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MULTIPLE VECTOR BUNDLES: CORES, SPLITTINGS AND
DECOMPOSITIONS

MALTE HEUER AND MADELEINE JOTZ LEAN

Abstract. This paper introduces ∞- and n-fold vector bundles as special functors
from the ∞- and n-cube categories to the category of smooth manifolds. We study the
cores and “n-pullbacks” of n-fold vector bundles and we prove that any n-fold vector
bundle admits a non-canonical isomorphism to a decomposed n-fold vector bundle. A
colimit argument then shows that ∞-fold vector bundles admit as well non-canonical
decompositions. For the convenience of the reader, the case of triple vector bundles is
discussed in detail.

1. Introduction
Double vector bundles were introduced by Pradines [18] as a structural tool in his study
of nonholonomic jets. Since then, double vector bundles have been used e.g. in integration
problems in Poisson geometry [17, 2, 11, 1, 10], and Pradines’ symmetric double vector
bundles (with inverse symmetry) have turned out to be equivalent to graded manifolds of
degree 2 [9]. Pradines’ original definition was in terms of double vector bundle charts [18]:

Let M be a smooth manifold and D a topological space with a map Π: D → M .
A double vector bundle chart is a quintuple c = (U,Θ, V1, V2, V0), where U is an
open set in M , V1, V2, V3 are three (finite dimensional) vector spaces and Θ: Π−1(U)→
U × V1 × V2 × V0 is a homeomorphism such that Π = pr1 ◦Θ.

Two smooth double vector bundle charts c and c′ are smoothly compatible if Vi = V ′i
for i = 0, 1, 2 and the “change of chart” Θ′ ◦Θ−1 over U ∩ U ′ has the form

(x, v1, v2, v0) 7→ (x, ρ1(x)v1, ρ2(x)v2, ρ0(x)v0 + ω(x)(v1, v2))

with x ∈ U ∩ U ′, vi ∈ Vi, ρi ∈ C∞(U ∩ U ′,Gl(Vi)) for i = 0, 1, 2 and ω ∈ C∞(U ∩
U ′,Hom(V1 ⊗ V2, V0)). A smooth double vector bundle atlas A on D is a set of
double vector bundle charts of D that are pairwise smoothly compatible and such that the
family of underlying open sets in M covers M . A (smooth) double vector bundle structure
on D is a maximal smooth double vector bundle atlas on D.

A double vector bundle consists then of a smooth manifold D, together with vector
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bundle structures D → A1, D → A2, A1 →M , A2 →M :

D A1

A2 M

pDA1

pDA2 q1

q2

,

such that the structure maps (bundle projection, addition, scalar multiplication and zero
section) of D over A are vector bundle morphisms over the corresponding structure maps
of B →M and the other way around. Equivalently, the condition that each addition in D
is a morphism with respect to the other is exactly

(d1 +A1 d2) +A2 (d3 +A1 d4) = (d1 +A2 d3) +A1 (d2 +A2 d4) (1)

for d1, d2, d3, d4 ∈ D with pDA1(d1) = pDA1(d2), pDA1(d3) = pDA1(d4) and pDA2(d1) = pDA2(d3),
pDA2(d2) = pDA2(d4). This is today’s usual definition of a double vector bundle; which has
been used since [14]. It is easy to see that a double vector bundle following Pradines’
definition is a double vector bundle in the “modern” sense [18], but the converse is more
difficult to see. Pradines’ double vector bundle charts are equivalent to local linear splittings
of today’s double vector bundles. Let us be more precise.

Given three vector bundles A, B and C overM with respective vector bundle projections
qA, qB and qC , the space

A×M B ×M C ' q!
A(B ⊕ C) ' q!

B(A⊕ C)

has two vector bundle structures, one over A, and one over B. These two vector bundle
structures are compatible in the sense of both definitions above. Such a double vector
bundle is called a decomposed double vector bundle, with sides A and B and with
“core” C. In particular, if C is the trivial vector bundle M over M , we get the “vacant”
double vector bundle A×M B [14]. A (local) linear splitting of a double vector bundle
(D;A,B;M) is an injective morphism of double vector bundles

ΣU : A|U ×U B|U → (qB ◦ pDB)−1(U) ,

over the identity on the sides A|U and B|U , where U ⊆ M is an open subset. A (local)
decomposition of (D;A,B;M) with core C is an isomorphism of double vector bundles

SU : A|U ×U B|U ×U C|U → (qB ◦ pDB)−1(U),

which is the identity on the sides and on the core. Linear splittings are equivalent to
decompositions; and a local decomposition of D as above with the open set U trivialising
simultaneously A, B and C gives a smooth double vector bundle chart of D, defined by
Θ: (qB ◦ pDB)−1(U)→ U × Ra × Rb × Rc;

Θ = (prU , φA, φB, φC) ◦ (SU)−1,
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where a, b, c are the ranks of A, B, C, respectively and φA : q−1
A (U) → U × Ra is the

trivialisation of A over U , etc.
Starting with the definition from [14], it was until recently not known how to show the

existence of local double vector bundle charts, or equivalently of local linear splittings. In
fact, Mackenzie later added the existence of a global splitting to his definition of a double
vector bundle, and also of triple vector bundles (see e.g. [16, Definition 1], [6], [4]). It turns
out that Mackenzie’s additional condition in his definition is redundant. The existence
of local splittings for the above definition of double vector bundles has been mentioned
at several places [8, 5], but the first elementary construction was given by Fernando del
Carpio-Marek in his thesis [3], starting from the hypothesis that the double projection
(pDA , pDB) : D → A×M B of a double vector bundle is a surjective submersion.

Note here that in [18], Pradines pasted local decompositions together with a partition
of unity, in order to get a global decomposition (see in our proof of Theorem 3.5 below).
In other words, the existence of local decompositions is equivalent to the existence of a
global linear splitting or decomposition.

We will explain below (in Section 1) how to deduce very easily from the surjectivity
of the double projection (pDA , pDB) : D → A×M B the existence of a global splitting. This
surjectivity, that is sometimes also assumed as part of the definition of a double vector
bundle (this is e.g. done explicitly in a former version of [16] that can be found on arXiv.org,
and implicitly in [3]), is in fact always ensured by Lemma 2.13 below (see also Remark
2.14). Although we find a more elegant proof of the existence of global splittings of
double vector bundles than the one in [3], it turns out that the method there is easier
to understand and more elementary in the case of a general n-fold vector bundle. Our
first goal in this project was to build on del Carpio-Marek’s method in order to construct
local splittings of triple vector bundles. It was then natural to adapt our proof to the
construction of local linear splittings of n-fold vector bundles; and we found that a colimit
argument yields the existence of global linear decompositions for ∞-fold vector bundles as
well.

Let us mention here that Eckhard Meinrenken showed us recently a beautiful construc-
tion of global linear splittings of double vector bundles using the normal functor, and an
interesting alternative proof to the submersive surjectivity of the double projection [13],
using the commuting scalar multiplications of a double vector bundle.

In this paper, we introduce multiple vector bundles [7] as special functors from hy-
percube categories to smooth manifold, such that generating arrows are sent to vector
bundle projections, and elementary squares to double vector bundles. In particular, we
define ∞-fold vector bundles as such functors from the infinite hypercube category. We
study in great detail the cores of multiple vector bundles and find on them rich structure
of multiple vector bundles as well. We define the n-pullback of an n-fold vector bundle
and the surjective submersion onto it – in the case of a double vector bundle, this is the
surjectivity of (pDA , pDB) : D → A ×M B – and most importantly we prove by induction
over n that each n-fold vector bundle admits local splittings and therefore a non-canonical
global decomposition.
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n-fold vector bundles were previously defined in [7], [5]. It is not difficult to see that
the definitions are the same: Gracia-Saz and Mackenzie’s n-fold vector bundles are smooth
manifolds with n “commuting” vector bundle structures in the sense that all squares are
double vector bundles, and Grabowski and Rotkiewicz’s are smooth manifolds with n
commuting scalar multiplications. Grabowski and Rotkiewicz sketch in [5] a proof of global
splittings of their n-fold vector bundles. Our construction is more precise since it explains
all the multiple core and their roles in the decomposition; and most importantly it gives
the decompositions of ∞-fold vector bundles with a colimit construction. Our definition
of multiple vector bundles as special functors from cube categories to manifolds allows
us to work with n-fold vector bundles without giving a central role to the total space –
an ∞-fold vector bundle cannot be defined as a smooth manifold with infinitely many
commuting scalar multiplications!

Outline of the paper. In the next section 1 we explain for the convenience of the
reader how to prove that double vector bundles admit linear decompositions.

In Section 2 we define multiple vector bundles. We construct their pullbacks (Sec-
tion 2.9) and we explain the rich structure on the different cores of multiple vector bundles
(Section 2.17).

In Section 3 we define linear splittings and decompositions of n-fold vector bundles.
We explain how the two notions are essentially equivalent (Section 3.1) and we prove the
existence of local splittings of a given n-fold vector bundle (Section 3.4). We deduce the
existence of global decompositions of n-fold vector bundles and we explain how n-fold
vector bundles can alternatively be defined as smooth manifolds with an atlas of compatible
n-fold vector bundle charts (Section 3.8).

In Section 4 we prove that each ∞-fold vector bundle admits a linear decomposition.
Finally in Section 5 we explain for the convenience of the reader most of our constructions
and results in the case of a triple vector bundle. In that special case, we explain the
relation between linear splittings and multiple linear sections.

Relation with other work. We heard after having mostly completed this work that
the content of Theorem 2.10 for n = 3 can be found as well in the recent paper [4];
unfortunately the proof given there has some errors.

Some of our results on cores in Section 2.17 seem to be known in [7], but they are not
central in that paper so not precisely formulated and proved. The cores of triple vector
bundles can also be found in [4] and [15] – our proof of Theorem 2.20 relies on the fact
that the side cores of a triple vector bundle are double vector bundles [15].

Preparation: on linear splittings of double vector bundles. Let (D,A,B,M)
be a double vector bundle with core C. That is, the space C is the double kernel
C = {d ∈ D | pDA(d) = 0Am, pDB(d) = 0Bm for some m ∈ M}. It has a natural vector
bundle structure overM since +A and +B of two elements of C coincide by the interchange
law (1), see (5) below.

The additional axiom that the double projection (pDA , pDB) : D → A×M B is a surjective
submersion is sometimes added to the definition. We explain in Theorem 2.10, see also
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Remark 2.14, why this additional axiom is not needed [13]. The surjectivity of (pDA , pDB)
yields the exactness of the sequence

0 −→ q!
BC

ιB−→ D
(pDA ,p

D
B )

−→ q!
BA→ 0 (2)

of vector bundles over B. The map ιB : q!
BC → D is the core inclusion over B; sending

(b, c) to 0Db +A c. Its image are precisely the elements of D that project under pDA to zero
elements of A.

A section ξ ∈ ΓA(D) is linear over a section b ∈ Γ(B) if the map ξ : A→ D is a vector
bundle morphism over the base map b : M → B. The space Γ`A(D) of linear sections of
D → A is a C∞(M)-module since for ξ ∈ Γ`A(D) linear over b ∈ Γ(B) and for f ∈ C∞(M),
the section q∗Af · ξ is linear over fb. We get a morphism π : Γ`A(D) → Γ(B) of C∞(M)-
modules, sending a linear section to its base section. If a linear section ξ ∈ Γ`A(D) has the
zero section 0B ∈ Γ(B) as its base section, then for all am ∈ A, D 3 ξ(am) = 0Dam +B ϕ(am)
for some ϕ(am) ∈ C(m). The linearity of ξ implies that ϕ ∈ Γ(A∗⊗C). We denote then ξ
by ϕ̃, and we get the map ·̃ : Γ(Hom(A,C))→ Γ`A(D) that sends φ to φ̃ ∈ Γ`A(D) defined
by φ̃(a) = 0Da +B φ(a) for all a ∈ A.

