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EXACT SEQUENCES IN THE ENCHILADA CATEGORY

M. ERYÜZLÜ, S. KALISZEWSKI, AND JOHN QUIGG

Abstract. We define exact sequences in the enchilada category of C∗-algebras and
correspondences, and prove that the reduced-crossed-product functor is not exact for the
enchilada categories. Our motivation was to determine whether we can have a better
understanding of the Baum-Connes conjecture by using enchilada categories. Along the
way we prove numerous results showing that the enchilada category is rather strange.

1. Introduction

The Baum-Connes conjecture says (very roughly) that, given an action of a locally com-
pact group on a C∗-algebra, the topological K-theory is naturally isomorphic to the
K-theory of the reduced crossed product. Unfortunately, the conjecture is false in that
form, essentially because the topological K-theory is an exact functor of actions, while the
reduced crossed product is not. Some effort has been expended to “fix” the Baum-Connes
conjecture (see, e.g., [2, 6, 4, 5, 10, 11, 12]). In this paper we investigate another possible
strategy of fixing the conjecture: change the categories. All the work to date on the
Baum-Connes conjecture has used categories of C∗-algebras, possibly with extra struc-
ture, where the morphisms are *-homomorphisms that preserve the structure. Here we
change the morphisms to be isomorphism classes of C∗-correspondences — we call these
“enchilada categories”. Perhaps we should explain the genesis of this unusual name: when
the AMS Memoir [8] was being prepared, the authors decided to first introduce the gen-
eral idea by writing a smaller paper [7], and we privately referred to these two papers as
the “big enchilada” and the “little taco”, respectively. Since then, a few of us have been
using the name “enchilada category” for the type of category studied in those two papers
(see Section 3 for definitions).

More precisely, we investigate the following question: is the reduced crossed product
functor exact between enchilada categories? In order to study this question rigorously,
we first need to know: what are the exact sequences are in the enchilada category of
C∗-algebras? In this paper we give one answer to this latter question. We then apply this
to answer the exactness question; unfortunately, the answer is no, the reduced crossed
product is not exact for the enchilada categories.

Despite this failure of exactness, we believe that our investigation into exact sequences
in the enchilada category will be useful. It turns out that the enchilada category is quite
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strange, in the sense that the morphisms are not mappings; additionally, the category
is not abelian, or even preadditive, so the standard techniques of homological algebra
are largely unavailable. As an illustration of our ignorance concerning the enchilada
category, we have been unable to completely characterize either the monomorphisms or
the epimorphisms.

This contributed to our most formidable hurdle: how to define the image of a mor-
phism. Since a morphism in the enchilada category is (the isomorphism class of) a C∗-
correspondence, it is fairly easy to guess that the image should involve the range of the
inner product, and it is then a short step to imagine that the range of the correspondence
should in fact be the closed span of the inner products. But how to put this on a rigor-
ous footing? In abstract category theory, a common way to define image uses subobjects,
which in turn use monomorphisms; this gave us trouble due to our inability to charac-
terize monomorphisms. In some category-theory literature, the definition of subobject is
modified by restricting the class of monomorphisms. We first tried the strong monomor-
phisms of [1]. This in turn lead to another stumbling block: our limited understanding of
epimorphisms in the enchilada category eventually defeated us because the definition of
strong monomorphism uses epimorphisms. We then tried using split monomorphisms in
the definition of image. This turned out to work very well, but it was unsatisfying since
it seemed to depend upon the more-or-less arbitrary choice of split monomorphisms. For-
tunately, we found in [15] an alternative notion of image, which we call Schubert image,
based upon kernels and cokernels. Since we were able to prove that the enchilada category
has kernels and cokernels, and even more importantly that in the enchilada category every
kernel is a split monomorphism (see Proposition 3.6 and Corollary 3.10), we were happy
to adopt Schubert’s definition of image.

We begin in Section 2 with a brief review of the basic notions from category theory that
we will need. Then in Section 3 we investigate these notions for the enchilada category,
where our main objective is to define kernel and Schubert image. Once this is done, we
characterize short exact sequences in the enchilada category (see Theorem 3.15). It is then
easy to explain why the reduced crossed product functor is not exact for the enchilada
categories (see Remark 3.16). Finally, in Section 4 we exhibit a few other ways in which
the enchilada category is strange — it is not abelian, or even preadditive.

2. Preliminaries

This paper is written primarily for C∗-algebraists. We use a nontrivial portion of the
concepts of category theory, so for the convenience of the reader we recall the definitions
and basic results here. All abstract discussions of morphisms and objects will be tacitly
in some category C.

2.1. Definition. A monomorphism is a morphism f such that f ◦ g = f ◦ h implies
g = h. Dually, f is an epimorphism if g ◦ f = h ◦ f implies g = h.
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2.2. Definition. An object A is initial if for every object B there is exactly one mor-
phism A→ B. Dually, A is terminal if for every object B there is exactly one morphism
B → A. Both of them are unique up to isomorphism.

