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BRAIDED SKEW MONOIDAL CATEGORIES

JOHN BOURKE AND STEPHEN LACK

Abstract. We introduce the notion of a braiding on a skew monoidal category, whose
curious feature is that the defining isomorphisms involve three objects rather than two.
Examples are shown to arise from 2-category theory and from bialgebras. In order to
describe the 2-categorical examples, we take a multicategorical approach. We explain
how certain braided skew monoidal structures in the 2-categorical setting give rise to
braided monoidal bicategories. For the bialgebraic examples, we show that, for a skew
monoidal category arising from a bialgebra, braidings on the skew monoidal category
are in bijection with cobraidings (also known as coquasitriangular structures) on the
bialgebra.

1. Introduction

A skew monoidal category is a category C equipped with a functor C2 → C : (X, Y ) 7→ XY ,
an object I ∈ C, and natural transformations

(XY )Z a // X(Y Z)

IX ` // X
X r // XI

satisfying five coherence conditions [16]. When the maps a, `, and r are invertible, we
recover the usual notion of monoidal category.

The generalisation allows for new examples. For instance, if B is a bialgebra we
obtain a new skew monoidal structure Vect[B] on the category Vect of vector spaces,
with product X ?Y = X ⊗B⊗Y and I the ground field K. In this case the associativity
map a is defined using the “fusion map” of B, and is invertible just when the bialgebra is
Hopf; on the other hand the unit maps ` and r are never invertible unless B = I. More
generally bialgebroids give rise to, and can by characterised by, certain skew monoidal
categories [16].

Another class of examples [2] arises if one attempts to study 2-categorical structures
as strictly as possible. For instance, there is a skew monoidal structure on the 2-category
FProds of categories equipped a choice of finite products, and functors which strictly
preserve them (not just in the usual up to isomorphism sense). The tensor product AB
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has the universal property that maps AB → C correspond to functors A × B → C
preserving products strictly in the first variable but up to isomorphism in the second.
Although this example may seem slightly bizarre, there is in fact good reason to study it.
What one really cares about is the 2-category FProd of categories with finite products,
finite-product-preserving functors (in the usual up-to-isomorphism sense), and natural
transformations. But this is harder to work with — for example, it has only bicategorical
colimits. In particular it has the structure of a monoidal closed bicategory, but the
verification of this is technically rather challenging. The skew monoidal structure on
FProds is much easier to construct, and in fact — as explained in Section 6.4.3 of [2] —
contains the monoidal bicategory structure on FProd within it.

Instead of the categories with finite products appearing in the previous paragraph, one
can do much the same thing with structures such as symmetric monoidal categories, or
permutative categories, leading the way open to possible applications to K-theory, using
[5].

A natural question to ask is whether there exists a sensible notion of braiding for skew
monoidal categories, generalising the classical theory of braided monoidal categories [9].
A naive approach would be to ask for an invertible natural transformation

s : AB → BA

interacting suitably with the skew monoidal structure. However we would like our notion
of braiding to capture the example of FProds and, in that case, the objects AB and
BA are not isomorphic. Instead, what we find is that (AB)C and (AC)B both classify
functors preserving products strictly in A and up to isomorphism in B and C, and so are
isomorphic.

In the present paper we introduce a notion of braiding on a skew monoidal category
which is given by an invertible natural transformation

s : (AB)C → (AC)B

satisfying certain axioms. Apart from capturing the above example and others like it,
the definition is justified in various ways. For example in Theorem 4.10 we establish that
braidings on the skew monoidal category Vect[B] are in bijection with cobraidings (also
known as coquasitriangular structures) [10, 15] on the bialgebra B.

Let us now give a brief outline of the paper. In Section 2 we define braidings and
describe various consequences of the axioms — in particular, showing that if the underly-
ing skew monoidal structure is monoidal then our definition restricts to the classical one.
In Section 3 we introduce the notion, perhaps more intuitive, of a braided skew closed
category. In this setting the braiding is specified by an isomorphism

[A, [B,C]]→ [B, [A,C]]

just as in the classical setting of symmetric closed categories. Sections 4 and 6 are driven
by our two leading classes of examples. Motivated by bialgebras, in Section 4 we study
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skew cowarpings and monoidal comonads on monoidal categories. The main result of
Section 4 is Theorem 4.7, which asserts that, given a monoidal comonad G on a monoidal
category C satisfying a mild hypothesis, there is a bijection between braidings on the
monoidal category CG of coalgebras and braidings on the cowarped skew monoidal cate-
gory C[G]. This is then specialised to the bialgebra setting in Theorem 4.10. In Section 5
we introduce braided skew multicategories and show how to pass from these, assuming
a representability condition, to braided skew monoidal categories. We then use this in
Section 6 to exhibit braidings on the 2-categorical examples such as FProds. The more
technical parts of the proof in Section 5 are treated in an appendix.

2. Braided skew monoidal categories

Let C be a skew monoidal category with structure maps a : (AB)C → A(BC), ` : IA→ A,
and r : A→ AI.

2.1. Remark. There is a variant of the notion of skew monoidal category in which the
directions of a, `, and r are all reversed. We call this a right skew monoidal category. (Our
skew monoidal categories are also called left skew.) If C is skew monoidal then there are
induced right skew monoidal structures on the opposite category C, and also on C with
reverse multiplication; we call the latter Crev. On the other hand if we use the reverse
multiplication on Cop we get another (left) skew monoidal category, called Coprev.

2.2. Definition. A braiding on C consists of natural isomorphisms s : (XA)B → (XB)A
making the following diagrams commute:

((XA)C)B s1 // ((XC)A)B
s

''
((XA)B)C

s
77

s1 ''

((XC)B)A

((XB)A)C s
// ((XB)C)A

s1

77

(2.1)

((XA)B)C s1 //

a

��

((XB)A)C s // ((XB)C)A

a1
��

(XA)(BC) s
// (X(BC))A

(2.2)

((XA)B)C s //

a1
��

((XA)C)B s1 // ((XC)A)B

a

��
(X(AB))C s

// (XC)(AB)

(2.3)
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((XA)B)C a1 //

s

��

(X(AB))C a // X((AB)C)

1s
��

((XA)C)B
a1
// (X(AC))B a

// X((AC)B)

(2.4)

The braiding is a symmetry if the diagram

(XB)A
s

%%
(XA)B

s
99

(XA)B

(2.5)

commutes, wherein the equality symbol represents the identity map.

In later sections we shall study in detail the various examples of braided skew monoidal
categories described in the introduction; here we content ourselves with giving a rather
simple class of examples, including a symmetric skew monoidal structure on the category
of pointed sets.

