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MULTIPLE VECTOR BUNDLES: CORES, SPLITTINGS AND
DECOMPOSITIONS

MALTE HEUER AND MADELEINE JOTZ LEAN

ABSTRACT. This paper introduces oco- and n-fold vector bundles as special functors
from the co- and n-cube categories to the category of smooth manifolds. We study the
cores and “n-pullbacks” of n-fold vector bundles and we prove that any n-fold vector
bundle admits a non-canonical isomorphism to a decomposed n-fold vector bundle. A
colimit argument then shows that oco-fold vector bundles admit as well non-canonical
decompositions. For the convenience of the reader, the case of triple vector bundles is
discussed in detail.

1. Introduction

Double vector bundles were introduced by Pradines [18] as a structural tool in his study
of nonholonomic jets. Since then, double vector bundles have been used e.g. in integration
problems in Poisson geometry [17, 2, 11, 1, 10], and Pradines’ symmetric double vector
bundles (with inverse symmetry) have turned out to be equivalent to graded manifolds of
degree 2 [9]. Pradines’ original definition was in terms of double vector bundle charts [18]:

Let M be a smooth manifold and D a topological space with a map 11: D — M.
A double vector bundle chart is a quintuple ¢ = (U,0,V1,V5, Vy), where U is an
open set in M, Vi, Va, Vs are three (finite dimensional) vector spaces and ©: II"Y(U) —
U x Vi x Vo x Vjy is a homeomorphism such that 11 = pry o ©.

Two smooth double vector bundle charts ¢ and ¢ are smoothly compatible if V; = V!
fori=0,1,2 and the “change of chart” © o ©~! over U NU' has the form

(2,01, v, v0) = (x, p1(x)v1, p2(2)v2, po(T)vo + w(T)(V1,v2))

with x € UNU', v; € Vi, pp € C*UNU,GIV;)) fori =0,1,2 and w € C®(U N
U',Hom(V; ® V5,Vp)). A smooth double vector bundle atlas 2 on D is a set of
double vector bundle charts of D that are pairwise smoothly compatible and such that the
family of underlying open sets in M covers M. A (smooth) double vector bundle structure
on D is a mazimal smooth double vector bundle atlas on D.

A double vector bundle consists then of a smooth manifold D, together with vector
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bundle structures D — Ay, D — Ay, Ay — M, Ay — M:

D
pAl
D —— A

png( th )

AQLM

such that the structure maps (bundle projection, addition, scalar multiplication and zero
section) of D over A are vector bundle morphisms over the corresponding structure maps
of B — M and the other way around. Equivalently, the condition that each addition in D
is a morphism with respect to the other is exactly

(dy +a, d2) +a, (d3 +4a, ds) = (dy +a, d3) +4, (d2 +4, ds) (1)

for dl, dg, dg, d4 € D with pgl (dl) = pgl (dg), pgl (dg) = pgl (d4) and pgg (dl) = ng (dg),
ph,(dz) = p&, (ds). This is today’s usual definition of a double vector bundle; which has
been used since [14]. Tt is easy to see that a double vector bundle following Pradines’
definition is a double vector bundle in the “modern” sense [18], but the converse is more
difficult to see. Pradines’ double vector bundle charts are equivalent to local linear splittings
of today’s double vector bundles. Let us be more precise.

Given three vector bundles A, B and C' over M with respective vector bundle projections
qa, g and g¢, the space

Axy BxyC~dy(BoC)~qs(Ad0)

has two vector bundle structures, one over A, and one over B. These two vector bundle
structures are compatible in the sense of both definitions above. Such a double vector
bundle is called a decomposed double vector bundle, with sides A and B and with
“core” C. In particular, if C' is the trivial vector bundle M over M, we get the “vacant”
double vector bundle A x,; B [14]. A (local) linear splitting of a double vector bundle
(D; A, B; M) is an injective morphism of double vector bundles

Su: Aly xu Blu = (ggopp)'(U),

over the identity on the sides A|y and Bly, where U C M is an open subset. A (local)
decomposition of (D; A, B; M) with core C' is an isomorphism of double vector bundles

Sv: Aly xu Blu xu Clu — (g5 0 p5)H(U),

which is the identity on the sides and on the core. Linear splittings are equivalent to
decompositions; and a local decomposition of D as above with the open set U trivialising
simultaneously A, B and C gives a smooth double vector bundle chart of D, defined by
O: (ggopB) 1 (U) - U x R* x R” x R*;

O = (pry, ¢a, b, dc) o (Sv) ",
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where a, b, ¢ are the ranks of A, B, C, respectively and ¢4: ¢;'(U) — U x R? is the
trivialisation of A over U, etc.

Starting with the definition from [14], it was until recently not known how to show the
existence of local double vector bundle charts, or equivalently of local linear splittings. In
fact, Mackenzie later added the existence of a global splitting to his definition of a double
vector bundle, and also of triple vector bundles (see e.g. [16, Definition 1], [6], [4]). It turns
out that Mackenzie’s additional condition in his definition is redundant. The existence
of local splittings for the above definition of double vector bundles has been mentioned
at several places [8, 5], but the first elementary construction was given by Fernando del
Carpio-Marek in his thesis [3], starting from the hypothesis that the double projection
(pR,pE): D — A x; B of a double vector bundle is a surjective submersion.

Note here that in [18], Pradines pasted local decompositions together with a partition
of unity, in order to get a global decomposition (see in our proof of Theorem 3.5 below).
In other words, the existence of local decompositions is equivalent to the existence of a
global linear splitting or decomposition.

We will explain below (in Section 1) how to deduce very easily from the surjectivity
of the double projection (pf,pE): D — A x,; B the existence of a global splitting. This
surjectivity, that is sometimes also assumed as part of the definition of a double vector
bundle (this is e.g. done explicitly in a former version of [16] that can be found on arXiv.org,
and implicitly in [3]), is in fact always ensured by Lemma 2.13 below (see also Remark
2.14). Although we find a more elegant proof of the existence of global splittings of
double vector bundles than the one in [3], it turns out that the method there is easier
to understand and more elementary in the case of a general n-fold vector bundle. Our
first goal in this project was to build on del Carpio-Marek’s method in order to construct
local splittings of triple vector bundles. It was then natural to adapt our proof to the
construction of local linear splittings of n-fold vector bundles; and we found that a colimit
argument yields the existence of global linear decompositions for co-fold vector bundles as
well.

Let us mention here that Eckhard Meinrenken showed us recently a beautiful construc-
tion of global linear splittings of double vector bundles using the normal functor, and an
interesting alternative proof to the submersive surjectivity of the double projection [13],
using the commuting scalar multiplications of a double vector bundle.

In this paper, we introduce multiple vector bundles [7] as special functors from hy-
percube categories to smooth manifold, such that generating arrows are sent to vector
bundle projections, and elementary squares to double vector bundles. In particular, we
define oco-fold vector bundles as such functors from the infinite hypercube category. We
study in great detail the cores of multiple vector bundles and find on them rich structure
of multiple vector bundles as well. We define the n-pullback of an n-fold vector bundle
and the surjective submersion onto it — in the case of a double vector bundle, this is the
surjectivity of (p&,p8): D — A xj; B — and most importantly we prove by induction
over n that each n-fold vector bundle admits local splittings and therefore a non-canonical
global decomposition.
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n-fold vector bundles were previously defined in [7], [5]. It is not difficult to see that
the definitions are the same: Gracia-Saz and Mackenzie’s n-fold vector bundles are smooth
manifolds with n “commuting” vector bundle structures in the sense that all squares are
double vector bundles, and Grabowski and Rotkiewicz’s are smooth manifolds with n
commuting scalar multiplications. Grabowski and Rotkiewicz sketch in [5] a proof of global
splittings of their n-fold vector bundles. Our construction is more precise since it explains
all the multiple core and their roles in the decomposition; and most importantly it gives
the decompositions of co-fold vector bundles with a colimit construction. Our definition
of multiple vector bundles as special functors from cube categories to manifolds allows
us to work with n-fold vector bundles without giving a central role to the total space —
an oo-fold vector bundle cannot be defined as a smooth manifold with infinitely many
commuting scalar multiplications!

OUTLINE OF THE PAPER. In the next section 1 we explain for the convenience of the
reader how to prove that double vector bundles admit linear decompositions.

In Section 2 we define multiple vector bundles. We construct their pullbacks (Sec-
tion 2.9) and we explain the rich structure on the different cores of multiple vector bundles
(Section 2.17).

In Section 3 we define linear splittings and decompositions of n-fold vector bundles.
We explain how the two notions are essentially equivalent (Section 3.1) and we prove the
existence of local splittings of a given n-fold vector bundle (Section 3.4). We deduce the
existence of global decompositions of n-fold vector bundles and we explain how n-fold
vector bundles can alternatively be defined as smooth manifolds with an atlas of compatible
n-fold vector bundle charts (Section 3.8).

In Section 4 we prove that each co-fold vector bundle admits a linear decomposition.
Finally in Section 5 we explain for the convenience of the reader most of our constructions
and results in the case of a triple vector bundle. In that special case, we explain the
relation between linear splittings and multiple linear sections.

RELATION WITH OTHER WORK. We heard after having mostly completed this work that
the content of Theorem 2.10 for n = 3 can be found as well in the recent paper [4];
unfortunately the proof given there has some errors.

Some of our results on cores in Section 2.17 seem to be known in [7], but they are not
central in that paper so not precisely formulated and proved. The cores of triple vector
bundles can also be found in [4] and [15] — our proof of Theorem 2.20 relies on the fact
that the side cores of a triple vector bundle are double vector bundles [15].

PREPARATION: ON LINEAR SPLITTINGS OF DOUBLE VECTOR BUNDLES. Let (D, A, B, M)
be a double vector bundle with core C'. That is, the space C is the double kernel
C={deD| pid) =024, pEd) =08 for somem € M}. It has a natural vector
bundle structure over M since +,4 and +p of two elements of C' coincide by the interchange
law (1), see (5) below.

The additional axiom that the double projection (pf,p5): D — A xj; B is a surjective
submersion is sometimes added to the definition. We explain in Theorem 2.10, see also
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Remark 2.14, why this additional axiom is not needed [13]. The surjectivity of (p§,pB)
yields the exactness of the sequence

| B (PRrE) |
0— qgC 5 D 2 ¢ggA—0 (2)

of vector bundles over B. The map tp: ¢5C — D is the core inclusion over B; sending
(b,c) to 0 + 4 c. Tts image are precisely the elements of D that project under pf to zero
elements of A.