2.3. Definition. A zero is an object that is both initial and terminal. If it exists, a zero
is unique up to isomorphism, and is denoted by 0. For any two objects A,B the zero
morphism 0A,B : A → B is the unique morphism from A to B that factors through 0.
Frequently we just write 0 for 0A,B.

2.4. Definition. Let f, g : A→ B. An equalizer of f, g is a morphism h : C → A such
that

• f ◦ h = g ◦ h;

• whenever k : D → A satisfies f ◦k = g◦k there exists a unique morphism p : D → C
such that h ◦ p = k.

The situation is illustrated by the following commutative diagram:

D
k

  

p !
��

C
h
// A

f
//

g
// B

2.5. Remark. As usual with universal properties, an equalizer, if it exists, is unique up
to (unique) isomorphism. In this case this means not only that for any other equalizer
k : L→ A the unique morphism u : L→ C making the diagram

L
k

��

u
��

C h // A

commute is an isomorphism, but that conversely for any isomorphism u : L → C the
morphism h ◦ u is an equalizer of f, g. We will omit explicitly making similar remarks
regarding other categorical gadgets.

2.6. Definition. Coequalizer is the dual of equalizer, i.e., a coequalizer of f, g : A→ B
is a morphism h : B → C such that

• h ◦ f = h ◦ g;

• whenever k : B → D satisfies k◦f = k◦g there exists a unique morphism p : C → D
such that k = p ◦ h.

This is illustrated by the commutative diagram

D

A
f
//

g
// B

h
//

k

>>

C

p!

OO
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2.7. Remark. If f, g : A→ B and q : B → E is a monomorphism, then f, g and q◦f, q◦g
have the same equalizers. Dually, if q : E → A is an epimorphism, then f, g and f ◦q, g ◦q
have the same coequalizers.

2.8. Definition. Let C be a category with zero object 0, and let f : A→ B. A kernel of
f is an equalizer of the pair f, 0 equivalently, a morphism h : C → A such that

• f ◦ h = 0;

• whenever k : D → A satisfies f ◦ k = 0 there exists a unique morphism p : D → C
such that h ◦ p = k.

2.9. Definition. Cokernel is the dual of kernel, i.e., a cokernel of f : A → B is a
coequalizer of f, 0; equivalently, a morphism h : B → C such that

• h ◦ f = 0

• whenever k : B → D satisfies k ◦ f = 0 there exists a unique morphism p : C → D
such that p ◦ h = k.

2.10. Remark. Every equalizer, and hence every kernel, is a monomorphism, and by
duality every coequalizer, and hence every cokernel, is an epimorphism. If f : A → B
and q : B → E is a monomorphism, then f and q ◦ f have the same kernels. Dually, if
q : E → A is an epimorphism, then f and f ◦ q have the same cokernels.

2.11. Remark. If 0 is a zero object, then for all objects A,B the morphism 0 : A→ B
has kernel 1A and cokernel 0 : B → 0.

2.12. Definition. A split monomorphism is a morphism f : A → B such that there
exists a morphism g : B → A with g ◦ f = 1A, and dually a split epimorphism is a
morphism f : A→ B such that there exists a morphism g : B → A with f ◦ g = 1B.

In the category-theory literature, one can find various definitions of image and coimage.
A common definition of the image of a morphism uses subobjects, and we summarize this
approach: if f : B → A and g : C → A are two monomorphisms with common codomain
A, write f ≤ g to mean that f = g ◦ h for some h. When both f ≤ g and g ≤ f write
f ∼ g. This defines an equivalence relation among the monomorphisms with codomain
A, and an equivalence class of these monomorphisms is called a subobject of A. The class
(which could be proper) of all subobjects of A is partially ordered by the binary relation
“≤”.

In practice, any monomorphism f : B → A is referred to as a subobject, with the
understanding that it is really just a representative of an equivalence class that is the
actual subobject.

In some contexts the monomorphisms in the definition of subobject are required to
satisfy some other conditions. For example, one could restrict to strong monomorphisms
(see Remark 4.7 for the definition).

In [13, Section I.10] (for example) we find the following definition:
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2.13. Definition. The image of a morphism f : A → B is the “smallest” subobject of
B through which f factors, equivalently a monomorphism u : I → B such that

• f = u ◦ f ′ for some f ′ : A→ I

• if f = v ◦ g for any other monomorphism v : J → B and a morphism g : A → J ,
then there is a unique morphism i : I → J such that u = v ◦ i

In many categories this is a very useful definition, provided that it is not hard to
determine what the subobjects are. For instance, in the category of sets subobjects are
subsets, in the category of groups subobjects are subgroups, etc. However, as mentioned
in the introduction, since we do not know what the monomorphisms — or the strong
monomorphisms, for that matter — are in the enchilada category we were unable to
determine what subobjects are. Therefore, we were unable to use this image definition.
So, we use the following instead, which we took from [15, Definition 12.3.7].

2.14. Definition. In a category with kernels and cokernels, a Schubert image of a mor-
phism f is a kernel of any cokernel of f , and dually a Schubert coimage of f is a cokernel
of any kernel of f .

