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TOPOI OF PARAMETRIZED OBJECTS

MARC HOYOIS

Abstract. We give necessary and sufficient conditions on a presentable ∞-category
C so that families of objects of C form an ∞-topos. In particular, we prove a conjecture
of Joyal that this is the case whenever C is stable.

Let X be an ∞-topos and let C be a sheaf of ∞-categories on X. We denote by∫
X

C→ X

the cartesian fibration classified by C. An object in
∫
X
C is thus a pair (U, c) with U ∈ X

and c ∈ C(U). The question we are interested in is the following:

1.1. Question. When is
∫
X
C an ∞-topos?

If C is a presentable ∞-category, we will also denote by
∫
X
C → X the cartesian

fibration classified by the sheaf

U 7→ ShvC(X/U) ' C⊗ X/U .

Joyal calls C an ∞-locus if
∫
S
C is an ∞-topos,1 and he conjectures that any presentable

stable ∞-category is an ∞-locus [2]. The motivating example, due to Biedermann and
Rezk, is the ∞-category Sp of spectra: there is an equivalence∫

X

Sp ' Exc(Sfin
∗ ,X),

and the right-hand side is an∞-topos [3, Remark 6.1.1.11]. More generally, for any small
∞-category A with finite colimits and a final object,∫

X

Excn∗ (A, S) ' Excn(A,X)

is an ∞-topos.
This paper gives a partial answer to Question 1.1 in Theorem 1.2. As a corollary, we

obtain a characterization of ∞-loci (see Corollary 1.5), similar to Rezk’s characterization
of ∞-topoi, which easily implies Joyal’s conjecture (see Example 1.7). The latter also
follows more directly from two observations, applicable to any PrR-valued sheaf C on an
∞-topos X:
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1Joyal also requires an ∞-locus to be pointed, but it will be convenient to omit this condition.
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• If L : C → C is objectwise an accessible left exact localization functor, then the
inclusion

∫
X
LC ⊂

∫
X
C is accessible and has a left exact left adjoint. This is clear

once we know that
∫
X
C is presentable [1, Theorem 1.3].

• If E is a small ∞-category, there is a pullback square in PrL,R:∫
X

Fun(E,C) Fun(E,
∫
X
C)

X Fun(E,X).

These observations show that the class of∞-loci is closed under accessible left exact local-
izations and under the formation of functor∞-categories Fun(E,−). Since any presentable
stable ∞-category is a left exact localization of Fun(E, Sp) for some E [3, Proposition
1.4.4.9], Joyal’s conjecture holds.

The next theorem gives more intrinsic conditions on C implying that
∫
X
C is an ∞-

topos, and it leads to a second proof of Joyal’s conjecture. Recall that a colimit in an
∞-category C with pullbacks is van Kampen if it is preserved by the functor C → Catop

∞,
c 7→ C/c, and recall that an ∞-category X is an ∞-topos iff it is presentable and all small
colimits in X are van Kampen.

1.2. Theorem. Let X be an ∞-topos and C a sheaf of ∞-categories on X. Suppose that:

1. for every U ∈ X:

(a) C(U) is accessible and admits pushouts;

(b) pushouts in C(U) are van Kampen;2

2. for every f : V → U in X:

(a) f ∗ : C(U)→ C(V ) preserves pushouts;

(b) f ∗ has a left adjoint f!;

(c) for every c, 0 ∈ C(V ) with 0 initial, the square

C(U)/f!(c) C(U)/f!(0)

C(V )/c C(V )/0

η∗◦f∗ η∗◦f∗

is cartesian, where η : id→ f ∗f! is the unit of the adjunction;

2The existence of pullbacks in C(U) follows from the other assumptions, as the proof will show.
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3. for every cartesian square

V ′ V

U ′ U

g

q p

f

in X, the canonical transformation q!g
∗ → f ∗p! : C(V )→ C(U ′) is an equivalence.

Then C is a PrL,R-valued sheaf and
∫
X
C is an ∞-topos.