A splitting s : q!
BA → D of (2) lets us define for every b ∈ Γ(B) a section b̂ of

D → A, given by b̂(am) = s(am, b(m)) for all am ∈ A. We get then immediately
pDB ◦ b̂ = b ◦ qA : M → B and

b̂(a1
m + a2

m) = s(a1
m + a2

m, b(m)) = s(a1
m, b(m)) +B s(a2

m, b(m)) = b̂(a1
m) +B b̂(a2

m),

i.e. b̂ : A → D is a vector bundle morphism over b : M → B. In other words, b̂ is an
element of Γ`A(D). Therefore, the third arrow in

0 −→ Γ(Hom(A,C)) ·̃−→ Γ`A(D) −→ Γ(B) −→ 0 (3)

is surjective and the short sequence of C∞(M)-modules is exact. Then, since Γ(Hom(A,C))
and Γ(B) are locally free and finitely generated, Γ`A(D) is as well and there exists a
splitting h : Γ(B) → Γ`A(D) of (3). Then h defines a linear splitting Σh : A ×M B → D,
Σh(am, bm) = h(b)(am) for any b ∈ Γ(B) with b(m) = bm. Since h is C∞(M)-linear, it
is easy to see that Σh is well-defined, i.e. that it does not depend on the choice of the
sections of B.

Hence we have proved the following theorem.

1.1. Theorem. Any double vector bundle D with sides A and B admits a linear splitting
Σ: A×M B → D.

Del Carpio-Marek proves in his thesis [3] the existence of local splittings. His method
is the following. Take a splitting σ : qB!A → D of the short exact sequence (2) – here
[3] seems to assume the surjectivity of the right-hand map as an axiom in the definition
of a double vector bundle. That is, σ is a vector bundle morphism over the identity on
B. Now choose U ⊆M an open set that trivialises both A and B and take the induced
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local frames (a1, . . . , ak) and (b1, . . . , bl) of A and B over U . Then each bm ∈ B|U equals
bm = ∑l

i=1 βibi(m) with β1, . . . , βl ∈ R. Set ΣU : A|U ×U B|U → (qB ◦ pDB)−1(U),

ΣU(am, bm) =
l∑

i=1
βi ·A σ(am, bi(m)),

where the sum is taken in the fiber of D over am ∈ A. Then ΣU is a local linear splitting
of D.

Acknowledgements. We warmly thank Rohan Jotz Lean for useful comments, and Sam
Morgan for telling us about the technique used in [13] for proving that the double source
map of a VB-groupoid is a surjective submersion (used in our proof of Theorem 2.10).

We also thank the University of Sheffield for the received funding in form of a PhD
scholarship for Malte Heuer, which made this research possible.

2. Multiple vector bundles: definition and properties
In this section we introduce multiple vector bundles and discuss some of their properties.
The novelty of our definition is that instead of considering an n-fold vector bundle as a
smooth manifold with n-commuting vector bundle structures, we see a multiple vector
bundle as a special functor from a cube category to smooth manifolds. In particular, the
“total space” of an n-fold vector bundle does not play that central a role anymore, and we
can even define ∞-fold vector bundles, with no total space at all.

In the following, we write N for the set of positive integers: N = {1, 2, . . .}. For n ∈ N,
we write n for the set {1, . . . , n}.

2.1. Multiple vector bundles. We consider the category with objects the finite
subsets I ⊆ N and with arrows

I → J ⇔ J ⊆ I .

We call this category the standard ∞-cube category �N. It is generated as a category
by the arrows

I → I \ {i} for I ⊆ N finite and i ∈ I .

That is, each subset I ⊆ N of cardinality k is the source of k generating arrows.
In a similar manner, we call the standard n-cube category �n the category with

subsets I of n as objects and with arrows I → J ⇔ J ⊆ I.
More generally, an n-cube category is a category that is isomorphic to the standard

n-cube category �n, while an ∞-cube category is a category that is isomorphic to the
standard ∞-cube category �N.
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2.2. Definition. An ∞-fold vector bundle, and respectively an n-fold vector bun-
dle, is a covariant functor E : �N →Man∞ – respectively a covariant functor E : �n →
Man∞ – to the category of smooth manifolds, such that, writing EI for E(I) and
pIJ := E(I → J),

(a) for all I ⊆ N (respectively I ⊆ n) and all i ∈ I, pII\{i} : EI → EI\{i} has a smooth
vector bundle structure, and

(b) for all I ⊆ N (respectively I ⊆ n) and i 6= j ∈ I,

EI EI\{i}

EI\{j} EI\{i,j}

pI
I\{i}

pI
I\{j} p

I\{i}
I\{i,j}

p
I\{j}
I\{i,j}

is a double vector bundle.

For better readability we will often write for the vector bundle projections pIi := pII\{i}
and in the case of an n-fold vector bundle also pi := p

n
n\{i}. The smooth manifold E∅ =: M

will be called the absolute base of E. If E is an n-fold vector bundle, the smooth manifold
E(n) =: E is called its total space. Given a finite subset I ⊆ N and i ∈ I, we write +I\{i}
for the addition and ·I\{i} for the scalar multiplication of the vector bundle EI → EI\{i}.
This notation is omissive since it only specifies the base space of the vector bundle in the
fibers of which the addition or scalar multiplication is taken. However, it is always clear
from the summands or factors which fiber space is considered.

We will generally say multiple vector bundle for an n-fold or ∞-fold vector bundle,
when the dimension of the underlying cube diagram does not need to be specified. Our
definition of n-fold vector bundles is different but equivalent notation to the definition in
[7].

2.3. Remark. There is a canonical functor πnk : �n → �k for k ≤ n defined by πnk (I) =
I ∩ k and πnk (I → J) = (I ∩ k)→ (J ∩ k). The canonical functor πN

n : �N → �n is defined
in the same manner by πN

n (I) = I ∩ n. Furthermore there are inclusion functors of full
subcategories ιnk : �k → �n and ιNn : �n → �N.

Given a k-fold vector bundle E : �k → Man∞, the composition E ◦ πnk is an n-fold
vector bundle whereas the composition E ◦ πN

k is an ∞-fold vector bundle.
In this light, a standard n-fold vector bundle E can be viewed as a special case of a

standard ∞-fold vector bundle E : �N →Man∞ such that additionally E = E ◦ ιNn ◦ πN
n :

�N Man∞

�n �N

πN
n

E

ιNn

E .
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In other words E(I) = E(I ∩ n) for all I ⊆ N and E is completely determined by its values
on all the subsets of n already.

We will also more generally call an n-fold vector bundle a functor E : ♦n →Man∞,
where ♦n is an n-cube category with isomorphism i : �n → ♦n, such that E◦ i is a standard
n-fold vector bundle. Similarly, an ∞-fold vector bundle is a functor E : ♦N →Man∞,
where ♦N is an ∞-cube category with isomorphism i : �N → ♦N, such that E ◦ i is a
standard ∞-fold vector bundle. We need this generality of the definition for the study of
the cores of a multiple vector bundle.

The following proposition is straightforward and its proof is left to the reader.

2.4. Proposition. Let E : �N →Man∞ be a multiple vector bundle.

(a) For each pair of subsets J ⊆ I ⊆ N with J finite, the finite sets K ⊂ N such that
J ⊆ K ⊆ I form a full subcategory ♦I,J of �N, which is itself a (#I − #J)-cube
category and the restriction of E to ♦I,J is a (#I − #J)-fold vector bundle with
total space EI (if I is finite) and absolute base EJ , denoted by EI,J . We call this the
(I, J)-face of E.

(b) In particular, if I = ∅ we obtain a (#I)-fold vector bundle EI,∅ with total space EI
and absolute base M . We call EI,∅ the I-face of E.

Given an ∞-fold vector bundle E : �N → Man∞ and an open subset U ⊆ M , we
define the restriction of E to U to be the ∞-fold vector bundle E|U : �N → Man∞,
E|U(I) =

(
pI∅
)−1

(U) and E|U(I → J) = E(I → J)|(pI∅)−1(U) :
(
pI∅
)−1

(U) →
(
pJ∅
)−1

(U).
The absolute base of E|U is U . In the same manner, if E : ♦n →Man∞ is an n-fold vector
bundle, and U an open subset of M , then its restriction E|U to U is an n-fold vector
bundle with total space (pn∅ )−1(U) and with absolute base U .

Now recall that a morphism (Ψ;ψA, ψB;ψ) of double vector bundles from (D1;A1, B1;M1)
to (D2;A2, B2;M2) is a commutative cube

D1 D2

B1 B2

A1 A2

M1 M2

Ψ

ψB

ψA

ψ

all the faces of which are vector bundle morphisms. Similarly we define morphisms of
multiple vector bundles.
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2.5. Definition. Let E : ♦N
1 → Man∞ and F : ♦N

2 → Man∞ be two multiple vector
bundles. A morphism of multiple vector bundles from E to F is a natural transfor-
mation τ : E◦ i1 → F◦ i2 such that for all objects I of �N and for all i ∈ I, the commutative
diagram

Ei1(I) Fi2(I)

Ei1(I\{i}) Fi2(I\{i})

τ(I)

p
i1(I)
i1(I\{i}) p

i2(I)
i2(I\{i})

τ(I\{i})

is a homomorphism of vector bundles.
Given two n-fold vector bundles E : ♦n1 →Man∞ and F : ♦n2 →Man∞, a morphism

of n-fold vector bundles from E to F is a natural transformation τ : E ◦ i1 → F ◦ i2
such that the diagram above is a vector bundle homomorphism for all I ⊆ n and i ∈ I.
The morphism τ is surjective (resp. injective) if each of its components τ(I), I ⊆ n is
surjective (resp. injective).

2.6. Prototypes. In this section, we describe a few standard examples of multiple vector
bundles, that will be relevant in the formulation of our main theorem.
Decomposed multiple and n-fold vector bundles. Consider a smooth manifoldM
and a collection of vector bundles A = (qJ : AJ →M)J⊆N,#J<∞, with A∅ = M . We define
a functor EA : �N →Man∞ as follows. Each finite subset I ⊆ N is sent to EI := ∏M

J⊆I AJ ,
the fibered product of vector bundles over M .

For I ⊆ N with 1 ≤ #I < ∞ and for k ∈ I, the arrow I → I \ {k} is sent to the
canonical vector bundle projection

pIk :
M∏
J⊆I

AJ →
M∏

J⊆I\{k}
AJ .

In particular, the arrow {i} → ∅ for i ∈ N is sent to the vector bundle projection p{i}∅ =
q{i} : E{i} = A{i} → E∅ = M . A multiple vector bundle EA : �N → Man∞ constructed
in this manner is called a decomposed multiple vector bundle. A decomposed n-
fold vector bundle EA : �n → Man∞ is defined accordingly. In that case we will write
EA := EA(n) for the total space. Decomposed n-fold vector bundles are also defined in [7].

2.7. Example. A 3-fold vector bundle is also called a triple vector bundle. A trivial or
decomposed triple vector bundle is given by

E{1,2,3} = A{1} ×M A{2} ×M A{3} ×M A{1,2} ×M A{1,3} ×M A{2,3} ×M A{1,2,3},

with decomposed sides
E{1,2} = A{1} ×M A{2} ×M A{1,2} , E{1,3} = A{1} ×M A{3} ×M A{1,3} ,

E{2,3} = A{2} ×M A{3} ×M A{2,3} ,

where AI , I ⊆ n are all vector bundles over M , the projections are the appropriate
projections to the factors and the additions are defined in an obvious manner in the fibers.
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Vacant multiple and n-fold vector bundles. As a special case of this, if A =
(qi : Ai →M)i∈N is a collection of vector bundles over M , we construct the multiple vector
bundle EA : �N →Man∞ as follows:

I 7→
M∏
i∈I
Ai, (I → I \ {k}) 7→

pIk :
M∏
i∈I
Ai →

M∏
i∈I\{k}

Ai

 .
Such a multiple vector bundle is called a vacant decomposed multiple vector bundle.
We will see later that all cores of these multiple vector bundles are trivial.