We should note that Schubert defines an image of a morphism as above. However, in
a category where subobjects can be fully identified, images (in the subobject sense) need
not satisfy the condition of Definition 2.14 unless (for example) the category is abelian.
For instance, in the category of groups the above definition is applicable if and only if the
image is a normal subgroup of the codomain.

It is a trivial consequence of the definitions that the image of a morphism, if it exists,
can be factored through the Schubert image.

It may be appropriate to mention briefly the duals of subobjects and images. If
f : A→ B and g : A→ C are two epimorphisms with common domain A, write f ≤ g to
mean that f = h ◦ g for some h. When both f ≤ g and g ≤ f write f ∼ g. This defines
an equivalence relation among the epimorphisms with domain A, and an equivalence
class of these epimorphisms is called a quotient object of A. The coimage of a morphism
f : A→ B is the smallest quotient object of A through which f factors.

3. The enchilada category

As we mentioned in the introduction, in the enchilada category our objects are C∗-
algebras, and the morphisms from A to B are the isomorphism classes of nondegenerate
A−B correspondences. The paper [7] and the memoir [8] (particularly Chapter 1 and 2,
and Appendix A) contain a development of all the theory we will need, but for those not
familiar with C∗-correspondences we give a quick review: a Hilbert B-module is a vector
space X equipped with a right B-module structure and a B-valued inner product, i.e., a
positive-definite B-valued sesquilinear form 〈·, ·〉B satisfying

〈x, yb〉B = 〈x, y〉Bb and 〈x, y〉∗B = 〈y, x〉B
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for all x, y ∈ X, b ∈ B, and which is complete in the norm ‖x‖ = ‖〈x, x〉B‖1/2. The closed
span of the inner products is an ideal BX of B, and X is called full if BX = B. The
B-module operators T on X for which there is an operator T ∗ satisfying

〈Tx, y〉B = 〈x, T ∗y〉B for all x, y ∈ X

(which is not automatic, even if T is bounded) form the C∗-algebra L(X) of adjointable
operators with the operator norm, and the closed linear span of the rank-one operators
θx,y given by

θx,yz = x〈y, z〉B
is the closed ideal K(X) of compact operators.

By anA−B correspondence X we mean a HilbertB-moduleX with a *-homomorphism1

φX : A → L(X), and we say the correspondence is nondegenerate if AX = X.2 All our
correspondences will be nondegenerate by standing hypothesis. That is, from now on when
we use the term correspondence we will tacitly assume the nondegeneracy condition. An
isomorphism U : X → Y of A−B correspondences is a linear bijection such that

U(axb) = aU(x)b and 〈Ux, Uy〉B = 〈x, y〉B

for all a ∈ A, b ∈ B, x, y ∈ X.
The balanced tensor product X ⊗B Y of an A − B correspondence X and a B − C

correspondence Y is formed as follows: the algebraic tensor product X � Y is given the
A− C bimodule structure determined on the elementary tensors by

a(x⊗ y)c = ax⊗ yc for a ∈ A, x ∈ X, y ∈ Y, c ∈ C,

and the unique C-valued sesquilinear form whose values on elementary tensors are given
by

〈x⊗ y, u⊗ v〉C =
〈
y, 〈x, u〉Bv〉C for x, u ∈ X, y, v ∈ Y.

The Hausdorff completion is an A−C correspondence X ⊗B Y . The term balanced refers
to the property

xb⊗ y = x⊗ by for x ∈ X, b ∈ B, y ∈ Y,

which is automatically satisfied. The identity correspondence on A is the vector space
A with the A − A bimodule structure given by multiplication and the inner product
〈a, b〉A = a∗b. The enchilada category has C∗-algebras as objects, and the morphisms from
A to B are the isomorphism classes of A−B correspondences, with composition given by
balanced tensor product and identity morphisms given by identity correspondences.

1and henceforth we will drop the *, so that all homomorphisms are assumed to be *-homomorphisms
2Note that we actually mean AX = {ax : a ∈ A, x ∈ X}— by the Cohen-Hewitt factorization theorem

this coincides with the closed span.
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We write “AXB is a correspondence” to mean that X is an A − B correspondence,
and we write [X] = [AXB] for the associated morphism in the enchilada category. Un-
less otherwise specified, AAA will mean the identity correspondence over A. Note that
composition is given by

[BYC ] ◦ [AXB] = [A(X ⊗B Y )C ].

Actually, we will frequently drop the square brackets [·], since it will clean up the notation
and no confusion will arise.

The multiplier algebra of A is the C∗-algebra M(A) = L(AAA), and we identify A
with its image under the left-module homomorphism φA : A → M(A). In this way A
becomes an ideal of M(A). More generally, it is a standard fact that M(K(X)) = L(X).
A homomorphism µ : A→ M(B) is nondegenerate if µ(A)B = B, and nondegeneracy of
a correspondence AXB is equivalent to nondegeneracy of the left-module homomorphism
φX : A → M(K(X)). Every nondegenerate homomorphism µ : A → M(B) extends
uniquely to a homomorphism µ̄ : M(A) → M(B), and we typically drop the bar, just
writing µ for the extension.