Proof. It is clear that the coproduct of a family (Uα, cα) in
∫
X
C is given by (

∐
α Uα, c),

where c = (cα)α ∈
∏

α C(Uα) ' C(
∐

α Uα). Given a span (U, c) ← (W, e) → (V, d), (1a)
and (2b) imply that it has a pushout given by (U qW V, u!(c)

∐
w!(e)

v!(d)), where u, v,

and w are the canonical maps to U qW V . Hence,
∫
X
C has small colimits, and they are

preserved by the projection
∫
X
C → X. By [4, Lemma 5.4.5.5], this implies that C(U)

has weakly contractible colimits, being the pullback {U}×X

∫
X
C. By (2b), C(U) also has

an initial object, namely i!(0) where i : ∅ → U and 0 is the unique object of C(∅) ' ∗.
Hence, by (1a), C(U) is presentable. By (2b), we deduce that

∫
X
C has pullbacks that are

computed in a similar manner to pushouts. Note that f ∗ : C(U) → C(V ) preserves the
initial object by condition (3). To show that f ∗ preserves weakly contractible colimits,
it suffices to show that pullback along (V, ∗) → (U, ∗) in

∫
X
C does, since the canonical

functors C(U) →
∫
X
C are conservative and preserve weakly contractible colimits. Once

this is done, we will know that C is PrL,R-valued and that
∫
X
C is presentable, by [1,

Theorem 1.3].
It thus remains to show that colimits in

∫
X
C are van Kampen. The statement for

coproducts is straightforward, so we only consider pushouts. We will use the factorization
system on

∫
X
C induced by the cocartesian fibration

∫
X
C → X: any map (V, d) → (U, c)

factors uniquely as (V, d)→ (U, f!(d))→ (U, c) where the first map is cocartesian and the
second one is vertical.

We must show that the functor∫
X

C→ Catop
∞, (U, c) 7→

(∫
X

C

)
/(U,c)

'
∫
X/U

C/c,

preserves pushouts. Consider a span (U, c)← (W, e)→ (V, d) in
∫
X
C. Since the canonical

map ∫
X/UqWV

C/u!cqw!e
v!d −→

∫
X/U

C/c ×∫
X/W

C/e

∫
X/V

C/d

is a map of cartesian fibrations over X/UqWV ' X/U ×X/W
X/V , it suffices to show that it

is a fiberwise equivalence. By (2a) and (3), it suffices to consider the fiber over U qW V ,
which is

C(U qW V )/u!cqw!e
v!d −→ C(U)/c ×C(W )/e C(V )/d. (∗)

Decomposing a given span in
∫
X
C using the cocartesian factorization system, we see that

it suffices to consider two types of spans:
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(i) a vertical span (U, c)← (U, e)→ (U, d) in C(U);

(ii) a span of the form (U, f!e)
f← (W, e)→ (V, d).

In case (i), the map (∗) is an equivalence by (1b). In case (ii), we consider the following
cube, where P = U qW V and v : V → P is the canonical map:

C(P )/0 C(U)/0

C(P )/v!d C(U)/f!e

C(V )/0 C(W )/0

C(V )/d C(W )/e

The lateral faces are cartesian by (2c). The back face is cartesian since C is a sheaf whose
restriction maps preserve initial objects. Hence, the front face is cartesian, as desired.

1.3. Remark. The conditions of Theorem 1.2 are almost necessary. Suppose that C(∗)
has initial and final objects that restrict to initial and final objects of C(U) for every
U ∈ X. Under this mild assumption, if

∫
X
C is an ∞-topos, then conditions (1) and (2a)

hold with “pushouts” replaced by “weakly contractible colimits”, and condition (2c) and
(3) hold provided (2b) does. Thus, (2b) is the only condition that may not be necessary
for
∫
X
C to be an ∞-topos. However, if C is the sheaf associated with a presentable ∞-

category, it is clear that (1a), (2a), (2b), and (3) always hold; in that case, therefore,
∫
X
C

is an ∞-topos iff (1b) and (2c) hold.