2.3. Example. Let V be a monoidal category and M = (M,m, i) a monoid in V ; we write
as if V were strict. Write VM for the category of left M -modules; these consist of an object
X ∈ V equipped with an associative and unital action x : MX → X. The category VM has
a skew monoidal structure with product (X, x)⊗ (Y, y) = (XY, xY : MXY → XY ), unit
(M,m), and associativity inherited from V . The left unit map (M,m)⊗(X, x)→ (X, x) is
given by x : MX → X and the right unit map (X, x)→ (M,m)⊗(X, x) byXi : X → XM .
If V has a braiding c, then VM becomes braided via the isomorphisms

(X, x)⊗ (Y, y)⊗ (Z, z) s // (X, x)⊗ (Y, y)⊗ (Z, z)

(XY Z, xY Z) 1c // (XZY, xZY )

and this will be a symmetry if c is one.

2.4. Example. In particular, we may take V to be the category of sets, with symmetric
monoidal structure given by coproduct, and take M to be the terminal monoid. Then
VM is the category of pointed sets. The product of pointed sets (X, x0) and (Y, y0) is the
disjoint union X + Y with point x0 ∈ X ⊆ X + Y and the unit object is the singleton
pointed set.

We shall see in the proof of Proposition 2.6 below that (2.2) and (2.3) are analogues
of the braid equations and (2.1) of the Yang-Baxter equation, while (2.4) like (2.1) is
automatic in the classical setting of braided monoidal categories.
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2.5. Remark. Observe that (2.3) for s is precisely (2.2) for s−1. On the other hand,
(2.1) holds for s−1 if and only if it does so for s; and the same is true of (2.4). We write
Cinv for the skew monoidal category C equipped with the natural isomorphism s−1. If s is
a symmetry, so that s−1 = s, then (2.3) is equivalent to (2.2), and Cinv = C.

There is no explicit compatibility requirement between the braiding and the left and
right unit maps, but see Propositions 2.8 and 2.9 below.

2.6. Proposition. If C is a monoidal category, braidings and symmetries in the sense
of Definition 2.2 are in bijection with braidings and symmetries in the usual sense.

Proof. There is a unique natural isomorphism c : BC → CB making the diagram

(IB)C `1 //

s

��

BC

c

��
(IC)B

`1
// CB

commute; now use (2.4) with A = I

(XB)C
a

&&
(XB)C

(r1)1
//

s

��

1
//

((XI)B)C
a1
//

s

��

(X(IB))C a
//

(1`)1
77

X((IB)C)

1s
��

1(`1)
// X(BC)

1c
��

(XC)B
(r1)1//

1 //

((XI)C)B a1 // (X(IC))B a //

(1`)1 ''

X((IC)B)
1(`1) // X(CB)

(XC)B

a

88

to deduce that s necessarily has the form

(XB)C a // X(BC) 1c // X(CB) a−1
// (XC)B.

Then (2.2) and (2.3) are equivalent to the usual two axioms [9] for a braiding, and (2.1)
is a consequence by [9, Proposition 1.2]. (2.4) is automatic by

((XA)B)C a1 //

a

��

s

��

(X(AB))C a // X((AB)C)

1a
��

1s

��

(XA)(BC) a //

1c
��

X(A(BC))

1(1c)
��

(XA)(CB) a //

a−1

��

X(A(CB))

1a−1

��
((XA)C)B

a1
// (X(AC))B a

// X((AC)B)
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while finally (2.5) is clearly equivalent to the usual symmetry axiom for c.

Thus if a, `, and r are all invertible, then we recover the usual notion of braided or
symmetric monoidal category. But in fact it is enough just to suppose that ` is invertible:
see Proposition 2.12 below.

Consequences of the axioms. Let s be a braiding on the skew monoidal category C.

2.7. Lemma. If (2.2) holds then the composite

(WB)A r // ((WB)A)I s // ((WB)I)A a1 // (W (BI))A

is equal to (1r)1.

Proof. This holds by commutativity of

(WB)A
r

''
(WA)B r

//

s
88

1r &&
s

��

((WA)B)I
s1
//

a

��

((WB)A)I s
// ((WB)I)A

a1
��

(WB)A

(1r)1

44
(WA)(BI) s // (W (BI))A

and invertibility of s.

2.8. Proposition. If (2.2) holds then the diagram

WA r //

r1 $$

(WA)I

s

��
(WI)A

commutes.

Proof. Use the previous lemma in

WA r //

r1
��

(WA)I s //

(r1)1
��

(WI)A

(r1)1
��

1

��

(WI)A r //

(1r)1

++

1

&&

((WI)A)I s // ((WI)I)A

a1
��

(W (II))A

(1`)1

��
(WI)A.
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This easily implies:

2.9. Proposition. If (2.2) holds then the diagram

(XA)I s // (XI)A a // X(IA)

1`
��

XA

r

OO

XA

(2.6)

commutes.

2.10. Proposition. If (2.2) holds then the diagram

(XA)B r1 //

s

��

((XA)I)B a // (XA)(IB)

s

��
(XB)A

(r1)1
// ((XI)B)A

a1
// (X(IB))A

commutes.

Proof.
(XA)B r1 //

(r1)1 &&
s

��

((XA)I)B a //

s1
��

(XA)(IB)

s

��

((XI)A)B

s

��
(XB)A

(r1)1
// ((XI)B)A

a1
// (X(IB))A

Dually, we have

2.11. Proposition. If (2.3) holds then the diagrams

WA
r1 //

r
$$

(WI)A

s

��
(WA)I

(XA)B
(r1)1//

s

��

((XI)A)B a1 // (X(IA))B

s

��
(XB)A

r1
// ((XB)I)A a

// (XB)(IA)

commute.

Proof. Apply Propositions 2.8 and 2.10 to Cinv.
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Recall that a skew monoidal category is left normal when the left unit maps ` : IA→ A
are invertible.

2.12. Proposition. If C is a braided skew monoidal category which is left normal, then
C is in fact monoidal.

Proof. As in Proposition 2.6, there is a unique natural isomorphism c : AB → BA
making the diagram

(IA)B s //

`1
��

(IB)A

`1
��

AB c
// BA

commute, and then by Proposition 2.9, the diagram

IB

1

))
r
//

`
��

(IB)I s
//

`1
��

(II)B a
//

`1
��

I(IB)

`zz

1`
// IB

`
��

B r
// BI c

// IB
`

// B

commutes. Since c : BI → IB and the various instances of ` are invertible, it follows that
r : B → BI is also invertible; thus the skew monoidal category C is also right normal.