A section & € T'4(D) is linear over a section b € I'(B) if the map £: A — D is a vector
bundle morphism over the base map b: M — B. The space I'4(D) of linear sections of
D — Ais a C°°(M)-module since for £ € T'4(D) linear over b € I'(B) and for f € C®(M),
the section ¢ f - £ is linear over fb. We get a morphism 7: I'4(D) — T'(B) of C>(M)-
modules, sending a linear section to its base section. If a linear section £ € T'% (D) has the
zero section 07 € T'(B) as its base section, then for all a,,, € A, D 3 &(a,,) = 02 +5 o(am)
for some ¢(a,,) € C(m). The linearity of £ implies that ¢ € I'(A* ® C'). We denote then &
by @, and we get the map ~: I'(Hom(A, C')) — I'4(D) that sends ¢ to ¢ € T4 (D) defined
by ¢(a) = 02 45 ¢(a) for all a € A.

A splitting s: ¢yA — D of (2) lets us define for every b € I'(B) a section b of
D — A, given by b(am) = $(am,b(m)) for all a, € A. We get then immediately
pRob=bogy: M — B and

~

blay, + a3,) = s(ay, +a,, b(m)) = s(ay,, b(m)) +p s(ay,, b(m)) = blay,) +5 blay,).

i.e. b: A — D is a vector bundle morphism over b: M — B. In other words, b is an
element of I'Y (D). Therefore, the third arrow in

0 — D(Hom(A, C)) — T4(D) —» I(B) — 0 (3)

is surjective and the short sequence of C'°(M )-modules is exact. Then, since I'(Hom(A, C))
and I'(B) are locally free and finitely generated, I'4(D) is as well and there exists a
splitting h: T'(B) — T'%(D) of (3). Then h defines a linear splitting X,: A x3y B — D,
Yn(am, bm) = h(b)(ay,) for any b € I'(B) with b(m) = b,,. Since h is C°°(M)-linear, it
is easy to see that Y, is well-defined, i.e. that it does not depend on the choice of the
sections of B.

Hence we have proved the following theorem.

1.1. THEOREM. Any double vector bundle D with sides A and B admits a linear splitting
Y:Axy B— D.

Del Carpio-Marek proves in his thesis [3] the existence of local splittings. His method
is the following. Take a splitting o: gg!A — D of the short exact sequence (2) — here
[3] seems to assume the surjectivity of the right-hand map as an axiom in the definition
of a double vector bundle. That is, ¢ is a vector bundle morphism over the identity on
B. Now choose U C M an open set that trivialises both A and B and take the induced
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local frames (ay,...,ax) and (by,...,b) of A and B over U. Then each b,, € B|y equals
b = 21—y Bibi(m) with By, ..., 3 € R. Set Xy Aly xu Bly = (g8 o pp) ' (U),

l
2U(am; bm) - Zﬂz ‘A O'(CLm, bz<m))7

where the sum is taken in the fiber of D over a,, € A. Then ¥y is a local linear splitting
of D.

ACKNOWLEDGEMENTS. We warmly thank Rohan Jotz Lean for useful comments, and Sam
Morgan for telling us about the technique used in [13] for proving that the double source
map of a VB-groupoid is a surjective submersion (used in our proof of Theorem 2.10).

We also thank the University of Sheffield for the received funding in form of a PhD
scholarship for Malte Heuer, which made this research possible.

2. Multiple vector bundles: definition and properties

In this section we introduce multiple vector bundles and discuss some of their properties.
The novelty of our definition is that instead of considering an n-fold vector bundle as a
smooth manifold with n-commuting vector bundle structures, we see a multiple vector
bundle as a special functor from a cube category to smooth manifolds. In particular, the
“total space” of an n-fold vector bundle does not play that central a role anymore, and we
can even define oco-fold vector bundles, with no total space at all.

In the following, we write N for the set of positive integers: N = {1,2,...}. For n € N,
we write n for the set {1,...,n}.

2.1. MULTIPLE VECTOR BUNDLES. We consider the category with objects the finite
subsets I C N and with arrows

I—-J & JCI.

We call this category the standard oco-cube category [IV. It is generated as a category
by the arrows
I - I\{i} for I CNfiniteandiel.

That is, each subset I C N of cardinality k is the source of k generating arrows.

In a similar manner, we call the standard n-cube category [1" the category with
subsets I of n as objects and with arrows I — J < J C [.

More generally, an n-cube category is a category that is isomorphic to the standard
n-cube category [J", while an co-cube category is a category that is isomorphic to the
standard oo-cube category (V.
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2.2. DEFINITION. An oo-fold vector bundle, and respectively an n-fold vector bun-
dle, is a covariant functor E: Y — Man®™ - respectively a covariant functor E: (" —
Man®> - to the category of smooth manifolds, such that, writing E; for E(I) and
ph =K — J),

(a) for all 1 CN (respectively I C n) and alli € I, pp ¢y Er — Engy has a smooth
vector bundle structure, and

(b) for all I CN (respectively I Cn) andi# j €I,

PI\(iy
Ef ————— Engy

I ) I\{}
lpl\“} N} Jp’\“”' }

P\{i,j}
Engy ——— Enpj

1s a double vector bundle.

For better readability we will often write for the vector bundle projections p] := pj, 0
and in the case of an n-fold vector bundle also p; := pi\ ¢iy- The smooth manifold Ey =: M
will be called the absolute base of E. If E is an n-fold vector bundle, the smooth manifold
E(n) =: E is called its total space. Given a finite subset / C N and i € I, we write +7\ (3
for the addition and -\ ;) for the scalar multiplication of the vector bundle E; — Ep 4.
This notation is omissive since it only specifies the base space of the vector bundle in the
fibers of which the addition or scalar multiplication is taken. However, it is always clear
from the summands or factors which fiber space is considered.

We will generally say multiple vector bundle for an n-fold or oo-fold vector bundle,
when the dimension of the underlying cube diagram does not need to be specified. Our

definition of n-fold vector bundles is different but equivalent notation to the definition in
[7].

2.3. REMARK. There is a canonical functor wp: 0" — O for k < n defined by n3(I) =
INk and 7(I — J) = (INk) = (JNk). The canonical functor 7 : ON — 0" is defined
in the same manner by 75(I) = I Nn. Furthermore there are inclusion functors of full
subcategories 1 : OF — O™ and /N : O — OV,

Given a k-fold vector bundle E : OF — Man®, the composition E o 7 is an n-fold
vector bundle whereas the composition E o 7l is an co-fold vector bundle.

In this light, a standard n-fold vector bundle E can be viewed as a special case of a
standard oo-fold vector bundle E: 0N — Man™ such that additionally E =TE oY o 7l:

E
ON —= 5 Man®™

W

ln
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In other words E(I) =E(I Nn) for all I CN and E is completely determined by its values
on all the subsets of n already.

We will also more generally call an n-fold vector bundle a functor E: ¢ — Man™,
where " is an n-cube category with isomorphism i: [J* — ", such that Eoi is a standard
n-fold vector bundle. Similarly, an oco-fold vector bundle is a functor E: O — Man®™,
where QN is an oo-cube category with isomorphism i: OV — O, such that Eoi is a
standard oo-fold vector bundle. We need this generality of the definition for the study of
the cores of a multiple vector bundle.

The following proposition is straightforward and its proof is left to the reader.

2.4. PROPOSITION. Let E: ON — Man™ be a multiple vector bundle.

(a) For each pair of subsets J C I C N with J finite, the finite sets K C N such that
J C K C I form a full subcategory OF7 of O, which is itself a (#I — #.J)-cube
category and the restriction of E to I is a (#1 — #.J)-fold vector bundle with
total space Ey (if I is finite) and absolute base E;, denoted by EL7. We call this the
(I,J)-face of E.

(b) In particular, if I =0 we obtain a (#I)-fold vector bundle EL? with total space E;
and absolute base M. We call E'? the I-face of E.

Given an oo-fold vector bundle E: Y — Man™ and an open subset U C M, we
define the restriction of E to U to be the oo-fold vector bundle E|y: O — Man®™,

-1 -1 -1
Ely(I) = (p§)  (U) and Ely(I = J) = B(I = Dy (95) ) = (9]) (V).
The absolute base of E|y is U. In the same manner, if E: " — Man® is an n-fold vector

bundle, and U an open subset of M, then its restriction E|y to U is an n-fold vector

bundle with total space (py)~'(U) and with absolute base U.
Now recall that a morphism (¥; 14, 1 5; 1) of double vector bundles from (Dy; Ay, By; M)
to (Da; Ag, By; M) is a commutative cube

Dy v Dy

all the faces of which are vector bundle morphisms. Similarly we define morphisms of
multiple vector bundles.
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2.5. DEFINITION. Let E: 011\7 — Man®™ and F: <>I§ — Man® be two multiple vector
bundles. A morphism of multiple vector bundles from E to F is a natural transfor-
mation 7: Eoi, — Foiy such that for all objects I of (1N and for alli € I, the commutative
diagram

T(I)
By 1y ——— Fuo
i1 (1) i (1)
lpilu\{m inz(f\{i})

T(I\{?
By~ Fainygiy

is a homomorphism of vector bundles.

Given two n-fold vector bundles E: 07 — Man™ and F: 0§ — Man™, a« morphism
of n-fold vector bundles from E to F is a natural transformation 7: Eoi; — F o,
such that the diagram above is a vector bundle homomorphism for all I Cn and i € I.
The morphism T is surjective (resp. injective) if each of its components T(I), I C n is
surjective (resp. injective).

2.6. PROTOTYPES. In this section, we describe a few standard examples of multiple vector
bundles, that will be relevant in the formulation of our main theorem.

DECOMPOSED MULTIPLE AND n-FOLD VECTOR BUNDLES. Consider a smooth manifold M
and a collection of vector bundles A = (q;: A;y = M) jcn, #7<00, With Ap = M. We define
a functor EA: OY — Man® as follows. Each finite subset I C N is sent to E; := H%I Ay,
the fibered product of vector bundles over M. -

For I C N with 1 < #I < oo and for k € I, the arrow I — I\ {k} is sent to the
canonical vector bundle projection

M M
pél HAJ—> H AJ.

JcI JCI\{k}

In particular, the arrow {i} — ) for i € N is sent to the vector bundle projection péi} =
quiy: By = Ay — Ep = M. A multiple vector bundle EA: OV — Man®™ constructed
in this manner is called a decomposed multiple vector bundle. A decomposed n-
fold vector bundle E4: 00" — Man®™ is defined accordingly. In that case we will write
EA :=TFEA(n) for the total space. Decomposed n-fold vector bundles are also defined in [7].