An A−B Hilbert bimodule is an A−B correspondence X that is also equipped with
an A-valued inner product A〈·, ·〉, which satisfies the “mirror image” of the properties of
the B-valued inner product:

A〈ax, y〉 = aA〈x, y〉 and A〈x, y〉∗ = A〈y, x〉

for all a ∈ A, x, y ∈ X, as well as the compatibility property

A〈x, y〉z = x〈y, z〉B for x, y, z ∈ X.

A Hilbert bimodule AXB is left-full if the closed span AX of A〈X,X〉 is all of A (and to
avoid confusion we sometimes refer to the property span〈X,X〉B = B as right-full). In
any event, if X is an A − B Hilbert bimodule then AX is an ideal of A that is mapped
isomorphically onto K(X) via φX . The dual B −A Hilbert bimodule X̃ is the formed as

follows: write x̃ when a vector x ∈ X is regarded as belonging to X̃, define the B − A
bimodule structure by

bx̃a = ã∗xb∗

and the inner products by

B〈x̃, ỹ〉 = 〈x, y〉B and 〈x̃, ỹ〉A = A〈x, y〉

for b ∈ B, x, y ∈ X, a ∈ A. An A − B imprimitivity bimodule is an A − B Hilbert
bimodule that is full on both the left and the right. Note that every Hilbert B-module
may be regarded as a left-full K(X)−B Hilbert bimodule with left inner product

K(X)〈x, y〉 = θx,y.

It is a fundamental fact about the enchilada category that the invertible morphisms
are precisely the (isomorphism classes of) imprimitivity bimodules (see, for example, [7,
Proposition 2.6], [8, Lemma 2.4], and [16, Proposition 2.3]).
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In this section, we show the existence of the necessary ingredients, such as kernel and
image, to construct an exact sequence in the enchilada category. As we mentioned in the
introduction, we must be careful in defining the image of a morphism.

It is obvious that in the enchilada category a 0 object is any 0-dimensional C∗-algebra,
and the 0 morphism from A to B is the 0 correspondence A0B. If µ : A → M(B) is a
homomorphism, then µ(A)B is an A − B correspondence. When A is a closed ideal3 of
B, we get a correspondence AAB. For any ideal I of a C∗-algebra B, the quotient map
B → B/I gives rise to a correspondence B(B/I)B/I .

3.1. Proposition. Given correspondences AXB and BYC, we have X⊗BY = 0 if and
only if

BX ⊂ KerφY .

Proof. Assume that X⊗BY = 0. Let x1, x2 ∈ X and y1, y2 ∈ Y . Then we have,

0 = 〈x1⊗By1, x2⊗By2〉C = 〈y1, 〈x1, x2〉By2〉C .

This implies that 〈x1, x2〉By = 0 for all y ∈ Y , i.e., 〈x1, x2〉B ∈ KerφY . Since any element
of BX is a limit of linear combinations of elements 〈x1, x2〉B where xi ∈ X, we conclude
that BX ⊂ KerφY .

Now assume that BX ⊂ KerφY . Of course, since X ⊗B Y is the closed span of
elementary tensors, in order to show X ⊗B Y = 0 it suffices to show that x ⊗ y = 0 for
any x ∈ X and y ∈ Y : by the Cohen-Hewitt factorization theorem we can write x as x1b
for some x1 ∈ X and b ∈ BX , and then we have

x⊗B y = x1b⊗By = x1⊗Bby = x1⊗BφY (b)y = 0.

3.2. Lemma. Let AXB be a correspondence and C be a C∗-subalgebra of B containing BX .
Then X becomes an A−C correspondence AXC by restricting the right-module structure
to C, and the map

x⊗ b 7→ xb for x ∈ X, b ∈ CB
extends uniquely to an isomorphism

AXC ⊗C (CB)B ∼= AXB.

Note that CB is a closed right ideal of B, by the Cohen-Hewitt factorization theorem.

Proof. X already has a right B-module structure. Restricting this to C, we get a right
C-module structure. Now, we need an inner product into C, which we get directly since
BX ⊂ C. Then the standard computation

〈x⊗ b, x′ ⊗ b′〉B = b∗〈x, x′〉Bb′ = 〈xb, x′b′〉B

implies the assertion regarding the isomorphism.

3and henceforth we will drop “closed”, so that all ideals are tacitly assumed to be closed
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In Lemma 3.2, C will usually be an ideal of B, and then AXC ⊗C CCB ∼= AXB. A
frequently used special case is when C = B, and then the main content is the isomorphism
X ⊗B B ∼= X.

3.3. Lemma. Let X be a Hilbert B-module, and let π : A → M(C) be a nondegenerate
homomorphism.

1. Let AXB be a correspondence, and suppose that Ker π ⊂ KerφA,X . Let φC,X be the
unique homomorphism making the diagram

A
φA,X

//

π

��

L(X)

C
φC,X

<<

commute, and let CXB be the associated correspondence. Then the map

c⊗ x 7→ φC,X(c)x for c ∈ C, x ∈ X

extends uniquely to an isomorphism

ACC ⊗C CXB
∼= AXB

of A−B correspondences.

