) :=
A⊕A∗. We equip d(A) with the non-degenerate bilinear form 〈a⊕ η, b⊕ ξ〉 = η(b) + ξ(a).
We first must establish the “binomial theorem” for cyclic operads, which states that
φ!(End

di
A ) = Endcycd(A). We then have the following immediate consequence:

1.11. Corollary. Let O be a cyclic operad. A φ!(O)-algebra structure on A is equivalent
to an O-algebra structure on (d(A), 〈−,−〉).

Considering this result in the case O = Lie, the cyclic operad encoding Lie algebras,
we compute that φ!(Lie) is the dioperad encoding Lie bialgebras. Hence we see the
adjunction (φ!, φ!) as a generalization of the correspondence between Lie bialgebras and
so-called Manin triples established in [Dri87].

Moduli space actions on deformation complexes. Consider the notion of a
planar dioperad. This is a collection of objects O(n,m) having operations parameterized
by planar directed graphs of genus zero. The dualizing complex in the category of planar
dioperads encodes the notion of a V∞ algebra due to [TZ07].

Recall that the shifted homology of the moduli space of punctured Riemann spheres
forms an operad called the gravity operad which has a Koszul resolution by the dg operad
Grav∞. Using our result on the preservation of deformation complexes we prove:



126 BENJAMIN C. WARD

1.12. Corollary. The Lie bracket on the deformation complex of a V∞-algebra extends
to an action of a Grav∞-algebra.

More generally we emphasize the paradigm that the calculation of the dg operad of
natural operations on deformation complexes (in the sense of 6.6.4 of [KW17]) is preserved
by forgetting directions of graphs.

There are more applications to be found by applying our general results to specific
morphisms. See Section 9.

1.13. Discussion and future directions. The raison d’être of Feynman categories
[KW17] was that it would allow the study of generalizations of operads via the rather well
understood language of symmetric monoidal categories. We view the results of this paper
as a realization of this assertion. In particular we had easy access to the formulation of the
six operations formalism via symmetric monoidal categories given in [FHM03]. Of course
it is not difficult to translate our results into other languages, such as multi-categories
or algebras over colored operads. Appendix A contains a reference guide for Feynman
categories and an overview of our conventions regarding signs, parity and the Feynman
transform.

A parallel between Verdier duality and Koszul duality for operads was there from the
very beginning; see [GK94] where the authors give an interpretation of linear operads as
(nice) sheaves on a particular space, such that Verdier duality coincides with their dual
dg operad D, from which we borrow notation. Taking this work a step further, in [LV08]
the authors construct a space of metric graphs on which cyclic operads determine sheaves.
They show that the Verdier dual of the sheaf associated to O is the sheaf associated to
DO and study ensuing connections to graph complexes. Our work suggests a possible
generalization of these works along the following lines: functorially associate a space to a
cubical Feynman category F such that functors correspond to sheaves, and show that the
six operations formalism, in the classical sense, coincides with that in Theorem A. This
would give an interesting, if somewhat round-about, interpretation of the constructions
presented here.

There are several directions in which the results of this paper may be generalized.
One could consider more general base categories; interesting examples include spectra or
k[G]-modules. It is worth pointing out, however, that these generalizations will be of a
somewhat different character since it may no longer be the case that Theorem B holds on
the nose (see [War18] for an example of this). One could also look to loosen the conditions
imposed on the encoding categories, or the morphisms between them. For example, it
may be possible to loosen the faithfulness requirement of Definition 4.2 in some contexts
by a symmetrically invariant averaging over all pull backs.

Finally, we remark that there is a valuable perspective of why this structure should
exist which is internal to the language of operads. The cubical Feynman categories have
underlying colored operads which are quadratic and self-dual (up to questions of parity).
Thus, passing to an enriched context, a morphism f : F1 → F2, gives rise to a Koszul
dual morphism g : F2 → F1, and one may compare g∗ and f!. From this perspective it
is perhaps surprising to note that our conditions for the existence of f! (Definition 4.2)
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do not imply self-duality of the enriched colored quadratic operad. If one were looking
to generalize the conditions under which the six operations are expected, keeping this
perspective in mind seems particularly valuable.

1.14. Notation. In the body of the text we will not continue to use the standard sheaf
theoretic notation for the four functors f ∗, f∗, f

!, f!. Our notation and the translation is
given as:

Sheaves F-Ops Derived Quadratic
f ∗ R R R
f∗ L LD2 L
f ! R! DRD = R!D2 R(−!)!

f! L! DLD = L! L(−!)!

Other notation: k is a field of characteristic 0, dgV ectk is the category of differential
graded (dg) k-vector spaces, s(−) and t(−) associate the source and target object to a
morphism.

2. Categorical six operations formalism.

In this section we give a definition of six operations formalisms at the level of symmetric
monoidal categories. The material in this section mainly follows [FHM03], but has been
adapted a bit to the situation that we shall consider in future sections. In particular,
we will consider categories of covariant functors (as opposed to sheaves), and so all of
the natural transformations go in the opposite direction as would be expected (from the
latter) and in particular the handedness of all adjunctions is the opposite of [FHM03]. We
formalize this dichotomy by introducing a handedness (left vs. right) in the definition.

We work in the context of co-closed symmetric monoidal categories. To say a sym-
metric monoidal category (C,⊗, I) is co-closed means that there is a bifunctor denoted
cohom : C×Cop → C such that for each object a ∈ C there is an adjunction (cohom(−, a), a⊗
−).

2.1. Definition. Let B and C be co-closed symmetric monoidal categories. A (right)
six-operations formalism from B to C is the following data:

i. An adjunction f∗ : B � C : f ∗.

ii. An adjunction f ! : C � B : f!.

iii. A natural transformation π : ⊗◦(id× f!)⇒ f! ◦⊗◦ (f ∗× id) of functors (with source
and target C × B ⇒ C).

subject to the following conditions:

1. f ∗ is strong symmetric monoidal.

2. For each pair of objects c and d, πc,d : c⊗ f!(d)
∼=→ f!(f

∗(c)⊗ d) is an isomorphism.
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2.2. Remark. It may be helpful to keep the following points in mind:

• The notation f ∗ is suggestive of an “underlying” f which will exist in our examples,
but need not exist at this level of generality. The terminology “from B to C” is
suggestive of this morphism.

• The functors f∗, f
!, f! are not assumed to be symmetric monoidal. It is a consequence

of the definition that f∗ is op-lax monoidal.

• The “six” operations referred to in the terminology are (f∗, f
∗, f !, f!, cohom,⊗), even

though (of course) each category has its own (cohom,⊗) adjunction.

• The maps πc,d will be called the projection formula maps and the condition (2)
above will be called the projection formula.

• The “right” in the definition refers to the handedness of the monoidal product. We
suggest the terminology “left” for the mirror image structure having the handedness
of all three adjunctions reversed. This would encompass the examples appearing in
sheaf theory and in the treatment [FHM03].

Before examining consequences of this structure we need the notion of a dualizing
object. The units of the adjunctions (cohom(−, a), a⊗−) give rise to co-evaluation maps
b→ a⊗ cohom(b, a) ∼= cohom(b, a)⊗ a. Taking the adjoint we have maps

ηba : cohom(b, cohom(b, a))→ a.

2.3. Definition. An object b in a co-closed symmetric monoidal category C is dualizing
if ηba is an isomorphism for every object a ∈ C.

Give an object b we define the contravariant functor Db(−) := cohom(b,−).

2.4. Lemma. The six operations formalism has the following consequences:

1. There are isomorphisms of functors:

Df !(ω)f
∗ ∼= f !Dω and f∗Df !(ω)

∼= Dωf!

2. If ω ∈ C is a dualizing object, there are isomorphisms of functors:

Df !(ω)f
∗Dω
∼= f ! and Dωf∗Df !(ω)

∼= f!

3. If f !(ω) ∈ B is a dualizing object, there are isomorphisms of functors:

f ∗ ∼= Df !(ω)f
!Dω and f∗ ∼= Dωf!Df !(ω)
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Proof. Using adjointness and the projection formula we see that, for every pair of objects
c1, c2 ∈ ob(C), there are natural isomorphism of functors B → Set of the form:

HomB(cohom(f !(c1), f ∗(c2)),−) ∼= HomC(c1, f!(f
∗(c2)⊗−)) (2.1)

∼= HomC(c1, c2 ⊗ f!(−))
∼= HomB(f !(cohom(c1, c2)),−).

Statement (1) then follows from the Yoneda lemma (evaluating at ω = c1). Statements
(2) and (3) follow from the definition of dualizing.

Let us emphasize that the structure of a six operations formalism is not inherently
interesting, e.g. we might take all four functors to be zero. But the preceding lemma
shows that if one is interested in such a dualizing functor, it can be studied in particular
cases via the six operations, due to statement (1). On the other hand, if one is interested
in the six operations to begin with, finding dualizing objects will permit the study of
these functors via statements (2) and (3). In particular, this structure is most useful in
the presence of such dualizing objects, hence we make the following definition:

2.5. Definition. An effective six-operations formalism from B to C is a six-operations
formalism from B to C and a dualizing object ω ∈ C such that f !(ω) is dualizing.

3. Quillen adjunctions from morphisms of Feynman categories.

The six operations formalisms that we consider in this paper will be associated to mor-
phisms of Feynman categories. We remind the reader that additional prerequisites, ref-
erences, and technical assumptions related to Feynman categories appear in Appendix
A.

Fix a morphism of Feynman categories φ : F1 → F2 and a cocomplete and closed
symmetric monoidal category C. Associated to φ there is an adjunction:

Lφ : F1-OpsC � F2-OpsC : Rφ

in which Rφ is given by composition, Rφ(O) = O◦φ, and Lφ is given by left Kan extension,
Lφ(P) = Lanφ(P). We often suppress the subscript if φ is fixed. This adjunction gives
rise to the following not necessarily commutative square of adjunctions. We emphasize to
the reader that these functors and their accompanying notation will be used frequently
throughout.

V1-ModsC
F1 //

l

��

F1-OpsC
G1

oo

L

��
V2-ModsC

r

OO

F2 // F2-OpsC
G2

oo

R

OO
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Here (F,G) and (l, r) are adjunctions which arise for the particular morphisms of
inclusion(s) ι : V ↪→ F and restriction φ : V1 → V2.

3.1. Lemma. With respect to the diagram:

1. rG2 = G1R

2. F2l ∼= LF1

and consequently there exist natural transformations:

3. F1r ⇒ RF2

4. lG1 ⇒ G2L

Proof. The first statement: By the definition of a morphism of Feynman categories,
ι2φ = φι1. Thus if O ∈ F2-OpsC and v ∈ ob(V1), then:

r(G2(O))(v) := G2(O)(φ(v)) = O(ι2 ◦ φ(v)) = O(φ ◦ ι1(v)) =: G1(R(O))(v)

The second statement: follows from the first statement and the Yoneda lemma.
The third statement: F1r ⇒ F1rG2F2 = F1G1RF2 ⇒ RF2.
The fourth statement: lG1 ⇒ G2F2lG1

∼= G2LF1G1 ⇒ G2L.

3.2. Lemma. L,R, l, r are preserved by composition: Lφ1φ2 = Lφ1Lφ2, Rφ1φ2 = Rφ2Rφ1

etc.

We consider F-OpsC to be a symmetric monoidal category via the ⊗-product in C; i.e.
for X ∈ ob(F), (O ⊗P)(X) := O(X)⊗ P(X), and likewise for morphisms. Then:

3.3. Lemma. R is a symmetric monoidal functor. In particular R preserves the ⊗-unit.

3.4. Remark. If C = dgV ectk, then F-Ops is a model category whose quasi-isomorphisms
are level-wise weak equivalences ([KW17] Theorem 8.2.1). We will often be concerned with
the case in which φ is faithful, which implies that (L,R) is a Quillen adjunction ([KW17]
Lemma 8.28).

3.5. Remark. If φ is cubical (see Appendix A), then L and R preserve skew invariance
and thus restrict to an adjunction:

L− : F−1 -OpsC � F−2 -OpsC : R−

3.6. Ambidexterity. We now impose C = dgV ectk and establish the following am-
bidexterity result.

3.7. Lemma. The functors (r, l) form an adjoint pair. Explicitly, r is both a left and
right adjoint of l and vice-versa.
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Proof. First, we recall that r is given by restriction of φ to the groupoids of vertices
φ : V1 → V2 and l is given by left Kan extension of this restriction. In particular, using
our skeletal assumption (Appendix A) we may avoid colimits and just write:

lA(v) :=
⊕
w∈V1
φ(w)=v

[A(w)⊗ k[Aut(v)]]Aut(w)

We know that (l, r) form an adjoint pair, and we endeavor to show that (r, l) do as
well. For this we will construct a natural isomorphism:

HomV1-Mods(rE,A) ∼= HomV2-Mods(E, lA)

To begin, suppose we are given λ : rE → A and we will construct ψ : E → lA. We thus
start with an Aut(w)-equivariant map λw : E(φ(w)) → A(w) for each w ∈ V1. We will
define an Aut(v)-equivariant map ψv : E(v) → lA(v) as the direct sum of morphisms
indexed over the objects of V1:

ψw : E(φ(w))→ [A(w)⊗ k[Aut(φ(w))]]Aut(w)

Explicitly: ψv = ⊕w 7→vψw. Define ψw by:

ψw(x) =
1

|Aut(w)|
∑

σ∈Aut(v)

[λw(σx)⊗ σ−1]

Notice that each ψw is Aut(v)-equivariant, and thus ψv is. Here we are using that Aut(v)
acts on the right factor only (on the left hand side of the right factor). It may be
the case that there does not exist a w with φ(w) = v, in which case the definition
results in an empty sum and hence ψv = 0. Whence the map: HomV1-Mods(rE,A) →
HomV2-Mods(E, lA).