2.7. EXAMPLE. A 3-fold vector bundle is also called a triple vector bundle. A trivial or
decomposed triple vector bundle is given by

E{1,2,3} = A{l} XM A{2} XM A{3} XM A{1,2} XM A{1,3} XM A{2,3} XM A{1,2,3},
with decomposed sides
Eoy = Apy X Apy X Apay,  Epsy = Apy X Agsy X Apsy
Eps = Agpy Xar Ay X Az

where A;, I C n are all vector bundles over M, the projections are the appropriate
projections to the factors and the additions are defined in an obvious manner in the fibers.



674 MALTE HEUER AND MADELEINE JOTZ LEAN

VACANT MULTIPLE AND n-FOLD VECTOR BUNDLES. As a special case of this, if A =
(qi: A; — M )ien is a collection of vector bundles over M, we construct the multiple vector
bundle E4: OY — Man®™ as follows:

IHﬁAi, (I — I\ {k})— (pk 114 — H A)

i€l iel ieI\{k}

Such a multiple vector bundle is called a vacant decomposed multiple vector bundle.
We will see later that all cores of these multiple vector bundles are trivial.

Given a collection of vector bundles A = (q;: Aj — M) jcn, #7<00, With Ag = M, we
can define A = (¢;: A; — M )ien by A; = Agiy. We get then a monomorphism of multiple
vector bundles -

1 EA - EA (4)
defined by ¢(I): TIie; Ay — Ther As, o) (vi)ier) = (wy)cr, wuy = v; for i € I,
wy = vy :=m € M and wy = 047 for #.J > 2. In particular, (({i}) = idg,,, forallieN.

In the case of an n-fold vector bundle we write F := E(n) for the total space.

“DIAGONAL” DECOMPOSED AND VACANT k-FOLD VECTOR BUNDLES. More generally,
consider a collection A = (qr: Ar — M);c,, of vector bundles, with Ay = M, and a
partition p = {Iy,..., Iz} of n with I; # 0, for j = 1,..., k. Then we can define a k-cube
category ¢ with objects the subsets v C p and with morphisms v; — 15 < 1y C 1.
We will write [v] := Uke, K for v C p. Now we define a vacant k-fold vector bundle
@: QP — Man™ by

M M M
U HAK, (V—>V\{I})l—>(pl'f\{1}: HAK—> H AK)~
Kev Kev Ken\{I}
In a similar manner, we define a decomposed k-fold vector bundle E;,“: QP — Man®™ by
M
vV — H A[V/], (V — UV \ {]} H A[V/ — H A[V/ ,
V' Cv V' Cv V' Cu\{I}

where the map on the right-hand side is the canonical projection. We get as before an
obvious monomorphism of k-fold vector bundles +”: E;j‘ — E,“O“. For each v C p we have
furthermore the obvious canonical injections

n’(v): B H Apy = EA([v H Ay
V' Cw JC[v]

THE TANGENT PROLONGATION OF AN n-FOLD VECTOR BUNDLE. Given an n-fold vector
bundle E: 0" — Man™ we define an (n + 1)-fold vector bundle TE: O"*! — Man®,
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the tangent prolongation of E, as follows. Given I C n, we set TE(/) := E; and
TE(I U{n+ 1}) := TE;. Furthermore, for i € I C n we set

TE(I — I\{i}):==p/: Er = Engy .
TEJU{n+1} > (T Uu{n+1H)\{i}) =Tp)): TEr — TEngy ,
TE(IU{H+1} — I) ‘= DPE;: TE; —)E],

where the last map is the canonical projection.

MULTIPLE HOMOMORPHISM VECTOR BUNDLES. Given two n-fold vector bundles E and
F with the same absolute base E(()) = F(0)) = M we construct an n-fold vector bundle
Hom,, (E, F), which is the n-fold analogon of the bundle Hom(E, F') for ordinary vector
bundles £ and F' over M.

For m € M the restrictions E|,, and F|,, define n-fold vector bundles over a single
point as absolute base. With this we can define Hom, (E, F) to be

Hom,, (E,F) := {(I)m: E|,, — F|,, morphism of n-fold vector bundles | m € M} )

This space is equipped with an obvious projection to M. Since n-fold vector bundle
morphisms have underlying (n — 1)-fold vector bundle morphisms between the faces
there are additionally projections Hom, (E,F) — Hom,_; (E2\#H0 Fr\MERD) for all k €
n. Each of these projections carries a vector bundle structure, with the sum of two
morphisms ®,, and ¥,, projecting to the same base ¢: E2\k}, - — FrMFY - defined as
(P i\ (5} Yin)(€) 1= Pru(€) +n\ (k) Um(€). These vector bundle structures define an n-fold
vector bundle Hom(E, F) with total space Hom,(E,F) and absolute base M, by setting
Hom(E, F)(I) := Homy, (E? F/9).

Every morphism of n-fold vector bundles E — [ over the identity on M corresponds
to a smooth map M — Hom,, (E, F) which is a section of the projection to M.

In particular, let F' — M be an ordinary vector bundle and consider the n-fold vector
bundle F defined by F(n) = F and F(I) = M for all I C n. Then we write Mor, (E, F) for
the space of n-fold vector bundle morphisms from E to I over id,,.

2.8. LEMMA. Let E be an n-fold vector bundle over M and F' be a vector bundle over M.
Then the space Mor,,(E, F') is a C*(M)-module.

PROOF. An element 7 of Mor, (E, F') necessarily satisfies 7(I): E(I) — M, 7(I)(e)
pple) for all e € E(I), I € n. Take fi, fo € C*(M) and 72 € Mor,(E, F). Then
(fi 71+ fo-7m): E — Fis defined by (fi- 71+ f2-72)(I)(e) = pj(e) for all e e E(1), I
and (fi 71+ f2- 72)(n)(e) = fi(pj(e)) - mi(e) + fa(py(e)) '72(6) for e € E(n).

By construction, (fi -7 + fo - 72)(n) is smooth and

]

E(ﬂ) (fim1+fam2)(n) F

lpi\{i} JqF

E(n\ {i}) —=
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is a morphism of vector bundles for all i € n. For I Cn and i € I, the map (f; -7 + fo -
72)(I): E(I) — M is obviously a vector bundle morphism over 7(I\{i}): E(/\{i}) - M .=

2.9. THE n-PULLBACK OF AN n-FOLD VECTOR BUNDLE. Let E be an n-fold vector
bundle. We define the n-pullback of E to be the set

P = {(61,...,6n>

e; € En\piy and p?\{i}(ei) = M (e) for i, j € ﬂ} :

We prove the following theorem, which is central in our proof of the existence of a
linear splitting.

2.10. THEOREM. Let E: 1" — Man® be an n-fold vector bundle. Then

(a) P defined as above is a smooth embedded submanifold of the product Ep\ 1y X ... X
En\{n}-

(b) The functor P defined by P(n) = P, P(S) = Eg for all S C n and the vector
bundle projections p;: Eg — Eg\qy for all S Cn andi € S and pj: P — Epgy,
(e1,...,6,) > €; is an n-fold vector bundle.

(¢) The map 7w(n): E — P given by w(n): e — (p1(e),...,pn(€e)), defines together with
7n(J) =1idg, for J C n, a surjective n-fold vector bundle morphism w: E — P.

Note that for each ¢ € n, the top map 7(n): E — P of 7 is necessarily a vector bundle
morphism over the identity on E,\ ;. For the proof of this theorem, we need the following
lemmas.

2.11. LEMMA. Let f: M — N be a smooth surjective submersion, and let qp: E — N be
a smooth vector bundle. Then the inclusion f'E — E x M is a smooth embedding.

This lemma is standard and its proof is left as an exercise. The next statement is
obvious.

2.12. LEMMA. Let A — M and B — N be two smooth vector bundles, and let ¢: A — B
be a homomorphism of vector bundles over a surjective submersion f: M — N. Assume
that ¢ is surjective in each fiber. Then the pullback homomorphism f'¢: A — f'B,
am — (O(am), m) over the identity on M is surjective in each fiber.

The following lemma is central in our proof, its technique is inspired by a similar one
in [13].

2.13. LEMMA. Let A — M and B — N be two smooth vector bundles, and let ¢: A — B
be a homomorphism of vector bundles over a smooth map f: M — N. Then ¢ is a
surjective submersion if and only if ¢ is surjective in each fiber and f is a surjective
submersion.
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ProOOF. Choose a,, € A. Then it is easy to see in local coordinates that the tangent
space T,,, A splits as T, A ~ T,,M © A(m), and the tangent space Ty, B splits as
TramyN @ B(f(m)). In those splittings, the map T, ¢: 15, A = Ty, B reads

Tam¢ = Tmf S ¢’A(m) TmM S A(m) — Tf(m)N @ B(f<m))

Therefore, T, ¢ is surjective if and only if T, f: T, M — Ty, N is surjective and
dlamy: A(m) — B(f(m)) is surjective. Since the surjectivity of ¢ implies the surjectivity
of f, the proof can easily be completed. n

2.14. REMARK. Take D a double vector bundle with sides A and B. Then qg: B — M
is a surjective submersion since it it a vector bundle projection, and pF: D — A is a
surjective submersion for the same reason. Hence Lemma 2.13 implies that p& is surjective
in each fiber. Now if A Xy B is identified with gz A, then (pg,pB): D — A x B coincides
with the pullback morphism qzpl: D — ¢zA as morphism of vector bundles over B.
By Lemma 2.12, it is hence surjective in each fiber, and so (p%,pE): D — A xy B is
surjective. This shows Theorem 2.10 in the case n = 2 since then A X,y B is an embedded
submanifold of A x B, it is the total space of a double vector bundle with sides A and B
and with trivial core, and the projection w({1,2}): D — A xy; B is equal to (p§,pB). This
reasoning is due to [13], and the proof of Theorem 2.10 is just a generalisation of it to
the case of an arbitrary n, with a central role of Lemma 2.13 and of Lemma 2.12.

2.15. LEMMA. Let qa: A — M be a smooth vector bundle, and let B C A and N C M be
embedded submanifolds with ga(B) = N and such that for each n € N, B(n) C A(n) is a
vector subspace. Then B — N has a unique smooth vector bundle structure, such that the
smooth embeddings build a vector bundle homomorphism into A — M.

This last lemma is standard as well. We leave its proof to the reader.

PrOOF PrROOF OF THEOREM 2.10. We prove this by induction over n. The case of n =1
is trivially satisfied since in that case [ is an ordinary vector bundle F = E;y — Ey = M
and so P = M. Let us now take n € N with n > 2 and assume that all three claims are
true for any (n — 1)-fold vector bundle E.