Given a collection of vector bundles A = (qJ : AJ →M)J⊆N,#J<∞, with A∅ = M , we
can define A = (qi : Ai →M)i∈N by Ai = A{i}. We get then a monomorphism of multiple
vector bundles

ι : EA → EA (4)

defined by ι(I) : ∏M
i∈I A{i} →

∏M
J⊆I AJ , ι(I)((vi)i∈I) = (wJ)J⊆I , w{i} = vi for i ∈ I,

w∅ = v∅ := m ∈M and wJ = 0AJm for #J ≥ 2. In particular, ι({i}) = idA{i} for all i ∈ N.
In the case of an n-fold vector bundle we write E := E(n) for the total space.

“Diagonal” decomposed and vacant k-fold vector bundles. More generally,
consider a collection A = (qI : AI → M)I⊆n of vector bundles, with A∅ = M , and a
partition ρ = {I1, . . . , Ik} of n with Ij 6= ∅, for j = 1, . . . , k. Then we can define a k-cube
category ♦ρ with objects the subsets ν ⊆ ρ and with morphisms ν1 → ν2 ⇔ ν2 ⊆ ν1.
We will write [ν] := ∪K∈νK for ν ⊆ ρ. Now we define a vacant k-fold vector bundle
EAρ : ♦ρ →Man∞ by

ν 7→
M∏
K∈ν

AK , (ν → ν \ {I}) 7→
pνν\{I} : M∏

K∈ν
AK →

M∏
K∈ν\{I}

AK

 .
In a similar manner, we define a decomposed k-fold vector bundle EAρ : ♦ρ →Man∞ by

ν 7→
M∏
ν′⊆ν

A[ν′], (ν → ν \ {I}) 7→
 M∏
ν′⊆ν

A[ν′] →
M∏

ν′⊆ν\{I}
A[ν′]

 ,
where the map on the right-hand side is the canonical projection. We get as before an
obvious monomorphism of k-fold vector bundles ιρ : EAρ → EAρ . For each ν ⊆ ρ we have
furthermore the obvious canonical injections

ηρ(ν) : EAρ (ν) =
M∏
ν′⊆ν

A[ν′] ↪→ EA([ν]) =
M∏

J⊆[ν]
AJ .

The tangent prolongation of an n-fold vector bundle. Given an n-fold vector
bundle E : �n → Man∞ we define an (n + 1)-fold vector bundle TE : �n+1 → Man∞,



MULTIPLE VECTOR BUNDLES: CORES, SPLITTINGS AND DECOMPOSITIONS 675

the tangent prolongation of E, as follows. Given I ⊆ n, we set TE(I) := EI and
TE(I ∪ {n+ 1}) := TEI . Furthermore, for i ∈ I ⊆ n we set

TE(I → I \ {i}) := pIi : EI → EI\{i} ,

TE(I ∪ {n+ 1} → (I ∪ {n+ 1}) \ {i}) := T (pIi ) : TEI → TEI\{i} ,

TE(I ∪ {n+ 1} → I) := pEI : TEI → EI ,

where the last map is the canonical projection.
Multiple homomorphism vector bundles. Given two n-fold vector bundles E and
F with the same absolute base E(∅) = F(∅) = M we construct an n-fold vector bundle
Homn(E,F), which is the n-fold analogon of the bundle Hom(E,F ) for ordinary vector
bundles E and F over M .

For m ∈ M the restrictions E|m and F|m define n-fold vector bundles over a single
point as absolute base. With this we can define Homn(E,F) to be

Homn(E,F) :=
{

Φm : E|m → F|m morphism of n-fold vector bundles | m ∈M
}
.

This space is equipped with an obvious projection to M . Since n-fold vector bundle
morphisms have underlying (n − 1)-fold vector bundle morphisms between the faces
there are additionally projections Homn(E,F) → Homn−1(En\{k},∅,Fn\{k},∅) for all k ∈
n. Each of these projections carries a vector bundle structure, with the sum of two
morphisms Φm and Ψm projecting to the same base φ : En\{k}|m → Fn\{k}|m defined as
(Φm +n\{k} Ψm)(e) := Φm(e) +n\{k} Ψm(e). These vector bundle structures define an n-fold
vector bundle Hom(E,F) with total space Homn(E,F) and absolute base M , by setting
Hom(E,F)(I) := Hom#I(EI,∅,FI,∅).

Every morphism of n-fold vector bundles E→ F over the identity on M corresponds
to a smooth map M → Homn(E,F) which is a section of the projection to M .

In particular, let F →M be an ordinary vector bundle and consider the n-fold vector
bundle F defined by F(n) = F and F(I) = M for all I ( n. Then we write Morn(E, F ) for
the space of n-fold vector bundle morphisms from E to F over idM .

2.8. Lemma. Let E be an n-fold vector bundle over M and F be a vector bundle over M .
Then the space Morn(E, F ) is a C∞(M)-module.
Proof. An element τ of Morn(E, F ) necessarily satisfies τ(I) : E(I) → M , τ(I)(e) =
pI∅(e) for all e ∈ E(I), I ( n. Take f1, f2 ∈ C∞(M) and τ1, τ2 ∈ Morn(E, F ). Then
(f1 · τ1 + f2 · τ2) : E→ F is defined by (f1 · τ1 + f2 · τ2)(I)(e) = pI∅(e) for all e ∈ E(I), I ( n
and (f1 · τ1 + f2 · τ2)(n)(e) = f1(pI∅(e)) · τ1(e) + f2(pI∅(e)) · τ2(e) for e ∈ E(n).

By construction, (f1 · τ1 + f2 · τ2)(n) is smooth and

E(n) F

E(n \ {i}) M

(f1τ1+f2τ2)(n)

p
n

n\{i}
qF

τ(n\{i})



676 MALTE HEUER AND MADELEINE JOTZ LEAN

is a morphism of vector bundles for all i ∈ n. For I ( n and i ∈ I, the map (f1 · τ1 + f2 ·
τ2)(I) : E(I)→M is obviously a vector bundle morphism over τ(I \{i}) : E(I \{i})→M .

2.9. The n-pullback of an n-fold vector bundle. Let E be an n-fold vector
bundle. We define the n-pullback of E to be the set

P =
{

(e1, . . . , en)
∣∣∣ei ∈ En\{i} and pn\{i}j (ei) = p

n\{j}
i (ej) for i, j ∈ n

}
.

We prove the following theorem, which is central in our proof of the existence of a
linear splitting.

2.10. Theorem. Let E : �n →Man∞ be an n-fold vector bundle. Then

(a) P defined as above is a smooth embedded submanifold of the product En\{1} × . . .×
En\{n}.

(b) The functor P defined by P(n) = P , P(S) = ES for all S ( n and the vector
bundle projections pSi : ES → ES\{i} for all S ( n and i ∈ S and p′i : P → En\{i},
(e1, . . . , en) 7→ ei is an n-fold vector bundle.

(c) The map π(n) : E → P given by π(n) : e 7→ (p1(e), . . . , pn(e)), defines together with
π(J) = idEJ for J ( n, a surjective n-fold vector bundle morphism π : E→ P.

Note that for each i ∈ n, the top map π(n) : E → P of π is necessarily a vector bundle
morphism over the identity on En\{i}. For the proof of this theorem, we need the following
lemmas.

2.11. Lemma. Let f : M → N be a smooth surjective submersion, and let qE : E → N be
a smooth vector bundle. Then the inclusion f !E ↪→ E ×M is a smooth embedding.

This lemma is standard and its proof is left as an exercise. The next statement is
obvious.

2.12. Lemma. Let A→M and B → N be two smooth vector bundles, and let φ : A→ B
be a homomorphism of vector bundles over a surjective submersion f : M → N . Assume
that φ is surjective in each fiber. Then the pullback homomorphism f !φ : A → f !B,
am 7→ (φ(am),m) over the identity on M is surjective in each fiber.

The following lemma is central in our proof, its technique is inspired by a similar one
in [13].

2.13. Lemma. Let A→M and B → N be two smooth vector bundles, and let φ : A→ B
be a homomorphism of vector bundles over a smooth map f : M → N . Then φ is a
surjective submersion if and only if φ is surjective in each fiber and f is a surjective
submersion.
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Proof. Choose am ∈ A. Then it is easy to see in local coordinates that the tangent
space TamA splits as TamA ' TmM ⊕ A(m), and the tangent space Tφ(am)B splits as
Tf(m)N ⊕B(f(m)). In those splittings, the map Tamφ : TamA→ Tφ(am)B reads

Tamφ = Tmf ⊕ φ|A(m) : TmM ⊕ A(m)→ Tf(m)N ⊕B(f(m)).

Therefore, Tamφ is surjective if and only if Tmf : TmM → Tf(m)N is surjective and
φ|A(m) : A(m)→ B(f(m)) is surjective. Since the surjectivity of φ implies the surjectivity
of f , the proof can easily be completed.

2.14. Remark. Take D a double vector bundle with sides A and B. Then qB : B →M
is a surjective submersion since it it a vector bundle projection, and pDA : D → A is a
surjective submersion for the same reason. Hence Lemma 2.13 implies that pDA is surjective
in each fiber. Now if A×M B is identified with q!

BA, then (pDA , pDB) : D → A×M B coincides
with the pullback morphism q!

Bp
D
A : D → q!

BA as morphism of vector bundles over B.
By Lemma 2.12, it is hence surjective in each fiber, and so (pDA , pDB) : D → A ×M B is
surjective. This shows Theorem 2.10 in the case n = 2 since then A×M B is an embedded
submanifold of A×B, it is the total space of a double vector bundle with sides A and B
and with trivial core, and the projection π({1, 2}) : D → A×M B is equal to (pDA , pDB). This
reasoning is due to [13], and the proof of Theorem 2.10 is just a generalisation of it to
the case of an arbitrary n, with a central role of Lemma 2.13 and of Lemma 2.12.

2.15. Lemma. Let qA : A→M be a smooth vector bundle, and let B ⊆ A and N ⊆M be
embedded submanifolds with qA(B) = N and such that for each n ∈ N , B(n) ⊆ A(n) is a
vector subspace. Then B → N has a unique smooth vector bundle structure, such that the
smooth embeddings build a vector bundle homomorphism into A→M .

This last lemma is standard as well. We leave its proof to the reader.
Proof Proof of Theorem 2.10. We prove this by induction over n. The case of n = 1
is trivially satisfied since in that case E is an ordinary vector bundle E = E{1} → E∅ = M
and so P = M . Let us now take n ∈ N with n ≥ 2 and assume that all three claims are
true for any (n− 1)-fold vector bundle E.

Recall from Proposition 2.4 that En,{k} is an (n − 1)-fold vector bundle. The corre-
sponding (n− 1)-pullback is

Pup
k :=

{
(e1, . . . , k̂, . . . , en) | ei ∈ En\{i} : pn\{i}j (ei) = p

n\{j}
i (ej) for i, j ∈ n \ {k}

}
.

By the induction hypothesis (b), this is the total space of an (n− 1)-fold vector bundle
Pup
k with underlying nodes EJ for k ∈ J ( n. The absolute base of this (n− 1)-fold vector

bundle is E{k}, and by (c) we have a smooth morphism πup
k : En,{k} → Pup

k of (n− 1)-fold
vector bundles that is surjective. In a similar manner, En\{k},∅ is an (n− 1)-fold vector
bundle. The corresponding (n− 1)-pullback is

P low
k :=

{
(b1, . . . , k̂, . . . , bn) | bi ∈ En\{k,i} : pn\{k,i}j (bi) = p

n\{k,j}
i (bj) for i, j ∈ n \ {k}

}
.
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Again by the induction hypothesis (b) this is the total space of an (n − 1)-fold vector
bundle Plow

k with underlying nodes EJ for J ( n\{k}. By (c) we have a smooth surjective
morphism πlow

k : En\{k},∅ → Plow
k of (n− 1)-fold vector bundles.