An inverse to this map is given as follows. Suppose we are given ψ : E → lA. For
w ∈ V1 restricting to the w-summand (as above) we have a map:

ψw : E(φ(w))→ [A(w)⊗ k[Aut(φ(w))]]Aut(w)

Writing v := φ(w), this map is Aut(v)-equivariant (since Aut(v) acts on each summand
of lA(v) individually). For x ∈ E(v) we may write: ψw(x) = [

∑
g∈Aut(v) yg ⊗ g], and we

define λw : E(φ(w))→ A(w) by:

λw(x) =
∑

h∈Aut(w)

h · yφ(h)

Having given the construction, the remaining details of the proof are straightforward.
One can easily check that λ is well defined and Aut(w)-equivariant, and then that the
assignments λ↔ ψ are inverses of each other.
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One way to view the results of this paper is that we measure the failure of ambidexterity
(Lemma 3.7) for Feynman categories which are not groupoids.

4. The functor L!.

We continue with φ : F1 → F2 as above. The purpose of this section is to give the
construction of the exceptional push-forward

L!
φ : F1-Ops→ F2-Ops

which we denote by L! if φ is fixed. In this section we also establish the intertwining
theorem DL! ∼= LD and the projection formula.

4.1. Criterion for the existence of L!. The functor L! exists quite generally but
not universally, so in the interest of restricting to when it exists we make the definition:

4.2. Definition. The functor φ is called admissible if it is faithful and satisfies the
following two “factorization axioms”. First, if φ(g) = f ◦φ(l) in Mor(F2) then f ∈ im(φ).
Second, if φ(g) = f ◦ h in Mor(F2) then there exist a decomposition g = g1 ◦ g2 and an
automorphism σ such that f = φ(g1)σ−1 and h = σφ(g2).

We will see in Section 9 that the examples of interest are in fact admissible. Let us
briefly give an informal description of why this is so. These examples relate Feynman
categories whose morphisms f have underlying graphs Γf . These graphs may carry dec-
orations and we may also impose restrictions upon which types of graphs we choose to
consider.

A factorization of a morphism f as f = h ◦ g specifies a nesting of Γf comprised of
an “external” graph Γh whose vertices are blown-up and labeled with “internal” graphs
corresponding to the components of Γg. The factorization axioms then assert that such a
nested graph appears in the image of φ if and only if both its internal nested components
and its external graph appear in the image. This will be the case for morphisms given by
inclusions of graphs, as well as for morphisms which forget or alter decorations, provided
those decorations are determined locally, i.e. at vertices.

To see that functors relating these graphical examples are faithful requires the fact
that a morphism is not specified just by its underlying graph, but carries the data of
how the graph was assembled. So to be faithful says that if we specify pre-images of
the vertices of a graph and we specify a method of assembly of our graph, then there is
at most one assembly of the pre-images whose image under φ is the graph in question.
This is clearly the case for inclusions of one class of graphs into another, but it is also
the case for forgetting decorations such as directed structures or colors, since specifying a
pre-image of the vertices remembers these decorations. Examples are discussed in Section
9.

4.3. Assumption. From now on we will assume φ is admissible unless stated otherwise.
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4.4. Definition of L!. Let P ∈ F1-Ops. We first define the V2-module underlying
L!(P): for an object v ∈ V2 we define,

L!(P)(v) := l ◦G1(P)(v) =
⊕
w∈V1
φ(w)=v

[P(w)⊗ k[Aut(v)]]Aut(w) (4.1)

where the Aut(w) subscript indicates the balanced ⊗-product, explicitly:

[p⊗ σ] = [P(λ)(p)⊗ σφ(λ−1)] for λ ∈ Aut(w), σ ∈ Aut(v), and p ∈ P(w).

and we often abuse notation by writing P(w) ⊗w k[Aut(v)] := [P(w)⊗ k[Aut(v)]]Aut(w).
Note the sum in Equation 4.1 could be empty; an empty sum is zero by definition.

On morphisms in V2, i.e. for an automorphism τ : v → v we define

L!(τ)([p⊗ σ]) = [p⊗ τσ]

and extend linearly. Note that this definition is independent of choice of representative.
Whence L!(P) as a V2-module.

We then extend L!(P) strict monoidally to all objects of F2 and it suffices to define
the image of a generating morphism f : X → v0. Let’s say X = v1 ⊗ . . . ⊗ vn. We must
then define:

n⊗
i=1

 ⊕
w∈V1
φ(w)=vi

[P(w)⊗ k[Aut(vi)]]Aut(w)

 L!(P)(f)−→
⊕
w∈V1
φ(w)=v0

[P(w)⊗ k[Aut(v0)]]Aut(w)

To do this we define the image on summands and extend linearly. To this end choose wi
so that φ(wi) = vi for i = 0, . . . , n; if ever there does not exist such a wi then the source
(if i 6= 0) or the target (if i = 0) of L!(P)(f) is 0, and so the morphism is then defined to
be 0 on these summands. We must then define:

n⊗
i=1

P(wi)⊗wi
k[Aut(vi)]

L!(P)(f)−→ P(w0)⊗w0 k[Aut(v0)]

To do this we first ask; does there exist g : ⊗ni=1 wi → w0 and σ ∈ Aut(v0) such that
f = σ ◦ φ(g)? If the answer is no we define L!(P)(f) to be 0 on this summand. If the
answer is yes, we make a choice of such g and σ and define:

L!(P)(f)(⊗i[(pi ⊗ idvi)]) := [P(g)(⊗ipi)⊗ σ]

for pi ∈ P(wi). We do this for all generating morphisms in F2. We then define:

L!(P)(f)(⊗i[pi ⊗ σi]) := L!(P)(f ◦ ⊗iσi)(⊗i[pi ⊗ idvi ])

Finally, we extend L!(P) strict monoidally over products of generating morphisms.
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4.5. Lemma. As presented above, L!(P) is a well defined symmetric monoidal functor.

Proof. Note that if L!(P) is a well defined functor then it will be symmetric monoidal
by construction. To show it is well defined we check that this definition is independent
of the choices made. First we check that the definition is independent of any choice of
representatives of coinvariants. This means checking that:

L!(P)(f)(⊗i[pi ⊗ σi]) = L!(P)(f)(⊗i[P(λ−1
i )(pi)⊗ σiφ(λi)]) (4.2)

Observe that there exists g : ⊗ni=1 wi → w0 and σ ∈ Aut(v0) such that σφ(g) =
f ◦⊗iσiφ(λi) if and only if there exists g′ : ⊗ni=1wi → w0 and σ′ ∈ Aut(v0) with σ′φ(g′) =
f ◦ ⊗iσi. If there does not exist such g, σ and g′, σ′ then equation 4.2 holds since both
sides are zero.

So let’s assume there exist such g, σ and g′, σ′, which are thus related by g = g′ ◦⊗iλi
and σ = σ′. We have:

L!(P)(f)(⊗i[P(λ−1
i )(pi)⊗ σiφ(λi)]) = L!(P)(f ◦ ⊗σiφ(λi))(⊗i[P(λ−1

i )(pi)⊗ idvi ])
= [P(g)(⊗iP(λ−1

i )(⊗ipi))⊗ σ]

= [P(g ◦ ⊗iλ−1
i )(⊗ipi)⊗ σ]

= [P(g′)(⊗ipi)⊗ σ] = L!(P)(f ◦ ⊗iσi)(⊗i[pi ⊗ idvi ])
= L!(P)(f)(⊗i[pi ⊗ σi])

as desired.
Next we check that the definition is independent of any choice of decomposition of

f = σ◦φ(g) as above. To this end suppose f = σ1◦φ(g1) = σ2◦φ(g2) for gj : ⊗ni=1wi → w0

and σj ∈ Aut(v0); j = 1, 2. Then by the factorization axioms (see Definition 4.2) we know
that there exists λ ∈ Aut(w0) such that φ(λ) = σ−1

2 σ1. Thus φ(λg1) = φ(g2) and hence
faithfulness implies λg1 = g2. Thus on Aut(w0) coinvariants we have:

[P(g1)(⊗ipi)⊗ σ1] = [P(λ−1g2)(⊗ipi)⊗ σ2φ(λ)] = [P(g2)(⊗ipi)⊗ σ2]

as desired.
Finally it remains to check L!(P) is a functor: i.e. that it respects composition of

morphisms. Let f : X = ⊗ni=1vi → v0 as above and let hi : ⊗j∈Ji ⊗uj → vi and h = ⊗hi,
and we will check the composition f ◦h on the exterior summand indexed by Y := ⊗j∈Jyj
where φ(yj) = uj for J = tni Ji and by y0 := w0

φ7→ v0.
We will check for qj ∈ P(yj) and τj ∈ Aut(uj) that;

L!(P)(f ◦ h)(⊗j[qj ⊗ τj]) = L!(P)(f)(L!(P)(h)(⊗j[qj ⊗ τj])) (4.3)

And if we define h′ = h ◦ ⊗jτj, this reduces to checking:

L!(P)(f ◦ h′)(⊗j[qj ⊗ iduj ]) = L!(P)(f)(L!(P)(h′)(⊗j[qj ⊗ iduj ])) (4.4)
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To show this we ask: does there exists a g : Y → y0 and σ ∈ Aut(v0) such that
φ(g) = σf ◦h′? First suppose there does not exist such a g, σ. Then by definition the left
hand side of 4.4 is 0. Arguing by contradiction, it is easy to see that if the right hand side
is not 0 then there would exist such a g, σ. And so the right hand side must also be 0.

So now let us assume there does exist such a g, σ with φ(g) = σf ◦ h′. By the
factorization axioms we can choose m and l with h′ = αφ(m) and σf = φ(l)α−1. By
the axioms of a Feynman category we can decompose α (resp. m) as a ⊗-product of
automorphisms α = ⊗ni=1αi (resp. generating morphisms m = ⊗ni=1mi). Then,

L!(P)(f)(L!(P)(h′)(⊗j[qj ⊗ iduj ])) = L!(P)(f)(⊗i[P(mi)(⊗Jiqj)⊗ αi])
= L!(P)(f ◦ α)(⊗i[P(mi)(⊗Jiqj)⊗ idvi ])
= [P(l)(⊗iP(mi)(⊗Jiqj))⊗ σ−1]

= [P(l ◦m)(⊗Jqj)⊗ σ−1]

= L!(P)(f ◦ h′)([⊗Jqj ⊗ iduj ])

as desired.

The construction of L!(−) is easily seen to be natural in the argument, hence this
lemma tells us:

4.6. Corollary. The above construction specifies a functor L! : F1-Ops→ F2-Ops.
Recall (Appendix A) that a cubical Feynman category F admits a category of skew

invariant functors F−-Ops. If the morphism φ preserves degree then it will preserve
skew-invariance. We thus conclude:

4.7. Corollary. If φ is cubical, the above construction specifies a functor L! : F−1 -Ops→
F−2 -Ops.

Finally we record a relationship between L and L!:

4.8. Lemma. Inclusion gives a natural transformation Id ⇒ RL!.

Proof. Given P ∈ F1-Ops we define P(w) → P(w) ⊗w k[Aut(φ(w))] ⊂ L!(P)(φ(v)) by
inclusion via the identity on the right hand side. Since the image of L!(P) on morphisms is
given by pulling back, it is straightforward to show this induces a morphism P → RL!(P)
in the category F1-Ops.

From this lemma one may construct an adjoint natural transformation L ⇒ L!. Al-
though not built into the axiomatics of our formulation of the six operations, such a
natural transformation often exists in examples; see Remark 4.5 of [FHM03].

4.9. The projection formula. Using the definition of L! given above, we now prove:

4.10. Proposition. For P ∈ F1-Ops and O ∈ F2-Ops, there is a natural isomorphism:

O ⊗ L!(P) ∼= L!(R(O)⊗ P).
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Proof. We start by comparing the underlying V2-modules. Fix v ∈ V2. On the left hand
side we have:

L!(R(O)⊗ P)(v) =
⊕
φ(w)=v

(O(v)⊗ P(w))⊗w k[Aut(v)]

and on the right hand side we have:

(O⊗L!(P))(v) = O(v)⊗
⊕
φ(w)=v

(P(w)⊗w k[Aut(v)]) ∼=
⊕
φ(w)=v

O(v)⊗(P(w)⊗w k[Aut(v)])

so we define a map βv : (O⊗L!(P))(v)→ L!(R(O)⊗P)(v) as the direct sum over φ(w) = v
of the map

O(v)⊗ (P(w)⊗w k[Aut(v)])
β−→ (O(v)⊗ P(w))⊗w k[Aut(v)]

β(q ⊗ [p⊗ σ]) = [(O(σ−1)(q)⊗ p)⊗ σ]

One easily sees that βv is well defined. In addition β is Aut(v) equivariant (since the
induced action is diagonal on the left hand side and only on the right factor of the right
hand side). Finally one sees (eg by exhibiting an inverse) that βv is an isomorphism. We
extend β strict monoidally on objects via β⊗vi := ⊗βvi and it remains to show that this
morphism of V2-modules respects composition.

For this it is enough to check a generating morphism and for a generating morphism
f : ⊗ni=1 vi → v0 in F2 it is enough to check on each summand. I.e. we fix wi with
φ(wi) = vi and we shall show that the following diagram commutes:

n⊗
i=1

O(vi)⊗ (P(wi)⊗wi
k[Aut(vi)])

(O⊗L!(P))(f)

��

β⊗vi //
n⊗
i=1

(O(vi)⊗ P(wi))⊗wi
k[Aut(vi)]

L!(R(O)⊗P)(f)

��
O(v0)⊗ (P(w0)⊗w0 k[Aut(v0)])

βv0 // (O(v0)⊗ P(w0))⊗w0 k[Aut(v0)]

Note, as above, if ever there does not exist such wi then both compositions are 0.
Let ⊗i(qi ⊗ [pi ⊗ σi]) be an element in the top left. We ask the question: does there

exist σ ∈ Aut(v0) and g : ⊗ni=1wi → w0 such that f ◦⊗iσi = σ ◦φ(g). If the answer is no,
both compositions are 0. If the answer is yes then tracing this element down then right
we have

βv0(O(f)(⊗qi)⊗ [P(g)(⊗ipi)⊗ σ]) = [O(σ−1 ◦ f)(⊗qi)⊗ P(g)(⊗ipi)⊗ σ]

while tracing this element right then down we have:

[(R(O)⊗ P)(g)(⊗i(O(σ−1
i )(qi)⊗ pi))⊗ σ] = [R(O)(g)(⊗iO(σ−1

i )(qi))⊗ P(g)(⊗ipi)⊗ σ]

but R(O)(g)(⊗iO(σ−1
i )(qi)) = O(φ(g))(⊗iO(σ−1

i )(qi)) = O(φ(g) ◦ ⊗σ−1
i )(⊗qi) =

O(σ−1 ◦ f)(⊗qi) whence the claim.
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4.11. Remark. Let us conclude this subsection by observing that if φ is cubical, the
description of F−-Ops ⊂ F̂-Ops as the skew-invariant functors (Appendix A) makes it
clear, simply by restriction, that the projection formula holds in the category F−2 -Ops.