By (2.2) and one of the skew monoidal category axioms, the diagram

((IA)B)C s1 //

a

��

((IB)A)C s // ((IB)C)A

a1
��

(`1)1

&&
(IA)(BC) s

// (I(BC))A
`1
// (BC)A

commutes, and so the left vertical is invertible. But now by naturality the diagram

((IA)B)C
(`1)1 //

a

��

(AB)C

a

��
(IA)(BC)

`1
// A(BC)

commutes, and so the right vertical is invertible. This proves that the skew monoidal
category C is actually monoidal.
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We close this section with something which is not a consequence of the axioms. In a
braided skew monoidal category the diagram

((XI)A)B s1 //

a1
��

((XA)I)B

a

��
(X(IA))B

(1`)1 $$

(XA)(IB)

1`zz
(XA)B

need not commute. In particular, it does not commute in the braided skew monoidal
category of pointed sets described in Example 2.4. Note, however, that composing either
composite with (r1)1 : (XA)B → ((XI)A)B gives the identity.

3. Braided skew closed categories

Let C be a skew closed category in the sense of [14] with structure maps

[B,C] L // [[A,B], [A,C]]

[I, A] i // A

I
j // [A,A].

3.1. Definition. A braiding on C consists of natural isomorphisms

s′ : [B, [A, Y ]]→ [A, [B, Y ]]

making the following diagrams commute.

[C, [B, [A, Y ]]] s′ //

[1,s′]
��

[B, [C, [A, Y ]]]
[1,s′] // [B, [A, [C, Y ]]]

s′

��
[C, [A, [B, Y ]]]

s′
// [A, [C, [B, Y ]]]

[1,s′]
// [A, [B, [C, Y ]]]

(3.1)

[B, [A, Y ]] s′ //

L
��

[A, [B, Y ]]

[1,L]
��

[[C,B], [C, [A, Y ]]]
[1,s′]

// [[C,B], [A, [C, Y ]]]
s′
// [A, [[C,B], [C, Y ]]]

(3.2)

[B, [A, Y ]] s′ //

[1,L]
��

[A, [B, Y ]]

L
��

[B, [[C,A], [C, Y ]]]
s′
// [[C,A], [B, [C, Y ]]]

[1,s′]
// [[C,A], [C, [B, Y ]]]

(3.3)
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[X, Y ] L //

L
��

[[C,X], [C, Y ]] L // [[B, [C,X]], [B, [C, Y ]]]

[1,s′]
��

[[B,X], [B, Y ]]
L
// [[C, [B,X]], [C, [B, Y ]]]

[s′,1]
// [[B, [C,X]], [C, [B, Y ]]]

(3.4)

The braiding is a symmetry if the diagram

[B, [A, Y ]] s′ //

1 ''

[A, [B, Y ]]

s′

��
[B, [A, Y ]]

(3.5)

commutes.

3.2. Remark. Condition (3.3) holds for s′ just when (3.2) does for the inverse of s′; thus
in the symmetric case (3.3) is not needed. A definition of symmetric skew closed category
was proposed in [2] — a skew closed category equipped with a natural isomorphism s′

satisfying (3.1), (3.2), (3.5), and an axiom concerning the unit I. We prove in Corollary 3.6
that the unit axiom is redundant, and so our definition implies that of [2]. In fact the
implication is strict: we shall see in Remark 4.9 that (3.4) does not follow from the other
axioms.

3.3. Remark. Just as in the classical case, a skew-closed category C admits an enrich-
ment over itself, and the representable functors [B,−] are C-enriched. The condition (3.4)
states that the isomorphisms

s′ : [B, [C,−]]→ [C, [B,−]]

are not just natural, but C-natural.

Suppose that C is a skew monoidal category which is closed, by which we mean that
each functor − ⊗ A : C → C has a right adjoint [A,−], so that there are natural isomor-
phisms C(XA,B) ∼= C(X, [A,B]). The skew monoidal structure gives rise to a skew closed
structure [14], with maps

[B,C] L // [[A,B], [A,C]]

[I, A] i // A

I
j // [A,A].

The associativity map a determines a map t : [AB, Y ] → [A, [B, Y ]], which may be con-
structed from L as the composite

[AB,C] L // [[B,AB], [B,C]]
[u,1] // [A, [B,C]]
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where u is the unit of the tensor-hom adjunction. Conversely, L can be constructed from
t as the composite

[B,C]
[ε,1] // [[A,B]A,C] t // [[A,B], [A,C]]

where ε : [A,B]A→ B is the counit of the tensor-hom adjunction.
There is a bijection between natural isomorphisms

s : (XA)B → (XB)A (3.6)

and natural isomorphisms

s′ : [A, [B, Y ]]→ [B, [A, Y ]] (3.7)

as related by the commutative square

C((XA)B, Y )

��

C(s,1) // C((XB)A, Y )

��
C(X, [A, [B, Y ]])

C(1,s′) // C(X, [B, [A, Y ]])

in which the vertical maps are composites of adjointness isomorphisms. A useful way to
think of this correspondence is to write TA : C → C for the functor sending X to XA, and
HA for its right adjoint. Then, for given A and B, the s : (XA)B → (XB)A can be seen as
the components of a natural transformation TBTA → TATB. Since TA a HA and TB a HB,
we may compose adjunctions to obtain TBTA a HAHB, and now s′ : HAHB → HBHA is
simply the mate of s : TATB → TBTA.

3.4. Theorem. Let C be closed skew monoidal. The equations (2.1)–(2.5) for a natu-
ral isomorphism s : (XA)B → (XB)A correspond, in turn, to the equations (3.1)–(3.5)
for s′ : [A, [B, Y ]] → [B, [A, Y ]]. In particular, there is a bijection between braidings or
symmetries on C as a skew monoidal category and those on C as a skew closed category.