Recall from Proposition 2.4 that E2{*} is an (n — 1)-fold vector bundle. The corre-
sponding (n — 1)-pullback is

PP = {(el, ke | e € En\qiy: p?\{i}(ei) = piﬂ\{j}(ej) fori,jen\ {k}} :

By the induction hypothesis (b), this is the total space of an (n — 1)-fold vector bundle
PP with underlying nodes E; for k € J C n. The absolute base of this (n — 1)-fold vector
bundle is Eyxy, and by (c) we have a smooth morphism 7P : E2{* — PP of (n — 1)-fold
vector bundles that is surjective. In a similar manner, E2\t*}? is an (n — 1)-fold vector
bundle. The corresponding (n — 1)-pullback is

P = {(by, ..k bn) [ b € By s 50 (b)) = p T (by) for i, j € n\ (K}
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Again by the induction hypothesis (b) this is the total space of an (n — 1)-fold vector
bundle P}°¥ with underlying nodes E; for J C n\ {k}. By (c) we have a smooth surjective
morphism oW : B2\ Plow of (5 — 1)-fold vector bundles.

By the induction hypothesis (a), P,* and Plow are embedded submanifolds of Hl 1 En iy

and [[i=; Ep\ (4,8}, respectively. Since for each i # k in n, we have the smooth Vector bundle
(7t

p;\{l} Ep(iy — Ep\(iky, the product H?:l E,\ iy has a smooth vector bundle structure

over HZ 1 En\giky, the projection of Wthh we denote by ¢i. Using the surjectivity of
#k

oY (n \ {k}): Epy — PV, the surjectivity of py: E — Epn\ (4}, as well as the identities

P o p*\{ W op,; for i 7é k, we find easily that qk(P"p) Pl°v. Further, P'® is
clearly closed under the addition of Hl 1 Epiy — ]_[Z 1 Ep\iky- Lemma 2.15 yields then

that g.: PP — Pl°% is a smooth Vector bundle.
Next let us set for simplicity 0y := m¥(n \ {k}): Enxy — PP". Recall that it is
defined by
5/€' e — (p*\{ }< ) ey ];’, . ,p%\{k}(ek)) .

Since n > 2 we can choose i € n \ {k}. Then &;: E, iy — PV is a surjective smooth
vector bundle homomorphism over the identity on E,\(;x. By Lemma 2.13, it is a
surjective submersion. We consider the pullback vector bundles (8;)'Py® over E, (x}, for
each k € n. As a set, each (§;)' PyPcan easily be identified with P.

Denote by ¢y, the inclusion of P'® in Ep\qy X ... k... x Ep\{n}- Then P is embedded
into Ep\ (13 X ... X Ep n) via the composition

up Pexidp,, h -
P — Pk X En\{k} > (Eﬁ\{l} X ...k...x Eﬁ\{n}) X Eﬂ\{k} s

where the map on the left is the embedding as in Lemma 2.11. It is easy to see that up to
the obvious reordering of the factors on the right, the embeddings obtained for k =1,...,n
are the same map. Therefore, all the obtained smooth structures on P are compatible
and so P is a smooth manifold and all its projections are smooth. In particular, we have
proved (a).

The compatibility of the vector bundle structures of P over E,\ ;) and Ep,\ ;) for @ # j
follows from the compatibility of the structures in E2\*19 More precisely for i,j € n,
the interchange law in the double vector bundle (P, E\ iy, En\ (51 En\(i,;3) follows from
the interchange laws in the double vector bundles (E gk}, B\ (k.i} En\ (k.53 P\ (ki) for
all k € n\ {i,7}. We let the reader check this as an exercise. Hence we can define
P: " — Man®™ and we obtain an n-fold vector bundle.

Foreachk =1,...,n, m.°(n): E — P.”® is a vector bundle morphism over 6 : Ep\ (r} —
Pl°V. The pullback of ;P (n) via the map dj, is hence a vector bundle morphism £ —
(65)' P over the identity on E,\ (4, and it is easy to see that it coincides — via the
identification of P with (6;)'Py® — with the n-fold projection 7(n) from E to P. Hence
m: E — P is an n-fold vector bundle morphism.
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As before choose i € n\ {k}. Since m,P(n): E — P;'® is a surjective vector bundle
morphism over the identity on K\, it is a surjective submersion by Lemma 2.13.
But since 8y: En\ry — PV is a surjective submersion and 7P (n) is a vector bundle
morphism over d;, by Lemma 2.13 it must be surjective in each fiber of py: £ — Ep\ (1)
By Lemma 2.12, the pullback 7(n) = 8,7, P(n): E — P is then surjective in each fiber of
P B — Ep\ k- Since the base map is the identity on Ep\xy, m(n) is surjective. [

Note that we have proved as well the following result.

2.16. COROLLARY. In the situation of Theorem 2.10, the projection w(n): E — P is a
surjective submersion.

2.17. CORES OF A MULTIPLE VECTOR BUNDLE. Given a double vector bundle (D, A, B, M),
the intersection (pB)~1(05,) N (pB)~1(04,) is called the core of the double vector bundle
(D, A, B, M). It has a natural vector bundle structure over M, which is often denoted
gc: C ' — M. In this section, we explain the cores of multiple vector bundles. These
cores have also been defined using a different notation by Alfonso Gracia-Saz and Kirill
Mackenzie in [7].

Let E be a multiple vector bundle with absolute base M := Ej. For each S C N
and each k£ € S, we have the zero section OE’\ik} Esy — Es, e — 0EFs. For each
R C S CN, all compositions of #S5 — # R composable zero sections, starting with some
ORU{ g Er — ERU{ }, for some ¢ € S \ R, and ending into ES, are equal and the obtained
map is written OR . Er — Eg. In particular, we set 05 = idp,. If it is clear from the
context, which multiple vector bundle we are considering, we write 0%, := O%S. The image
of e € Ep under 03 is denoted by 07, and the image of Er under 0% is written 0%. For
better readability we sometimes write 05, := 05 and 0% := 0%.

Choose a subset S C N and j,k € S with j # k. Then

PR
ES —_— ES\{k}

lpf | lpf\{k}
pS\{J}

Es\y = Es\(jny
is a double vector bundle, which has therefore a core
S (S -1 (S\{} S -1 (S\{k}
By = Payy) (OS\{j,k}> N (P3\xy) (OS\{j,k}> :

This core has then an induced vector bundle structure over Eg\;x with projection
S . o .
(ps&fj}i Ops\{j})|ES " which we denote by c*{gjk}: Efj’k} — Eg\(jky- This is a special case

of the side cores, as the following proposition shows.

2.18. PROPOSITION. Let E be a multiple vector bundle, S C N a finite subset and J C S
non-empty. The (S, J)-core

7= N (057)
JjeJ
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is a smooth embedded submanifold of Es and inherits a vector bundle structure over Eg\ ;
with projection ¢5 = (E(S — S\ I))|ps : ES — Eg\;. In particular, for J = {s} of
cardinality 1, we get E5 = Eg and ¢ = p5.

PROOF. That EY is a submanifold of Eg follows from Theorem 2.10: Consider the (S, S\ J)-

face of E, the #.J-fold vector bundle E%%\/. We denote the corresponding #.J-pullback by
PJS . This is the total space of an #.J-fold vector bundle IP’§ with absolute base Eg\ ;. The

S
image of Eg\; under any #. composable zero sections of P77 = 02; w is an embedded

submanifold of P7. By Corollary 2.16 the #.J-fold projection 75: Es — P¥ is a surjective
submersion. E7 is the preimage of Z under 75 and is thus a smooth embedded submanifold
of £ S.

The vector bundle structure is similar to the case n = 2. Any two elements e, ¢’ € E7

with ¢5(e) = ¢5(e’) =: b can be added over any pf, for j € J, since pf(e) = ObS\{j} = pf(e’).
All the additions clearly preserve E5. For any j € J, 0?:{]]' }is an embedded submanifold

of Es\(j) and we get a unique vector bundle structure E5 — OSi{J } according to Lemma

2.15. The interchange laws in all the double vector bundles (Eg, Es\ (1, s\ (ja}, £\ (j1,jo})
imply that after identification of O SEZ{IJ Y with B s\ all the additions coincide: Since we have

s _ 0SS _ S
005\“1} =0, = Oof\“?}’ we find easily

/ S S !
e+6=(e+05\->+<03s +e>
S\{j1} S\{ja} Oy 2} S\{s1} Ob\{J2} S\{j2}

S S ! /
:e+05\->+<05' +e>:e+e.
( s\ 0 U ) sy UM g $\{ja}

Therefore, £ has a well-defined vector bundle structure over Es\;. [

We begin by proving that a side core can be constructed ‘by stages’

2.19. LEMMA. Let E be a multiple vector bundle and S C N. Choose K C J C S. Then
Ef ={ee By |p(e) €095 € J\K, and ci(e) € 007} . (6)

PRrROOF. For sunphmty, we denote here by X the set on the right-hand side of the equation.
First, take e € E5. Then since p;i(e S(e) € SE‘{IJ Y for all j € J, and since K C .J, we have for
k€ K: pi(e) = 05\ for some e, € Eg\ ;. Since 05\ = OS\{k}, we find pg(e) € Ogsﬁf}

ek

for all k € K. Therefore e € Ej with p3(e) € Ogi{f} for j € J\ K and we only need to
check that ¢ (e) € 0:2& in order to find that e € X. But for any choice of k € K, we find

S S\{k :
ci(e) = pfucle) = p3\i (b)) = pyie (051) = 05 with e € By
Conversely, take e € X. Then since e € E7 we find for each ¥ € K an element

er € Eg\k such that pS( ) = OS\{k} But then e, = pg&z}}(()i\{k}) pi&’;{}}(pk( ) =

pg\{K}( e) = ci(e) € OS\J shows that e € (p)~* (Og&k}) Since k € K was arbitrary and

also e € (p§)~! (gsz{,})foralljej\K we find that e € EY. =
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Using this, we prove the following theorem.

2.20. THEOREM. Let E be a multiple vector bundle. For each S C N and J C S non-
empty, the space ES is the total space of an (#S — #J + 1)-fold vector bundle in the
following way.