4.12. The Intertwining theorem. We continue to consider an admissible morphism
of Feynman categories φ : F1 → F2, but we now further assume that φ is cubical. In
particular this allows us to consider the Feynman transform in the categories F1-Ops and
F2-Ops, which we denote by D (after Appendix A).

4.13. Theorem. DL! ∼= LD

Proof. Keeping with our conventions of suppressing superscripts, (see Appendix A),

we emphasize that this is really two statements: D+L!+ ∼= L−D+ and D−L!− ∼= L+D−

(after Remark 3.5 and Corollary 4.7). However, the argument that we use is completely
symmetric.

Let P ∈ F1-Ops. First, if we forget the differentials and merely consider the underlying
graded F2-Ops, we see:

DL!(P) ∼= F2(l(G1(P)∗)) ∼= L(F1(G1(P)∗)) = LD(P) (4.5)

where ∗ means linear dual.
So it remains to check that this isomorphism respects the Feynman transform differ-

entials on both sides. Let ew ⊂ Iso(F1 ↓ w) be the full subcategory whose objects are the
degree 1 morphisms of F1. Recall (section 7.3 of [KW17]) that the differential in D(P) is
defined as a composite of the form:

F1(P∗)(w)→ colimIso(F1↓w)(lime(−)
P∗ ◦ s)→ F1(P∗)(w).

This composite may be expressed in adjoint form, by restricting to the subspace P(w)∗ ⊂
F1(P∗)(w), as the composite

P(w)∗
∂w−→ limew(P∗ ◦ s) Σ→ colimew(P∗ ◦ s)→ colimIso(F1↓w)(P∗ ◦ s) = G1F1(P∗)(w)

where ∂w is the universal map associated to the obvious cone: (X → w) 7→ (P∗(w) →
P∗(X)). As a result, the differential in L(D(P)) is the adjoint of the following sequence
of V1-modules:

P(w)∗
∂w−→ limew(P∗ ◦ s)→ G1F1(P∗)(w)

id⇒RL−→ G1RLF1(P∗)(w)

The differential on LD(P) transfers via the above isomorphism (equation 4.5) of V2-
modules to an a priori new differential on DL!(P) which is the adjoint of:

P(w)∗
∂w−→ limew(P∗ ◦ s)→ G1F1(P∗)(w)

id⇒RL−→ G1RLF1(P∗)(w) ∼= rG2F2l(P∗)(w)
(4.6)
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On the other hand, the Feynman transform differential in D(L!(P)) is defined to be
the adjoint of the map:

lP(v)∗
∂v−→ limev(lP∗ ◦ s) Σ→ colimev(lP∗ ◦ s)→ colimIso(F2↓v)(lP∗ ◦ s) = G2F2(lP∗)(v)

To compare these two differentials we take the l adjoint of the sequence of V1-modules
in equation 4.6 to get a sequence of V2-modules:

l(P∗) l(∂∗)−→ l(lime∗(P∗ ◦ s))→ ...

Now fix v ∈ V2. We claim that there exists a commutative triangle:

lP(v)∗
l(∂∗) //

∂v ''

l(lime∗(P∗ ◦ s))(v)

η
uu

limev(lP∗ ◦ s)

Where η is the universal map given by realizing, for each w, limew(P∗ ◦ s) as a cone

over limev(lP∗ ◦ s) as follows. A morphism in ev is given by a triangle X
σ→ X

f→ v where
|f | = 1 and σ ∈ Aut(X). For each such triangle, we ask if there exists a decomposition

φ(Y )
σ→ φ(Y )

f=φ(g)→ φ(w). If not the cone map is 0. If yes we map:

limew(P∗ ◦ s) ηg⊗σ−→ P∗(Y )⊗Aut(Y ) k[Aut(X)] ⊂ l(P∗)(X)

Notice this map is independent of the decomposition after passing to Aut(Y ) coinvariants.
Here ηg is the cone map limew(P∗ ◦ s)→ P∗(Y ) corresponding to g.

The fact that the diagram commutes is a consequence of the definition of L!(P) on
Mor(F2). In particular, whenever a morphism in ev can’t be pulled back the cone map
associated to the functor lP∗ ◦ s (which is given by evaluating via L!(P)) is 0, and hence
agrees with η. On the other hand, if a morphism in ev can be decomposed as above, then
the evaluation at L!(P) is given by pulling back and evaluating via P , hence the diagram
commutes.

Thus, the two differentials that we would like to compare are defined as adjoints of
the same sequence, and hence are equal.

4.14. Corollary. DLD ∼ L!

4.15. Corollary. L! preserves weak equivalences.

4.16. Compatibility with composition. We end this section by observing that L! is

compatible with composition of functors of Feynman categories. Let F1
φ→ F2

ψ→ F3 be
admissible morphisms of Feynman categories. Then:

4.17. Proposition. The composition ψ ◦ φ is admissible and there is an isomorphism
of functors L!

ψ◦φ
∼= L!

ψL
!
φ.
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Proof. First, the fact that admissibility is preserved under composition is easy to see.
Second, for P ∈ F1-Ops the underlying V3-modules, are lψlφGP and lψ◦φGP . These are
easily seen to be isomorphic, e.g. since rφrψ ∼= rψ◦φ. On summands this isomorphism
takes:

(P(w)⊗w k[Aut(v)])⊗v k[Aut(x)] ∼= P(w)⊗w k[Aut(x)]

by [[p⊗ τ ]⊗ σ] 7→ [p⊗ σψ(τ)]

We thus find that the functors L!
ψ◦φ(P) and L!

ψ(L!
φ(P)) agree on objects in F3, and it

remains to check that they agree on generating morphisms in F3. If f : X → x is such a
morphism, in order to consider L!

ψ◦φ(P)(f) we ask (Q1) does there exists g ∈ Mor(F1)
and σ ∈ Aut(x) such that f = σψ(φ(g))?

On the other hand to consider L!
ψ(L!

φ(P))(f) we first ask (Q2) does there exist h ∈
Mor(F2) and σ′ ∈ Aut(x) such that f = σ′ψ(h)? And if the answer is yes we subsequently
ask (Q3) does there exists g′ ∈Mor(F2) and τ ∈ Aut(t(h)) such that h = τφ(g′)?

The answer to (Q1) is yes if and only if the answers to both (Q2) and (Q3) are yes.
In particular given σ′, τ, h, g′ as in (Q2) and (Q3), we let g = g′ and σ = σ′φ(τ). Notice
this agrees with the isomorphism on the underlying V3-modules. If the answers are yes
then we define the image of f in both cases by pulling back and evaluating P(g) = P(g′).
If the answers are no then both sides evaluate to zero.

5. The functor R!.

We continue to posit an admissible morphism φ : F1 → F2. In this section we will construct
a left adjoint to the functor L!

φ which will be denoted R!
φ or just R! if φ is fixed. Working

by analogy to the classical example of six operations formalism in sheaf theory, we first
argue such a R! exists, and then proceed to give a description of it.

5.1. Existence of R!.

5.2. Lemma. The functor L! has a left adjoint, which we call R!.

Proof. We collect the following four facts. First, lG1 = G2L
! (equation 4.1). Second,

l is a right adjoint (Lemma 3.7). Third, the functors G1 and G2 are monadic, meaning
that there is an equivalence of categories between algebras over the monad GiFi and the
source of Gi (Theorem 1.5.6 of [KW17]). Fourth, the category F1-Ops has coequalizers
(Lemma 8.1.5 of [KW17]).

The adjoint lifting theorem for monadic functors (Theorem 4.5.6 of [Bor94]) states
that when the four hypotheses above are satisfied, the functor L! has a left adjoint.

5.3. Properties of R!. We can immediately record several properties of R! which follow
from the adjunction (R!, L!) and our work in Section 4. For example from Proposition
4.17 we see:
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5.4. Lemma. Let F1
φ→ F2

ψ→ F3 be admissible morphisms of Feynman categories. Then
there is an isomorphism of functors R!

ψ◦φ
∼= R!

φR
!
ψ.

In addition, the isomorphism lG1
∼= G2L

! and adjointness implies:

5.5. Lemma. R!F2
∼= F1r. In particular R! preserves free objects.

We now impose the condition that φ is cubical, and we would like to use the inter-
twining theorem (Theorem 4.13) to show that R! satisfies an intertwining relationship
with D and R. This requires one additional ingredient which we draw from [KW17]; that
morphisms from the Feynman transform can be described as solutions to an associated
master equation.

5.6. Theorem. R!D ∼= DR.

Proof. We use theorem 7.5.3 of [KW17] which says that morphisms from the Feynman
transform are equivalent to solutions of a so-called master equation. In particular, there
is a natural isomorphism of sets:

Hom(D(O),Q) ∼= ME(lim(G(O ⊗Q))) ∼= Hom(D(Q),O)

Thus (after Theorem 4.13) natural isomorphisms:

Hom1(R!D(O),P) ∼= Hom2(D(O), L!(P)) ∼= Hom2(DL!(P),O)
∼= Hom2(LD(P),O) ∼= Hom1(D(P), R(O)) ∼= Hom1(DR(O),P)

5.7. Corollary. DR!D ∼ R

As a consequence of this corollary, we see that, while R! doesn’t preserves weak equiv-
alences in general, it does preserve weak equivalences after applying D, i.e. after moving
to cofibrant domains. This suggests that R! may be a left Quillen functor, which it is.
In particular we saw above that L! preserves weak equivalences and it can also easily be
seen to preserve fibrations (which are levelwise surjections). Hence (R!, L!) is a Quillen
adjunction.

5.8. Description of R!. Above, we defined the functor R! as an adjoint which was seen
to exist by general principles. In the case when φ is cubical, it is possible to give a more
hands on description of the functor R!.

To begin, for E ∈ V2-Mods we can consider the adjoint of the isomorphism on
R!(F2(E)) ∼= F1(rE), which is a map F2(E) → L!(F1(rE)). Taking G2 of both sides,
using the isomorphism lG ∼= GL!, and the ambidexterity lemma (Lemma 3.7) we get a
natural transformation, which we call σ:

σ : rG2F2 = G1RF2 ⇒ G1F1r (5.1)

We use the notation σ for “sum”. In particular, σ can be informally described as sum-
ming over pre-images of a morphism. The functor R! then has the following description:
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5.9. Proposition. Let O ∼= F2(E)/〈S〉 be a presentation of O. Then

R!(O) ∼= F1(rE)/〈σ(S)〉.

Proof. We are obliged to show that F1(rE)/〈σ(S)〉 satisfies the requisite adjointness,
i.e. that there are natural isomorphisms:

Hom(F2(E)/〈S〉, L!(P)) ∼= Hom(F1(rE)/〈σ(S)〉,P)

By Lemma 5.5 we know there is a natural isomorphism:

Hom(F2(E), L!(P)) ∼= Hom(F1(rE),P)

and we consider a pair of morphisms (ψ1

∼=↔ ψ2) which correspond via this isomorphism.
Then it is a straightforward exercise to show that the following diagram commutes:

rGF2(E)
rG(ψ1) //

σ

��

rlG(P)

rl⇒id
��

GF1(rE)
G(ψ2) // G(P)

(5.2)

To prove the proposition, it is now enough to show that ψ1(s) = 0 for every s ∈ S if and
only if ψ2(σ(s)) = 0 for every s ∈ S. For this, it is enough to consider s ∈ Sv ⊂ G2F2(E)(v)
for a given v ∈ V2. If ψ1(s) = 0, then by commutativity of the diagram 5.2 we see that
ψ2(σ(s)) = 0. So it suffices to prove the other implication, for which we use contraposition.

Suppose ψ1(s) 6= 0. First, we note that this implies v ∈ im(φ) and we fix w such that
φ(w) = v and ψ1(s)|w 6= 0. We then trace ψ1(s)|w downward in diagram 5.2 by revisiting
the counit of the adjunction (r, l) from the proof of Lemma 3.7 above. If we restrict to
the w-summand and evaluate at G(P), the counit rl⇒ id gives us an Aut(w)-equivariant
map P(w)⊗Aut(w) k[Aut(v)]→ P(w) of the form:∑

g∈Aut(v)

[pg ⊗ g] 7→
∑

h∈Aut(w)

hpφ(h).

Since φ is faithful, Aut(w) is isomorphic to a subgroup of Aut(v) via φ, and we may
choose representatives of its right cosets: id = g0, g1, . . . , gm. Then each [pg ⊗ g] may be
rewritten in the form [hpφ(h)gi ⊗ gi] for some i. Thus if we define pi :=

∑
h∈Aut(w) hpφ(h)gi

then ∑
g∈Aut(v)

[pg ⊗ g] =
m∑
i=1

[pi ⊗ gi].

Therefore we may write 0 6= ψ1(s)|w =
∑m

i=1[pi ⊗ gi] for some pi ∈ P(w), and conclude
there exists j such that pj 6= 0. Then, from the commutativity of diagram 5.2, we may
conclude ψ2(σ(g−1

j s))|w = pj 6= 0 and since g−1
j s ∈ S this proves the claim.
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By assumption (see appendix A) the morphism φ respects degrees, and so σ respects
the induced grading on free objects. It follows then from the above proposition that R!

preserves quadratic objects.

6. Quadratic intertwining and Manin products.

The notion of duality on F-Ops that we thus far considered is bar-cobar duality. How-
ever, if we restrict our attention to sub-categories of quadratic objects, there is another
candidate namely quadratic duality, denoted (−)!. It is natural to ask if there exist par-
allel quadratic intertwining statements which can be seen as a formal consequence of a
six operations formalism on the quadratic categories FQ-Ops (as defined in Appendix
A). Such a result would give a description of L! and R! on these subcategories in terms
of intertwining with (−)!. Of course, such a result would require a symmetric monoidal
structure for these categories, but there is a candidate given by a generalization of Manin
products.