By the induction hypothesis (a), Pup
k and P low

k are embedded submanifolds of∏n
i=1
i 6=k

En\{i}

and ∏n
i=1
i 6=k

En\{i,k}, respectively. Since for each i 6= k in n, we have the smooth vector bundle

p
n\{i}
k : En\{i} → En\{i,k}, the product ∏n

i=1
i 6=k

En\{i} has a smooth vector bundle structure
over ∏n

i=1
i 6=k

En\{i,k}, the projection of which we denote by qk. Using the surjectivity of

πlow
k (n \ {k}) : En\{k} → P low

k , the surjectivity of pk : E → En\{k}, as well as the identities
p
n\{k}
i ◦ pk = p

n\{i}
k ◦ pi for i 6= k, we find easily that qk(Pup

k ) = P low
k . Further, Pup

k is
clearly closed under the addition of ∏n

i=1
i 6=k

En\{i} →
∏n
i=1
i 6=k

En\{i,k}. Lemma 2.15 yields then

that qk : Pup
k → P low

k is a smooth vector bundle.
Next let us set for simplicity δk := πlow

k (n \ {k}) : En\{k} → P low
k . Recall that it is

defined by
δk : ek 7→

(
p
n\{k}
1 (ek), . . . , k̂, . . . , pn\{k}n (ek)

)
.

Since n ≥ 2 we can choose i ∈ n \ {k}. Then δk : En\{k} → P low
k is a surjective smooth

vector bundle homomorphism over the identity on En\{i,k}. By Lemma 2.13, it is a
surjective submersion. We consider the pullback vector bundles (δk)!Pup

k over En\{k}, for
each k ∈ n. As a set, each (δk)!Pup

k can easily be identified with P .
Denote by ϕk the inclusion of Pup

k in En\{1} × . . . k̂ . . .× En\{n}. Then P is embedded
into En\{1} × . . .× En\{n} via the composition

P Pup
k × En\{k} (En\{1} × . . . k̂ . . .× En\{n})× En\{k}

ϕk×idEn\{k}
,

where the map on the left is the embedding as in Lemma 2.11. It is easy to see that up to
the obvious reordering of the factors on the right, the embeddings obtained for k = 1, . . . , n
are the same map. Therefore, all the obtained smooth structures on P are compatible
and so P is a smooth manifold and all its projections are smooth. In particular, we have
proved (a).

The compatibility of the vector bundle structures of P over En\{i} and En\{j} for i 6= j
follows from the compatibility of the structures in En\{k},∅. More precisely for i, j ∈ n,
the interchange law in the double vector bundle (P,En\{i}, En\{j}, En\{i,j}) follows from
the interchange laws in the double vector bundles (En\{k}, En\{k,i}, En\{k,j}, En\{k,i,j}) for
all k ∈ n \ {i, j}. We let the reader check this as an exercise. Hence we can define
P : �n →Man∞ and we obtain an n-fold vector bundle.

For each k = 1, . . . , n, πup
k (n) : E → Pup

k is a vector bundle morphism over δk : En\{k} →
P low
k . The pullback of πup

k (n) via the map δk is hence a vector bundle morphism E →
(δk)!Pup

k over the identity on En\{k}, and it is easy to see that it coincides – via the
identification of P with (δk)!Pup

k – with the n-fold projection π(n) from E to P . Hence
π : E→ P is an n-fold vector bundle morphism.
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As before choose i ∈ n \ {k}. Since πup
k (n) : E → Pup

k is a surjective vector bundle
morphism over the identity on En\{i}, it is a surjective submersion by Lemma 2.13.
But since δk : En\{k} → P low

k is a surjective submersion and πup
k (n) is a vector bundle

morphism over δk, by Lemma 2.13 it must be surjective in each fiber of pk : E → En\{k}.
By Lemma 2.12, the pullback π(n) = δ!

kπ
up
k (n) : E → P is then surjective in each fiber of

pk : E → En\{k}. Since the base map is the identity on En\{k}, π(n) is surjective.
Note that we have proved as well the following result.

2.16. Corollary. In the situation of Theorem 2.10, the projection π(n) : E → P is a
surjective submersion.

2.17. Cores of a multiple vector bundle.Given a double vector bundle (D,A,B,M),
the intersection (pDB)−1(0BM) ∩ (pDA)−1(0AM) is called the core of the double vector bundle
(D,A,B,M). It has a natural vector bundle structure over M , which is often denoted
qC : C → M . In this section, we explain the cores of multiple vector bundles. These
cores have also been defined using a different notation by Alfonso Gracia-Saz and Kirill
Mackenzie in [7].

Let E be a multiple vector bundle with absolute base M := E∅. For each S ⊆ N
and each k ∈ S, we have the zero section 0E,S

S\{k} : ES\{k} → ES, e 7→ 0ESe . For each
R ⊆ S ⊆ N, all compositions of #S −#R composable zero sections, starting with some
0R∪{i}R : ER → ER∪{i}, for some i ∈ S \R, and ending into ES, are equal and the obtained
map is written 0E,S

R : ER → ES. In particular, we set 0E,S
S = idES . If it is clear from the

context, which multiple vector bundle we are considering, we write 0SR := 0E,SR . The image
of e ∈ ER under 0SR is denoted by 0Se , and the image of ER under 0SR is written 0SR. For
better readability we sometimes write 0SM := 0S∅ and 0ER := 0nR.

Choose a subset S ⊆ N and j, k ∈ S with j 6= k. Then

ES ES\{k}

ES\{j} ES\{j,k}

pSk

pSj p
S\{k}
j

p
S\{j}
k

is a double vector bundle, which has therefore a core

ES
{j,k} := (pSS\{j})−1

(
0S\{j}S\{j,k}

)
∩ (pSS\{k})−1

(
0S\{k}S\{j,k}

)
.

This core has then an induced vector bundle structure over ES\{j,k} with projection
(pS\{j}S\{k} ◦ pSS\{j})|ES{j,k} , which we denote by cS{j,k} : ES

{j,k} → ES\{j,k}. This is a special case
of the side cores, as the following proposition shows.

2.18. Proposition. Let E be a multiple vector bundle, S ⊆ N a finite subset and J ⊆ S
non-empty. The (S, J)-core

ES
J :=

⋂
j∈J

(pSj )−1
(
0S\{j}S\J

)
,
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is a smooth embedded submanifold of ES and inherits a vector bundle structure over ES\J
with projection cSJ := (E(S → S \ J))|ESJ : ES

J → ES\J . In particular, for J = {s} of
cardinality 1, we get ES

J = ES and cSJ = pSs .
Proof. That ES

J is a submanifold of ES follows from Theorem 2.10: Consider the (S, S\J)-
face of E, the #J-fold vector bundle ES,S\J . We denote the corresponding #J-pullback by
P S
J . This is the total space of an #J-fold vector bundle PSJ with absolute base ES\J . The

image of ES\J under any #J composable zero sections of P S
J , Z := 0P

S
J
ES\J

is an embedded
submanifold of P S

J . By Corollary 2.16 the #J-fold projection πSJ : ES → P S
J is a surjective

submersion. ES
J is the preimage of Z under πSJ and is thus a smooth embedded submanifold

of ES.
The vector bundle structure is similar to the case n = 2. Any two elements e, e′ ∈ ES

J

with cSJ (e) = cSJ (e′) =: b can be added over any pSj , for j ∈ J , since pSj (e) = 0S\{j}b = pSj (e′).
All the additions clearly preserve ES

J . For any j ∈ J , 0S\{j}S\J is an embedded submanifold
of ES\{j} and we get a unique vector bundle structure ES

J → 0S\{j}S\J according to Lemma
2.15. The interchange laws in all the double vector bundles (ES, ES\{j1}, ES\{j2}, ES\{j1,j2})
imply that after identification of 0S\{j}S\J with ES\J all the additions coincide: Since we have
0S

0S\{j1}
b

= 0Sb = 0S
0S\{j2}
b

, we find easily

e +
S\{j1}

e′ =
(
e +
S\{j2}

0S
0S\{j2}
b

)
+

S\{j1}

(
0S

0S\{j2}
b

+
S\{j2}

e′
)

=
(
e +
S\{j1}

0S
0S\{j1}
b

)
+

S\{j2}

(
0S

0S\{j1}
b

+
S\{j1}

e′
)

= e +
S\{j2}

e′.
(5)

Therefore, ES
J has a well-defined vector bundle structure over ES\J .

We begin by proving that a side core can be constructed ‘by stages’.

2.19. Lemma. Let E be a multiple vector bundle and S ⊆ N. Choose K ⊆ J ⊆ S. Then

ES
J =

{
e ∈ ES

K | pSj (e) ∈ 0S\{j}S\J , j ∈ J \K, and cSK(e) ∈ 0S\KS\J

}
. (6)

Proof. For simplicity, we denote here by X the set on the right-hand side of the equation.
First, take e ∈ ES

J . Then since pSj (e) ∈ 0S\{j}S\J for all j ∈ J , and since K ⊆ J , we have for
k ∈ K: pSk (e) = 0S\{k}ek

for some ek ∈ ES\J . Since 0S\{k}ek
= 0S\{k}

0S\Kek

, we find pSk (e) ∈ 0S\{k}S\K

for all k ∈ K. Therefore e ∈ ES
K with pSj (e) ∈ 0S\{j}S\J for j ∈ J \K and we only need to

check that cSK(e) ∈ 0S\KS\J in order to find that e ∈ X. But for any choice of k ∈ K, we find
cSK(e) = pSS\K(e) = p

S\{k}
S\K (pSk (e)) = p

S\{k}
S\K (0S\{k}ek

) = 0S\Kek
with ek ∈ ES\J .

Conversely, take e ∈ X. Then since e ∈ ES
K we find for each k ∈ K an element

ek ∈ ES\K such that pSk (e) = 0S\{k}ek
. But then ek = p

S\{k}
S\{K}(0S\{k}ek

) = p
S\{k}
S\{K}(pSk (e)) =

pSS\{K}(e) = cSK(e) ∈ 0S\KS\J shows that e ∈ (pSk )−1
(
0S\{k}S\J

)
. Since k ∈ K was arbitrary and

also e ∈ (pSj )−1
(
0S\{k}S\J

)
for all j ∈ J \K, we find that e ∈ ES

J .
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Using this, we prove the following theorem.

2.20. Theorem. Let E be a multiple vector bundle. For each S ⊂ N and J ⊆ S non-
empty, the space ES

J is the total space of an (#S − #J + 1)-fold vector bundle in the
following way.

The partition ρSJ = {J, {s1}, . . . , {s(#S−#J+1)}} of S into the set J and sets with one
element gives rise to a (#S −#J + 1)-cube category ♦SJ := ♦ρ

S
J as in section 2.6. We will

again write [ν] := ∪K∈νK for any subset ν ⊆ ρSJ . Now define ESJ : ♦SJ →Man∞ by setting
ESJ (ν) = E

[ν]
J if J ∈ ν and ESJ (ν) = E[ν] if J 6∈ ν and define the morphisms by

ESJ (ν1 → ν2) = E([ν1]→ [ν2])|
E

[ν1]
J

: E[ν1]
J → E

[ν2]
J , if J ∈ ν2 ⊆ ν1,

ESJ (ν1 → ν2) = E([ν1]→ [ν2]) : E[ν1] → E[ν2] , if ν2 ⊆ ν1 63 J
ESJ (ν1 → ν2) = E([ν1] \ J → [ν2]) ◦ c[ν1]

J : E[ν1]
J → E[ν2] , if ν2 ⊆ ν1, J ∈ ν1 \ ν2 .

Then ESJ is a (#S −#J + 1)-fold vector bundle.

Proof. The nodes of ESJ are given by ES′
J for J ⊆ S ′ ⊆ S and EI for I ⊆ S \ J . The

generating arrows are given by pIi : EI → EI\{i} for i ∈ I ⊆ S \J and cS′J : ES′
J → ES′\J and

pS
′

i |ES′J : ES′
J → E

S′\{i}
J for i ∈ S ′ \ J . In the following we just write pS′i for the restriction

pS
′

i |ES′J .
For #J < #S we prove by induction over #J =: l that this defines a multiple vector

bundle. For J = {s} of cardinality 1 it is easy to see that ESJ = ES,∅, which is an #S-fold
vector bundle by Proposition 2.4.