The partition p§ = {J,{s1},...,{Ss—pss1)}} of S into the set J and sets with one
element gives rise to a (#S — #.J + 1)-cube category (5 = OP3 as in section 2.6. We will
again write [V] == Uge, K for any subset v C p5. Now define ES: O — Man™ by setting
ES(v) = EBV] if J € v and E5(v) = By if J € v and define the morphisms by

ES (v — v2) = E((1] = [va])] o EY —y plel if J €y C o,
E5(n = 12) =E([n1] = [1a]): By — By, ifraCu #J
ES(vy = o) = E([i] \ J — [1a]) 0 c‘[]”]: E([Iyl] — Ep,), ifva Cuy, JEV \ 1.

Then ES is a (#S — #J + 1)-fold vector bundle.

ProOOF. The nodes of E}q are given by E}ql for J CS"C S and E; for I C S\ J. The
generating arrows are given by p!: Er — Engy forie I € S\ Jand c§': Efl — Egn; and
pf/]E§/ :BY — B for i € §7\ J. In the following we just write pS’ for the restriction
P§I|E§’-

For #J < #5S we prove by induction over #.J =: [ that this defines a multiple vector
bundle. For J = {s} of cardinality 1 it is easy to see that ES = E%? which is an #S5-fold

vector bundle by Proposition 2.4.
Now assume that Efjl 77777 i,y is the total space of a (#S — [ + 2)-fold vector bundle.

Choose j; € S\ {j1,.--,Ji-1}, S € S with {j1,...,51} = J C 5, and choose i € S"\ J.
Then by the induction hypothesis and Proposition 2.4,

S/

p3 AN
g i S"\{s}
E{jl ~~~~~ Ji—1} o E{jl ~~~~~ Ji-1}
w)ﬂvﬂ'l—l} \
s Esn (it i1} J{ Es\{r, ..}
S\ {i} S\ {i,g1}
E{jl ----- Ji—1} E{jl ----- Ji-1}

T T~

Esn,gioa i} Esn\{ijr,..in}
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is a triple vector bundle, and by (6), its upper side core is

S/
/ CJ

lp 3 pr /\"

£ sy <
—— Esn@utip:-

Hence this diagram is a double vector bundle (see for example [15]) and, as before, all
commutative squares in our (#S — [ + 1)-cube diagram are double vector bundles. ]

If | = #S, then J = S and E3 has a vector bundle structure over M with projection
cg =E(S — (). The nodes at the source of only one arrow of E are the nodes Epy of E
for i € S'\ J, and the (J, J)-core cJ E7 — M of the #.J-fold vector bundle bundle E*.

We have then for each v C p5 an inclusion 5’ (v): Ej(v) < E},), since Ej(v) is an
embedded submanifold of £y, for all v C p*;.

2.21. EXAMPLE. Given the n fold vector bundle EA deﬁned in section 2.6, its (S, J)-core
(EA)5 has nodes (E*)S(v) = T1)/c, Ap for v C p5 = pf§ and can thus be identified with
IEA defined as in section 2.6. In particular, (E4)3 = Ag.

FOT’ instance, forn =3 (see Example 2.7) we have decomposed cores

EH 22}3} Agsy X Aoy X Aqr3y EEQg} = Ay Xn Agesy X A2y
Eg 5}3} A{2} XM A{1,3} XM A{1,2,3} .

2.22. REMARK.

(a) Given an n-fold vector bundle E it follows directly from the definitions that the cores
of the faces of B are given by the faces of the cores of E. That is, (ES9)S = (ES)r57?
for J CS.

(b) Note also that (6) can now be written ES = (E;S;)Z}j;

(¢c) ForI,J C S with INJ =0 the intersection of the cores E7 U E7 is the iterated core
S\P5 S\PL
B tien = (B 1,00
(d) In the case of IUJ # () the intersection of the core E7 U EY is given by E5.; instead.

2.23. PROPOSITION. Given a morphism 7: E — F of multiple vector bundles, we have
for any J C S C N an induced core morphism of the (#S — #J + 1)-fold vector bundles
77 ES — FS defined by

() = T([V])lE[Ju] ; EBV] — F}V] for v C pf with J € v
() =1([V]): B — By forv C p5 with J & v,

where we consider EBV] and F}V] as subsets of Ey, and Fy,), respectively. Furthermore, (-)5
is a covariant functor from multiple vector bundles to multiple vector bundles.
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PROOF. For J ¢ v there is nothing to show as E5(v) = E([v]) and F5(v) = F([v]) and
thus all the maps are well defined vector bundle morphisms.

For J € v it remains to be shown that 75 is well defined, that is 7([v])(EY) ¢ FI.
Linearity follows then directly from linearity of 7. The manifold EBV] is defined as the
set of all elements of E}, that project to OE’}[@,\U} for all 7 € J. Since for all I C n,
7(I): Ef — Fy is a vector bundle homomorphism over 7(I \ {:}) for all i € I, the image
of e € E¥ under 7[v] thus projects to OJ[FV’][@,\U Vin Fi ;) and is an element of FY.

Functoriality follows directly from the definition: in the case of J ¢ v

(0o1)5Ww) = (gor)(V]) =a(W]) oT([v]) = 05 (v) 077 (v),
whereas for J € v

(007);w) = (0 T)([W])] g1 = o (W) 0 T([W])| gt = 05 () 0 7/ (v) .

From Theorem 2.10 we obtain easily the following proposition; the n-fold analogon of
the core sequences for double vector bundles, which were defined by Kirill Mackenzie in
[15]. They are important in the proof of the existence of decompositions of n-fold vector
bundles. We call them the ultracore sequences of E.

2.24. PROPOSITION. Let E be an n-fold vector bundle. For each k € n, we have a short
exact sequence

0 —— (P hypr —  p ", p 0
En\(ky Ep\ (1} En\ (ky

of vector bundles over E,\ (), where P is the n-pullback defined in Theorem 2.10.

PROOF. By Theorem 2.10, the map 7(n): E — P is a surjective vector bundle morphism
over idEﬁ\{k}.

Take any e in the kernel of 7(n) considered as vector bundle morphism over Ep\ (.
Denote its projection in E; for any J C n \ {k} by ey, with m := ey € M. Write
n\{k} ={j1,...,jn_1}. Define now recursively

fO =e, fl — fl—l . OE

n\ {4} €n\{k,j1,dj_1}

Then it is easy to show by induction that p7F(f!) = 0! The above implies that

ern(n\{k, i1, }) "
=1 projects to Ofn for all I C n. It is thus an element of the ultracore Eg, and we denote

it by z:= fo 1.
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E E E
e= z + 07 ) + 0 + ... + 0
((( o1} Un=1}) m\(Gn_ay  Un—1dn-2} | m\(js) n\{)  nMED (7)

=:1(2, en\(k}) -

Now

and the defined map ¢: E}f Xy Ep\(xy — E is clearly an injective morphism of vector
bundles over E, (1, making the sequence exact. We let the reader check that + does not
depend on the chosen order of the set n \ {k}. "

3. Splittings of n-fold vector bundles

In this section we achieve our main goal in this paper: we prove that any n-fold vector
bundle admits a (non-canonical) linear splitting. We begin by discussing the notions of
linear splitting versus linear decomposition. Then we prove inductively our main theorem,
and finally we explain how n-fold vector bundles can now be defined using n-fold vector
bundle atlases.

3.1. SPLITTINGS AND DECOMPOSITIONS OF n-FOLD VECTOR BUNDLES. Let E be an n-
fold vector bundle. This gives rise to a family .4 of smooth vector bundles A = (¢;: A; —
M) jcp, #7<00 Over M = E(0) defined by Ay = Egy for i = 1,...,n and A; = EY for
#.J > 2. By Example 2.21, if E is already a decomposed n-fold vector bundle, then each
element of the family of vector bundles defining it appears as one of the cores of E. This
is why we call the vector bundles A; = E7 the building bundles of E.

We can then consider the decomposed n-fold vector bundles E4 and E := E4 defined
in Section 2.6. We call E# the decomposed n-fold vector bundle associated to E and E
the vacant, decomposed n-fold vector bundle associated to E.

3.2. DEFINITION. A linear splitting of the n-fold vector bundle E is a monomorphism
3: E — E of n-fold vector bundles, such that fori=1,...,n, B({i}): Euy — Egy is the
identity.

A decomposition of the n-fold vector bundle E is a natural isomorphism S: EA — R
of n-fold vector bundles over the identity maps S({i}) = idg,, : Ay = Egy such that
additionally the induced core morphisms SF({I}) are the identities idpr for all I C n.

Linear splittings and decompositions of double vector bundles are equivalent to each
other. Given a splitting 3, define the decomposition by S(am, by, ¢m) = X(am, bm) +5
(02 +4¢m) = Z(am,bm) +4 (02 +5 ;). Conversely, given a decomposition S define the
splitting by X (am, bm) = S(@m, bm,05). These two constructions are obviously inverse
to each other. We prove here that a similar equivalence holds true in the general case of
n-fold vector bundles.

A linear splitting ¥ of an n-fold vector bundle E and decompositions S? of the highest
order cores — the (n — 1)-fold vector bundles E} for all I C n with #I = 2 — are called
compatible if they coincide on all possible intersections. That is, S’ ({{k}xen\ D Ewn =
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¥(n\ ) and SI@?N(EA)%(EA)% = SJ(/)%)’(EA)%(EAﬁ for all 1, J C n of cardinality 2. Note
that we view here the total spaces of (E4)7, (EA)} and of EF and EY as embedded in
E4 = EA(n) and E = E(n), respectively. Also recall that Ef({k}rens) = E(n \ I) by
definition.

3.3. THEOREM.

(a) Let S be a decomposition of an n-fold vector bundle E: 0" — Man*. Then
the composition ¥ = Sov: E — E, with v defined as in (4), is a splitting of E.
Furthermore, the core morphisms S87: BFY — E5 are decompositions of EY for all
J C n and these decompositions and the linear splitting are compatible.

(b) Conversely, given a linear splitting > of E and compatible decompositions of the
highest order cores B with top maps S7: (EA)S — EY, for J C n with #J = 2,
there exists a unique decomposition S of E such that ¥ = S o1 and such that the
core morphisms of S are given by S7(p5) = S for all J.

PROOF. Let us consider a decomposition S: E* — E. Then the composition ¥ = S o ¢
is clearly a monomorphism of n-fold vector bundles, with X({i}) = S({i}) o ¢({i}) =
idg,,, oidp,, = idg,,. Furthermore, Proposition 2.23 implies that the restrictions S5
are isomorphisms of multiple vector bundles. Since for any v C p the (v, v)-core of E

equals E[[z]] which follows from Remark 2.22 for J € v and directly from the definition for

J & v, these are all the building bundles of EY. Now S[[;]} = id ;) and thus S7 induces the
v]
identity on all building bundles of E and is therefore a decomposition. Since all SF and

] are defined as restrictions of the same map S they are clearly compatible.