It turns out, however, that implementing this idea is only possible in certain cases.
The first problem is that the right adjoints L! and R do not preserve quadratic objects in
general. Additionally, a monoidal unit for Manin products requires restricting to binary
quadratic objects. These considerations lead us to present the results of this section as a
specialization of the general story told above.

For the remainder of this section we let φ be a map of cubical Feynman categories,
and refer to Appendix A for the notion of quadraticity at this level of generality. Notice
that in this context L will preserve quadraticity, since it preserves freeness and weight.

6.1. Quadratic Intertwining of L!. Let us first consider when L! preserves quadratic-
ity. Let P = F1(A)/〈T 〉 be a quadratic presentation of P ∈ F1-Ops, and consider the
following diagram:

F2(lA)

ε %%

α // L!(P)

L!F1(A)
L!(π1)

::

Here the map ε : F2(lA) ∼= L(F1(A)) → L!(F1(A)) is adjoint to the natural transfor-
mation given in Lemma 4.8 and is a level-wise surjection (as we will see below). The map
α is defined to be the composite.

We would like to show that L!(P) has quadratic presentation as L!(P) ∼= F2(lA)/ker(α).
Since α is a level-wise surjection, it remains to show that ker(α) is generated in weight
1. Clearly ker(L!(π1)) = ker(l(π1)) is generated in weight 1, thus it remains to know if
ker(ε) is generated in weight 1. For this we define:

6.2. Definition. φ is left quadratic preserving if ker(ε) is generated in weight 1.

6.3. Lemma. If φ is left quadratic preserving, L! preserves quadratic objects.
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Proof. To show L!(P) ∼= F2(lA)/ker(α) is a quadratic presentation, it remains only to
show that ε is a level-wise surjection. We analyze ε in some detail for future use.

Considering F2 ◦ l : V1-Mods → F2-Ops, then F2 ◦ l(A) = Lanφ◦ι1(A). Thus every
element in F2(lA)(v) is represented by a finite sum of pairs of the form (g,~a) where
g ∈ Mor(F2) of the form g : φ(X) → v for some X ∈ Ob(F1), and ~a ∈ A(X). Two such
pairs represent the same element if and only if they are related by some λ ∈ Aut(X)
as (g, λ(~a)) = (gφ(λ),~a). We denote equivalence classes of such pairs as [g,~a]. We may
thus write a generic non-zero element in F2(lA)(v) as

∑
j[gj,~aj] where each summand is

non-zero, and where gi 6= gjφ(λ) for any such λ, when i 6= j.
Given such a class [g,~a] we can ask, does there exist f : X → w with φ(w) = v, and a

σ ∈ Aut(v) such that g = σφ(f)? The answer to this yes-or-no question is independent of
the choice of representative, and so it determines a direct sum decomposition F2(lA)(v) ∼=
F Y

2 (lA)(v) ⊕ FN
2 (lA)(v), by letting F Y

2 (lA)(v) (resp. FN
2 (lA)(v)) be the span of those

classes in which the answer is yes (resp. no). Then the map ε sends FN
2 (lA)(v) to 0 and

[σφ(f),~a] ∈ F Y
2 (lA) to [[f,~a]⊗ σ].

We now argue that ker(ε)(v) ∼= FN
2 (lA)(v), and it suffices to show that ε is injective

when restricted to the summand F Y
2 (lA)(v). Let us show this by contradiction by setting

ε(
∑

j∈J [gj,~aj]) = 0 for a nonzero generic element in F Y
2 (lA)(v) in the above form, and

with gj = σjφ(fj), so that
∑

j[[fj,~aj] ⊗ σj] = 0. This sum is sub-indexed over the
targets of the morphisms fj, and, for such a target w 7→ v, in turn over orbits of the
rights Aut(w) action on Aut(v). Thus there exists a nonempty subset J ′ ⊂ J with∑

j∈J ′ [λjfj,~aj] = 0 in F1(A)(w) for some λj ∈ Aut(w), such that σjφ(λ−1
j ) is independent

of j ∈ J ′. Using the description of F1 as a left Kan extension, it follows that there must
be distinct indices i, l ∈ J ′ such that λifi = λlflν for some ν ∈ Aut(s(fl)) = Aut(s(fi)).
Therefore, gi = glφ(η), contradicting our choice of input.

6.4. Theorem. Let φ be left quadratic preserving and P ∈ F1-Ops quadratic. Then
L!(P) ∼= L(P !)!.

Proof. Let P = F1(A)/〈T 〉. The generators of L(P) and L!(P !)! are lA ∼= (lA∗)∗, and it
suffices to show that this isomorphism identifies their relations. For this we will use the
following diagrams:

F2(lA)

∼= %%

π // L(P)

LF1(A)
L(π1)

::
F2(lA∗)

ε &&

α // L!(P !)

L!F1(A∗)
L!(T⊥ 7→0)

99

Considering these diagrams level-wise, the relations in L(P)(v) are given by ker(π).
On the other hand, the relations in L!(P !) are given by ker(α). Using our finiteness
assumption (Assumption A.2) we may identify F2(lA∗) ∼= F2(lA)∗. It then remains to
show that ker(π)⊥ ∼= ker(α). Under the left quadratic preserving hypothesis this reduces
to showing ker(π)⊥1

∼= ker(α)1, where subscript denotes morphism degree, and where
ker(π)⊥1 := (ker(π)1)⊥.
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We continue to use the direct sum decomposition F2(lA)(v) = F Y
2 (lA)(v)⊕FN

2 (lA)(v)
as in the proof of Lemma 6.3, and likewise for F2(lA∗)(v). Fix Z ∈ ker(π)1 and Q ∈
ker(α)1. We endeavor to show Q(Z) = 0. Using the direct sum decomposition we
may write Q(Z) = (QY + QN)(ZY + ZN) = QY (ZY ) + QN(ZN). We then argue that
Z ∈ ker(π)1 ⇒ ZN = 0.

To see this, suppose that [g,~a] is a term appearing in ZN . Note that π([g,~a]) can
be described by taking the inclusion of generators ~a ∈ A(X) ↪→ P(X) and applying the
co-cone map P(X)→ L(P)(v) corresponding to g. The image of ~a in L(P)(v) is identified

with P(f)(~a) precisely when there is a factorization of g of the form φ(X)
φ(f)→ φ(Y )

σ→ v.
But by assumption, |g| = 1, so either |f | = 1 and |σ| = 0 or |f | = 0 and |σ| = 1.
The former case is excluded by the assumption that [g,~a] appears in ZN , so the latter
case must apply. But this means that f is an isomorphism, and hence the corresponding
identification was already made in the preimage L(F1(A))(v) → L(P). In particular we
conclude that π is injective on the degree 1 summand of FN

2 (lA). The description of π
above makes clear that the image of the degree 1 summands of FN

2 (lA) and F Y
2 (lA) are

disjoint, hence Z ∈ ker(π)1 ⇒ ZN = 0.
So we have Q(Z) = QY (ZY ). We may write

ZY =
∑
j∈J

[σjφ(fj),~aj] and QY =
∑
i∈I

[τiφ(hi), ~ηi]

as above (so ~aj ∈ A(s(fj)) and ~ηj ∈ A(s(hj))
∗, σj and τi automorphisms). The natural

transformation lG⇒ GL applied to the projection F1(A)→ P gives us the commutative
square,

lGF1(A)(v)

��

lG(π1) // lG(P)(v)

��
GLF1(A)(v)

GL(π1) // GL(P)(v)

whose down arrows are injective. The preimage of Z under the left downward arrow is
Ẑ :=

∑
j[fj,~aj]⊗ σj ∈ lGF (A)(v). The fact that Z ∈ ker(π) tells us that lG(π1)(Ẑ) = 0.

Partition the indexing set J into subsets Jl by saying two indices are in the same block
if and only if the corresponding terms satisfy t(fj) = t(fi) and σj = σiφ(λ) for some

λ ∈ Aut(t(fj)). The fact that lG(π1)(Ẑ) = 0 implies that for each l,
∑

j∈Jl [fj,~aj] ⊗ σj
maps to 0 in the diagram. Hence

∑
j∈Jl [fj,~aj] ∈ T .

Returning to Q we note that ε(QN) = 0, and thus QY ∈ ker(α). The description of
QY =

∑
i∈I [τiφ(hi), ~ηi] allows us to write ε(QY ) =

∑
i[hi, ~ηi] ⊗ τi ∈ lG(F1(A∗))(v), and

we thus conclude this element is in the kernel of the map lG(F1(A∗))(v) → l(GP !). As
above, we appeal to the direct sum decomposition of this space to conclude that if we
partition I into blocks Ik whose corresponding terms satisfy t(hj) = t(hi) and τj = τiφ(λ)
for some λ ∈ Aut(t(hj)), then each

∑
i∈Ik [hi, ~ηi]⊗ τi will be in the kernel of lG(T⊥ 7→ 0).

From this we conclude that
∑

i∈Ik [hi, ~ηi] ∈ T⊥.
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Since the natural transformation lG ⇒ GL is a level-wise injection, we may evaluate
QY (ZY ) by restricting to the pairing lGF (A)(v) ⊗ lGF (A∗)(v) → k; i.e. by evaluating
ε(QY )(Ẑ). Both terms are sums partitioned into blocks corresponding to a choice of a
preimage w of v and a subsequent Aut(w) orbit within Aut(v). Two different blocks of
this partition pair to 0, whereas the diagonal choices pair something in T with something
in T⊥. We thus conclude QY (ZY ) = 0.

We have now shown that if Q ∈ ker(α)1 then Q(Z) = 0 for every Z ∈ ker(π)1, from
which we conclude that ker(α)1 ⊂ ker(π)⊥1 . To show the converse, we work by contrapo-
sition. If Q 6∈ ker(α) then ε(Q) = QY 6= 0. If we write QY =

∑
i∈I [τiφ(hi), ~ηi], then we

can once again partition this sum over sources of the hi and subsequent Aut(s(hi)) orbits
of v. Picking representatives of the orbits we can write each block as

∑
i∈Ij [τφ(hi), η

′
i] for

some τ ∈ Aut(v). We may also assume that for distinct i, l ∈ Ij we never have hi = hlλ for
λ ∈ Aut(s(hi)), since otherwise we could combine these terms. Under these assumptions,
the functionals appearing in the sum QY have disjoint support.

Now, since QY 6∈ ker(α), there must exist i such that (hi, η
′) 6∈ T⊥. Let s(hi) = X.

Then η′ ∈ A(X), so we may choose ~a ∈ TX such that η′(~a) 6= 0. Then Z := [τφ(hi),~a] ∈
ker(π), but Q(Z) = η′(~a) 6= 0. Hence Q 6∈ ker(π)⊥.

6.5. Corollary. Under the conditions of Theorem 6.4, DLD(P) ∼ L(P !)!.

This result may come as a bit of an initial surprise considering that in general L pre-
serves neither weak equivalences nor Koszulity. To understand the relationships between
these notions we consider the natural maps:

DLD(P)←− DL(P !) −→ L(P !)!

In general, if P is Koszul and L preserves weak equivalences then the left arrow is a weak
equivalence. If P is Koszul and L preserves Koszulity then the right arrow is a weak
equivalence. But when φ is left quadratic preserving, the ends of this zig-zag are always
weakly equivalent. In particular, if P is Koszul and L is exact then L(P) and L!(P) are
Koszul.

6.6. Quadratic Intertwining of R!. Recall thatR does not always preserve quadratic
objects. Thus we introduce the mirror image of the terminology of Definition 6.2, which
will be subsequently required to state the quadratic intertwining theorem. It involves the
natural transformation F1r ⇒ RF2 from Lemma 3.1 above.

6.7. Definition. We say the morphism φ is right quadratic preserving if the natural
transformation F1r ⇒ RF2 is a level-wise surjection whose kernel is generated in weight
1.

The terminology reflects the fact that if φ is right quadratic preserving thenR preserves
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quadratic objects. To see this, let O = F2(E)/〈S〉 be quadratic and consider:

F1(rE)

β %%

π1 // R(O)

RF2(E)
R(S 7→0)

::

We view R(O) as quadratic with generators rE and relations ker(π1). Note that under
the assumptions, π1 is a composite of two level-wise surjections and hence a level-wise
surjection itself.

For example, forgetting directed structure and many inclusions are right quadratic
preserving. Forgetting planar structures is not right quadratic preserving. (See Section
9.)

6.8. Theorem. If φ is right quadratic preserving and O is quadratic then R!(O) ∼=
R(O!)!.

Proof. The natural transformation βE : F1(rE)(w) → F2(E)(φ(w)) is given level-wise
simply by evaluation at φ. It follows that the linear dual β∗E : F2(E∗)(φ(w))→ F1(rE∗)(w),
given by summing over pre-images, may be identified with the natural transformation σE∗
(in the notation of line 5.1). Here we have used AssumptionA.2 to identify F2(E)(φ(w))∗ ∼=
F2(E∗)(φ(w)). Then from Proposition 5.9 we know the relations of R!(O!) are σE∗(S

⊥) =
β∗E(S⊥) which is precisely the orthogonal complement of the relations of R(O) by the
above description.

6.9. Manin products and the quadratic six operations formalism.

6.10. Definition. φ is called quadratic preserving if it is both left quadratic preserving
and right quadratic preserving.

We now fix φ to be quadratic preserving. In light of the quadratic intertwining theo-
rems given above, it is natural to ask if there is a six operations formalism for which these
theorems become formal consequences. For this we would need an appropriate notion of
monoidal product for quadratic objects. A candidate for this monoidal product is given
by a generalization of operadic Manin products, and in this section we define this product
and show that it satisfies the projection formula.

We must emphasize, however, that generalized Manin projects do not generally give
symmetric monoidal categories, in particular they do not generally have monoidal units.
However, if we can restrict our operations (L,R,R!, L!) to subcategories in which the
⊗-unit is also a unit for this new product, then we would have a six-operations formalism
on these subcategories. This is typically the case for subcategories of binary quadratic
objects.