Proof. Routine calculation shows that (2.1) and (3.1) are equivalent, and likewise (2.5)
and (3.5). The remaining cases require a little more work. First we establish the corre-
spondence between (2.2) and (3.2). The equation (2.2) asserts the commutativity of

TCTBTA
1s //

a1
��

TCTATB
s1 // TATCTB

1a
��

TBCTA s
// TATBC

and, on taking mates, we see that this is equivalent to

HBCHA
s′ //

t1
��

HAHBC

1t
��

HBHCHA
1s′
// HBHAHC

s′1
// HAHBHC .
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There is a contravariant functor P sending X ∈ C to HXHA, and we may regard the
domain HBCHA of the above displayed equation as this contravariant functor applied to
X = TCB. Similarly there is a contravariant functor Q sending X to HAHXHC , and
the codomain of the displayed equation is QB. The equation asserts the equality of two
natural maps P (TCB) → Q(B). Taking mates once again, this time with respect to
the adjunction TC a HC , and noting the contravariance of P and Q, we see that this is
equivalent to an equation between two induced maps P (B) → Q(HCB); specifically, to
commutativity of

HBHA
s′ //

L1
��

HAHB

1L
��

HHCBHCHA
1s′
// HHCBHAHC

s′1
// HAHHCBHC

which is the displayed equation (3.2) of the proposition.
Since (2.3) for s is (2.2) for its inverse, and similarly (3.3) for s′ is (3.2) for its inverse,

the argument above shows that (2.3) is equivalent to (3.3).
Finally we establish the correspondence between (2.4) and (3.4). First observe that

a morphism f : A → B in C induces a natural transformation Tf : TA → TB, whose
component at an object X is 1f : XA → XB; this in turn has a mate Hf : HB → HA.
Then we may express (2.4) as

TCTBTA
1a //

s1

��

TCTAB
a // T(AB)C

Ts
��

TBTCTA 1a
// TBTAC a

// T(AC)B

which, on taking mates, becomes

H(AC)B
t //

Hs

��

HACHB
t1 // HAHCHB

1s′

��
H(AB)C t

// HABHC t1
// HAHBHC .

We can regard this as an equality of maps P (TBTcA)→ Q(A) for contravariant functors P
and Q, and so on taking mates as an equality of maps P (A)→ Q(HCHBA); specifically,
the equality of the upper composites, and hence also of the lower composites, in the
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following two diagrams.

HA
Hε //

Hε

$$

L

��

H(HBA)B
Hε1 // H((HCHBA)C)B

Hs

))
H(HCA)C

Hε1 //

t

��

H((HBHCA)B)C

H(s′1)1 //

t

��

H((HCHBA)B)C

t

��
HHCAHC

Hε1//

L1 ((

H(HBHCA)BHC

Hs′11 //

t1

��

H(HCHBA)BHC

t1

��
HHBHCAHBHC Hs′11

// HHCHBAHBHC

HA
Hε //

L $$

H(HBA)B
Hε1 //

t

��

H((HCHBA)C)B

t

��
HHBAHB

Hε1//

L ((

H(HCHBA)CHB

t1

��
HHCHBAHCHB

1s′ // HHCHBAHBHC

The equality of the lower composites is the condition (3.4) stated in the proposition.

We conclude the section by showing that the unit axiom (S4) of [2] is redundant.

3.5. Proposition. If (3.2) commutes, then so too does

[I, [B,C]] s′ //

i &&

[B, [I, C]]

[1,i]
��

[B,C].

(3.8)

Proof. By (3.2), the large rectangular region in

[A, [B,C]]

L
��

s′
//

[i,1]

++
[B, [A,C]]

[1,L]

�� [1,[i,1]]

!!

[[I, A], [B,C]]

s′

��

[[I, A], [I, [B,C]]]
[1,s′]
// [[I, A], [B, [I, C]]] s′ //

[1,[1,i]] ))

[B, [[I, A], [I, C]]]

[1,[1,i]] ((
[[I, A], [B,C]]

s′
// [B, [[I, A], C]]
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commutes, while the other two quadrilaterals commute by naturality of s′, and the tri-
angular region by one of the skew closed category axioms. Thus the exterior commutes.
Cancel the isomorphism s′ at the end of each composite and set A = I to deduce com-
mutativity of the upper region of the diagram

[I, [B,C]]

L
��

1 //

1

##

[I, [B,C]]

[i,1]
��

1

{{

[[I, I], [I, [B,C]]]
[1,s′] //

[j,1]
��

[[I, I], [B, [I, C]]]

[j,1]
��

[1,[1,i]] // [[I, I], [B,C]]

[j,1]
��

[I, [I, [B,C]]]
[1,s′]

//

i
��

[I, [B, [I, C]]]
[1,[1,i]]

// [I, [B,C]]

i
��

[I, [B,C]]
s′

// [B, [I, C]]
[1,i]

// [B,C]

in which the central regions commute by functoriality of the internal hom, the lower region
by naturality of i, and the left and right regions by skew closed category axioms.

3.6. Corollary. If (3.2) commutes then axiom (S4) of [2] holds; that is, the composite

[B,C] L // [[B,B], [B,C]]
[j,1] // [I, [B,C]] s′ // [B, [I, C]]

[1,i] // [B,C]

is the identity. In particular, axiom (S4) of [2] is redundant.

Proof. Use (3.2) to replace the last two factors in the displayed composite by the single
map i : [I, [B,C]] → [B,C], then use one of the skew closed category axioms to deduce
that the resulting composite is the identity.

Since (3.2) is (S3) of [2], it follows that (S4) is redundant as claimed.

4. Braided cowarpings and bialgebras

For this section, we suppose that C is in fact a monoidal category, and often write as if it
were strict, and write X.Y for the product of X and Y . Some aspects would work more
generally for a skew monoidal category.

4.1. Skew cowarpings. A skew cowarping on C is a skew warping [11] on Coprev. Ex-
plicitly, this involves the following data

• a functor Q : C → C

• an object K ∈ C

• maps v : QX.QY → Q(X.QY )
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• v0 : I → QK

• k : K.QX → X

subject to five axioms. The “cowarped” tensor product is given by X ∗ Y = X.QY with
unit K. The structure maps are

(X ∗ Y ) ∗ Z X.QY.QZ
1.v // X.Q(Y.QZ) X ∗ (Y ∗ Z)

K ∗X K.QX k // X

X
1.v0 // X.QK X ∗K

and this defines a skew monoidal category C[Q].

4.2. Proposition. Let C be a monoidal category, Q a skew cowarping, and

y : QX.QY → QY.QX

a natural isomorphism. The induced maps

(X ∗ Y ) ∗ Z X.QY.QZ
1.y // X.QZ.QY (X ∗ Z) ∗ Y

equip C[Q] with the structure of a braided skew monoidal category if and only if the fol-
lowing diagrams commute.