Conversely, assume that we have a splitting > of E and compatible decompositions
S” of the cores E with J C n, #J = 2 as in (b). We prove that there is a unique
decomposition S of E that restricts in the sense of (b) to X and the S”.

Let now Jq, ..., J(’;) denote the subsets of n with #.J, = 2. We define now an increasing

chain of (g) decomposed n-fold vector bundles as follows. For k =0, ..., (Z) define a family
of vector bundles over M, A* = (By);c, with By = A; for all I with either #I =1 or if
there is i < k such that J; C I; and B; = M otherwise. Now let EF := EA" with total space
E* := EA(n). There are obvious inclusions E(n) = E® < E!' < ... — EG) = EA(n).
We thus view the E* as submanifolds of E4(n). Note that additionally (E4)5 C E* for
all i < k. Now we show that we can define a decomposition S of E inductively on the E*
for k=0,..., (Z) and that it is unique with respect to the given linear splittings.

Since E° = E we set S° := % and this is clearly unique in the sense of (b). By the
compatibility condition it also restricts to S” on E®N (E4)} fori=1,..., (g) Take now
k > 0 and assume that we have a uniquely defined injective morphism of n-fold vector

bundles §*: E¥ — E that restricts to ¥ on E® and to §” on E¥N(EA)] fori=1,..., (Z)

Take x = (a);c, € E**1. Then in particular a; = 047 if #1 > 2 and there isno i < k+ 1
with J; C I. Set'y := (by);c, with by = ay if either #1 = 1 or there is i < k such that
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J; € I and by = Oﬁ{ otherwise. Set furthermore z := (¢1);c, where ¢; = b; whenever
I Cn\ Jgi1, ¢ = ar whenever Ji 1 C I and there is no ¢ < k with J; C I, and ¢; = 0;7411
otherwise. Then y € E* and z € (EA)%Hl. Furthermore, writing Jy+1 = {s,t}, it is easy
to check that

x=y + (0% —|—z>: +(0” +z>.

Y ot ( Ps¥) gy Yo Un®) iy

The last equality follows directly from the interchange law in the double vector bundle
(E; Ep\(s} Bty En\(s43) since S7#+1(z) is in the core of this double vector bundle. Thus
we can define

S (x) = SH(y) + (0% LSt
(x) (¥) o ps(sk(y)) "V (z)

=S(y) (On £, S @)

n\{1) pt(gk(y)) n\{s} ) '

It is easy to check that this defines an injective morphism of n-fold vector bundles
Skti: EFt! — E. Linearity over B,y follows directly from linearity of S* and S/
and the interchange laws in the double vector bundles (E; Ep ()3, En\(s}; En\(j,s}) and
(E; Ep\ 5y En\1y; En\(j,1) since the construction of y and z from x is linear. If now x
was already in E*, then y = x and thus S**! restricts to S* on E* and therefore also
to 2. If x was in (EA)} for any J C n with #J = 2, then y € E¥ N (EA4)} and by
induction hypothesis §*(y) = §”(y). Furthermore, z € (E4)j N (E4)} and by the
compatibility of S/ with S/ we get that S/+1(z) = §/(z). Thus clearly S¥*! restricts
to all 87 on the intersection E¥*1 N (E4)}. Also it clearly is the only morphism from
E**! to E restricting to S* on E* and to all S7 and thus by the induction hypothesis the
only morphism restricting to ¥ and all §/. Thus we find eventually a unique injective
morphism § := SG). EA 5 E that restricts to ¥ and all S for #J = 2. That S is

surjective now follows from linearity and a dimension count. [

3.4. EXISTENCE OF SPLITTINGS. In this section, we finally state and prove our main
theorem. We prove by induction that every n-fold vector bundle is non-canonically
isomorphic to a decomposed one.

3.5. THEOREM. Let E be an n-fold vector bundle. Then there is a linear splitting
>:E—E,

that is a monomorphism of n-fold vector bundles from the vacant, decomposed n-fold vector
bundle E associated to E, which was defined in Section 3.1, into E.

PRrROOF. We prove the following two claims by induction over n.

(a) Given an n-fold vector bundle E, there exist n linear splittings X, gz} of E2\F0 for
k € n, such that Eﬂ\{i}(f) = Zﬂ\{j}([) for any I C @\ {Z,j}
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(b) Given a family of splittings as in (a), there exists a linear splitting of E with
X(I) = Xp\xy (/) whenever I C n '\ {k}.

The case of n = 1 is trivial. Take now n > 2 and assume that both statements are
true for [-fold vector bundles, for [ < n. First, we prove (a). This is equivalent to having
splittings ¥; of B/ for all I C n such that ¥y, (J) = £1,(J) whenever J C I, N I,. We
prove that claim with an induction over §1. For all I C n with / = 1 or {1 = 2, this is
immediate.

Assume now that we have fixed linear splittings of E/? for all I with #1 =1<n — 2,
such that for all J C I} N 1y, ¥, (J) =X;(J) = X1, (J). For any I C n with #1 =1+1
we can then find by induction hypothesis (b) a linear splitting ¥; of E/'? which satisfies
Y(J)=3%,(J) for all J C I. Now for I, I of cardinality [ + 1 and J C I; N I3, we get
Xn(J) =%,(J) = ¥5,(J). This shows that part (a) is satisfied for every n-fold vector
bundle since we eventually find linear splittings ¥\ () of all E,\ ) which agree on all
subsets I C n of cardinality #I < (n — 2).

We denote in the following their top maps by

M
Sk= S @\ kD TI By = Ene -
ien\{k}
It is easy to check that given m € M and e; € Ey; with péi}(ei) =mfori=1,...,n,
the tuple (Xq(eg,...,en), Xa(e1,€3,...,€n)y .., 5n(€1,...,€,_1) is an element of P. Short
exact sequences of vector bundles are always non-canonically split, so we can take a
splitting 6, of the short exact sequence of vector bundles over E,\ (1} in Proposition 2.24.
Define XF: [[X, Eyy — E by

1€n

SP:(er, o oren) > 01 (Daea, s en), Dalen €5, en), o Salen, o ent)) . (8)

This is a vector bundle morphism over the linear splitting 3, of E,\ (1} such that

pi(SFer o e) = Biler s Gnven) € By ©)

for j =2,...,n. However, ©¥ is not necessarily linear over X; as 6; is not a morphism of
n-fold vector bundles. We will inductively construct a morphism which is linear over all
sides.

First we do this locally: we choose a neighbourhood U of m € M that trivialises each
of the Ey, for i = 1,...,n. Fix smooth local frames (b;, ... bk of Eygy for [; = kB

Every element of H%n Eiy over m € U can thus be written uniquely as

Il ln

(errven) = (2 BB m), ... Y B0 (m)

Jj=1 J=1

where 8/ € R. Assume now that we have a morphism $F,: E|ly — E|y which is linear
over the splittings ¥; for j = 1,... k and satisfies additionally (9) for all other j. We then
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define X3¢/, ;7 by

E=Ep\(ot1y '
2£+1,U(€17-~,6n) = Z Bisa - EgU(el,...,ek,biﬂ(m),ekﬁ,...,en) )
J=Llkt1 -
This map is still a vector bundle morphism over X, for all j = 1,..., k, which follows directly

from the interchange laws in the double vector bundles (E, En\ (1, Ep\ (k413> En\ (i k+1})-
That it is also a vector bundle morphism over ¥, is immediate. It furthermore still
satisfies (9) for all other j. Starting with the restriction to U of ¥ from (8) we get after
(n — 1) iterations the top map of a local linear splitting X of E|y.

Now we will prove the existence of a global splitting using a partition of unity. This
method was already given for double vector bundles in the original reference by Pradines
[18]. Choose a locally finite cover of neighbourhoods as above, U = {U,}aca, and a
partition of unity {¢a}aca subordinate to ¢. Take then the local linear splittings £f and
define the global splitting for (ey,...,e,) over m € M by

E—=En\ (13

YP(er, .. nen) = > palm) i S0 (e, en).
{a: meUqy} -

That this is indeed a vector bundle morphism over all X; follows from simple computations
again making use of the interchange laws in the double vector bundles (E, En (13, En\ (1,
En\q1,51)- Injectivity follows directly from this as all 3 are injective. The linear splitting
is then given by X(n) := ¥ and X(I) := £, (4 (I) whenever I C n '\ {k}. This completes
the proof. [

3.6. COROLLARY. Fvery n-fold vector bundle E is non-canonically isomorphic to the
associated decomposed n-fold vector bundle defined in Section 2.6.

PRrROOF. This follows from Theorem 3.5 and Theorem 3.3. To apply Theorem 3.3 we have
to show that we can construct compatible decompositions of all the highest order cores.
This follows from a similar argument to the beginning of the proof of Theorem 3.5.

We have to consider all iterated highest order cores. These are firstly the (n — 1)-fold

vector bundles E} with I C n and #I = 2, secondly the (n — 2)-fold vector bundles (E7)."
with v C p7 and #v = 2 and so forth. Theorem 3.5 lets us choose linear splittings of
all these multiple vector bundles. Note that the same multiple vector bundles can occur
multiple times (see for example Remark 2.22 (c)). For these we still fix only one linear
splitting. With Theorem 3.3 we obtain then firstly unique decompositions of all occurring
double vector bundles. After fixing these, with Theorem 3.3 we obtain decompositions of
all occurring triple vector bundles and these are all compatible by construction. Fixing
these we obtain compatible decompositions of all occurring 4-fold vector bundles and so
forth. Eventually after obtaining compatible decompositions of the highest order cores
Theorem 3.3 gives us a decompositions of E. [
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3.7. COROLLARY. For every n-fold vector bundle E and the associated n-pullback P there
is an injective morphism of n-fold vector bundles X¥': P — E simultaneously splitting all
the ultracore sequences from Proposition 2.2/.

PROOF. We can choose a decomposition of E with top map S¥: EA(n) — E. This is a
morphism over decompositions of the faces Ep\ (i) for all & € n. These decompositions
induce a canonical associated decomposition of P, the top map of which we denote by
S”: 113¢, Ef — P. Together with the canonical inclusion ¢: [[}¢, Ef — E#(n) we then
define such a splitting with top map given by ¥ (n) := S o 1o (8§F)71. n

3.8. m-FOLD VECTOR BUNDLE ATLASES. In this section we show how a change of splittings
corresponds to statomorphisms of the decomposed multiple vector bundle, which were
introduced in [7]. We then explain how n-fold vector bundles can alternatively be defined
using smoothly compatible n-fold vector bundle charts.