Let E1 and E2 ∈ V-Mods. Notice F is op-lax monoidal, owing to the fact that G is
strict monoidal. In particular we can take the adjoint of,

E1 ⊗ E2 −→ GF (E1)⊗GF (E2) ∼= G(F (E1)⊗ F (E2))
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to produce a map F (E1⊗E2)
λ→ F (E1)⊗F (E2). This map can be described as splitting

a labeled morphism by its labels, i.e. sending [g,⊗i(e1
i ⊗ e2

i )] to [g,⊗e1
i ] ⊗ [g,⊗e2

i ], for
g ∈ Mor(F) and ⊗ei ∈ E(s(g)). We call this morphism λE1,E2 , or just λ if no confusion
will arise.

6.11. Definition. Let P ∼= F (E1)/〈S1〉 and Q ∼= F (E2)/〈S2〉 be quadratic objects in
F-Ops. Let π be the composition of the following sequence:

F (E1 ⊗ E2)
λ−→ F (E1)⊗ F (E2)

πP⊗πQ−→ P ⊗Q

Then we define the Manin (white) product of P and Q as P ◦ Q := F (E1 ⊗ E2)/ker(π).

Manin products for operads were introduced in [GK94], inspired by [Man87], and
more detail can be found in [LV12]. The above definition gives us Manin products for any
cubical F, and we can ask how these products are related by a morphism φ : F1 → F2. It
is not hard to see that R is strong symmetric monoidal with respect to ◦. We conclude
by observing:

6.12. Proposition. Generalized Manin products satisfy the projection formula. That is,
if O ∈ F2-Ops and P ∈ F1-Ops then

O ◦ L!(P) ∼= L!(R(O) ◦ P)

Proof. Suppose P = F1(A)/〈T 〉 and O = F2(E)/〈S〉. Then the generators of O ◦ L!(P)
are E ⊗ lA whereas the generators of L!(R(O) ◦ P) are l(rE ⊗ A). These are seen to
be isomorphic by a (trivial) application of the ⊗-projection formula (Proposition 4.10)
above. We then consider the following rectangular diagram:

F2(E ⊗ lA)

∼=
��

λ // F2(E)⊗ L!F1(A)
πO⊗L!(πP )ε // O ⊗ L!(P)

∼= // L!(R(O)⊗ P)

F2(l(rE ⊗ A)) ε // L!(F1(rE ⊗ A))
L!(λ) // L!(F1(rE)⊗ F1(A))

L!(β⊗id)// L!(RF2(E)⊗ F1(A))

L!(R(πO)⊗πP )

OO

Note this diagram is easily seen to commute by chasing through an element. In particular
all the maps are morphisms in F2-Ops, and so it suffices to chase through a generator, eg
at a generic level. Since the relations in O ◦ L!(P) and L!(R(O) ◦ P) are the kernels of
the two paths of the diagram, the claim follows from its commutativity.

7. Six operations formalisms.

We have now laid the groundwork to state that morphisms of Feynman categories give
rise to six operations formalisms on the basic categories and effective versions on the
derived categories. In this section we will record these statements. We then consider the
two ambidextrous specializations of this general context. We postpone the discussion of
specific examples and applications of these structures until Section 9.
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7.1. On the basic categories. The requisite work to prove the following theorem
was all done above. The main requirement was the construction of L! satisfying the
projection formula Proposition 4.10. Let us also remark that the categories F-Ops are
indeed co-closed. This follows as in [BM08] by applying the monadic lifting theorem, c.f.
[Bor94].

7.2. Theorem. Let φ : F1 → F2 be an admissible morphism of Feynman categories. Then
(L,R,R!, L!, cohom,⊗) constitute a six operations formalism from F1-Ops to F2-Ops.

7.3. On the homotopy categories. We now assume that φ is cubical and consider the
categories of F-Ops with suppressed subscripts to be the disjoint union F+-Ops

∐
F−-Ops

(as in Appendix A).
If φ is admissible then (L,R) is a Quillen adjunction (see Remark 3.4) and since all

objects are fibrant, we have an induced adjunction on the homotopy categories by cofi-
brant replacement on the left, (LD2, R). There is a dual adjunction on the derived cate-
gories given by (DRD,DLD) and by the intertwining theorems we have (DRD,DLD) ∼
(R!D2, L!). To construct the (cohom,⊗) adjunction we prove:

7.4. Lemma. Let F be a cubical Feynman category. Then for each P ∈ F-Ops there
is a self-adjunction (D(D(−) ⊗ P),P ⊗ −) on the category Ho(F-Ops). In particular,
Ho(F-Ops) is a co-closed symmetric monoidal category with cohom(O,P) ∼= D(D(O) ⊗
P).

Proof. We recall from theorem 7.5.3 of [KW17] that homotopy classes of morphisms from
the Feynman transform are equivalent to homotopy classes of solutions to an associated
master equation. In particular we see that there is an isomorphism of sets:

[D(N ⊗P),Q] ∼= [D(N ),P ⊗Q]

since both are isomorphic to π0(ME(N⊗P⊗Q)). SubstitutingN = D(O), in Ho(F-Ops)
we have:

Hom(D(D(O)⊗ P),Q) ∼= [D(D(O)⊗ P),Q] ∼= [D2(O),P ⊗Q] ∼= Hom(O,P ⊗Q),

hence the claim.

7.5. Theorem. The six-operations formalism of Theorem 7.2 passes to the homotopy
categories. Moreover, it extends to an effective six-operations formalism from Ho(F1-Ops)
to Ho(F2-Ops) with dualizing object D(I2).

Proof. Again the work has been done above. Observe the projection formula is easily
seen to be still satisfied, since it involves only right adjoints. The fact that D(I2) is
dualizing follows immediately from the description of cohom above. Moreover we see
that cohom(D(I2),−) = D(−) and so the intertwining theorems which result from this
dualizing object are the expected ones.
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7.6. Ambidexterity: the Grothendieck and Wirthmüller contexts. Inspired
by [FHM03], let us give two specializations of this general context.

7.7. Definition. A morphism as in Theorem 7.2 is called proper if L! ∼= L and co-proper
if R! ∼= R.

In the terminology of [FHM03], what we call a proper map is said to satisfy the
“Grothendieck context” and what we call a co-proper map is said to satisfy the “Wirth-
müller context”. A proper map gives rise to a triple of adjoint functors (R!, L,R) whereas
a co-proper map gives rise to a triple of adjoint functors (L,R, L!). Symmetrization is
often proper, inclusion is often co-proper; examples are discussed below (Section 9). Note
that the ambidexterity lemma (Lemma 3.7) shows that maps between trivial Feynman
categories (i.e. those which are groupoids) are both proper and co-proper.

We now give criteria for recognizing proper and co-proper maps.

7.8. Proposition. A morphism φ is proper if for every morphism in F2 of the form
f : φ(X)→ v, there exists σ ∈ Aut(v) and g ∈ F1 with s(g) = X such that f = σφ(g).

Proof. Recall that the functor L is given by left Kan extension, explicitly L(P) =
Lanφ(P). So it suffices to prove that, under the stated conditions, L!(P) is such a left
Kan extension.

The conditions of the proposition ensure that any such generating morphism f ∈
Mor(F2) can be written as:

φ(X)
φ(g) //

f
""

φ(w)

σ
}}

v

where σ is an automorphism. Hence, we may compute Lanφ(P)(v) by restricting to the
sub category of isomorphisms Iso(φ↘ v). But this is the level-wise left Kan extension of
the underlying V1-module, which is given by the functor l. Hence lG(P)(v) ∼= Lanφ(P)(v),
and hence L!(P) coincides with L(P) on objects. This identification respects morphisms,
since in both instances the image of a morphism f is given by factoring as above and
evaluating with P(g).

7.9. Proposition. A morphism φ is co-proper if for every morphism in F2 of the form
f : Y → φ(w), there exists σ ∈ Aut(Y ) and g ∈ F1 with target t(g) = w and f = φ(g)σ.

Proof. As was pointed out in [KW17], the right Kan extension Ranφ(−) is a priori
only a lax monoidal functor, but is strong monoidal in some examples. We will show
the conditions of the proposition are sufficient for this to be the case, and in particular
L! ∼= Ranφ under these conditions, from which the claim will follow.

To see this, fix P ∈ F1-Ops. We first observe that for v ∈ V2, using the description
Ranφ(P)(v) = limv↘φP ◦ t, it is easy to see that Ranφ(P)(v) ∼= L!(P)(v) = lGP(v). In
particular both sides are zero unless v ∈ im(φ). We then check that for Y = ⊗vi we
have Ranφ(P)(Y ) ∼= ⊗iL!(P)(vi). First, if Y 6∈ im(φ) then both sides are zero, since in



150 BENJAMIN C. WARD

particular our conditions would imply that there are no morphisms Y → φ(w). So we
assume Y ∈ im(φ).

Then, under the stated conditions, any object f ∈ Y ↘ φ can be completed to a
diagram:

Y
f

!!

σ

||
φ(X)

φ(g) // φ(w)

where φ(X) = Y and σ ∈ Aut(Y ). Therefore limY↘φP◦t may be computed by restricting
to the sub-category of isomorphisms Iso(Y ↘ φ). But if we factor Y = ⊗ivi then the
Feynman category axioms allow us to write Iso(Y ↘ φ) = ×iIso(vi ↘ φ). We thus
conclude Ranφ(P)(Y ) ∼= ⊗iRanφ(P)(vi) and that L!(P) and Ranφ(P) coincide on objects.

It is then easy to see that this correspondence respects the image of morphisms. Having
concluded that L!(P) and Ranφ(P) coincide, we conclude that their respective left adjoints
coincide as well, i.e. R! ∼= R.

Having characterized situations in which φ is proper or co-proper, let us now consider
consequences of such situations.

7.10. Lemma. Let φ be co-proper. Then the associated natural transformation Fr ⇒
RF is an isomorphism. In particular φ is right quadratic preserving, R preserves free
objects and R commutes with D. Moreover R is a co-closed symmetric monoidal functor:
R(cohom(−,−)) ∼= cohom(R(−), R(−)).

Proof. The first statement follows from Lemma 5.5. The second statement follows from
Theorem 5.6 and the fact that R! preserves quadratic objects. For the final statement,
we first fix O,P ∈ F2-Ops and Q ∈ F1-Ops. We then use adjointness and the projection
formula (Proposition 4.10) to exhibit a sequence of natural isomorphisms:

Hom1(R!(cohom(O,P)),Q) ∼= Hom2(cohom(O,P), L!(Q)) ∼= Hom2(O,P ⊗ L!(Q))

∼= Hom2(O, L!(R(P)⊗Q)) ∼= Hom1(R!(O), R(P)⊗Q)

∼= Hom1(cohom(R!(O), R(P)),Q).

We thus have a natural isomorphism of functors R!(cohom(−,−)) ∼= cohom(R!(−), R(−)),
which implies the final statement when φ is co-proper.

We say φ is exact if L(−) preserves weak equivalences. From Corollary 4.15 and the
fact that L preserves quadratic objects we conclude:

7.11. Lemma. Proper morphisms are exact and left quadratic preserving.

8. Verdier duality is Koszul duality.

Recall that to define the Verdier dual of a sheaf on a space X, one looks at the map
to a point, p : X → ∗, and defines the dualizing complex ωX := p!(k). Verdier duality
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is then given by the functor D(−) := RHom(−, ωX). We may carry out the analogous
construction for a Feynman category, and in this section we show that the dualizing
complex ωF coincides with the dualizing object D(I). In other words, if we had not known
about derived Koszul duality a priori, we could have created it via the six operations.
To be more precise the dualizing complex ωF has two ingredients: the six operations and
bar-cobar duality for commutative and Lie algebras.

To begin we need the analog of a point. It is provided by viewing the commutative
operad as a Feynman category as in Example 2.9.8 of [KW17] as we now recall.

8.1. Definition. Let Com be the Feynman category with one vertex, call it ∗, and a
unique morphism in each arity Hom(∗⊗n, ∗). Observe that a symmetric monoidal functor
from Com is specified by an object with a commutative and associative multiplication and
so Com-OpsdgV ect is the category of dg commutative algebras.

Given a Feynman category F there is a unique morphism of Feynman categories p : F→
Com sending the vertices of F to the vertex of Com. However the morphism p is not
admissible in the sense of Definition 4.2, and so we can not apply our constructions to
produce the adjunction (R!

p, L
!
p). The problem being that we have no control over what

the pull-back of a morphism looks like. However, assuming that F is cubical, we do have
some control if we sum over only degree 1 morphisms. The idea to do this comes from
[KWZ15] and [KW17] which show summing over degree 1 morphisms gives higher analogs
of Maurer-Cartan elements which correspond to morphisms from the Feynman transform.

Recall that an odd L∞ algebra is an algebra over sL∞. This is equivalent to an
L∞ structure on the shifted complex; in particular the algebra structure is generated by
symmetric operations of degree 1 in each arity. We define:

8.2. Definition. Define a functor L!
p : F−-Ops→ {odd L∞-Algebras} by letting L!

p(P) =
⊕w∈VP(w)Aut(w) with operations ln :=

∑
degree 1 morphisms of length n in F. That is,

for each list of objects w1, . . . , wn;w0, we define ⊗i≥1P(wi) → P(w0) to be the sum over
degree 1 morphisms with source ⊗i≥1wi and target w0. The finiteness of this sum is
assured by Assumption A.2. Since pre-composing with an automorphism preserves degree,
and since we are taking the sum over all degree 1 morphisms, this map lifts to ×i≥1Aut(wi)
coinvariants. Finally we let ln be the linear extension of these maps.

The fact that each ln is symmetric follows from the fact that F is a symmetric monoidal
category. The fact that these operations have degree 1 follows from the fact that the input
is odd and that we sum over operations of degree 1. Finally the fact that this is an L∞
algebra follows from the fact that

∑
r+s=n lr ◦ ls is given by a sum of factorizations of

degree 2 morphisms into two degree 1 morphisms. Since F is assumed to be cubical, these
come in pairs; since the input was assumed to be odd, these pairs have opposite sign and
so the value of this sum is zero, as desired.