Now assume that ES
{j1,...,jl−1} is the total space of a (#S − l + 2)-fold vector bundle.

Choose jl ∈ S \ {j1, . . . , jl−1}, S ′ ⊆ S with {j1, . . . , jl} =: J ⊆ S ′, and choose i ∈ S ′ \ J .
Then by the induction hypothesis and Proposition 2.4,

ES′

{j1,...,jl−1} E
S′\{jl}
{j1,...,jl−1}

ES′\{j1,...,jl−1} ES′\{j1,...,jl}

E
S′\{i}
{j1,...,jl−1} E

S′\{i,jl}
{j1,...,jl−1}

ES′\{j1,...,jl−1,i} ES′\{i,j1,...,jl}

pS
′
jl

cS
′
{j1,...,jl−1}

pS
′
i

,
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is a triple vector bundle, and by (6), its upper side core is

ES′
J ES′\J

E
S′\{i}
J ES′\(J∪{i}).

cS
′
J

pS
′
i p

S′\J
i

c
S′\{i}
J

Hence this diagram is a double vector bundle (see for example [15]) and, as before, all
commutative squares in our (#S − l + 1)-cube diagram are double vector bundles.

If l = #S, then J = S and ES
S has a vector bundle structure over M with projection

cSS = E(S → ∅). The nodes at the source of only one arrow of ESJ are the nodes E{i} of E
for i ∈ S \ J , and the (J, J)-core cJJ : EJ

J →M of the #J-fold vector bundle bundle EJ,∅.
We have then for each ν ⊆ ρSJ an inclusion ηJ(ν) : ESJ (ν) ↪→ E[ν], since ESJ (ν) is an

embedded submanifold of E[ν] for all ν ⊆ ρSJ .

2.21. Example. Given the n-fold vector bundle EA defined in section 2.6, its (S, J)-core
(EA)SJ has nodes (EA)SJ (ν) = ∏M

ν′⊆ν A[ν′] for ν ⊆ ρSJ := ρSJ and can thus be identified with
EA
ρSJ

defined as in section 2.6. In particular, (EA)SS = AS.
For instance, for n = 3 (see Example 2.7) we have decomposed cores

E
{1,2,3}
{1,2} = A{3} ×M A{1,2} ×M A{1,2,3} , E

{1,2,3}
{2,3} = A{1} ×M A{2,3} ×M A{1,2,3} ,

E
{1,2,3}
{1,3} = A{2} ×M A{1,3} ×M A{1,2,3} .

2.22. Remark.
(a) Given an n-fold vector bundle E it follows directly from the definitions that the cores

of the faces of E are given by the faces of the cores of E. That is, (ES,∅)SJ = (ESJ )ρSJ ,∅
for J ⊆ S.

(b) Note also that (6) can now be written ES
J = (ES

K)ρ
S
K

ρJK
.

(c) For I, J ⊆ S with I ∩ J = ∅ the intersection of the cores ES
I ∪ES

J is the iterated core
(ES

J )ρ
S
J

{{i}i∈I} = (ES
I )ρ

S
I

{{j}j∈J}

(d) In the case of I ∪J 6= ∅ the intersection of the core ES
I ∪ES

J is given by ES
I∩J instead.

2.23. Proposition. Given a morphism τ : E → F of multiple vector bundles, we have
for any J ⊆ S ⊆ N an induced core morphism of the (#S −#J + 1)-fold vector bundles
τSJ : ESJ → FSJ defined by

τSJ (ν) = τ([ν])|
E

[ν]
J

: E[ν]
J → F

[ν]
J for ν ⊆ ρSJ with J ∈ ν

τSJ (ν) = τ([ν]) : E[ν] → F[ν] for ν ⊆ ρSJ with J 6∈ ν ,

where we consider E[ν]
J and F [ν]

J as subsets of E[ν] and F[ν], respectively. Furthermore, (·)SJ
is a covariant functor from multiple vector bundles to multiple vector bundles.
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Proof. For J 6∈ ν there is nothing to show as ESJ (ν) = E([ν]) and FSJ (ν) = F([ν]) and
thus all the maps are well defined vector bundle morphisms.

For J ∈ ν it remains to be shown that τSJ is well defined, that is τ([ν])(E[ν]
J ) ⊆ F

[ν]
J .

Linearity follows then directly from linearity of τ . The manifold E
[ν]
J is defined as the

set of all elements of E[ν] that project to 0E,[ν]\{j}
[ν]\J for all j ∈ J . Since for all I ⊆ n,

τ(I) : EI → FI is a vector bundle homomorphism over τ(I \ {i}) for all i ∈ I, the image
of e ∈ E[ν]

J under τ [ν] thus projects to 0F,[ν]\{j}
[ν]\J in F[ν]\{j} and is an element of F [ν]

J .
Functoriality follows directly from the definition: in the case of J 6∈ ν

(σ ◦ τ)SJ (ν) = (σ ◦ τ)([ν]) = σ([ν]) ◦ τ([ν]) = σSJ (ν) ◦ τSJ (ν) ,

whereas for J ∈ ν

(σ ◦ τ)SJ (ν) = (σ ◦ τ)([ν])|
E

[ν]
J

= σ([ν])|
F

[ν]
J

◦ τ([ν])|
E

[ν]
J

= σSJ (ν) ◦ τSJ (ν) .

From Theorem 2.10 we obtain easily the following proposition; the n-fold analogon of
the core sequences for double vector bundles, which were defined by Kirill Mackenzie in
[15]. They are important in the proof of the existence of decompositions of n-fold vector
bundles. We call them the ultracore sequences of E.

2.24. Proposition. Let E be an n-fold vector bundle. For each k ∈ n, we have a short
exact sequence

0 (pn\{k}∅ )!En
n E P 0

En\{k} En\{k} En\{k}

ι π(n)

of vector bundles over En\{k}, where P is the n-pullback defined in Theorem 2.10.

Proof. By Theorem 2.10, the map π(n) : E → P is a surjective vector bundle morphism
over idEn\{k} .

Take any e in the kernel of π(n) considered as vector bundle morphism over En\{k}.
Denote its projection in EJ for any J ⊆ n \ {k} by eJ , with m := e∅ ∈ M . Write
n \ {k} = {j1, . . . , jn−1}. Define now recursively

f 0 := e , f l := f l−1 −
n\{jl}

0Een\{k,j1,...,jl−1}
.

Then it is easy to show by induction that pnI (f l) = 0IeI∩(n\{k,j1,...,jl})
. The above implies that

fn−1 projects to 0Im for all I ⊆ n. It is thus an element of the ultracore En
n , and we denote

it by z := fn−1.
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Now

e =
((z +

n\{jn−1}
0Ee{jn−1}

)
+

n\{jn−2}
0Ee{jn−1,jn−2}

)
+

n\{j3}
. . .

 +
n\{j1}

0Een\{k}

=: ι(z, en\{k}) .
(7)

and the defined map ι : En
n ×M En\{k} → E is clearly an injective morphism of vector

bundles over En\{k}, making the sequence exact. We let the reader check that ι does not
depend on the chosen order of the set n \ {k}.

3. Splittings of n-fold vector bundles
In this section we achieve our main goal in this paper: we prove that any n-fold vector
bundle admits a (non-canonical) linear splitting. We begin by discussing the notions of
linear splitting versus linear decomposition. Then we prove inductively our main theorem,
and finally we explain how n-fold vector bundles can now be defined using n-fold vector
bundle atlases.

3.1. Splittings and decompositions of n-fold vector bundles. Let E be an n-
fold vector bundle. This gives rise to a family A of smooth vector bundles A = (qJ : AJ →
M)J⊆n,#J<∞ over M = E(∅) defined by A{i} = E{i} for i = 1, . . . , n and AJ = EJ

J for
#J ≥ 2. By Example 2.21, if E is already a decomposed n-fold vector bundle, then each
element of the family of vector bundles defining it appears as one of the cores of E. This
is why we call the vector bundles AJ = EJ

J the building bundles of E.
We can then consider the decomposed n-fold vector bundles EA and E := EA defined

in Section 2.6. We call EA the decomposed n-fold vector bundle associated to E and E
the vacant, decomposed n-fold vector bundle associated to E.

3.2. Definition. A linear splitting of the n-fold vector bundle E is a monomorphism
Σ: E→ E of n-fold vector bundles, such that for i = 1, . . . , n, Σ({i}) : E{i} → E{i} is the
identity.

A decomposition of the n-fold vector bundle E is a natural isomorphism S : EA → E
of n-fold vector bundles over the identity maps S({i}) = idE{i} : A{i} → E{i} such that
additionally the induced core morphisms SII ({I}) are the identities idEII for all I ⊆ n.

Linear splittings and decompositions of double vector bundles are equivalent to each
other. Given a splitting Σ, define the decomposition by S(am, bm, cm) := Σ(am, bm) +B

(0Dbm +A cm) = Σ(am, bm) +A (0Dam +B cm). Conversely, given a decomposition S define the
splitting by Σ(am, bm) := S(am, bm, 0Cm). These two constructions are obviously inverse
to each other. We prove here that a similar equivalence holds true in the general case of
n-fold vector bundles.

A linear splitting Σ of an n-fold vector bundle E and decompositions SI of the highest
order cores – the (n − 1)-fold vector bundles EnI for all I ⊆ n with #I = 2 – are called
compatible if they coincide on all possible intersections. That is, SI({{k}k∈n\I})|E(n\I) =
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Σ(n\I) and SI(ρnI )|(EA)nI ∩(EA)nJ
= SJ(ρnJ)|(EA)nI ∩(EA)nJ

for all I, J ⊆ n of cardinality 2. Note
that we view here the total spaces of (EA)nI , (EA)nJ and of EnI and EnJ as embedded in
EA = EA(n) and E = E(n), respectively. Also recall that EnI ({k}k∈n\I) = E(n \ I) by
definition.

3.3. Theorem.

(a) Let S be a decomposition of an n-fold vector bundle E : �n → Man∞. Then
the composition Σ = S ◦ ι : E → E, with ι defined as in (4), is a splitting of E.
Furthermore, the core morphisms SnJ : EρJ → EnJ are decompositions of EnJ for all
J ⊆ n and these decompositions and the linear splitting are compatible.

(b) Conversely, given a linear splitting Σ of E and compatible decompositions of the
highest order cores EnJ with top maps SJ : (EA)nJ → E

n
J , for J ⊆ n with #J = 2,

there exists a unique decomposition S of E such that Σ = S ◦ ι and such that the
core morphisms of S are given by SnJ (ρnJ) = SJ for all J .

Proof. Let us consider a decomposition S : EA → E. Then the composition Σ = S ◦ ι
is clearly a monomorphism of n-fold vector bundles, with Σ({i}) = S({i}) ◦ ι({i}) =
idE{i} ◦ idE{i} = idE{i} . Furthermore, Proposition 2.23 implies that the restrictions SnJ
are isomorphisms of multiple vector bundles. Since for any ν ⊆ ρ

n
J the (ν, ν)-core of EnJ

equals E[ν]
[ν] which follows from Remark 2.22 for J ∈ ν and directly from the definition for

J 6∈ ν, these are all the building bundles of EnJ . Now S
[ν]
[ν] = id

E
[ν]
[ν]

and thus SnJ induces the
identity on all building bundles of EnJ and is therefore a decomposition. Since all SnJ and
Σ are defined as restrictions of the same map S they are clearly compatible.

Conversely, assume that we have a splitting Σ of E and compatible decompositions
SJ of the cores EnJ with J ⊆ n, #J = 2 as in (b). We prove that there is a unique
decomposition S of E that restricts in the sense of (b) to Σ and the SJ .