1.4. Example. Let C be a sheaf on X satisfying the assumptions of Theorem 1.2. Then
the following sheaves of ∞-categories on X also satisfy the assumptions of Theorem 1.2:

1. the subsheaf LC ⊂ C for any L : C → C that is objectwise an accessible left exact
localization functor;

2. the sheaf Fun(E,C) for any small ∞-category E;

3. the sheaf Excn(A,C) for any n ≥ 0 and any small ∞-category A with finite col-
imits and a final object (this follows from the previous two cases, noting that C is
objectwise differentiable);

4. the sheaves C/c and Cc/ for any c ∈ C(∗).

Specializing to sheaves of the form U 7→ ShvC(X/U), we obtain the following charac-
terization of ∞-loci:
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1.5. Corollary. Let C be a presentable ∞-category. The following assertions are equiv-
alent:

1. C is an ∞-locus.

2. For every ∞-topos X,
∫
X
C is an ∞-topos.

3. Weakly contractible colimits in C are van Kampen.

4. Pushouts in C are van Kampen, and for every ∞-groupoid A and every functor
F : A/ → C sending the initial vertex to the initial object of C, the colimit of F is
van Kampen.

Proof. The equivalence of (1) and (2) follows from∫
X

C ' X⊗
∫
S

C.

Note that the functor C→
∫
S
C, c 7→ (∗, c), is fully faithful and preserves limits and weakly

contractible colimits. The implication (1) ⇒ (3) follows immediately, and (3) ⇒ (4) is
obvious. To prove (4) ⇒ (1), we apply Theorem 1.2. The only nontrivial condition to
check is (2c): given a morphism f : V → U in S and a functor F : V → C, we must show
that the square

Fun(U,C)/f!F Fun(U,C/0)

Fun(V,C)/F Fun(V,C/0)

is cartesian. But this square is the limit over u ∈ U of the squares

C/ colimv∈f−1(u) F (v) C/0

limv∈f−1(u) C/F (v) limv∈f−1(u) C/0,

which are cartesian by assumption.

1.6. Example. An ∞-category is an ∞-topos iff it is an ∞-locus with a strictly initial
object.

1.7. Example. If C is a stable ∞-category, any weakly contractible colimit in C is van
Kampen. This follows easily from the fact that cartesian squares in C are preserved by
colimits. In particular, we obtain another proof that any presentable stable ∞-category
is an ∞-locus.
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1.8. Example. Let C′ → C be a conservative functor between presentable ∞-categories
that preserves pullbacks and weakly contractible colimits. If C is an∞-locus, so is C′. For
example:

1. If Y is an ∞-topos, the ∞-category Y≥∞∗ of pointed ∞-connective objects of Y is an
∞-locus.

2. If C is an ∞-locus and A is a small ∞-category with finite colimits and a final
object, the ∞-category Excn∗ (A,C) of reduced n-excisive functors from A to C is an
∞-locus (use Example 1.4 (3)).

3. If C is an ∞-locus and T : C→ C is an accessible pullback-preserving comonad, the
∞-category coAlgT (C) of T -coalgebras is an ∞-locus. Similarly, if T : C → C is a
monad that preserves weakly contractible colimits, then the∞-category AlgT (C) of
T -algebras is an ∞-locus.

We conclude this note by considering an amusing family of ∞-topoi. Let C be an
∞-locus in which every truncated object is contractible, e.g., a presentable stable ∞-
category. The projection

∫
X
C → X admits left and right adjoints given by U 7→ (U, ∅)

and U 7→ (U, ∗), so that the functor

X ↪→
∫
X

C, U 7→ (U, ∗),

is an essential geometric embedding. Moreover, it is clear that an object (U, c) ∈
∫
X
C

is hypercomplete if and only if U is hypercomplete and c ' ∗; in other words, X is a
cotopological localization of

∫
X
C [4, Definition 6.5.2.17]. In particular,

∫
S
C is an∞-topos

whose hypercompletion is S and whose full subcategory of ∞-connective objects is C.
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Tim Van der Linden, Université catholique de Louvain: tim.vanderlinden@uclouvain.be
R. J. Wood, Dalhousie University: rjwood@mathstat.dal.ca