8.3. Remark. In examples of interest this L∞ structure is often a Lie algebra (e.g. for
operads [KM01]), or a dg Lie algebra (e.g. for modular operads [Bar07]). It may carry
additional structures as well, see Table 3 of [KW17].
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8.4. Lemma. Let φ : F1 → F2 be an admissible morphism of cubical Feynman categories.
There is an isomorphism of functors L!

p2
L!
φ
∼= L!

p1

Proof. Here p1 and p2 denote the respective projections to Com. The fact that the
underlying graded vector spaces agree follows from the proof of Proposition 4.17. Recall
(Appendix A) that morphisms of cubical Feynman categories are by definition degree
preserving. Hence the sum over degree 1 morphisms in F1 is the same as the sum over
preimages of degree 1 morphisms in F2, and so the L∞ structures agree as well.

8.5. Lemma. The functor L!
p has a left adjoint, which we call R!

p.

Proof. The proof follows as in Lemma 5.2 above. Algebras over operads can be encoded
in the language of Feynman categories via indexed enrichment (Chapter 4 of [KW17]).
Since the L∞ operad is dimension 1 in arity 1, the V-modules in the enriched Feynman
category encoding L∞-algebras are just given by the underlying dg vector spaces. Hence
Lemma 3.7 still applies to give an adjunction (rp, lp) between the respective categories
of V-modules. We also recall the enriched monadicity theorem 4.1.4 of [KW17], which
states that the forgetful functor is still monadic in this enriched case. We may therefore
apply the adjoint lifting theorem for monadic functors (Theorem 4.5.6 of [Bor94]) to the
commutative square lpG = GL!

p of functors F−-Ops→ dgV ectk to prove the lemma.

We now define the analog of the dualizing complex to be the F−-operad ωF :=
R!
p(D(k)). Here k is the ground field viewed as a commutative algebra and D is its

Feynman transform. This is, up to a shift in degree, the cobar construction of k viewed
as a cocommutative coalgebra. It may also be identified with the operadic deformation
complex of the identity map Lie→ Lie.

8.6. Theorem. In Ho(F-ops) there is an isomorphism D(P) ∼= cohom(ωF,P).

Proof. First by adjointness we have Hom(ωF,P) ∼= Hom(D(k), L!
p(P)). This latter

Hom is in the category of odd L∞ algebras and since D(k) is quasi-free on the ground
field k, morphisms from it are given by those elements in the target which satisfy the
condition imposed by the requirement that the original morphism is dg. From the theory
of bar-cobar duality for P∞ algebras (see e.g. Chapter 11 of [LV12]) we know this condition
translates to the Maurer-Cartan equation in the target.

On the other hand from Theorem 7.5.3 of [KW17] we know that MC(L!(P)) =
Hom(D(I),P). Both of these isomorphisms are natural in P , and we may thus con-
clude ωF ∼= D(I). Applying Theorem 7.5 above then proves the claim.

We conclude this section with an application of this theorem: it implies that L! pre-
serves deformation complexes. Given a morphism α : ωF → P we have a corresponding
Maurer-Cartan element in L!

p(P). We define the deformation complex of α to be this L∞
algebra along with the differential formed by twisting with α.

8.7. Corollary. Let φ : F1 → F2 be an admissible morphism between cubical Feynman
categories. The functor R!

φ preserves dualizing complexes and the functor L!
φ preserves

deformation complexes.
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Proof. The first statement follows from Lemma 8.4. The second statement, explicitly,
means that the deformation complex associated to α : ωF1 → P is isomorphic to the
deformation complex associated to the composition ωF2 → L!

φR
!
φ(ωF2)

∼= L!
φ(ωF1) →

L!
φ(P). This follows from the first statement via adjointness.

9. Examples.

In this section we will investigate the implications of the six operations formalism and
our above constructions in several examples of morphisms of Feynman categories. The
sources and targets of these morphisms will be several well studied generalizations of
operads, which we will briefly recall here. In addition to the references given below, these
examples are discussed in the language of Feynman categories in Chapter 2 of [KW17]. In
the Feynman category interpretations the morphisms are given by classes of graphs and
the objects are given by lists of vertices.

Type of generalized operad F.C. morphisms reference our notation
operads rooted trees [LV12], etc. O

non-Σ operads planar rooted trees [LV12], etc. PO
cyclic operads trees [GK95] C

non-Σ cyclic operads planar trees [GK95] PC
dioperads directed trees [Gan03] DO

planar dioperads planar directed trees [TZ07] PDO
modular operads connected graphs [GK98] M

9.1. Cyclic to Modular operads. There is a morphism of Feynman categories
φ : C → M from the Feynman category encoding cyclic operads to the Feynman cate-
gory encoding modular operads. On both objects and morphisms this functor is given by
inclusion.

9.2. Lemma. The morphism φ : C→M is admissible and co-proper.

Proof. Both statements follow from viewing C ⊂ M as an inclusion, after Proposition
7.9. Note the genus labeling for vertices in M ensures that an object of genus zero can
not be the target of a morphism of non-zero genus.

We thus see that (L,R, L!) is a triple of adjoint functors, all three of which are well
known constructions. R forgets higher genus, L is the modular envelope or modular
completion, and L! is easily seen by the above description to be extension by 0. Explicitly,
L!(O)(g, n) = O((n)) if g = 0 and equals 0 if g ≥ 1.

Considering the intertwining theorems in this context we then see:

9.3. Corollary. There are isomorphisms of functors DR ∼= RD and DL! ∼= LD.

The first statement is 5.9 of [GK98]; the second statement appears to be new. In-
formally, for a cyclic operad O we may view both DL!(O) and LD(O) as complexes of
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O-labeled odd (or K-twisted) graphs of arbitrary genus, but no non-zero genus labels.
The differential in LD(O) allows us to blow up an edge “with-in” a vertex, which is then
identified with the O-labeled graph having this additional edge and labels determined via
the cyclic operad structure on O. The differential in DL!(O) (a priori) has extra terms
corresponding to blowing up loops. But since we’re taking the Feynman transform of an
extension by zero, these terms must be zero as well. Similarly, if O is an odd cyclic op-
erad, the second statement of Corollary 9.3 gives us an isomorphism of untwisted modular
operads.

Application to graph homology. Let O be a Koszul cyclic operad. The complexes
DL!(O)(g, n) are versions of Kontsevich’s original graph complexes [Kon94]. Our result
shows that the dg modular operad comprised of these complexes is a model for the derived
modular envelope of the Koszul dual O!. On the other hand, we may consider the graph
complexes DL(O!)(g, n) which are of interest in their own right. Our results allow us to
build a bridge between these two families of graph complexes.

To illustrate this idea we consider the caseO = Com! = Σ−1sLie, the odd cyclic operad
encoding odd Lie algebras. The graph complexes DL!(O)(g, n) compute (in the case n =
0) homology of the group of outer automorphisms of the free group Fg. For n ≥ 1 these
“hairy” graph complexes compute the homology of generalizations of Out(Fg) realized
as boundary preserving homotopy self-maps of bouquets of g circles and n segments, see
[CKV13], [CHKV16], which call these groups Γg,n. Our results allow us to study these
graph complexes via the cofiltration;

DL!(O) ∼= L(C∞) � · · ·� L(C5) � L(C4) � L(Com) (9.1)

where CN denotes the operad encoding those C∞ algebras whose generating operations µn
vanish at and above µN (see [LV12] Proposition 13.1.6).

On the other hand, as I learned from Dan Petersen, the graph complexesDL(Com)(g, n)
are of interest in that they are related to the moduli space of tropical curves of constant
volume, which we denote ∆g,n after [CGP16]. In particular, DL(Com)(g, n) computes the
reduced cohomology of ∆g,n with a shift in degree. If we apply the Feynman transform to
the above cofiltration we may study the graph complex DL(Com)(g, n) in genus g ≥ 1 by
trapping it in an acyclic complex. Alternatively, we may apply the Feynman transform to
the homology cofiltration to study ∆g,n via the filtration DL(Com) ↪→ · · · ↪→ DH∗(Γg,n).

To offer some evidence that this is a strategy worth considering, let us use it to
calculate something.

9.4. Calculation. χ(∆1,n) = 1 + (−1)n−1(n− 1)!/2 for n ≥ 3.

Proof. Our starting point for this calculation is threefold. First, we recall from [CHKV16]
that χ(Γ1,n) = 2n−2. Second we observe that χ(DH∗(Γ)(1, n)) = χ(DLD(Com!)(1, n)) =
χ(L!(Com!)(1, n)) = 0. Here the first equality follows from the fact that H∗(Γg,n) ∼
L(C∞)(g, n) as complexes; but not necessarily as modular operads and hence the use of
Euler characteristic, and the second equality follows from Corollary 9.3. Third we recall
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the theory of characteristics of cyclic operads (see [GK98]). In particular we define f to
be the formal power series;

f(x) = x+
∑
n≥2

vn+1
xn

n!

and define pn to be the coefficient of xn−1/(n−1)! in f−1. Observe that pn is a polynomial
in the variables v3, . . . , vn. The coefficient of the monomial vi1 · ... · vim is, up to sign, the
number of trees with n labeled leaves having vertices of valence i1, . . . , im. The sign is
equal to −1 to the number of vertices. In particular, if O is a cyclic operad, and we
set dim(O((n))) = vn+1, then pn evaluates to −χ(DO((n))). For example pn(1, . . . , 1) =
(−1)n(n− 2)!, using the fact that the dimension of Lie((n)) is (n− 2)!.

Let us now define the following three numbers:

A := pn(
∏
i∈J

vi ↔
∑
i∈J

(2i−2−1)), B := pn(
∏
i∈J

vi ↔
∑
i∈J

(2i−1−i)), C := pn(
∏
i∈J

vi ↔
∑
i∈J

(i−2))

The notation ↔ indicates that we substitute the number on the right for the monomial∏
i∈J vi.
First observe that C = (n− 2)pn(1, . . . , 1). This follows from the fact that for any n

tree, n − 2 =
∑

v(|v| − 2) where the sum is taken over the (internal) vertices of the tree
and |v| denotes the valence of the vertex.

Second we observe that B = pn(1, . . . , 1). To see this, consider that each monomial
along with its coefficient represents a count of trees along with a way to pick a vertex
and partition its adjacent flags (or half edges) into two sets such that neither set has size
1. For a vertex of valence i there are 2i−1 − i − 1 ways to do this such that each set
has at least 2 elements and a unique way such that one set has all the elements. We
then identify the portion of the count corresponding to 2i−1 − i− 1 with a count of trees
having a distinguished edge by blowing up an edge in the original decorated graph to
separate the two sets of flags. Over all monomials this gives us a signed count of graphs
along with a distinguished edge. On the other hand we identify the portion of the count
corresponding to the unique uniform labeling of a vertex to be a count of trees along
with a distinguished vertex. Since all graphs in question are trees, they always have one
more vertex than the number of edges, and for each tree the choices of distinguished
vertex compared to distinguished edges are in adjacent degrees and so have opposite
sign. Therefore, each tree appears exactly once in the final count after cancellation, hence
B = pn(1, . . . , 1).

Finally, we will argue that A = χ(DL(Com)(1, n)). We will use the notation

DH 6≡0(Γ)(1, n) ⊂ DH∗(Γ)(1, n)

to denote the subspace where at least one vertex is labeled by a class in H∗(Γ) of non-zero
(and hence positive) degree. Since 0 = χ(DH∗(Γ)(1, n)), we know that

0 = χ(DH0(Γ)(1, n)) + χ(DH 6≡0(Γ)(1, n)) = χ(DL(Com)(1, n)) + χ(DH 6≡0(Γ)(1, n)),
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and it remains to argue that A = −χ(DH 6≡0(Γ)(1, n)).
Recall that in the theory of modular operads, the total genus of a graph is the genus of

its realization plus the genus labeling at each vertex. In particular a graph of total genus
1 is either a graph whose realization is of genus 1 along with a genus-label of 0 at each
vertex, or it is a tree along with a genus-label of 1 at one vertex and a genus-label of 0 at
every other vertex. Thus, the underlying graded vector space of DH 6≡0(Γ)(1, n) splits into
a direct sum of components indexed by graphs whose realization is genus 1 and graphs
whose realization is genus 0. In the former summand, one vertex in each such graph is
labeled by a class in H≥1(Γ0,i). However H∗(Γ)(0,−) = H∗(C∞) = Com is concentrated
in degree 0 and so no such classes exist. In particular this summand must be 0.

It remains to analyze the latter summand (which we now know is the entire space)
in which each graph is a tree. Each such tree has a distinguished vertex whose genus-
label is 1, with all other vertices labeled by genus 0. On the other hand the vertex
labels must have at least one class of positive degree. Since H∗(Γ0,i) is concentrated in
degree 0, the only possibility is that the distinguished vertex (genus 1 vertex) is labeled
by H≥1(Γ1,i). We thus have the following description of DH 6≡0(Γ)(1, n): it is a complex
of trees with n tails/leaves along with a distinguished vertex, of valence i say, labeled by
a class in H≥1(Γ1,i). The differential uses the modular operad structure of H∗(Γ), but
since we are concerned here with the Euler characteristic, it won’t play a role. Since
χ(H≥1(Γ)(1, i)) = 2i−2 − 1, we may calculate −χ(DH 6≡0(Γ)(1, n)) as an alternating sum
of counts of trees along with a distinguished vertex v weighted by (2|v|−2−1). The theory
of characteristics of cyclic operads, summarized above, tells us that this is precisely the
quantity A.

To conclude we observe that 2A = B + C and hence

2χ(DL(Com)(1, n)) = (−1)n(n− 2)! + (−1)n(n− 2)(n− 2)!

from which the calculation follows.

It is important for us to point out that the final result is not new; Theorem 1.2 of
[CGP16] proves a stronger result. We rather wish to emphasize the technique; using
Corollary 9.3 to turn information about Γg,n into information about ∆g,n via Koszul
duality.

Comparison with the topological case. It is shown in [Gia11], via the results of
[LV08], that if X is a topological cyclic operad, the complex DL!D(C∗(X )) computes the
levelwise cohomology of the topological modular envelope of X . Here C∗ denotes chains.
This may be compared with our result which shows that DL!D(C∗(X )) is itself a model
for the derived modular envelope of C∗(X ) in the category of chain complexes.

The first example of interest is the topological cyclic associative operad Astop and
its homology, the cyclic operad As. Theorem B of [Gia11] identifies the topological
derived modular envelope ofAstop with the moduli space of Riemann surfaces with marked
windows on the boundary. On the other hand Theorem 9.4 of [GK98] states that DL!(As)
forms a chain model for these spaces. Corollary 9.3 gives some unification to these two
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results in that it allow us to view DL!(As) as the derived modular envelope of As in the
category of chain complexes.