Let now J1, . . . , J(n2) denote the subsets of n with #Jk = 2. We define now an increasing
chain of

(
n
2

)
decomposed n-fold vector bundles as follows. For k = 0, . . . ,

(
n
2

)
define a family

of vector bundles over M , Ak = (BI)I⊆n with BI = AI for all I with either #I = 1 or if
there is i ≤ k such that Ji ⊆ I; and BI = M otherwise. Now let Ek := EAk with total space
Ek := EAk(n). There are obvious inclusions E(n) = E0 ↪→ E1 ↪→ . . . ↪→ E(n2) = EA(n).
We thus view the Ek as submanifolds of EA(n). Note that additionally (EA)nJi ⊆ Ek for
all i ≤ k. Now we show that we can define a decomposition S of E inductively on the Ek

for k = 0, . . . ,
(
n
2

)
and that it is unique with respect to the given linear splittings.

Since E0 = E we set S0 := Σ and this is clearly unique in the sense of (b). By the
compatibility condition it also restricts to SJi on E0 ∩ (EA)nJi for i = 1, . . . ,

(
n
2

)
. Take now

k ≥ 0 and assume that we have a uniquely defined injective morphism of n-fold vector
bundles Sk : Ek → E that restricts to Σ on E0 and to SJi on Ek∩ (EA)nJi for i = 1, . . . ,

(
n
2

)
.

Take x = (aI)I⊆n ∈ Ek+1. Then in particular aI = 0AIm if #I ≥ 2 and there is no i ≤ k + 1
with Ji ⊆ I. Set y := (bI)I⊆n with bI = aI if either #I = 1 or there is i ≤ k such that
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Ji ⊆ I and bI = 0AIm otherwise. Set furthermore z := (cI)I⊆n where cI = bI whenever
I ⊆ n \ Jk+1, cI = aI whenever Jk+1 ⊆ I and there is no i ≤ k with Ji ⊆ I, and cI = 0AIm
otherwise. Then y ∈ Ek and z ∈ (EA)nJk+1

. Furthermore, writing Jk+1 = {s, t}, it is easy
to check that

x = y +
n\{s}

(
0nps(y) +

n\{t}
z
)

= y +
n\{t}

(
0npt(y) +

n\{s}
z
)
.

The last equality follows directly from the interchange law in the double vector bundle
(E;En\{s}, En\{t};En\{s,t}) since SJk+1(z) is in the core of this double vector bundle. Thus
we can define

Sk+1(x) := Sk(y) +
n\{s}

0n
ps

(
Sk(y)

) +
n\{t}
SJk+1(z)


= Sk(y) +

n\{t}

0n
pt

(
Sk(y)

) +
n\{s}
SJk+1(z)

 .

It is easy to check that this defines an injective morphism of n-fold vector bundles
Sk+1 : Ek+1 → E. Linearity over En\{j} follows directly from linearity of Sk and SJk+1

and the interchange laws in the double vector bundles (E;En\{j}, En\{s};En\{j,s}) and
(E;En\{j}, En\{t};En\{j,t}) since the construction of y and z from x is linear. If now x
was already in Ek, then y = x and thus Sk+1 restricts to Sk on Ek and therefore also
to Σ. If x was in (EA)nJ for any J ⊆ n with #J = 2, then y ∈ Ek ∩ (EA)nJ and by
induction hypothesis Sk(y) = SJ(y). Furthermore, z ∈ (EA)nJk+1

∩ (EA)nJ and by the
compatibility of SJk+1 with SJ we get that SJk+1(z) = SJ(z). Thus clearly Sk+1 restricts
to all SJ on the intersection Ek+1 ∩ (EA)nJ . Also it clearly is the only morphism from
Ek+1 to E restricting to Sk on Ek and to all SJ and thus by the induction hypothesis the
only morphism restricting to Σ and all SJ . Thus we find eventually a unique injective
morphism S := S(n2) : EA → E that restricts to Σ and all SJ for #J = 2. That S is
surjective now follows from linearity and a dimension count.

3.4. Existence of splittings. In this section, we finally state and prove our main
theorem. We prove by induction that every n-fold vector bundle is non-canonically
isomorphic to a decomposed one.

3.5. Theorem. Let E be an n-fold vector bundle. Then there is a linear splitting

Σ: E→ E ,

that is a monomorphism of n-fold vector bundles from the vacant, decomposed n-fold vector
bundle E associated to E, which was defined in Section 3.1, into E.

Proof. We prove the following two claims by induction over n.

(a) Given an n-fold vector bundle E, there exist n linear splittings Σn\{k} of En\{k},∅ for
k ∈ n, such that Σn\{i}(I) = Σn\{j}(I) for any I ⊆ n \ {i, j}.
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(b) Given a family of splittings as in (a), there exists a linear splitting of E with
Σ(I) = Σn\{k}(I) whenever I ⊆ n \ {k}.

The case of n = 1 is trivial. Take now n ≥ 2 and assume that both statements are
true for l-fold vector bundles, for l < n. First, we prove (a). This is equivalent to having
splittings ΣI of EI,∅ for all I ( n such that ΣI1(J) = ΣI2(J) whenever J ⊆ I1 ∩ I2. We
prove that claim with an induction over ]I. For all I ⊆ n with ]I = 1 or ]I = 2, this is
immediate.

Assume now that we have fixed linear splittings of EI,∅ for all I with #I = l ≤ n− 2,
such that for all J ⊆ I1 ∩ I2, ΣI1(J) = ΣJ(J) = ΣI2(J). For any I ( n with #I = l + 1
we can then find by induction hypothesis (b) a linear splitting ΣI of EI,∅ which satisfies
ΣI(J) = ΣJ(J) for all J ⊆ I. Now for I1, I2 of cardinality l + 1 and J ⊆ I1 ∩ I2, we get
ΣI1(J) = ΣJ(J) = ΣI2(J). This shows that part (a) is satisfied for every n-fold vector
bundle since we eventually find linear splittings Σn\{k} of all En\{k} which agree on all
subsets I ⊆ n of cardinality #I ≤ (n− 2).

We denote in the following their top maps by

Σk := Σn\{k}(n \ {k}) :
M∏

i∈n\{k}
E{i} → En\{k} .

It is easy to check that given m ∈ M and ei ∈ E{i} with p
{i}
∅ (ei) = m for i = 1, . . . , n,

the tuple (Σ1(e2, . . . , en),Σ2(e1, e3, . . . , en), . . . ,Σn(e1, . . . , en−1) is an element of P . Short
exact sequences of vector bundles are always non-canonically split, so we can take a
splitting θ1 of the short exact sequence of vector bundles over En\{1} in Proposition 2.24.
Define ΣE

1 : ∏M
i∈nE{i} → E by

ΣE
1 : (e1, . . . , en) 7→ θ1

(
Σ1(e2, . . . , en),Σ2(e1, e3, . . . , en), . . . ,Σn(e1, . . . , en−1)

)
. (8)

This is a vector bundle morphism over the linear splitting Σ1 of En\{1} such that

pj
(
ΣE

1 (e1, . . . , en)
)

= Σj(e1, . . . , êj, . . . , en) ∈ En\{j} (9)

for j = 2, . . . , n. However, ΣE
1 is not necessarily linear over Σj as θ1 is not a morphism of

n-fold vector bundles. We will inductively construct a morphism which is linear over all
sides.

First we do this locally: we choose a neighbourhood U of m ∈M that trivialises each
of the E{i}, for i = 1, . . . , n. Fix smooth local frames (b1

i , . . . , b
li
i ) of E{i} for li = rkE{i}.

Every element of ∏M
i∈nE{i} over m ∈ U can thus be written uniquely as

(e1, . . . , en) =
( l1∑
j=1

βj1b
j
1(m), . . . ,

ln∑
j=1

βjnb
j
n(m)

)

where βji ∈ R. Assume now that we have a morphism ΣE
k,U : E|U → E|U which is linear

over the splittings Σj for j = 1, . . . k and satisfies additionally (9) for all other j. We then
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define ΣE
k+1,U by

ΣE
k+1,U(e1, . . . , en) :=

E→En\{k+1}∑
j=1,...,lk+1

βjk+1 ·
n\{k+1}

ΣE
k,U

(
e1, . . . , ek, b

j
k+1(m), ek+2, . . . , en

)
.

This map is still a vector bundle morphism over Σj for all j = 1, . . . , k, which follows directly
from the interchange laws in the double vector bundles (E,En\{j}, En\{k+1}, En\{j,k+1}).
That it is also a vector bundle morphism over Σk+1 is immediate. It furthermore still
satisfies (9) for all other j. Starting with the restriction to U of ΣE

1 from (8) we get after
(n− 1) iterations the top map of a local linear splitting ΣE

U of E|U .
Now we will prove the existence of a global splitting using a partition of unity. This

method was already given for double vector bundles in the original reference by Pradines
[18]. Choose a locally finite cover of neighbourhoods as above, U = {Uα}α∈A, and a
partition of unity {ϕα}α∈A subordinate to U . Take then the local linear splittings ΣE

Uα and
define the global splitting for (e1, . . . , en) over m ∈M by

ΣE(e1, . . . , en) :=
E→En\{1}∑
{α : m∈Uα}

ϕα(m) ·
n\{1}

ΣE
Uα(e1, . . . , en) .

That this is indeed a vector bundle morphism over all Σj follows from simple computations
again making use of the interchange laws in the double vector bundles (E,En\{1}, En\{j},
En\{1,j}). Injectivity follows directly from this as all Σk are injective. The linear splitting
is then given by Σ(n) := ΣE and Σ(I) := Σn\{k}(I) whenever I ⊆ n \ {k}. This completes
the proof.

3.6. Corollary. Every n-fold vector bundle E is non-canonically isomorphic to the
associated decomposed n-fold vector bundle defined in Section 2.6.

Proof. This follows from Theorem 3.5 and Theorem 3.3. To apply Theorem 3.3 we have
to show that we can construct compatible decompositions of all the highest order cores.
This follows from a similar argument to the beginning of the proof of Theorem 3.5.

We have to consider all iterated highest order cores. These are firstly the (n− 1)-fold
vector bundles EnI with I ⊆ n and #I = 2, secondly the (n− 2)-fold vector bundles (EnI )ρ

n

I
ν

with ν ⊆ ρ
n
I and #ν = 2 and so forth. Theorem 3.5 lets us choose linear splittings of

all these multiple vector bundles. Note that the same multiple vector bundles can occur
multiple times (see for example Remark 2.22 (c)). For these we still fix only one linear
splitting. With Theorem 3.3 we obtain then firstly unique decompositions of all occurring
double vector bundles. After fixing these, with Theorem 3.3 we obtain decompositions of
all occurring triple vector bundles and these are all compatible by construction. Fixing
these we obtain compatible decompositions of all occurring 4-fold vector bundles and so
forth. Eventually after obtaining compatible decompositions of the highest order cores
Theorem 3.3 gives us a decompositions of E.
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3.7. Corollary. For every n-fold vector bundle E and the associated n-pullback P there
is an injective morphism of n-fold vector bundles ΣP : P→ E simultaneously splitting all
the ultracore sequences from Proposition 2.24.

Proof. We can choose a decomposition of E with top map SE : EA(n)→ E. This is a
morphism over decompositions of the faces En\{k} for all k ∈ n. These decompositions
induce a canonical associated decomposition of P, the top map of which we denote by
SP : ∏M

I(nE
I
I → P . Together with the canonical inclusion ι : ∏M

I(nE
I
I → EA(n) we then

define such a splitting with top map given by ΣP (n) := SE ◦ ι ◦ (SP )−1.

3.8. n-fold vector bundle atlases. In this section we show how a change of splittings
corresponds to statomorphisms of the decomposed multiple vector bundle, which were
introduced in [7]. We then explain how n-fold vector bundles can alternatively be defined
using smoothly compatible n-fold vector bundle charts.