For I a finite subset of N, we denote by P(I) = {{l1,..., I} | I = L U...U I} the set
of disjoint partitions of I. Since the elements of P(I) are sets, not tuples, we do not take
the order into account. That is, we do not distinguish the partition {Iy, I} from {I, I }.

3.9. DEFINITION. Let E be an n-fold vector bundle. A statomorphism of E is an
tsomorphism 7: E — E that induces the identity on all building bundles E{ for I Cn. The
set of statomorphisms of E forms a group with composition.

3.10. PROPOSITION. Let E be an n-fold vector bundle and E4 the corresponding decom-
posed n-fold vector bundle as in Definition 3.2. The set of global decompositions of E is a
torsor over the group of statomorphisms of EA.

PROOF. Given a decomposition S: EA — E and a statomorphism 7: EA — E4 the
composition S o 7: EA — E is again a decomposition of E. This defines a right action
of the group of statomorphisms of E# onto the set of decompositions of E. Given two
decompositions S;,Sy: EA — E the composition 7 := 81_1 08y: EA — EA defines a
statomorphism of E4 such that S; o7 = S,. This shows that the action is transitive. That
it is free is immediate as S o 7 = § clearly implies 7 = id. ]

The following description of statomorphisms can be found in slightly different notation
in [7].

3.11. PROPOSITION. A statomorphism 7 of E* is necessarily of the following form:

7—(@): (ef)fgﬂ = ( Z cpp(eh’ cee 7€Ik)> ) (10)

p={I1,...Ix }€P(I)
where o, € I'(Hom(E]' ®. . .®E{}’:, ED) and for the trivial partition p = {I} we additionally
demand o1y = idE{.

Now we define n-fold vector bundle charts and atlases and show that our definition of
n-fold vector bundles is equivalent to the definition in terms of charts.
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3.12. DEFINITION. Let M be a smooth manifold and E a topological space together with a
continuous map I1: E — M. An n-fold vector bundle chart is a tuple

c=(U,0,(V)icn),

where U is an open set in M, for each I C n the space Vi is a (finite dimensional) real
vector space and ©: I (U) — U x [l;cn Vi is a homeomorphism such that IT = pr, o ©.

Two n-fold vector bundle charts ¢ = (U, 0, (Vi)ic,) and ¢ = (U, 0", (V])ic,) are
smoothly compatible if V; = V] for all I C n and the “change of chart” ©' o ©~1 over
UNU has the following form:

(pv (UI)Igg) = | p, ( > w,(p)(vrys - - - avlk)) (11)

p={[1 ..... Ik}EP(I)

with p e UNU', vy € Vi and w, € C*(U NU ,Hom(V;, ® ... ® V,,V;)) for p =
{Ily"';]k‘} S 73(])

A smooth n-fold vector bundle atlas A on E is a set of n-fold vector bundle
charts of E that are pairwise smoothly compatible and such that the set of underlying open
sets in M covers M. As usual, E is then a smooth manifold and two smooth n-fold vector
bundle atlases 21 and Ay are equivalent if their union is a smooth n-fold vector bundle
atlas. A smooth n-fold vector bundle structure on E is an equivalence class of smooth
n-fold vector bundle atlases on E.

Let E be an n-fold vector bundle. By Theorem 3.5 and Theorem 3.3 we have a
decomposition S: EA — E of E, with A the family (A;);c, of vector bundles over M defined
by Ay =E({i}) fori e nand Ay = Ef for I Cn, #1 > 2. Set 1 =E(n — 0): E — M.
For each I C n, set V; := RI™Ar the vector space on which A; is modelled. Take a
covering {U, }aen of M by open sets trivialising all the vector bundles Ay;

07 47 (Ua) == Ua X Vi
for all I C n and all « € A. Then we define n-fold vector bundle charts ©,: II"*(U,) —

U, X HIQ@VI by
O = (T1 x (67)1c,) © S n-1w)-

Given «, f € A with U, N Uz # (), the change of chart
Oa 005" (UaNUg) x [[ Vi — (UanUp) x [[ Vi

ICn ICn
is given by
(p, (vr)1ca) = (0, (677 (D)vr) 1), (12)

with p} € C=(U,NUs, G1(V;)) the cocycle defined by ¢%o(¢7) 1. The two charts are hence
smoothly compatible and we get an n-fold vector bundle atlas A = {(U,, ©4, (Vi)1cn) |
a € A} on E.
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Conversely, given a space F with an n-fold vector bundle structure over a smooth
manifold M as in Definition 3.12, we define E: (0N — Man® as follows. Take a maximal
atlas A = {(Uyn, On, (VI)1cn) | @ € A} of E; in particular {U,}.ea is an open covering
of M. For a, 3,7 € A we obtain from the identity ©, 00, =0, o @gl 0Bz00," on
II-(U,NUsNU,) the following cocycle conditions. For I Cnand p = {I1,..., I} € P(I):

wza(p)(vh, coup) =

B Ba Ba 13
S ol @ (e ®(@nen)s e @(@n)en) ). P
{1 ..... k}ZJllJ...qu

where 15, := Uje,,, I;-
We set E(n) = E, E(0) = M, and more generally for I C n,

s (1 (v 117)) /-

with ~ the equivalence relation defined on [ ,cp(Ua X [1;cr Vi) by

Uux [TVi 2 0 (wiict) ~ (¢, (wi)scr) € Usx[[Vy

JCI JCI

if and only if p = ¢ and

(UJ)JQI = ( Z Wﬂ(p)<wJ1""7ka)) :
p={J1 JCI

----- J}eP(J)

The relations (13) show the symmetry and transitivity of this relation. As in the construc-
tion of a vector bundle from vector bundle cocycles, one can show that E(/) has a unique
smooth manifold structure such that II;: E(/) — M, Il;[p, (vr)ics] = p is a surjective
submersion and such that the maps

@ii T (Ua X H VJ) — Uq X H Vs, D, (vr)1cs] = (p, (v1)rcy)
JCI JCI

are diffeomorphisms, where 7;: [yer(Ua X TIycr Vy) — E(I) is the projection to the
equivalence classes.
We have then also #1 surjective submersions

Pyt B(I) = E(I1\ {i})

for ¢ € I, defined in charts by

U x [T Vs 2 0. (vs)scr) = (0, (vs)iggct) € Uax [ Vs
Jcr JCI\{i}



692 MALTE HEUER AND MADELEINE JOTZ LEAN

and it is easy to see that () is a vector bundle over E(1 \ {i}), and that for i,j € I,

E(1) — N R\ (i)

I I\{i}
l”f\{j} N lpl\{m}

E(I\ {j}) — " B(I\ {3, j})

is a double vector bundle, with obvious local trivialisations given by the local charts.
The constructions above are inverse to each other and we get the following corollary of
our local splitting theorem.

3.13. COROLLARY. Definition 2.2 of an n-fold vector bundle as a functor from the n-cube
category is equivalent to Definition 3.12 of an n-fold vector bundle as a space with a
mazximal n-fold vector bundle atlas.

Our construction above of an n-fold vector bundle atlas on E(n) from an n-fold vector
bundle yields an atlas with simpler changes of charts (12) than the most general allowed
change of charts (11). This is due to our choice of a global decomposition of the n-fold vector
bundle. Choosing different local or global decompositions will yield an atlas with changes
of charts as in (11). That the equivalence class of atlases is independent of the choice of
decomposition follows from Proposition 3.10 and (10). Two different decompositions will
give compatible charts.

4. Decompositions of oo-fold vector bundles

In this section we show how our proof of the existence of linear decompositions of n-fold
vector bundles for all n € N yields as well the existence of linear decompositions of co-fold
vector bundles. We write here co-VB for the category of oo-fold vector bundles and oo-fold
vector bundle morphisms.

Let E be an oo-fold vector bundle. Then for each n € N, the restriction E o . defines
an n-fold vector bundle, and E" := E o /[ o 7 defines again an co-fold vector bundle,
given by E"(I) = E(I Nn) for all finite / C N. There is a sequence of monomorphisms of
oo-fold vector bundles ) , ,

E° % B! s B2 =2 (14)

defined by ik (I) = 0% for k <1 € N and a finite subset I of N; remember that 0¢ = id, .
Thus we have a functor E': N — 0o-VB sending an object n € N to E” and an arrow
m < n to ¢. In the same manner, for each n € N there is a monomorphism ¢,,: E* — E
defined by ¢, (I) = 0%, : E*(I) — E(I) for all finite I C N. It is easy to see that E together
with the inclusions ¢, : E® — E defines a colimit for (14) in the category of oco-fold vector
bundles.

The inductive nature of the proof of Theorem 3.5 yields the following corollary.
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4.1. COROLLARY. Let E be an oo-fold vector bundle. Let A= (qr: Ar = M)icn #1<00 be
the family of vector bundles over M defined by Ay = Ef for 2 < #1I < oo, Apy = Egy
and Ay = (D) = M. Then there exists a sequence of decompositions S™: EA oY — Eo
such that the diagram of oco-fold vector bundles

E° E! 2

B S (15

(EA)? —— (EA)! —— (EA)? —— ...

Y

commutes, where S"(I) := S™(INn) is the morphism of co-fold vector bundles induced by
S".

Since (15) commutes, and for each n, 8™ is an isomorphism, we find that E# together
with the morphisms 7(n) = ¢* o (§")~! for all n, is also a colimit for (14) in the category
of oo-fold vector bundles. Therefore there is a unique isomorphism S: EA — E such that
lnoS" =8 ot for all n € N. We get the following theorem.

4.2. THEOREM. Let E be an oco-fold vector bundle. Let A = (qr: Ar — M)icn pr<co be
the family of vector bundles over M defined by Ay = Ej for 2 < #I < oo, Ay = Egy
and Ag = E(0) = M.

Then E is non-canonically isomorphic to the associated decomposed oo-fold vector
bundle EA. More precisely, given a tower of decompositions as in (15), the decomposition
S:E4 = E of E can be uniquely chosen so that for each n € N, 8™: (E4)" — E" satisfies

SYI)=S8(InNn): (EYYI)=EAINn) = E"(I)=E{Nn) (16)

for all finite I C N.

PROOF. The morphism S: EA — E is explicitly defined as follows. Choose a finite subset
I CN. Then there is n € N with I C n and we can set S(I) = S8"(I). The equalities (16)
are now easy to check. [

5. Example: triple vector bundles

In this section, we explain for the convenience of the reader how our results and con-
siderations in Sections 2 and 3 read in the case n = 3. Then we consider doubly linear
sections of triple vector bundles, and we explain how they can be understood — using linear
decompositions — as horizontal lifts of pairs of linear sections of the sides double vector
bundles.