These examples are of further interest due to their relationship to combinatorial oper-
ads and props acting on Hochschild and cyclic chain complexes, e.g. arc operads [KLP03]
(see also [Kau14] and the references there-in). This relationship promises to be further
illuminated in upcoming work of R. Kaufmann and C. Berger [BK].

9.5. Dioperads to Cyclic operads. There is a morphism of Feynman categories
φ : DO → C from the Feynman category encoding dioperads to the Feynman category
encoding cyclic operads. On objects and morphisms one forgets directions using the
morphism Sn×Sm → Sn+m given by ‘in then out’. The morphism φ is neither proper nor
co-proper and in this example, all four functors (L,R,R!, L!) are distinct. The question
of precisely how cyclic operads and dioperads are related was asked in [Gan03], and we
submit the results of this subsection as an answer to this question.

9.6. Lemma. The morphism φ : DO→ C is admissible, quadratic preserving, and exact.

Proof. Admissible follows from the graph description of morphisms. In particular, a
generating morphism f ∈ HomC(φ(X), φ(v)), along with a choice of preimages X and
v, specifies a flag directed tree, meaning each flag (half edge) is directed, but the two
directions on an edge needn’t be compatible. If the flag directions are compatible for
each edge, then the tree is directed, and so there exists a unique f ′ ∈ HomDO(X, v) with
φ(f ′) = f . If the flag directions are not compatible then such an f ′ does not exist. Thus
φ : HomDO(X, v)→ HomC(φ(X), φ(v)) is injective and so φ is faithful. The factorization
axioms follow from the fact that the decomposition of a flag directed tree is flag directed.
Right quadratic preserving follows from the description of β : Fdr ⇒ RFc as ‘forgetting
directions’, meaning edge directions. The kernel of β is generated in weight 1, by the
difference of ways to direct a one edged tree. Left quadratic preserving follows from the
fact that any flag directed tree which is not directed can be assembled starting with a
non-directed edge. Exactness can be seen by exhibiting L as a colimit over a category
which is a disjoint union of filtered categories, by contracting those edges in a flag directed
tree which are compatibly directed.

9.7. Corollary. If P is a Koszul dioperad, then L(P) and L!(P) are Koszul cyclic
operads.

The natural transformation σ (see Proposition 5.9) can be described as follows. For
an S+-module E, define

σr,s : Fc(E)((r + s))→ Fd(rE)(r, s)

by taking an E-labeled tree E(T ) to the direct sum of all possible directed trees (T,�)
which in turn yields labels in rE. That is

E(T ) 7→
⊕

�∈Dirr,s(T )

rE(T,�) ⊂ Fd(rE)(r, s)
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where Dirr,s(T ) is the set of all directed trees whose underlying tree is T .
To be completely precise, we may apply the above discussion to two variants of diop-

erads: those which allow empty outputs or empty inputs (but not both) or those which
allow neither empty inputs nor empty outputs. To proceed we will need to differentiate
between these variants, so let us denote the Feynman category encoding the former by
DO0 and the Feynman category denoting the latter by DO+. Inclusion ι : DO+ ↪→ DO0

is an admissible morphism of Feynman categories and we may consider the sequence

DO+

ι
↪→ DO0

φ0−→ C

whose composite we denote by φ+. In particular, φ0 and φ+ forget directions, as above.
From the description of σ above we see that if we restrict attention to dioperads

without empty inputs or outputs then, for the cyclic operad Lie, the image of σ2,2 of
the Jacobi identity is the Drinfeld compatibility criterion for Lie bialgebras. Moreover, if
we let BiLie be the dioperad encoding Lie bialgebras and Bal be the dioperad encoding
balanced infinitesimal bialgebras (see [Agu01]) then:

9.8. Lemma. R!
φ+

(Lie) = BiLie and R!
φ+

(As) = Bal.

Note that by the functoriality of R! we immediately recover the result of [Agu01]
that the commutator and cocommutator in a balanced infinitesimal bialgebra satisfy the
compatibility requirement of a Lie bialgebra.

We now turn our attention to algebras over cyclic operads and dioperads. Recall that
if V in dgV ectk is of finite type and 〈−,−〉 is a symmetric non-degenerate bilinear form,
then End(V,〈−,−〉) can be equipped with the structure of a cyclic operad.

For A in dgV ectk, again of finite type, we let A∗ denote its linear dual and we define
the double of A to be d(A) := A ⊕ A∗. We equip d(A) with a bilinear form by defining
〈a⊕ η, b⊕ ξ〉 = η(b) + ξ(a). This form is easily seen to be symmetric and non-degenerate.

9.9. Proposition. (Binomial theorem for cyclic operads.) There is an isomorphism of
cyclic operads:

L!
φ0

(EnddiA ) ∼= Endcyc(d(A),〈−,−〉)

Proof. If we consider EnddiA (r, s) ∼= A⊗r ⊗ (A∗)⊗s then the dioperad structure is given
by evaluation. Here we allow our dioperads to have empty inputs or empty outputs. The
underlying S+-modules are easily seen to be isomorphic by the binomial theorem. The fact
that these isomorphisms respect the cyclic operad structure on the respective sides can be
seen graphically. In particular, using the form we can identify Endcycd(A)((n)) with d(A)⊗n.
Hence a pure tensor can be described as a corolla with n flags, each labeled by both an
element of A and an element of A∗. Applying the binomial theorem splits this corolla into
a sum over ways to choose one or the other label. Composing two flags labeled by a⊕ η
and b ⊕ ξ before splitting uses the form 〈−,−〉 and hence yields a factor of η(b) + ξ(a).
Composing the same two legs after splitting gives four sets of terms corresponding to the
possible choices of labeling. The cyclic operad structure of L!

φ0
(EnddiA ) tells us that the

composition of terms labeled by a and b is 0, as is the composition of terms labeled by η
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and ξ, but the other compositions are given by evaluation and hence we once again find
a factor of η(b) + ξ(a).

9.10. Corollary. Let O be a cyclic operad. An R!
φ0

(O)-algebra structure on A is equiv-
alent to an O-algebra structure on (d(A), 〈−,−〉).

Recall that a Manin triple is equivalent to a morphism of cyclic operads Lie→ Endcycd(A)

which maps the generator in Lie(2) to the (2, 1) and (1, 2) indices of the direct sum
Endcycd(A)((3)).

Since L!
ι is manifest as an extension by zero, combining Proposition 4.17 with Propo-

sition 9.9 tells us that this is the same thing as a morphism Lie→ L!
φ+

(EndA). Adjoint-
ness tells us that such a morphism is in turn equivalent to an algebra over the dioperad
R!
φ+

(Lie) = BiLie. We thus see that the adjunction (R!, L!) generalizes the equivalence
between Manin triples and Lie bialgebras as described in [Dri87].

9.11. Operads to Cyclic operads (and non-Σ variant). There is a morphism of
Feynman categories φ : O → C from the Feynman category for operads to the Feynman
category for cyclic operads. On objects it is given by the identity and morphisms by
inclusion. This morphism restricts to a functor between the Feynman categories for non-
Σ operads and non-Σ cyclic operads.

9.12. Lemma. The morphism φ : O→ C is admissible and co-proper.

Proof. The functor φmay be written as a composition of faithful functors O ↪→ DO→ C,
the former being inclusion and the latter having been discussed above in section 9.5.
Hence φ is faithful. The factorization axioms and co-properness follow from the fact that
a non-rooted tree, assembled via graftings i◦j, can also be assembled via ◦i = i◦0 by first
precomposing with cyclic permutations.

We thus have a triple of adjoint functors (L,R, L!). The usual adjunction (L,R) is
reasonably well understood, and we would now like to describe L!.

To do this, we construct a non-Σ cyclic operad k[C∗+1]. First we define k[C∗+1](n) =
k[Cn+1], where Cn+1 is the cyclic group of order n + 1, presented as {τn : τn+1

n = 1},
so in particular the subscript always denotes the operad arity. We then give k[C∗+1] the
structure of a non-Σ operad by defining:

τ rn ◦i τ sm =


τ r if r < i and s = 0

τ r+m−1 if r > i and s = 0

τ r+s−1 if r = i and s 6= 0

0 if r 6= i and s 6= 0 or if (r, s) = (i, 0)

where we have suppressed the subscript n+m− 1 on the right hand side.

9.13. Lemma. As defined above, k[C∗+1] is a non-Σ cyclic operad.
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Proof. Let τ rn be depicted as a corolla with n+ 1 flags labeled {0, . . . , n} whose rth flag
is distinguished, say by drawing it in a different color such as green. Then, the operadic
composition can be described as follows: we view ◦i as gluing flag 0 on the right to flag i
on the left. If green meets green or black meets black the composition is zero. Else green
meets black, and the composition stipulates that the unmet green flag becomes the new
green flag. This diagrammatic description is easily seen to be associative, from which the
claim follows. Moreover it tells us that 11 + τ1 is a unit for the composition.

To characterize L!, we may write “L!(P) = P ⊗ k[C∗+1]”, however we emphasize that
these factors live in different categories. To give a more precise statement we first recall
that a (non-Σ) cyclic operad is completely characterized by its underlying (non-Σ) operad
and its level-wise cyclic structure. Then:

9.14. Lemma. Let P be a (non-Σ) operad. Then L!(P) is the (non-Σ) cyclic operad
whose underlying (non-Σ) operad is P ⊗ R(k[C∗+1]) and whose cyclic structure is that
induced by k[C∗+1]; explicitly τ(p⊗ τ r) = p⊗ τ r+1.

Notice that the cyclic operad k[C∗+1] arises as the linear dual of the linearization of a
cyclic co-operad structure on the groups Cn+1. If P is an operad then the convolution op-
erad Conv(C∗+1,P) is a linear cyclic operad with Conv(C∗+1,P) ∼= L!(P). Informally, we
view L! as the operadic analogue of crossing with S1, or of extending from a (co)simplicial
set to a cyclic set. For a concrete realization of this heuristic, consider a multiplicative
(non-Σ) operad As→ P . The collection {Conv(Cn+1,P(n))} is a cyclic object in dgV ectk
lifting the standard cosimplicial structure associated to As→ P .

This fact has the following implication in the study of deformation complexes of mor-
phisms of operads and cyclic operads. An operadic formulation of Deligne’s conjecture
states that the deformation complex associated to a morphism A∞ → P carries the struc-
ture of a homotopy Gerstenhaber algebra extending the operadic Lie bracket. An operadic
formulation of the cyclic Deligne conjecture states that if the morphism A∞ → P lifts to
the category of non-Σ cyclic operads then the homotopy Gerstenhaber structure above
lifts to a compatible homotopy BV algebra. An S1-equivariant variant of these results
states that the deformation complex of this morphism in the category of cyclic operads
carries the structure of a Grav∞ algebra. See [War16] for full details.

Let us write Def(µ) for the deformation complex associated to the map of non-Σ
operads µ : A∞ → P and Def(µ̃) for the deformation complex associated to the adjoint
map of non-Σ cyclic operads µ̃ : A∞ → Conv(C∗+1,P). We thus conclude:

9.15. Proposition. The Grav∞ structure on Def(µ̃) lifts to a Ger∞ structure. The Ger∞
structure on Def(R(µ̃)) lifts to a BV∞ structure. The inclusion Def(µ̃) ↪→ Def(R(µ̃)) is a
Ger∞ map.

Proof. Note that here we consider A∞ to be a non-Σ cyclic operad so we may write
µ : R(A∞) → P . From co-properness R ∼= R!, and we can take the adjoint of this
morphism to get a map of cyclic operads A∞ → L!(P). Using Corollary 8.7 above
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we may identify Def(µ̃) with Def(µ) from which the first statement follows. The other
statements then follow immediately from [War16] Theorems A and B.

9.16. Non-Σ operads to operads. Let PO be the Feynman category encoding non-Σ
(aka planar) operads and consider the morphism of Feynman categories φ : PO→ O which
forgets planar structures.

9.17. Lemma. φ is admissible and proper.

Proof. This follows from the fact that every rooted, leaf labeled tree is within a relabeling
(permutation) of being embeddable in the plane, in the planar order.

Hence (R!, L,R) is a triple of adjoint functors. The functors L and R are well un-
derstood, e.g. L = − ⊗ As. Theorem 4.13 recovers the well known fact that LD ∼= DL.
Note φ is not right quadratic preserving so R! is not as simple to describe in general.
However one can show R!(Lie) = As directly via adjointness or that R!(L∞) = A∞ and
R!(PreLie∞) = Dend∞ after Theorem 5.6. For example, this recovers the known fact
that there is a bijective correspondence between symmetric operad maps Lie → L(P)
and non-Σ operad maps As → P . We may also compute R!(Com) = N il, the nilpotent
(non-Σ) operad (in the parlance of [LV12]), having N il(2) = k and all higher arities are
0. In particular this tells us maps Com → L(P) for a non-Σ operad P are equivalent to
nilpotent elements in P(2).

A similar analysis can be applied to the morphism associating non-Σ cyclic operads
and symmetric cyclic operads.

9.18. Planar dioperads. There is a Feynman category encoding a planar analog of
dioperads. Its objects are generated by planar graphs with no edges and directed flags. Its
morphisms are generated by planar directed graphs of genus 0. Let us call this Feynman
category PDO for planar dioperad and let PC be the Feynman category encoding non-Σ
(aka planar) cyclic operads. There is a morphism φ : PDO → PC by forgetting directed
structures. This morphism may be seen to be admissible via the planar analog of Lemma
9.6.

The dualizing object in the category of planar dioperads is given by R!
φ(A∞), where

A∞ denotes the cyclic A∞ operad.

9.19. Lemma. R!
φ(A∞) is the planar dioperad encoding V∞-algebras in the language of

[TZ07].

Proof. The intertwining theorems tell us that R!
φ(A∞) = D(I) where I is the planar

dioperad having the ground field associated to each vertex. Thus we may describe an
algebra over D(I) as having a multi-linear operation corresponding to each planar vertex
and subject to the differential condition that the signed sum of one edged planar directed
trees evaluates to 0, with signs coming from the odd sign conventions as in [KWZ15]. This
coincides exactly with the description given in Definition 3.1 of [TZ07]. To be precise, we
recover their definition provided we adopt the convention of [TZ07] that planar directed
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graphs have non-empty inputs but allow empty outputs in the case that there is at least
two inputs.