QX.QY.QZ
y.1 //

1.y

��

QY.QX.QZ
1.y // QY.QZ.QX

y.1

��
QX.QZ.QY

y.1
// QZ.QX.QY

1.y
// QZ.QY.QX

(4.1)

QX.QY.QZ

1.v
��

y.1 // QY.QX.QZ
1.y // QY.QZ.QX

v.1
��

QX.Q(Y.QZ) y
// Q(Y.QZ).QX

(4.2)

QX.QY.QZ
1.y //

v.1
��

QX.QZ.QY
y.1 // QZ.QX.QY

1.v
��

Q(X.QY ).QZ y
// QZ.Q(X.QY )

(4.3)

QX.QY.QZ
v.1 //

1.y

��

Q(X.QY ).QZ v // Q(X.QY.QZ)

Q(1.y)

��
QX.QZ.QY

v.1
// Q(X.QZ).QY v

// Q(X.QZ.QY )

(4.4)

Once again, (4.3) is just (4.2) for y−1.

Proof. It is straightforward to see that the above four equations imply, in turn, the four
equations (2.1) to (2.4) for a braiding on C[Q]. In the opposite direction one obtains the
above four equations above by taking the first variable in (2.1) to (2.4) to be I.
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We shall refer to a natural isomorphism y : QX.QY → QY.QX satisfying the above
four axioms as a braiding on the skew cowarping Q.

4.3. Remark. Many monoidal categories C have the following property: for any two
objects X and A, the maps

IA
x1 // XA,

where x : I → X, are jointly epimorphic. This means that two morphisms f, g : XA→ B
are equal provided that their composites with x1 are equal for any x. In particular this
is true if C is right-closed and C(I,−) is faithful. Examples include the categories of sets,
of R-modules for a commutative ring R, or of topological spaces; non-examples include
the category of categories and the category of chain complexes. In this context we can
strengthen the preceding result.

4.4. Proposition. Let C be a monoidal category having the property that:

• for any two objects X and A the maps x1: IA→ XA, where x : I → X, are jointly
epimorphic.

Let Q be a skew cowarping on C. The construction of Proposition 4.2 defines a bijection
between braidings on C[Q] and braidings on Q.

Proof. Without the assumption we may obtain a braiding on Q from a braiding s on
C[Q] using s : (I ∗Y ) ∗Z → (I ∗Z) ∗Y . Applying this to a braiding on C[Q] arising, as in
Proposition 4.2, from one on Q returns the original braiding on Q. But to see that every
braiding on C[Q] arises in this way, we rely on the assumption.

4.5. Monoidal comonads. A monoidal comonad G = (G, δ, ε,G2, G0) on C determines
a skew cowarping with QX = GX and K = I, and with v given by

GX.GY
1.δ // GX.G2Y

G2 // G(X.GY )

with v0 and k defined using G0 : GI → I and ε respectively; conversely, any skew cowarp-
ing with K = I arises in this way from a monoidal comonad [11, Proposition 3.5].

By a braiding on the monoidal comonad G we simply mean a braiding on the associated
skew cowarping.

Given a monoidal comonad G, in addition to the cowarped skew monoidal category
C[G], we can form the lifted monoidal structure on the Eilenberg-Moore category CG of
coalgebras.

4.6. Theorem. For a monoidal comonad G on a monoidal category C, there is a bijection
between braidings on the monoidal category CG and braidings on G.
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Proof. First suppose that c is a braiding on CG. In particular, for any cofree algebras
GX and GY there is an isomorphism c : GX.GY → GY.GX in CG, and this is natural in
X and Y . By [9, Proposition 2.1] the Yang-Baxter equation (4.1) holds. Now (4.2) holds
by commutativity of the diagram

GX.GY.GZ
c.1 //

1.v
��

cGX,GY.GZ

22GY.GX.GZ
1.c // GY.GZ.GX

v.1
��

GX.G(Y.GZ) c
// G(Y.GZ).GX

in which the upper region commutes by one of the braid axioms for CG, and the lower
one by naturality of the braiding with respect to the morphism v : GY.GZ → G(Y.GZ)
in CG. Equation (4.3) holds by a similar, dual, argument. To see that (4.4) holds, first
observe that the horizontal composites have the form

GX.GY.GZ
1.δ.1 //

1.δ.δ ((

GX.G2Y.GZ
G2.1 //

1.1.δ
��

G(X.GY ).GZ

1.δ
��

GX.G2Y.G2Z
G2.1 //

1.G2

��

G(X.GY ).G2Z

G2

��
GX.G(GY.GZ)

G2

// G(X.GY.GZ)

and now (4.4) takes the form

GX.GY.GZ
1.δ.δ //

1.c

��

GX.G2Y.G2Z
1.G2 // GX.G(GY.GZ)

G2 //

1.Gc
��

G(X.GY.GZ)

G(1.c)

��
GX.GZ.GY

1.δ.δ
// GX.G2Z.G2Y

1.G2

// GX.G(GZ.GY )
G2

// G(X.GZ.GY )

where the left region commutes because c is a G-coalgebra homomorphism, and the right
region by naturality of G2.

Suppose conversely that y : GX.GY → GY.GX is a braiding on G. First take X = I
in (4.4), to deduce commutativity of

GY.GZ
v0.1.1
//

y

��

δ.1
,,

GI.GY.GZ
v.1

//

1.y

��

G2Y.GZ v
// G(GY.GZ)

Gy

��
GZ.GY

δ.1

22
v0.1.1// GI.GZ.GY

v.1 // G2Z.GY
v // G(GZ.GY )

in which the horizontal composites are the coalgebra structure maps; thus y is a coalgebra
homomorphism.
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Then (4.2) and (4.3) imply (2.2) and (2.3), and so by Propositions 2.8 and 2.11, the
diagrams

GX
1.G0//

G0.1 %%

GX.GI

y
��

GX
G0.1//

1.G0 %%

GI.GX

y
��

GI.GX GX.GI

commute. Then

GX.GZ

1.G0.1
��

1.δ

��

G0.1.1

((

y // GZ.GX

G0.1.1
��

δ.1

��

GX.GI.GZ
y.1 //

1.1.δ
��

GI.GX.GZ
1.y // GI.GZ.GX

1.δ.1
��

GX.GI.G2Z

1.G2
��

GI.G2Z.GX

G2.1
��

GX.G2Z y
// G2Z.GX

commutes by (4.2), and similarly

GX.GZ
y //

δ.1
��

GZ.GX

1.δ
��

G2X.GZ y
// GZ.G2X

(4.5)

commutes by (4.3). Combining these, we see that

GX.GZ
y //

δ.δ
��

GZ.GX

δ.δ
��

G2X.G2Z y
// G2Z.G2X

(4.6)

commutes.
Let (A,α) and (B, β) be G-coalgebras. The rows of

A.B
α.β //

c
��

GA.GB

y

��

Gα.Gβ//

δ.δ
// G

2A.G2B

y
��

B.A
β.α // GB.GA

Gβ.Gα//

δ.δ
// G

2B.G2A

are split equalizers in C and so are equalizers in CG. The solid vertical ys commute with
the rows by naturality of y and commutativity of (4.6), thus there is a unique induced
invertible c : A.B → B.A making the left square commute.
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It follows from (4.6) that for cofree coalgebras GX and GY , the map c : GX.GY →
GY.GX is just y. The braid axioms will hold for all coalgebras if and only if they hold
for cofree coalgebras. One of these holds by commutativity of