For I a finite subset of N, we denote by P(I) = {{I1, . . . , Ik} | I = I1t . . .t Ik} the set
of disjoint partitions of I. Since the elements of P(I) are sets, not tuples, we do not take
the order into account. That is, we do not distinguish the partition {I1, I2} from {I2, I1}.

3.9. Definition. Let E be an n-fold vector bundle. A statomorphism of E is an
isomorphism τ : E→ E that induces the identity on all building bundles EI

I for I ⊆ n. The
set of statomorphisms of E forms a group with composition.

3.10. Proposition. Let E be an n-fold vector bundle and EA the corresponding decom-
posed n-fold vector bundle as in Definition 3.2. The set of global decompositions of E is a
torsor over the group of statomorphisms of EA.

Proof. Given a decomposition S : EA → E and a statomorphism τ : EA → EA the
composition S ◦ τ : EA → E is again a decomposition of E. This defines a right action
of the group of statomorphisms of EA onto the set of decompositions of E. Given two
decompositions S1,S2 : EA → E the composition τ := S−1

1 ◦ S2 : EA → EA defines a
statomorphism of EA such that S1 ◦ τ = S2. This shows that the action is transitive. That
it is free is immediate as S ◦ τ = S clearly implies τ = id.

The following description of statomorphisms can be found in slightly different notation
in [7].

3.11. Proposition. A statomorphism τ of EA is necessarily of the following form:

τ(n) : (eI)I⊆n 7→
 ∑
ρ={I1,...,Ik}∈P(I)

ϕρ(eI1 , . . . , eIk)

I⊆n

, (10)

where ϕρ ∈ Γ(Hom(EI1
I1⊗. . .⊗E

Ik
Ik
, EI

I )) and for the trivial partition ρ = {I} we additionally
demand ϕ{I} = idEII .

Now we define n-fold vector bundle charts and atlases and show that our definition of
n-fold vector bundles is equivalent to the definition in terms of charts.
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3.12. Definition. Let M be a smooth manifold and E a topological space together with a
continuous map Π: E →M . An n-fold vector bundle chart is a tuple

c = (U,Θ, (VI)I⊆n),

where U is an open set in M , for each I ⊆ n the space VI is a (finite dimensional) real
vector space and Θ: Π−1(U)→ U ×∏I⊆n VI is a homeomorphism such that Π = pr1 ◦Θ.

Two n-fold vector bundle charts c = (U,Θ, (VI)I⊆n) and c′ = (U ′,Θ′, (V ′I )I⊆n) are
smoothly compatible if VI = V ′I for all I ⊆ n and the “change of chart” Θ′ ◦Θ−1 over
U ∩ U ′ has the following form:

(
p, (vI)I⊆n

)
7→

p,
 ∑
ρ={I1,...,Ik}∈P(I)

ωρ(p)(vI1 , . . . , vIk)

I⊆n

 (11)

with p ∈ U ∩ U ′, vI ∈ VI and ωρ ∈ C∞(U ∩ U ′,Hom(VI1 ⊗ . . . ⊗ VIk , VI)) for ρ =
{I1, . . . , Ik} ∈ P(I).

A smooth n-fold vector bundle atlas A on E is a set of n-fold vector bundle
charts of E that are pairwise smoothly compatible and such that the set of underlying open
sets in M covers M . As usual, E is then a smooth manifold and two smooth n-fold vector
bundle atlases A1 and A2 are equivalent if their union is a smooth n-fold vector bundle
atlas. A smooth n-fold vector bundle structure on E is an equivalence class of smooth
n-fold vector bundle atlases on E.

Let E be an n-fold vector bundle. By Theorem 3.5 and Theorem 3.3 we have a
decomposition S : EA → E of E, withA the family (AI)I⊆n of vector bundles overM defined
by A{i} = E({i}) for i ∈ n and AI = EI

I for I ⊆ n, #I ≥ 2. Set Π = E(n→ ∅) : E →M .
For each I ⊆ n, set VI := RdimAI , the vector space on which AI is modelled. Take a
covering {Uα}α∈Λ of M by open sets trivialising all the vector bundles AI ;

φαI : q−1
I (Uα) ∼−→ Uα × VI

for all I ⊆ n and all α ∈ Λ. Then we define n-fold vector bundle charts Θα : Π−1(Uα)→
Uα ×

∏
I⊆n VI by

Θα =
(
Π× (φαI )I⊆n

)
◦ S−1|Π−1(Uα).

Given α, β ∈ Λ with Uα ∩ Uβ 6= ∅, the change of chart

Θα ◦Θ−1
β : (Uα ∩ Uβ)×

∏
I⊆n

VI → (Uα ∩ Uβ)×
∏
I⊆n

VI

is given by
(p, (vI)I⊆n) 7→ (p, (ραβI (p)vI)I⊆n), (12)

with ραβI ∈ C∞(Uα∩Uβ,Gl(VI)) the cocycle defined by φαI ◦(φ
β
I )−1. The two charts are hence

smoothly compatible and we get an n-fold vector bundle atlas A = {(Uα,Θα, (VI)I⊆n) |
α ∈ Λ} on E.
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Conversely, given a space E with an n-fold vector bundle structure over a smooth
manifold M as in Definition 3.12, we define E : �N →Man∞ as follows. Take a maximal
atlas A = {(Uα,Θα, (VI)I⊆n) | α ∈ Λ} of E; in particular {Uα}α∈Λ is an open covering
of M . For α, β, γ ∈ Λ we obtain from the identity Θγ ◦ Θ−1

α = Θγ ◦ Θ−1
β ◦ Θβ ◦ Θ−1

α on
Π−1(Uα∩Uβ∩Uγ) the following cocycle conditions. For I ⊆ n and ρ = {I1, . . . , Ik} ∈ P(I):

ωγαρ (p)(vI1 , . . . , vIk) =∑
{1,...,k}=J1t...tJl

ωγβ{IJ1 ,...,IJl}
(p)
(
ωβα{Ij |j∈J1}(p)

(
(vIj)j∈J1

)
, . . . , ωβα{Ij |j∈Jl}(p)

(
(vIj)j∈Jl

))
,

(13)

where IJm := ⋃
j∈Jm Ij.

We set E(n) = E, E(∅) = M , and more generally for I ⊆ n,

E(I) =
⊔
α∈Λ

Uα × ∏
J⊆I

VJ

/ ∼
with ∼ the equivalence relation defined on ⊔α∈Λ(Uα ×

∏
J⊆I VJ) by

Uα ×
∏
J⊆I

VJ 3 (p, (vJ)J⊆I) ∼ (q, (wJ)J⊆I) ∈ Uβ ×
∏
J⊆I

VJ

if and only if p = q and

(vJ)J⊆I =
 ∑
ρ={J1,...,Jk}∈P(J)

ωρ(p)(wJ1 , . . . , wJk)

J⊆I

.

The relations (13) show the symmetry and transitivity of this relation. As in the construc-
tion of a vector bundle from vector bundle cocycles, one can show that E(I) has a unique
smooth manifold structure such that ΠI : E(I) → M , ΠI [p, (vI)I⊆J ] = p is a surjective
submersion and such that the maps

ΘI
α : πI

Uα × ∏
J⊆I

VJ

→ Uα ×
∏
J⊆I

VJ , [p, (vI)I⊆J ] 7→ (p, (vI)I⊆J)

are diffeomorphisms, where πI : ⊔α∈Λ(Uα ×
∏
J⊆I VJ) → E(I) is the projection to the

equivalence classes.
We have then also #I surjective submersions

pII\{i} : E(I)→ E(I \ {i})

for i ∈ I, defined in charts by

Uα ×
∏
J⊆I

VJ 3 (p, (vJ)J⊆I) 7→ (p, (vJ)i 6∈J⊆I) ∈ Uα ×
∏

J⊆I\{i}
VJ
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and it is easy to see that E(I) is a vector bundle over E(I \ {i}), and that for i, j ∈ I,

E(I) E(I \ {i})

E(I \ {j}) E(I \ {i, j})

pI
I\{i}

pI
I\{j} p

I\{i}
I\{i,j}

p
I\{j}
I\{i,j}

is a double vector bundle, with obvious local trivialisations given by the local charts.
The constructions above are inverse to each other and we get the following corollary of

our local splitting theorem.

3.13. Corollary. Definition 2.2 of an n-fold vector bundle as a functor from the n-cube
category is equivalent to Definition 3.12 of an n-fold vector bundle as a space with a
maximal n-fold vector bundle atlas.

Our construction above of an n-fold vector bundle atlas on E(n) from an n-fold vector
bundle yields an atlas with simpler changes of charts (12) than the most general allowed
change of charts (11). This is due to our choice of a global decomposition of the n-fold vector
bundle. Choosing different local or global decompositions will yield an atlas with changes
of charts as in (11). That the equivalence class of atlases is independent of the choice of
decomposition follows from Proposition 3.10 and (10). Two different decompositions will
give compatible charts.

4. Decompositions of ∞-fold vector bundles
In this section we show how our proof of the existence of linear decompositions of n-fold
vector bundles for all n ∈ N yields as well the existence of linear decompositions of ∞-fold
vector bundles. We write here∞-VB for the category of∞-fold vector bundles and∞-fold
vector bundle morphisms.

Let E be an ∞-fold vector bundle. Then for each n ∈ N, the restriction E ◦ ιNn defines
an n-fold vector bundle, and En := E ◦ ιNn ◦ πN

n defines again an ∞-fold vector bundle,
given by En(I) = E(I ∩ n) for all finite I ⊆ N. There is a sequence of monomorphisms of
∞-fold vector bundles

E0 ι10−→ E1 ι21−→ E2 ι32−→ . . . (14)

defined by ιlk(I) = 0I∩lI∩k for k ≤ l ∈ N and a finite subset I of N; remember that 0II = idEI .
Thus we have a functor E· : N → ∞-VB sending an object n ∈ N to En and an arrow
m ≤ n to ιnm. In the same manner, for each n ∈ N there is a monomorphism ιn : En → E
defined by ιn(I) = 0II∩n : En(I)→ E(I) for all finite I ⊆ N. It is easy to see that E together
with the inclusions ιn : En → E defines a colimit for (14) in the category of ∞-fold vector
bundles.

The inductive nature of the proof of Theorem 3.5 yields the following corollary.
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4.1. Corollary. Let E be an ∞-fold vector bundle. Let A = (qI : AI →M)I⊆N,#I<∞ be
the family of vector bundles over M defined by AI = EI

I for 2 ≤ #I < ∞, A{k} = E{k}
and A∅ = E(∅) = M . Then there exists a sequence of decompositions S̃n : EA ◦ ιNn → E ◦ ιNn
such that the diagram of ∞-fold vector bundles

E0 E1 E2 . . .

(EA)0 (EA)1 (EA)2 . . . ,

S0 S1 S2 (15)

commutes, where Sn(I) := S̃n(I ∩ n) is the morphism of ∞-fold vector bundles induced by
S̃n.

Since (15) commutes, and for each n, Sn is an isomorphism, we find that EA together
with the morphisms τ(n) = ιAn ◦ (Sn)−1 for all n, is also a colimit for (14) in the category
of ∞-fold vector bundles. Therefore there is a unique isomorphism S : EA → E such that
ιn ◦ Sn = S ◦ ιAn for all n ∈ N. We get the following theorem.

4.2. Theorem. Let E be an ∞-fold vector bundle. Let A = (qI : AI → M)I⊆N,#I<∞ be
the family of vector bundles over M defined by AI = EI

I for 2 ≤ #I < ∞, A{k} = E{k}
and A∅ = E(∅) = M .

Then E is non-canonically isomorphic to the associated decomposed ∞-fold vector
bundle EA. More precisely, given a tower of decompositions as in (15), the decomposition
S : EA → E of E can be uniquely chosen so that for each n ∈ N, Sn : (EA)n → En satisfies

Sn(I) = S(I ∩ n) : (EA)n(I) = EA(I ∩ n)→ En(I) = E(I ∩ n) (16)

for all finite I ⊆ N.