Recall that the shifted homology of the moduli space of punctured Riemann spheres
forms an operad called the gravity operad which has a Koszul resolution by the dg operad
Grav∞.

9.20. Corollary. The Lie bracket on the deformation complex of a V∞-algebra extends
to an action of Grav∞.

Proof. By Corollary 8.7, the deformation complex of a V∞-algebra is preserved by the
functor L!. Both of these Feynman categories have symmetrizations given by proper
maps, so we may apply Subsection 9.5 to conclude that the deformation complex of V
coincides with the deformation complex of its double V ⊕ V ∗ viewed as an algebra over
a cyclic operad. It was shown in [War16] that any such deformation complex of planar
cyclic operads carries an action of such a chain model for the gravity operad, which was
shown to be formal in [CW18] hence the claim.

In [TZ07] the authors consider actions of string diagrams on cyclic complexes of V∞
algebras and propose (see their Remark 5.6) that these should be related to moduli spaces
of Riemann surfaces. The above result shows this to be the case in genus 0. Let us also
observe that this corollary holds for any deformation complex of planar dioperads; the
target need not be the endomorphism object.

9.21. Additional examples. By way of conclusion, let us mention several additional
examples.

• Shuffle operads to operads. The map is given by inclusion. This map is co-
proper; hence R preserves freeness, quadratic objects and the Feynman transform.
Here we can use Manin products on binary subcategories (as pointed out in [LV12]
8.10.16) and R(Lie) will be a dualizing object.

• Half-props to dioperads. This map is given by inclusion but is not co-proper. It
was studied in [MV09] and we recover several of their results in this framework.

• Dihedral operads. The proper morphism from non-Σ cyclic operads to cyclic
operads admits a factorization into a pair of proper morphisms via the intermediary
of dihedral operads (c.f. [AP17],[DV17]). In particular, symmetric cyclic operads
and dihedral operads are related by a triple of adjoint functors (R!, L,R) and the
study of the dihedral operad DR(Grav) in loc. cit. can be recast as the study of
R!(HyCom∞).

• Changing colors. We can consider Feynman categories encoding colored versions
of the above structures; eg colored operads. Maps between color sets will induce
admissible functors on the respective Feynman categories.
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• Non-Σ modular operads to modular operads. Non-Σ modular operads were
introduced in [Mar16], which gives the adjunction (L,R). It would be interesting to
consider the other operations; for example show that this morphism is proper and
to consider R! and the associated dualizing objects.

A. Feynman categories reference guide.

In this appendix we will fix our assumptions and conventions regarding Feynman cate-
gories. In particular we choose to impose several restrictions upon the general framework
presented in [KW17] which will simplify our arguments without limiting the applicability
of our results.

Recall that in general a Feynman category is specified by three pieces of data: a
groupoid V, a symmetric monoidal category (F,⊗) and a functor ι : V → F. This data
is then required to satisfy axioms which we recall below. In this paper we consider all
Feynman categories to be strict (Definition 1.8.1 of [KW17]) which means that ι is an
inclusion V ⊂ F and we further consider all Feynman categories to be “skeletal” by which
we mean that the groupoid V contains only automorphisms. Let us also impose the
condition that V is a small category and that each automorphism group in V is finite.

After imposing these restrictions, a Feynman category is equivalent to the following
data:

1. A set ob(V). The elements of this set are often called vertices.

2. A finite group Aut(v) = HomV(v, v) for each vertex v.

3. A set of “generating morphisms” HomF(X, v) for each X ∈ ob(V)×n, each n ∈ N
and each v ∈ ob(V).

4. A composition law endowing the sets {HomF(X, v)} with the structure of a ob(V)-
colored operad.

The observation codified in [KW17] is that such data is equivalent to the structure of a
symmetric monoidal category (F,⊗) with satisfies the “hereditary condition” with respect
to V (see Definition 1.1.1 of [KW17]). Moreover, under this correspondence, algebras over
colored operads correspond to symmetric monoidal functors from Feynman categories.

So, under our assumptions, and up to factors of the monoidal unit, a Feynman category
is a pair (V,F) as above, in which the objects of F can be written as v1⊗ . . .⊗ vn and the
morphisms in F can be written as ⊗-products of compositions of generating morphisms
v1⊗ . . .⊗ vn → v0 with automorphisms of vertices. We often denote a Feynman category
by F, leaving V implicit.

For any fixed symmetric monoidal category C we define F-OpsC to be the category
of strong symmetric monoidal functors from F → C and V-ModsC to be the category of
functors from V to C. In this paper we will consider C = dgV ectk, and omit the subscript
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C. Any O ∈ F-Ops is determined by its underlying V-module and its image on generating
morphisms.

Given Feynman categories F1 and F2, a morphism between them φ : F1 → F2 is a
symmetric monoidal functor which restricts to a functor V1 → V2, which we also call φ.
In this paper we impose that morphisms satisfy the property that for any Y ∈ F2, the set
{X ∈ F1 : φ(X) = Y } is finite.

A.1. Cubicality. The conditions imposed above specifying which Feynman categories
and morphisms between them that we consider were rather mild. For some of our results,
we need the notion of “Feynman transform” and this requires imposing a rather more
restrictive condition which we call cubicality (Definition 7.2.2 of [KW17]). Cubicality
is an answer to the question: which colored operads have algebras which behave like
operads?

A cubical Feynman category is a Feynman category along with a degree function for
its morphisms; i.e. a function Mor(F)→ N which is additive with respect to composition
and ⊗-products. Cubicality then further requires that the degree function must satisfy
two important properties. First, we know that isomorphisms have degree 0, but cubicality
also requires the converse: a degree 0 morphism is an isomorphism. Second, cubicality
requires that every degree n morphism (for n ≥ 1) can be written as a composition of n
degree 1 morphisms is exactly n! distinct ways (up to isomorphism).

To be more precise, if we define Cn(A,B) to be the set of sequences of n composable
degree 1 morphisms in F from A to B, modulo composition of isomorphisms, then we
require Cn(A,B) to have a free and transitive Sn action such that composition of a
sequence induces an isomorphism HomF(A,B) ∼=

∐
nC

n(A,B)Sn for which concatenation
of sequences corresponds to composition in F. We refer to Definition 7.2.2 of [KW17] for
the full details of this definition and further discussion.

The cubicality conditions are often satisfied for Feynman categories whose morphisms
are graphs. The degree is often the number of (internal) edges and the fact that we can
assemble n edges in any of the possible n! orders to produce the same graph shows us that
the central axiom holds. Examples include Feynman categories encoding operads, cyclic
operads, modular operads, non-Σ versions of these, as well as wheeled properads, dioper-
ads, 1/2-props, wheeled operads, dihedral operads, etc. We can also consider degrees to
correspond to multi-edge contractions in which case one could also consider properads.
The fact that all degree 0 morphisms are isomorphisms forces us to consider all of these
objects without units. This is a condition familiar in the usual bar construction for an
operad say, when we first pass to the augmentation ideal of the unit. It also forces us to
restrict our attention to connected graphs.

Finally we define a morphism of cubical Feynman categories φ : F1 → F2 to be a
morphism of Feynman categories which is degree preserving. In particular, to say that
φ is cubical means that both its source and target are cubical, and that φ is degree
preserving.

In the six operations formalism, Verier duality is an endofunctor. For us the Feynman
transform will play this duality role, but having an endofunctor requires a finiteness
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restriction that we now impose. Recall (Definition 7.3.1 [KW17]) that a cubical Feynman
category is of finite type if the number of isomorphism classes of degree 1 morphisms with
a fixed target is finite. In this paper we impose:

A.2. Assumption. All cubical Feynman categories are of finite type.

A.3. Parity and the Feynman transform. Informally, the Feynman transform of
an object O ∈ F-Ops is formed by taking the free F-operad on the underlying V-module
and imposing a differential formed by summing over degree 1 morphisms. In order for
this operation to be square zero however, we must introduce some signs. These signs are
encoded by considering the sets Cn(A,B) above with both their given Sn action and the
associated alternating action.

One way to make this precise is to introduce enriched Feynman categories and their
functors, in which the set Cn(A,B) is replaced with a graded Sn module over k. In partic-
ular, to a cubical Feynman category F we can associate two enriched Feynman categories
F+ and F− (see [KW17] Definition 5.2.4). These have the same objects as F, but the
morphisms are respectively the trivial enrichment for F+ or the corresponding alternating
action in degree n for F−. We can then define the Feynman transform (Definition 7.4.1
of [KW17]) as a pair of functors D+ and D−:

D+ : F+-Ops� F−-Ops : D−

These functors are of the form D±(−) = (F∓(G(−)∗), ∂). Theorem 7.4.3 of [KW17]
then states that D+D− ∼ id− and D−D+ ∼ id+.

Another way to introduce the categories F±-Ops is to first consider the Feynman
category F̂ whose objects are the same as F and whose morphisms are HomF̂(A,B) ∼=∐

nC
n(A,B) and then to consider F±-Ops ⊂ F̂-Ops to be those functors which are (skew)

invariant: P(σ(f)) = (±1)|σ|P(f) for σ ∈ S|f |.
In this paper we will typically suppress the superscript ± notation. There are two

equivalent ways in which this can be interpreted. First, this may be considered to mean
that a statement is valid for both choices of superscripts. Of course, in the presence
of multiple instances of D, the choices must be consistent. For example, the statement
D2 ∼ id means that both D+D− ∼ id− and D−D+ ∼ id+ (which is true). Alternatively,
we can consider the category F+-Ops

∐
F−-Ops whose set of objects is the disjoint union

of two objects sets and with no additional morphisms. In this case we can consider
D := D+

∐
D−. Notice F+-Ops

∐
F−-Ops is a symmetric monoidal category in which ⊗

respects parity in the expected way.
There is a third way to interpret the suppression of superscripts in certain cases. Often

there exists an isomorphism F+-Ops ∼= F−-Ops under which D+ ∼= D−. In such a case we
can view D+ ∼= D− as an endomorphism. In practice, these isomorphisms are realized by
various shifts and suspensions, see Table IV of [KWZ15]. This is the case for operads and,
up to this isomorphism, D is the usual bar construction. This is not the case for modular
operads, for example, and here our category of F−-Ops corresponds to the K-modular
operads of [GK98].
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A.4. Quadratic objects and quadratic duality. One consequence of F being
cubical is that the free objects in F-Ops are N-graded by the degree of morphisms. We
call this grading the “weight” and depict it as a superscript. Notice that for E ∈ V-
Mods, the weight r component of the free F-operad can be viewed as a V-module; i.e.
F (E)r ∈ V-Mods.

Quadratic data relative to a given cubical Feynman category F is a pair (E, S), where
E ∈ V-Mods which is finite dimensional in each arity, and S ⊂ F (E)1 as a V-module.
Let us denote the free F-operad as F = F+ and the free F−-operad as F−. These spaces
are still weight graded, and in weight 1 we have F (E)1 = F−(E)1. Thus quadratic data
also determines a subspace S ⊂ F−(E)1.

We define the category FQ-Ops as follows. An object is a pair of a quadratic datum
and an element of {+,−} = Z2, called the parity. The morphisms always preserve parity
and are given by equivariant maps E → E ′ such that the induced map F±(E)1 → F±(E ′)1

sends S in to S ′. Quadratic duality is a functor FQ-Ops→ FQ-Ops defined by (E, S,±) 7→
(E∗, S⊥,∓), where ∗ denotes linear dual and S⊥ denotes those functionals vanishing on
S. And ± means (of course) + or −, whence ∓ means we have changed parity. Clearly
this functor is involutive.

We let 〈S〉 denote the ideal generated by S. This is the sub-V-module of F±(E)
generated by all images of F±(E)(−)(−) evaluated at morphisms f ∈Mor(F) and vectors
in F±(E)(s(f)) having at least one tensor factor in S. It is an easy exercise to see that
for S ⊂ F±(E), the quotient F±(E)/〈S〉 is naturally in F±-Ops.

There is a faithful functor FQ-Ops→ F-Ops given by sending (E, S,±) 7→ F±(E)/〈S〉.
Here (as above) we abuse notation by considering F-Ops = F+-Ops

∐
F−-Ops. The

objects in the image of this functor are called quadratic F-Ops, and we often (further)
abuse notation by writing F±(E)/〈S〉 ∈ FQ-Ops. If O is quadratic in F-Ops, then we let
O! denote the quadratic object associated to the dual quadratic data. Note, as above,
in the presence of the usual shift and suspension isomorphisms F+-Ops ∼= F−-Ops, and
this definition recovers the usual notion of quadratic duality (after composing with said
isomorphism). For example, our notion of quadratic dual of the commutative operad is
the “odd Lie operad”: Σ−1sLie, see [KWZ15].

Finally, we observe that quadratic duality and the Feynman transform are related by
a natural morphism D(P) → P !. For if P = F±(E)/〈S〉 then there is an inclusion of
V-modules E ↪→ GP , and hence a sequence F∓(GP ∗)→ F∓(E∗)→ P !. The composition
in this sequence is non-zero only for vertices labeled by generators, and hence for cycles in
D(P). Thus composition of this sequence gives a dg map D(P) → P !. We say P ∈ FQ-
Ops is Koszul if this map is a weak equivalence.
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gravity operad. Ann. Sci. Éc. Norm. Supér. (4), 50(5):1081–1122, 2017.

[Bar07] Serguei Barannikov. Modular operads and Batalin-Vilkovisky geometry. Int.
Math. Res. Not. IMRN, (19):Art. ID rnm075, 31, 2007.

[BK] C. Berger and R. Kaufmann. Derived decorated Feynman categories and
moduli spaces. in preparation.

[BM08] Dennis V. Borisov and Yuri I. Manin. Generalized operads and their inner
cohomomorphisms. In Geometry and dynamics of groups and spaces, volume
265 of Progr. Math., pages 247–308. Birkhäuser, Basel, 2008.
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Robert Paré, Dalhousie University: pare@mathstat.dal.ca
Kate Ponto, University of Kentucky: kate.ponto (at) uky.edu

Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
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