GX.GY.GZ δ.1.δ //

cGX.GY,GZ

��

δ.δ.δ

((

G2X.GY.G2Z
v.1

))
GZ.GX.GY

δ.δ.δ ((

G2X.G2Y.G2Z
G2.1 //

cG2X.G2Y,G2Z

��

G(GX.GY ).G2Z

c

��
G2Z.G2X.G2Y

1.G2

// G2Z.G(GX.GY )

GX.GY.GZ

1.c
��

δ.1.δ // G2X.GY.G2Z
v.1

))
1.c
��

GX.GZ.GY

c.1
��

G2.G2Z.GY

c.1
��

G(GX.GY ).G2Z

c

��

GZ.GX.GY

δ.δ.δ ((

δ.δ.1
// G2Z.G2X.GY

1.v ))
G2Z.G2X.G2Y

1.G2

// G2Z.G(GX.GY )

and the other is similar.

Combining the above result with Proposition 4.4 we obtain

4.7. Theorem. Let G be a monoidal comonad on a monoidal category C having the
property of Remark 4.3:

• for any two objects X and A the maps x1: IA→ XA, where x : I → X, are jointly
epimorphic.

Then there is a bijection between

1. braidings on G,

2. braidings on the monoidal category CG of coalgebras, and

3. braidings on the cowarped skew monoidal category C[G].

4.8. The case of bialgebras. Let V be a symmetric monoidal category, and B a
bialgebra in V . The coalgebra structure of B induces a comonad G on V given by tensoring
on the left with B; the algebra structure comprising µ : BB → B and η : I → B makes
this into a monoidal comonad with structure maps

GX.GY =BXBY 1c1 // BBXY
µ11 // BXY= G(XY )

I
η1 // BI
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where c : XB → BX is the symmetry isomorphism.
In this setting we write V [B] for the cowarped skew monoidal structure which has

tensor product X ? Y = XBY and unit I. The associator and unit maps for V [B] are
given in the string diagrams below

X B Y B Z

X B Y B Z

X

X

B X

X B

when read moving down the page, with the multiplication represented by the merging of
two strings, the comultiplication by the splitting of two strings, and the unit and counit
by the appearance or disappearance of a string at a dot.

If V is closed then the isomorphisms V(XBY,Z) ∼= V(X, [BY,Z]) ensure that V [B] is
too. This is the case, for instance, if V = R-Mod for a commutative ring R.

4.9. Remark. There is an evident natural isomorphism GX.GY ∼= GY.GX with com-
ponents the symmetry isomorphisms c : (BX)(BY ) ∼= (BY )(BX). The diagrams (4.1),
(4.2), and (4.3) always commute, as does the symmetry axiom, but (4.4) commutes if
and only if the algebra B is commutative. For the warped skew monoidal category V [B]
the natural isomorphisms 1.c : X.BY.BZ ∼= X.BY.BZ of Proposition 4.2 satisfy all of the
equations for a braided skew monoidal category except for (2.4), which commutes just
when the algebra B is commutative.

Of course there are many bialgebras whose underlying algebra is not commutative, for
instance the group ring of Z[G] of a non-abelian group G. Therefore the cowarped skew
monoidal structure Ab[Z[G]] exhibits the independence of (2.4) from the other axioms for
a braiding. Since this skew monoidal structure is closed, it follows from Theorem 3.4 that
(3.4) is independent of the other axioms for a braided/symmetric skew closed structure.

4.10. Theorem. Let R be a commutative ring and B an R-bialgebra. There are bijections
between

1. Cobraidings (coquasitriangular structures) on the bialgebra B;

2. Braidings on the skew monoidal category R-Mod[B];

3. Braidings on the monoidal category R-ModB of B-comodules.

Proof. The monoidal category R-Mod satisfies the assumptions of Remark 4.3, and
so we may use Theorem 4.7 to deduce the bijection between (2) and (3). The bijection
between (1) and (3) is well-known, and can be found for example in [15, Proposition 15.2],
on taking V = R-Modop.
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Explicitly, given a braiding s on the skew monoidal category R-Mod[B], the isomor-
phism s : (I ∗ I) ∗ I ∼= (I ∗ I) ∗ I amounts (modulo unit isomorphisms) to an isomorphism
BB ∼= BB, and composing with εε : BB → I gives the corresponding coquasitriangu-
lar structure. Conversely, given coquasitriangular structure σ : BB → I, the braiding
(X ∗ Y ) ∗ Z ∼= (X ∗ Z) ∗ Y corresponds to the map XBY BZ → XBZBY given in the
string diagram below.

X B Y B Z

X B Z B Y

σ

4.11. Duality. One can now consider what our results give under the various duality
principles described in Remark 2.1. Of particular interest is Cop: skew cowarpings on Cop
are a reverse version of the skew warpings of [11], and any opmonoidal monad (T, µ, η)
on C gives rise to one. There is a resulting “warped” right skew monoidal category C[T ]
with tensor X ∗ Y = X.TY .

It follows formally from Theorem 4.6 that braidings on the Eilenberg-Moore category
CT , with the lifted monoidal structure, are in bijection with braidings on the opmonoidal
monad T .

We could also apply Theorem 4.7 to Cop, but this is not so interesting, since for the
typical choices of C the property of Remark 4.3 is less likely to hold for Cop. But in fact it
is not hard to see that Proposition 4.4 and Theorem 4.7 hold for C provided that either
C or Cop has the property of Remark 4.3. Thus if C has the property of Remark 4.3, then
braidings on CT correspond to braidings on the right skew monoidal category C[T ].

The analogue of Theorem 4.10 then says that for a commutative ringR andR-bialgebra
B there are bijections between:

1. braidings (quasitriangular structures) on B;

2. braidings on the right skew monoidal category R-Mod[B];

3. braidings on the monoidal category B-Mod of B-modules

and so in particular there is a “trivial” braiding, lifted from the base braided monoidal
category, whenever the bialgebra B is cocommutative.