Proof. The morphism S : EA → E is explicitly defined as follows. Choose a finite subset
I ⊆ N. Then there is n ∈ N with I ⊆ n and we can set S(I) = Sn(I). The equalities (16)
are now easy to check.

5. Example: triple vector bundles
In this section, we explain for the convenience of the reader how our results and con-
siderations in Sections 2 and 3 read in the case n = 3. Then we consider doubly linear
sections of triple vector bundles, and we explain how they can be understood – using linear
decompositions – as horizontal lifts of pairs of linear sections of the sides double vector
bundles.

5.1. Splittings of triple vector bundles. Given a triple vector bundle E we will
write in the following T := E({1, 2, 3}), D := E({1, 2}), E := E({2, 3}), F := E({1, 3}),
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A := E{1}, B := E{2} and C := E{3}. The triple vector bundle is then a cube of vector
bundle structures

T D

F A

E B

C M

pTD

pTF

pTE

pDB

pDA

pFA

qA
pEB

pEC

qB

pFC

qC

, (17)

where all faces are double vector bundles.
We will denote the cores of the double vector bundles (T ;D,E;B), (T ;E,F ;C),

(T ;F,D;A) by LDE, LEF and LFD and the cores of the double vector bundles (D;A,B;M),
(E;B,C;M), (F ;C,A;M) by KAB, KBC and KCA, respectively. In the general notation
we would write E{1,2,3}{2,3} =: LFD, E{1,2,3}{1,3} =: LDE and E{1,2,3}{1,2} =: LEF for the upper cores
and E

{1,2}
{1,2} =: KAB, E{2,3}{2,3} =: KBC and E

{1,3}
{1,3} =: KCA for the lower cores. The triple

core of this triple vector bundle is S := E
{1,2,3}
{1,2,3} , a vector bundle over M .

The upper cores LDE, LEF and LFD are themselves double vector bundles by Theo-
rem 2.20. All three have by Lemma 2.19 the core S, whereas the sides of LDE are given
by KCA and B, the sides of LEF by KAB and C, and the sides of LFD by KBC and A.

A decomposition of a triple vector bundle (T ;D,E, F ;A,B,C;M) as above is now
an isomorphism of triple vector bundles S from the associated decomposed triple vector
bundle as in Example 2.7 to T over decompositions of D,E and F as double vector bundles
and inducing the identity on S. In particular it is over the identities on A,B and C, and
is inducing the identities on KAB, KBC and KCA.

A linear splitting of a triple vector bundle (T ;D,E, F ;A,B,C;M) as above is an
injective morphism of triple vector bundles Σ from the vacant triple vector bundle (A×M
B×M C;A×M B,B×M C,C ×M A;A,B,C;M) over linear splittings of the double vector
bundles D,E and F , hence over the identities on A,B and C.

We have proved the following lemma, which is the case n = 3 of Theorem 3.3.

5.2. Lemma. A decomposition of a triple vector bundle T is equivalent to a linear splitting
of T and linear splittings of the three core double vector bundles LDE, LEF and LFD.

Note that here, starting from the splittings we get an explicit formula for the decompo-
sition: S(a, b, c, kAB, kBC , kCA, s) equals((

Σ(a, b, c) +D (0TΣD(a,b) +F ΣLFD(a, kBC))
)

+F (0TΣF (a,c) +E ΣLEF (c, kAB))
)

+E

(
0TSE(b,c,kBC) +D ΣLDE(b, kCA) +D

(
0T0D

b
+F s

))
.
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Now let us consider the pullback triple vector bundle associated with a triple vector
bundle. Given double vector bundles (D,A,B,M), (E,B,C,M) and (F,C,A,M), we
consider the set

P =
{

(d, e, f) ∈ D × E × F | pDA(d) = pFA(f), pDB(d) = pEB(e), pEC(e) = pFC(f)
}
.

Then P is a triple vector bundle, with the obvious projections to D, E and F and the
additions defined as follows. The space E ×C F has a vector bundle structure

E ×C F → B ×M A, (e, f) 7→ (pEB(e), pFA(f)) ,

with addition (e1, f1) + (e2, f2) = (e1 +B e2, f1 +A f2). Since D is a double vector bundle
and so non-canonically split, we have the surjective submersion δD : D → B ×M A, given
by δD(d) := (pDB(d), pDA(d)). We define the vector bundle P → D as the pullback vector
bundle structure (δD)!(E ×C F ) → D. We call P the pullback triple vector bundle
defined by D, E and F because it fills a cube in a similar manner as the pullback in
category theory fills a square.

We have three short exact sequences of vector bundles over D, E and F , respectively;
the one over D reads

0 (πDM)!S T P 0 ,
(δD)!(pTE ,p

T
F )

where πDM = qA ◦ pDA = qB ◦ pDB . We are now able to state Theorem 3.5 in the case n = 3.

5.3. Theorem. Every triple vector bundle is non-canonically isomorphic to a decomposed
triple vector bundle.

5.4. Splittings, decompositions and horizontal lifts. Let us mention first that
a decomposition of a double vector bundle is equivalent to a splitting of the short exact
sequences given by its linear sections. As we have seen in Section 1, a splitting Σ: A×MB →
D of D is equivalent to a homomorphism of C∞(M)-modules σB : Γ(B) → Γ`A(D) (a
horizontal lift) which splits this short exact sequence. The correspondence is given by
σB(b)(am) = Σ(am, b(m)) for all b ∈ Γ(B) and am ∈ A. By symmetry of Σ a horizontal
lift σB is therefore also equivalent to a horizontal lift σA : Γ(A) → Γ`B(D), splitting the
sequence

0→ Γ(Hom(B,C)) ·̃−→ Γ`B(D) π−→ Γ(A)→ 0 .

In this section, we explain how a splitting of the triple vector bundle T is equivalent to
a “horizontal lift” of pairs of linear sections in Γ`A(F )×Γ(C) Γ`B(E) to doubly linear sections
of T → D. Of course, similar results hold for doubly linear sections of T → E as lifts of
elements of Γ`C(F )×Γ(A) Γ`B(D), etc.
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5.5. Definition. A doubly linear section of T over D is a section which is a double vector
bundle morphism from (D;A,B;M) to (T ;F,E;C) over some morphisms ξ : A → F ,
η : B → E, c : M → C. The morphisms ξ and η are then themselves linear sections of the
double vector bundles E and F over the same section of C. We denote the set of doubly
linear sections of T over D by Γ`2D(T ).

The space Γ`2D(T ) is naturally a C∞(M)-module: for f ∈ C∞(M) and ξ ∈ Γ`2D(T )
doubly linear over ξA ∈ Γ`A(F ) and ξB ∈ Γ`B(E), the section (qA ◦ pDA)∗f · ξ is doubly linear
over q∗Af · ξA and q∗Bf · ξB.

Consider the double vector bundle S with sides M and core S:

S M

M M

qS

qS idM
idM

As we have seen in Lemma 2.8, the space Mor2(D,S) of double vector bundle morphisms
D → S is a C∞(M)-module. It is easy to see that given a decomposition A×MB×MKAB →
D, we get Mor2(D,S) ' Γ(K∗AB ⊗ S)⊕ Γ(A∗ ⊗B∗ ⊗ S). We have an obvious inclusion

·̃ : Mor2(D,S) ↪→ Γ`2D(T ),

the images of which are exactly the doubly linear sections that project to the zero sections
of E → A and F → B, and so to the zero section of C.

Both Γ`A(F ) and Γ`B(E) project onto Γ(C), thus we can build the pullback Γ`A(F )×Γ(C)
Γ`B(E) which consists of pairs of linear sections of the respective bundles which are linear
over the same section of C. Now Γ`2D(T ) fits into a short exact sequence of C∞(M)-modules
as in the following proposition.

5.6. Proposition. Let T be a triple bundle as in (17). We have a short exact sequence
of C∞(M)-modules

0→ Mor2(D,S) ·̃→ Γ`2D(T ) π→ Γ`A(F )×Γ(C) Γ`B(E)→ 0 . (18)

Proof. Injectivity of ·̃ is immediate. To show surjectivity of π, choose a linear splitting
ΣE,F of the double vector bundle (T ;E,F ;C). Given ξ = (ξF , ξE) ∈ Γ`A(F )×Γ(C) Γ`B(E)
we can then define ξ̂ ∈ Γ`2D(T ) by ξ̂(d) := ΣE,F (ξE(pDB(d)), ξF (pDA(d)). It is easy to see that
this is in fact a doubly linear section. Note that the map ·̂ does not define a splitting of
the short exact sequence, as it is not linear over D.

Given any φ ∈ Mor2(D,S) and d ∈ D over a ∈ A and b ∈ B it is clear that
pTE(φ̃(d)) = 0Eb and pTF (φ̃(d)) = 0Fa . Thus φ̃ is linear over the zero sections of E → B and
F → A and thus in the kernel of π. Conversely, given ξ ∈ Γ`2D(T ) over the zero sections of
E → B and F → A, we get for any d ∈ D over a ∈ A and b ∈ B that

(
ξ(d)−E 0Td

)
−F 0T0D

b

projects to zero in all directions and thus defines an element φ(d) of the triple core S. It
is easy to check that this assignment defines a morphism φ ∈ Mor2(D,S). Then ξ = φ̃
and the sequence is exact.
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5.7. Proposition. A decomposition of a triple vector bundle T as in (17) is equivalent
to linear splittings of the double vector bundles D, E, F , LDE and LFD and a horizontal
lift, that is a splitting σ : Γ`A(F )×Γ(C) Γ`B(E)→ Γ`2D(T ) of the short exact sequence (18) that
is compatible with the splittings of the double vector bundles in the sense that for all d ∈ D
we have σ(φ̃F , 0EB)(d) = 0Td +E ΣLDE

(
pDB(d), φF (pDA(d))

)
for all φF ∈ Γ(Hom(A,KCA)) and

σ(0FA, φ̃E)(d) = 0Td +F ΣLFD
(
pDA(d), φE(pDB(d))

)
for all φE ∈ Γ(Hom(B,KBC)).

Proof. A given decomposition S of T induces decompositions of all the double vec-
tor bundles by definition. These are equivalent to linear splittings and horizontal lifts
σEC : Γ(C)→ Γ`B(E) and σFC : Γ(C)→ Γ`A(F ). Now any two linear sections ξE ∈ Γ`B(E) and
ξF ∈ Γ`A(F ) over the same c ∈ Γ(C) can be written as ξE = σEC (c)+φ̃E and ξF = σFC (c)+φ̃F
for some φE ∈ Γ(B∗ ⊗KBC) and φF ∈ Γ(A∗ ⊗KAC). We define a horizontal lift by

σ
(
ξE, ξF

)(
SD(am, bm, km)

)
:= S

(
am, bm, c(m), km, φF (am), φE(bm), 0Sm

)
.

It is easy to check that this lift satisfies the additional compatibility conditions.
Conversely, given linear splittings of the double vector bundles D, E, F , LDE, LFD

and a horizontal lift σ satisfying the extra condition, we first define a linear splitting
ΣLEF : C ×M KAB → LEF by ΣLEF (cm, kAB) := σ(σFC (c), σEC (c))(kAB) for any section c of
C → M with c(m) = cm, and where we view KAB as a subset of D. Then we define a
linear splitting of T by

Σ(am, bm, cm) := σ
(
σEC (c), σFC (c)

)
(ΣD(am, bm))

where c ∈ Γ(C) is any section such that c(m) = cm. Together with Lemma 5.2 this gives a
decomposition of T .

Straightforward computations show that these two constructions are indeed inverse to
each other and we get the desired equivalence.

The analogon of Proposition 5.6 for general n is easy to write down and prove [12],
but Proposition 5.7 becomes highly technical for increasing n. It is relatively easy to see
that a horizontal lift defines a linear splitting of the n-fold vector bundle, and conversely
that a decomposition of an n-fold vector bundle defines a horizontal lift. However, as the
additional conditions in Proposition 5.7 and in Theorem 3.3 suggest, the formulation of
equivalent constructions is not straightforward.
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