2. Suppose that π is surjective. Let CXB and CYB be correspondences, and define
correspondences AXB and AYB by

φA,X = φC,X ◦ π and φA,Y = φC,Y ◦ π.

Then AXB
∼= AYB if and only if CXB

∼= CYB.

Proof. (1) is folklore. For (2), first note that one direction follows quickly from part (1):
if CXB

∼= CYB then

AXB
∼= C ⊗C CXB

∼= C ⊗C CYB ∼= AYB.

Conversely let
U : AXB

'−→ AYB

be an isomorphism. Then AdU : LB(X)→ LB(Y ) is also an isomorphism. For c ∈ C we
can choose a ∈ A such that π(a) = c, and then

AdU ◦ φC,X(c) = AdU ◦ φC,X ◦ π(a)

= AdU ◦ φA,X(a)

= φA,Y (a)

= φC,Y ◦ π(a)

= φC,Y (c),

so that U also preserves the left C-module structures.
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Frequently-used special cases of Lemma 3.3, for a given A−B correspondence X, are
the isomorphisms

• A⊗A X ∼= X (where π = idA),

• A/I ⊗A/I X ′ ∼= X (when I is an ideal of A contained in KerφX), and

• K(X)⊗K(X) X
′ ∼= X [8, discussion preceding Proposition 2.27].

In connection with item (2) of Lemma 3.3, there is more to say:

3.4. Proposition. If π : A→ C is a surjective homomorphism, then ACC is an epimor-
phism in the enchilada category.

Proof. Given C −B correspondences X and Y such that

AC ⊗C XB
∼= AC ⊗C YB,

we must show that CXB
∼= CYB. Using Lemma 3.3, we can regard X and Y as A −

B correspondences AXB and AYB, and then part (1) of the lemma and the hypothesis
together tell us that AXB

∼= AYB, and so by part (2) of the lemma we also have CXB
∼=

CYB.

3.5. Proposition. If AXB is a monomorphism in the enchilada category, then φX : A→
LB(X) is injective.

Proof. Assume that φX is not injective. Then, K = KerφX is a non-zero ideal of A.
Consider the correspondence KKA. Since 〈K,K〉K = K, by Proposition 3.1 we have

K ⊗A X = 0 = 0⊗A X,

but K 6= 0, so X is not a monomorphism.

We suspect that the converse of Proposition 3.5 is true, but have been unable to prove
it. In any case, it seems that the property of being a monomorphism in the enchilada
category is very weak.

3.6. Proposition. A correspondence AXB is a split monomorphism in the enchilada
category if and only if it is a left-full Hilbert bimodule.

Proof. First assume that X is a split monomorphism. Let BYA be a correspondence,
and assume that we have an isomorphism

U : X ⊗B Y
'−→ A

of A − A correspondences. We must show that φX : A → L(X) is an isomorphism onto
K(X). We borrow an idea from [16, proof of Proposition 2.3]: note first that AdU :

L(X ⊗B Y )
'−→ L(A) = M(A) is an isomorphism, and define a homomorphism

π : L(X)→M(A)
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by
π(T ) = AdU(T ⊗B 1).

Then (the canonical extension to multipliers of) π ◦ idA is the identity on M(A). Also,
a routine argument using an approximate identity of A shows that π(K(X)) ⊂ A. Thus
(now deviating from Schweizer’s proof) X gets an A-valued inner product:

A〈x, y〉 = π(θx,y),

and so X is actually an A−B Hilbert bimodule. We have B−A correspondence isomor-
phisms

X̃ ⊗A X ⊗B Y ∼= BX ⊗B Y (Lemma 3.7)
∼= BX ⊗BX Y (Lemma 3.8)
∼= Y (Lemma 3.3)

while on the other hand

X̃ ⊗A X ⊗B Y ∼= X̃ ⊗A A (hypothesis)

∼= X̃ (Lemma 3.2).

Thus
A ∼= X ⊗B Y ∼= X ⊗B X̃ ∼= AX

as A − A correspondences. Therefore A = AX , so the A − B Hilbert bimodule X is
left-full.

Conversely, assume that X is a left-full Hilbert bimodule. Then we have a B − A
Hilbert bimodule X̃, and

[X̃] ◦ [X] = [X ⊗B X̃]

= [X ⊗BX X̃] (by Lemma 3.8 again)

= [A],

so [X] is a split monomorphism

3.7. Lemma. If X is an A−B Hilbert bimodule, then

X̃ ⊗A X ∼= BX as B −B correspondences

X ⊗B X̃ ∼= AY as A− A correspondences.

Proof. This is folklore. If X is an imprimitivity bimodule, then this is [14, Proposi-
tion 3.28] (for example), and the general case can be proved using the same techniques.
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3.8. Lemma. If AXB and BYC are correspondences, then

X ⊗B Y ∼= X ⊗BX Y

as A− C correspondences.