5.1. SPLITTINGS OF TRIPLE VECTOR BUNDLES. Given a triple vector bundle E we will
write in the following 7" := E({1,2,3}), D := E({1,2}), £ := E({2,3}), F := E({1, 3}),
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A= FE, B := Ep and C := E3. The triple vector bundle is then a cube of vector
bundle structures

T b D
pL R
\ & \
PE F A
Pa
1
| , a7
E B qa
NN
re qc

where all faces are double vector bundles.
We will denote the cores of the double vector bundles (T; D, F;B), (T; E, F;C),
(T; F,D; A) by Lpg, Lgr and Lrp and the cores of the double vector bundles (D; A, B; M),

(E;B,C; M), (F;C,A; M) by Kap, Kpc and K4, respectively. In the general notation
{1.2,3} _ {1,2,3} _

we would write E{2’3} =: Lpp, Ef[{ll;}g} =: Lpp and E{1,2} =: Lgr for the upper cores
and Eﬁg =: K g, E{{Sg’i =: K¢ and Eﬁ;’}]: =: K¢ 4 for the lower cores. The triple

core of this triple vector bundle is S := E}L{llgg’i , a vector bundle over M.

The upper cores Lpg, Lgr and Lrp are themselves double vector bundles by Theo-
rem 2.20. All three have by Lemma 2.19 the core S, whereas the sides of Lpg are given
by Kca and B, the sides of Lgr by K p and C, and the sides of Lpp by Kpc and A.

A decomposition of a triple vector bundle (T; D, E, F; A, B,C; M) as above is now
an isomorphism of triple vector bundles § from the associated decomposed triple vector
bundle as in Example 2.7 to T" over decompositions of D, E' and F' as double vector bundles
and inducing the identity on S. In particular it is over the identities on A, B and C', and
is inducing the identities on K g, Ko and K¢ 4.

A linear splitting of a triple vector bundle (T; D, E, F; A, B,C; M) as above is an
injective morphism of triple vector bundles ¥ from the vacant triple vector bundle (A X,
BxyC;Axy B,Bxy C,C xy A; A, B, C; M) over linear splittings of the double vector
bundles D, E and F', hence over the identities on A, B and C.

We have proved the following lemma, which is the case n = 3 of Theorem 3.3.

5.2. LEMMA. A decomposition of a triple vector bundle T is equivalent to a linear splitting
of T and linear splittings of the three core double vector bundles Lpg, Lgr and Lgp.

Note that here, starting from the splittings we get an explicit formula for the decompo-
sition: S(a,b, ¢, kap, kpc, kca, ) equals

<(Z(a, b, C) +p (OgD(a,b) +r shep (CL, kBC'))) +rF (OgF(a,C) +E sher (Ca kAB)))

+E (OgE(b,C,ch) D nhee <b’ kCA) D (Ong tr 8)) )
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Now let us consider the pullback triple vector bundle associated with a triple vector
bundle. Given double vector bundles (D, A, B, M), (E,B,C, M) and (F,C, A, M), we
consider the set

P={(de f)eDxExF]| pid)=pi(f), pB(d) =pke), pi(e) =pE()}.

Then P is a triple vector bundle, with the obvious projections to D, E and F' and the
additions defined as follows. The space E X F has a vector bundle structure

ExcF—BxyA  (e.f) = (p5(e),pa(f)),

with addition (eq, f1) + (e2, f2) = (e1 +p5 €2, f1 +a f2). Since D is a double vector bundle
and so non-canonically split, we have the surjective submersion d°: D — B x,; A, given
by 6P(d) := (pB(d), pR(d)). We define the vector bundle P — D as the pullback vector
bundle structure (6°)'(E x¢ F) — D. We call P the pullback triple vector bundle
defined by D, E and F because it fills a cube in a similar manner as the pullback in
category theory fills a square.

We have three short exact sequences of vector bundles over D, E and F', respectively;
the one over D reads

0 — (7P)'s T P 0,

where 0 = g4 0 p§ = g o pB. We are now able to state Theorem 3.5 in the case n = 3.

5.3. THEOREM. Every triple vector bundle is non-canonically isomorphic to a decomposed
triple vector bundle.

5.4. SPLITTINGS, DECOMPOSITIONS AND HORIZONTAL LIFTS. Let us mention first that
a decomposition of a double vector bundle is equivalent to a splitting of the short exact
sequences given by its linear sections. As we have seen in Section 1, a splitting 3: Ax B —
D of D is equivalent to a homomorphism of C*(M)-modules op: I'(B) — I'4(D) (a
horizontal lift) which splits this short exact sequence. The correspondence is given by
op(b)(an) = X(ay,b(m)) for all b € I'(B) and a,, € A. By symmetry of ¥ a horizontal
lift o is therefore also equivalent to a horizontal lift o4: I'(A) — T'5(D), splitting the
sequence

0 — I(Hom(B, C)) — T4 (D) —5 T'(A) = 0.

In this section, we explain how a splitting of the triple vector bundle 7" is equivalent to
a “horizontal lift” of pairs of linear sections in T') (F) Xp(c) ['5(E) to doubly linear sections
of T'— D. Of course, similar results hold for doubly linear sections of T' — E as lifts of
elements of I'(F) xpa) 4 (D), ete.
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5.5. DEFINITION. A doubly linear section of T over D is a section which is a double vector
bundle morphism from (D; A, B; M) to (T; F,E;C) over some morphisms {: A — F,
n: B—FE, c: M — C. The morphisms & and n are then themselves linear sections of the
double vector bundles E and F over the same section of C. We denote the set of doubly
linear sections of T over D by T'H(T).

The space IT'G(T) is naturally a C°°(M)-module: for f € C=(M) and & € T'5(T)
doubly linear over £4 € I'Y(F) and &5 € T5(E), the section (ga o p§)* f - € is doubly linear

over ¢4 f - € and i f - €.
Consider the double vector bundle S with sides M and core S:

S 95 N

qSJ J{id]w

M 2

As we have seen in Lemma 2.8, the space Mory(D, .S) of double vector bundle morphisms
D — Sisa C*(M)-module. It is easy to see that given a decomposition AX s BX p Kap —
D, we get Mory(D,S) ~T'(Ki; ®S) & I'(A* ® B*® S). We have an obvious inclusion

T Mory(D, S) — T (T),

the images of which are exactly the doubly linear sections that project to the zero sections
of E — A and F — B, and so to the zero section of C.

Both T, (F') and T'%(E) project onto I'(C)), thus we can build the pullback I'4 (F) xr(c)
I'S(E) which consists of pairs of linear sections of the respective bundles which are linear
over the same section of C. Now ' (T)) fits into a short exact sequence of C°°(M )-modules
as in the following proposition.

5.6. PROPOSITION. Let T be a triple bundle as in (17). We have a short exact sequence
of C*°(M)-modules

0 — Mors(D, S) = T4(T) 5 T (F) xp(e) Ty (E) = 0. (18)

PROOF. Injectivity of ~ is immediate. To show surjectivity of m, choose a linear splitting
SEE of the double vector bundle (T E, F'; C). Given & = (¢F,¢%) € T4 (F) xr) ['5(E)
we can then define £ € T4 (T) by £(d) := SEF (€8 (pB(d)), £F (pR(d)). Tt is easy to see that
this is in fact a doubly linear section. Note that the map * does not define a splitting of
the short exact sequence, as it is not linear over D.

Given any ¢ € Mory(D,S) and d € D over a € A and b € B it is clear that
pE(d(d)) = 0F and ph(d(d)) = OF. Thus ¢ is linear over the zero sections of E — B and
F — A and thus in the kernel of 7. Conversely, given £ € T',(T') over the zero sections of
E — Band ' — A, we get for any d € D over a € A and b € B that (S(d) —EOdT> _FOOT,?

projects to zero in all directions and thus defines an element ¢(d) of the triple core S. It
is easy to check that this assignment defines a morphism ¢ € Mory(D, S). Then £ = ¢
and the sequence is exact. [
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5.7. PROPOSITION. A decomposition of a triple vector bundle T as in (17) is equivalent
to linear splittings of the double vector bundles D, E, F', Lpg and Lrp and a horizontal
lift, that is a splitting o : T (F) xp)[%(E) — T5(T) of the short exact sequence (18) that
is compatible with the splittings of the double vector bundles in the sense that for all d € D
we have o(¢F,05)(d) = 0] +5 LLrE (p]g(d), qu(pQ(d))) for all o' € T(Hom(A, Kca)) and

o(05, 6F)(d) = OF +1 5572 (pB(d), 6F(pB(d))) for all ¢F € T(Hom(B, Kpc)).

PROOF. A given decomposition S of T induces decompositions of all the double vec-
tor bundles by definition. These are equivalent to linear splittings and horizontal lifts
o6 T(C) = T'p(E) and of: T(C) — T%(F). Now any two linear sections £ € T';(E) and
¢F € T4 (F) over the same ¢ € T'(C) can be written as £€ = 0E(c)+¢F and £ = of(c)+oF
for some ¢¥ € I'(B* @ Kpc) and ¢ € T'(A* ® K 4¢). We define a horizontal lift by

o (67,6") (8" (@m, b, kim)) = S, by, c(m), ki, & (), 67 (bn), 05,) -

It is easy to check that this lift satisfies the additional compatibility conditions.

Conversely, given linear splittings of the double vector bundles D, E, F, Lpg, Lrp
and a horizontal lift o satisfying the extra condition, we first define a linear splitting
Sler: C xy Kap — Lgr by SLEF (¢, kag) = o(ck(c),0E(c))(kap) for any section ¢ of
C — M with ¢(m) = ¢, and where we view K4p as a subset of D. Then we define a
linear splitting of T" by

Y (amy by Cm) 1= 0(05(0), Gg(c))(ED(am, b))

where ¢ € I'(C) is any section such that ¢(m) = ¢,,. Together with Lemma 5.2 this gives a
decomposition of T

Straightforward computations show that these two constructions are indeed inverse to
each other and we get the desired equivalence. [

The analogon of Proposition 5.6 for general n is easy to write down and prove [12],
but Proposition 5.7 becomes highly technical for increasing n. It is relatively easy to see
that a horizontal lift defines a linear splitting of the n-fold vector bundle, and conversely
that a decomposition of an n-fold vector bundle defines a horizontal lift. However, as the
additional conditions in Proposition 5.7 and in Theorem 3.3 suggest, the formulation of
equivalent constructions is not straightforward.
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