More generally, consider a bialgebroid B over a (not necessarily commutative) ring R;
this amounts to a cocontinuous opmonoidal monad T on the monoidal category R-Mod-R
of R-bimodules. The opmonoidal structure gives rise to a lifted monoidal structure on
the Eilenberg-Moore category; this is just the category of B-modules. The base monoidal
category R-Mod-R is of course not braided. Nonetheless, we have a bijection between
braidings on the Eilenberg-Moore category and braidings on T , giving rise to a notion of
braided bialgebroid; compare this with the quasitriangular structures of [4].
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4.12. Skew semiwarpings. For C skew monoidal, the tensor product A ∗B = (IA)B
does not, in general, form part of a skew monoidal structure on C — but is skew semi-
monoidal in the sense of [12, Section 7]. A braiding on C then yields natural isomorphisms
A ∗ B → B ∗ A satisfying the classical braid axioms. We establish these results in the
present section, and will employ them in Section 6.4 to construct symmetric monoidal
bicategories.

We start by considering a generalization of the skew warpings of [11] in which all
structure involving the unit is omitted. A skew semiwarping on a skew monoidal category
C will be a functor T : C → C equipped with a natural transformation v : T (TA.B) →
TA.TB making the diagram

T (T (TA.B).C)
T (v.1) //

v

��

T ((TA.TB).C) Ta // T (TA.(TB.C)) v // TA.T (TB.C)

1.v
��

T (TA.B).TC
v.1

// (TA.TB).TC a
// TA.(TB.TC)

(4.7)

commute. Just as in [11, Section 3], we may define a “warped” tensor product A ∗ B =
TA.B and the composite

T (TA.B).C v.1 // (TA.TB).C a // TA.(TB.C)

defines a morphism α : (A ∗B) ∗C → A ∗ (B ∗C) satisfying the pentagon equation. Thus
C becomes a skew semimonoidal category in the sense of [12, Section 7] with respect to
this warped structure.

We define an augmentation on such a skew semiwarping to be a natural transformation
ε : T → 1 making the following diagram commute

T (TA.B) v //

ε &&

TA.TB

1.ε
��

TA.B

For such an augmentation ε, the diagram

(A ∗B) ∗ C

α

��

T (TA.B).C
T (ε.1).1//

v.1
��

ε.1

''

T (A.B).C ε.1 // (A.B).C

a

��

(TA.TB).C

a

��

(1.ε).1 // (TA.B).C

a

��

(ε.1).1

88

A ∗ (B ∗ C) TA.(TB.C)
1.(ε.1)

// TA.(B.C)
ε.1
// A.(B.C)

commutes, and so ε.1: TA.B → A.B is compatible with the associativity maps α and a;
in other words, it makes the identity functor 1 : C → C into a semimonoidal functor from
underlying skew semimonoidal category of the original skew monoidal C, to the warped
skew semimonoidal category.
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4.13. Proposition. For a skew monoidal C with T : C → C defined by tensoring on the
left with I, the maps

I(IA.B) ` // IA.B
r.1 // (IA)I.B a // IA.IB

define a skew semiwarping v, for which ` : IA→ A is an augmentation.

Proof. First we verify that v is a skew semiwarping. Observe that v is the instance
X = IA of the natural transformation w : I(X.B)→ X.IB given by

I(X.B) ` // X.B r.1 // XI.B a // X.IB

and therefore that the left hand square in

I(I(IA.B).C)
I(v.1) //

v

��

I((IA.IB).C)

v

��

1a // I(IA.(IB.C)) v // IA.I(IB.C)

1.v
��

I(IA.B).IC
v.1

// (IA.IB).IC a
// IA.(IB.IC)

commutes by naturality of u; thus it remains to show the commutativity of the region on
the right. This in turn follows by commutativity of

I(IA.(IB.C))

v

--
`
// IA.(IB.C) r1 //

1

,,

(IA)I.(IB.C) a
// IA.I(IB.C)

1.`
��

1.v





I((IA.IB).C)

1a

OO

` //

v
--

(IA.IB).C a // IA.(IB.C)

1.(r.1)

��
IA.((IB)I.C)

1.a
��

IA.(IB.IC).

As for the augmentation property, this holds by commutativity of

I(IA.B)
`
//

v

,,
IA.B

r.1
//

1 ..

(IA)I.B a
// IA.IB

1.`
��

IA.B.
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If now C is braided, the natural isomorphisms s : (IA)B → (IB)A can be seen as
natural isomorphisms c : A ∗ B → B ∗ A. We close this section with a result indicating
the sense in which these c deserve to be thought of as a braiding.

4.14. Proposition. The natural isomorphism c : A ∗ B → B ∗ A and its inverse both
satisfy the axiom for a braiding asserting the commutativity of

(A ∗B) ∗ C c∗1 //

α

��

(B ∗ A) ∗ C α // B ∗ (A ∗ C)

1∗c
��

A ∗ (B ∗ C) c
// (B ∗ C) ∗ A α

// B ∗ (C ∗ A).

If c is a symmetry then the equation

A ∗B
1

44
cA,B // B ∗ A

cA,B // A ∗B

also holds.

Proof. The second sentence is immediate. The first holds by commutativity of the
following diagram

I(IX.Y ).Z `.1 //

1s.1

��

(IX.Y ).Z
(r1)1 //

1

��

(r1.1)1

((

((IX)I.Y ).Z a1 //

(s1)1
��

(IX.IY ).Z a //

s1

��

IX.(IY.Z)

s

��

((II)X.Y ).Z

s1
��

(`1.1)1

vv
(IX.Y )Z

s1
��

((II)Y.X).Z a1.1 //

(`1.1)1

vv

(I(IY ).X).Z

s

��`1.1
ss

I(IY.X).Z `.1 // (IY.X)Z

(r1)1
��

s

++

(I(IY ).Z).X a1 //

`1.1
��

I(IY.Z).X

`1vv
((IY )I.X)Z s //

a1
��

((IY )I.Z).X

a1
��

(IY.Z).X
(r1)1
oo

(IY.IX)Z

a

��

(IY.IZ).X

a

��
IY.(IX)Z

1s
// IY.(IZ.X)

and the fact that s−1 is also a braiding on the skew monoidal category C.
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5. Braided skew multicategories

In the earlier paper [3], we defined a notion of skew multicategory, and showed that skew
monoidal categories could be characterized as skew multicategories satisfying a condi-
tion we called left representability. This is a skew analogue of the relationship between
monoidal categories and representable multicategories.