Proof. Just note that the balancing relations determined by ⊗B and ⊗BX coincide: for
every x ∈ X, b ∈ B, and y ∈ Y we can choose x′ ∈ X, b′ ∈ BX such that x = x′b′, and
then the following computation in X ⊗BX Y suffices:

xb⊗ y = x′b′b⊗ y
= x′ ⊗ b′by (since b′b ∈ BX)

= x′b′ ⊗ by
= x⊗ by.

3.9. Theorem. Let X be an A−B correspondence and let K be the kernel of the associated
homomorphism φX : A→ LB(X). Then the correspondence KKA is a kernel of X.

Proof. First, K ⊗K X = 0 by Lemma 3.1, because 〈K,K〉 = K = KerφX .
Now suppose that CYA is a correspondence such that Y ⊗AX = 0. Then by Lemma 3.1

we have
AY ⊂ KerφX = K,

so by Lemma 3.2 we get a correspondence CYK such that

CYK ⊗K KA
∼= CYA.

Moreover, CYK is unique up to isomorphism because KKA is a left-full Hilbert bimodule,
and hence is a split monomorphism by Proposition 3.6, so in particular is a monomor-
phism.

3.10. Corollary. A correspondence AXB is a left-full Hilbert bimodule if and only if X
is a kernel in the enchilada category, in which case it is a kernel of B(B/BX)B/BX .

Proof. First assume that AXB is a kernel of a correspondence BYC . Then by Theorem 3.9

AXB is isomorphic to the kernel KKB, where K = KerφY , in the sense that there is an
imprimitivity bimodule Y (equivalently, [Y ] : A→ K is an isomorphism in the enchilada
category) making the diagram

A
X //

Y
��

B

K
K

>>

commute. Since KKB is a left-full Hilbert bimodule, so is AXB.
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Conversely, assume that X is a left-full Hilbert bimodule. By Lemma 3.2 we can
regard X as an imprimitivity bimodule AXBX , and

AXB
∼= AXBX ⊗BX BX (BX)B.

By Theorem 3.9, BX (BX)B is a kernel of B(B/BX)B/BX , and hence so is AXB because

AXBX is an imprimitivity bimodule.

3.11. Proposition. A correspondence AXB has cokernel B(B/BX)B/BX .

Proof. First, X⊗BB/BX = 0, because BX is the kernel of the quotient map B → B/BX .
Now suppose that BYC is a correspondence such that X ⊗B Y = 0. Then BX ⊂ KerφY
by Lemma 3.1, so by Lemma 3.3 we may regard Y as a B/BX − C correspondence, and
we have

B(B/BX)B/BX ⊗B/BX B/BXYC
∼= BYC . (3.1)

Moreover, by Proposition 3.4 B(B/BX)B/BX is an epimorphism in the enchilada category,
so (3.1) determines B/BXYC up to isomorphism.

Finally, we are ready for images.

3.12. Theorem. A correspondence AXB has Schubert image BX (BX)B and Schubert
coimage A(A/Kerφ)A/Kerφ, where φ = φX is the associated homomorphism.

Proof. By Proposition 3.11 B(B/BX)B/BX is a cokernel of X, and by Theorem 3.9

BX (BX)B is a kernel of B(B/BX)B/BX . Thus BX (BX)B is a cokernel of a kernel of X, and
so is the Schubert image of X by definition.

Very similarly, Kerφ(Kerφ)A is a kernel of X, and A(A/Kerφ)A/Kerφ is a cokernel of

Kerφ(Kerφ)A. Thus, by definition, it is the Schubert coimage of X.

3.13. Proposition. Every Hilbert bimodule AXB has an image, and in fact it coincides
with the Schubert image.

Proof. Assume that AXB is isomorphic to AY⊗CZB for a monomorphism CZB and a
morphism AYC . Since AXBX is a Hilbert bimodule, there exists a BX−A Hilbert bimodule

X̃ such that X̃⊗AX ∼= BX as BX − BX correspondences (Lemma 3.7). Denote X̃⊗AY
by M . Then we have

BXM⊗CZB ∼= BX X̃⊗AY⊗CZB ∼= BX X̃⊗AXB
∼= BX (BX)B.
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Thus BXMB is the unique monomorphism making the diagram

A
X //

X′

��

Y

��

B

BX

BX

CC

M

��

C

Z

II

commute, which completes the proof.

And Theorem 3.12 in turn makes us ready for exact sequences:

3.14. Definition. A sequence

· · · // A
[X]
// B

[Y ]
// C // · · ·

of morphisms in the enchilada category is exact at B if the image of X equals the kernel
of Y , and is exact if it is exact at every node.

3.15. Theorem. Let AXB and BYC be correspondences. Then the sequence

0 // A
X // B

Y // C // 0

is exact in the enchilada category if and only if φX is injective, BX = KerφY , and Y is
full (i.e., CY = C).

Proof. Since A0 = 〈0, 0〉 = 0, the morphism 0 : 0→ A is an image of 0 : 0→ A. On the
other hand, KerφX : KerφX → A is a kernel of X : A → B. Thus the sequence is exact
at A if and only if φX is injective.

Next, CY : CY → C is an image of Y : B → C. On the other hand, the homomorphism
φ0 : C → L(0) is 0, so has kernel C. Thus C : C → C is a kernel of 0 : C → 0. Therefore
the sequence is exact at C if and only if CY = C.

Finally, BX : BX → C is an image of X : A → B, and KerφY : KerφY → B is a
kernel of Y : B → C, so the sequence is exact at B if and only if BX = KerφY .

3.16. Remark. As we mentioned in the introduction, our primary motivation for inves-
tigating exact sequences in the enchilada category was to determine whether the reduced-
crossed-product functor is exact in the enchilada categories, which would obviously be
relevant for the Baum-Connes conjecture. But now we will show that it is not exact. Let

0 // A X // B Y // C // 0
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be a short exact sequence of correspondences, and let G be a locally compact group.
Further let α : G → AutA, β : G → AutB, γ : G → AutC, ζ : G → AutX, and
η : G→ AutY be actions as in [8, Section 3.1.1]. Then we can form the reduced-crossed-
product correspondences

Aoα,rG(X oζ,r G)Boβ,rG and Boβ,rG(Y oη,r G)Coγ,rG.

Moreover, there are actions

µ : G→ AutK(X) and ν : G→ AutK(Y )

such that

K(X oζ,r G) = K(X) oµ,r G

φXoζ,rG = φX or G

K(Y oη,r G) = K(Y ) oν,r G

φY oη,rG = φY or G.

Now consider the following sequence

0 // Aoα,r G
Xoζ,rG

// B oβ,r G
Y oη,rG

// C oγ,r G // 0

One of the required conditions to make this sequence exact is

(Boβ,rG)Xoζ,rG = KerφY oη,rG.

Now, by [8, Proposition 3.2] we have (Boβ,rG)Xoζ,rG = BXoβ,rG. Since φY oη,rG =
φY or G and BX = KerφY , for exactness we must have

(KerφX) oα,r G = Ker(φX or G).

However this equality is not true in general if G is not exact. So, the reduced-crossed-
product functor does not preserve exactness in the enchilada categories if G is a nonexact
group.

3.17. Remark. Although it is not directly relevant for our original investigation regard-
ing the Baum-Connes conjecture, we will now point out that the full-crossed-product
functor is also not exact in the enchilada categories.

Again let

0 // A X // B Y // C // 0

be a short exact sequence of correspondences, carrying compatible actions of G. For
exactness, we would need the sequence

0 // AoG
XoG

// B oG
Y oG

// C oG // 0 (3.2)

to be exact. To apply Theorem 3.15, we would need:
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• φXoG to be injective,

• (B oG)XoG = KerφY oG, and

• (C oG)Y oG = C oG.

This time, it may fail to be exact at AoG, i.e., φXoG need not be injective. To explain
all this, note that, as for reduced crossed products,

K(X oG) = K(X) oG

K(Y oG) = K(Y ) oG

φXoG = φX oG

φY oG = φY oG.

Then we have

(B oG)XoG = BX oG

= (KerφY ) oG (since BX = KerφY )

= Ker(φY oG)

= KerφY oG,

so (3.2) is exact in the middle.
Next,

(C oG)Y oG = CY oG (since CY = C)

= C oG,

so (3.2) is exact at C oG.
To see how exactness at A o G might fail, we formulate a strategy for finding a

counterexample: we will take a correspondence X arising from a homomorphism, and we
will let all the actions be trivial. More precisely, we will have:

• an injection π of A into an ideal D of B, and

• the associated A−B correspondence X = AB.

Since all the actions are trivial, the crossed products are just the maximal tensor products
with C∗(G). In particular, the correspondence AoG(X oG)BoG is the tensor product

A⊗maxC∗(G)(X ⊗max C
∗(G))B⊗maxC∗(G).

It follows from the standard theory of C∗-correspondences that this is isomorphic to

AXB ⊗max C
∗(G).
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In particular, the left-module homomorphism φXoG becomes the tensor product

π ⊗max id : A⊗max C
∗(G)→ B ⊗max C

∗(G).

If we take any group G for which C∗(G) is nonnuclear (for example, the free group on 2
generators), then it is a subtle fact from C∗-algebra theory [3, Theorem IV.3.1.12] that
there exist a C∗-algebra D and a C∗-subalgebra A such that the associated homomorphism
π ⊗max id is noninjective. Then for any full correspondence BYC with KerφY = D we get
a counterexample.

4. Further properties of the enchilada category

In Corollary 3.10 we characterized kernels in the enchilada category as the left-full Hilbert
bimodules. In view of other results that come in dual pairs, it is tempting to suspect that
cokernels are precisely the right-full Hilbert bimodules. On the other hand, the enchilada
category is decidedly left-challenged, so it is not surprising that it could have direction-
related properties that are not satisfied when the directions are reversed. Indeed:

4.1. Proposition. In the enchilada category, a cokernel need not be a right-full Hilbert
bimodule, and conversely a right-full Hilbert bimodule need not be a cokernel.

Proof. First, it follows from Proposition 3.11 that a quotient map B → B/J is a cokernel
in the enchilada category. However, it need not be a Hilbert bimodule, since the quotient
B/J need not be isomorphic to an ideal of B.

Conversely, let A be a nonzero C∗-algebra. Then AAA is a right-full Hilbert bimodule,
and we will show that it is not a cokernel. Arguing by contradiction, suppose AAA is a
cokernel of BXA. Then

X ⊗A A = 0,

so AX ⊂ KerφA = 0, and hence X = 0. Now, 0 : A→ 0 is also a cokernel of 0 : B → A,
so A and 0 are isomorphic in the enchilada category, and hence are Morita equivalent.
Therefore A = 0, which is a contradiction.

4.2. Proposition. If a correspondence AXB is an epimorphism in the enchilada cate-
gory, then X is full, i.e., BX = B.

Proof. Suppose that BX 6= B. Then

X ⊗B B(B/BX)B/BX = 0 = X ⊗B 0,

but B(B/BX)B/BX 6∼= 0.
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Proposition 4.2 can be alternatively restated as follows: AXB if is an epimorphism
then its image is the identity morphism BBB. In many categories, there is a converse: a
morphism f : A→ B whose image is the identity morphism 1B must be an epimorphism
— informally, surjections are epimorphisms. But not in the enchilada category:

4.3. Proposition. The enchilada category has a morphism X : A → B that is not an
epimorphism but whose image is BBB.

Proof. We must find correspondences AXB, BYC , and BZC such that

1. BX = B,

2. X ⊗B Y ∼= X ⊗B Z, and

3. Y 6∼= Z.

We let X be the C − C2 correspondence associated to the homomorphism a 7→ (a, a),
and for Y and Z we take the C2 − C correspondences associated to the homomorphisms
(a, b) 7→ a and (a, b) 7→ b, respectively.

It follows from Lemma 3.3 that

X ⊗B Y ∼= CCC ∼= X ⊗B Z.

On the other hand, the C2−C correspondences Y and Z are not isomorphic, since by [7,
Proposition 2.3] two B−C correspondences coming from nondegenerate homomorphisms
π, ρ : B → M(C) are isomorphic if and only if there is a unitary u ∈ M(C) such that
Adu ◦ π = ρ.

In spite of Proposition 4.3, there is a weaker result, namely Proposition 3.4.

4.4. Corollary. The enchilada category does not have equalizers.

Proof. By Proposition 4.3, we can choose a correspondence AXB such that BX = B but
X is not an epimorphism in the enchilada category. Since BX = B, the image of X is the
correspondence BBB. Thus X factors through its image as follows:

X ∼= X ⊗B BBB.

Therefore, by [13, Proposition I.10.1], if the enchilada category had equalizers then X
would have to be an epimorphism.

Despite having both kernels and cokernels, the enchilada category is not abelian. In
fact:

4.5. Corollary. The enchilada category is not additive.

Proof. Every additive category with kernels has equalizers.
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Direct sum is a binary operation on isomorphism classes of A − B correspondences.
However, ([AXB],

⊕
) does not have a group structure since direct sum is not cancellative

(i.e., we can have X ⊕ Y ∼= X ⊕ Z but Y 6∼= Z). Therefore, the enchilada category is not
even preadditive.

Proposition 3.6 implies a dual counterpart:

4.6. Corollary. An A−B correspondence X is a right-full Hilbert bimodule if and only
if X is a split epimorphism in the enchilada category.

Proof. First, if X is a split epimorphism, then we can choose a B − A correspondence
Y such that

Y ⊗A X ∼= B

as B − B correspondences. It then follows from the proof of Proposition 3.6 that Y is a
left-full Hilbert bimodule and X ∼= Ỹ . Thus X is a right-full Hilbert bimodule.

Conversely, if X is a right-full Hilbert bimodule, then, similarly to the proof of Propo-
sition 3.6, X̃ is a right inverse of X, so X is a split epimorphism.

4.7. Remark. In [1], Arduini proposed a strengthening of the concepts of monomorphism
and epimorphism, with an eye toward improving the concept of subobject. Here we only
give his definition of monomorphism, which nowadays is called strong monomorphism: it
is a morphism f : A→ B such that for every commutative diagram

C
g
//

h
��

D

k
��

A
f
// B,

where g is an epimorphism, there is a unique morphism ` making the diagram

C
g
//

h
��

D

k
��`

!

~~

A
f
// B

commute. Every split monomorphism is a strong monomorphism, and every strong
monomorphism is a monomorphism. Thus, the uniqueness of ` is automatic. More-
over, since g is an epimorphism, it is enough to know that the upper triangle commutes.
As we mentioned in the introduction, for a time we thought we would be able to use
Arduini’s strong monomorphisms to define the image of a morphism in the enchilada cat-
egory. But we had to abandon this approach, since we have an inadequate understanding
of epimorphisms in the enchilada category.
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