In this section we build on the ideas of [3], defining a notion of braiding on a skew
multicategory, and showing that, in the left representable case, this is equivalent to a
braiding on the corresponding skew monoidal category.

We begin by revisiting the notion of skew multicategory defined in [3], to which we
refer for further detail.

5.1. Skew multicategories. A skew multicategory A consists of a multicategory A`

together with extra structure which we shall shortly describe. We generally write A for
the set of objects, and a to denote a list a1, . . . , an of objects, so that we may write A`(a; b)
for the multihom. The elements of such a multihom are called “loose multimaps”. We
now turn to the extra structure. This consists of:

• for each non-empty such list a and each b ∈ A, there is a set At(a; b) “of tight
multimaps”, with a function j : At(a; b)→ A`(a; b)

• for each a ∈ A there is an element 1a ∈ At(a; a) which is sent by j to the corre-
sponding identity of A`

• substitution maps

At(b1, . . . , bn; c)× At(a1; b1)×
n∏
i=2

A`(ai; bi)→ At(a1, . . . , an; c)

whose effect we denote by (g, f1, . . . , fn) 7→ g(f1, . . . , fn)

subject to the evident associativity and identity axioms, along with the requirement that
j respect substitution. There is an induced category A of tight unary maps with the same
objects as A and with A(a, b) = At(a; b).

For a discussion of various possible reformulations of the notion of skew multicategory,
see [3, Sections 3–4].

5.2. Remark. In practice, many examples of skew multicategories have the property
that the functions j : At(a; b)→ A`(a; b) are subset inclusions. Such skew multicategories
amount to ordinary multicategories equipped with a subcollection of tight multimaps which
are non-nullary, contain the identities, and with g(f1, . . . , fn) tight just when both g and
f1 are.

For the moment we content ourselves with a single example; more will be given in
Section 6 below.
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5.3. Example. There is a multicategory FP of categories equipped with a choice of finite
products and whose multimaps are functors F : A1× . . .×An → B preserving products in
each variable in the usual up to isomorphism sense. A nullary map, an element of FP( ;A),
is an object of A. Declaring a multimap to be tight just when it preserves products strictly
in the first variable equips FP with the structure of a skew multicategory.

5.4. Skew monoidal categories arising from left representable skew mul-
ticategories. For a skew multicategory A and a list a of objects, there are induced
functors At(a;−) and A`(a;−) from A to Set (with the former defined only if a is non-
empty). We say that A is weakly representable if these functors A`(a;−) and At(a;−)
are representable. This says that, for x ∈ {t, `}, there are objects mxa and multimaps
θx(a) ∈ Ax(a;mxa) with the universal property that the induced functions

− ◦1 θx(a) : At(mxa; b)→ Ax(a; b)

are bijections for all b ∈ A.
If now b is a list and c an object, the multimap θx(a) induces a function

− ◦1 θx(a) : At(mxa, b; c)→ Ax(a, b; c) (5.1)

and the weakly representable A is said to be left representable if the function (5.1) is a
bijection for all x, a, b and c, and all universal multimaps θx(a).

Theorem 6.1 of [3] asserts that there is a 2-equivalence between the 2-categories of left
representable skew multicategories and of skew monoidal categories. We now describe the
skew monoidal structure on A associated to the left representable A.

Setting AB = mt(A,B) gives the defining representation

A(AB,C) ∼= At(A,B;C) (5.2)

with universal multimap denoted eA,B ∈ At(A,B;AB). We sometimes write it as

e : A,B → AB

omitting the subscript.
Given f : A → C and g : B → D in A, the morphism fg : AB → CD is the unique

one such that
fg ◦ eA,B = eC,D(f, g) (5.3)

which condition we also write as

A,B

e
��

f,g // C,D

e
��

AB
fg

// CD.

(5.4)

Functoriality follows from the universal property.
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By left representability we have natural isomorphisms

A((AB)C,D) ∼= At(AB,C;D) ∼= At(A,B,C;D).

The universal multimap is the composite eAB,C ◦1 eA,B ∈ At(A,B,C; (AB)C), which we
may represent as

A,B,C
e,1 // AB,C

e // (AB)C. (5.5)

By its universal property we obtain the associator aA,B,C : (AB)C → A(BC) as the unique
map such that

aA,B,C ◦1 eAB,C ◦1 eA,B = eA,BC ◦1 eB,C (5.6)

or equally

A,B,C

e

��

e,1 // AB,C
e // (AB)C

a

��
A,BC

e // A(BC).

(5.7)

We define the unit I as the representing object for Al(;−) : A → Set. We write u ∈
Al(;−) for the universal multimap, and depict it as u : (−)→ I. By left representability
we have A(IA,B) ∼= At(I, A;B) ∼= Al(A;B). Taking B = A and the image of the identity
1a under At(A;A)→ Al(A;A) yields ` : IA→ A, the unique map such that

A

j1A

77
u,1 // I, A

e // IA
l // A

commutes. The right unit map r : A→ AI is the composite below:

A
1,u // A, I

e // AI.

5.5. Braided skew multicategories. We begin by recalling braided multicategories.
These differ from the usual notion of symmetric multicategory in that they involve actions
of the braid groups Bn rather than the symmetric groups Sn.

Braid groups and symmetric groups. Recall that the Artin braid group Bn has
presentation

〈β1, . . . , βn−1|βiβj = βjβi for j < i− 1, βiβi+1βi+1 = βiβi+1βi〉.

There is an evident homomorphism |−|n : Bn → Sn sending βi to the transposition (i, i+1)
so that, in particular, Bn acts on {1, . . . , n}.

In addition to the group operation, one can form the tensor product of braids. Com-
bining this with the group operations, the sets Bn admit an evident substitution

Bn × Bm1 × . . .Bmn → Bm1+...+mn : (s, (t1, . . . , tn)) 7→ s(t1, . . . , tn)

which, indeed, form the substitution for an operad B, and the functions | − |n : Bn → Sn
define an operad morphism from B to the corresponding operad S.
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Braided multicategories. A braiding on a multicategory A consists of

1. for each s ∈ Bn a function

s∗ : A(a1, . . . , an; b)→ A(as1, . . . , asn; b) : f 7→ fs

satisfying the action equations (fs)t = f(st) and f1Bn = f as well as

2. the equivariance equation

(f(g1, . . . , gn))s(t1, . . . , tn) = fs(gs1ts1 , . . . , gsntsn)

for all f ∈ A(b1, . . . , bn; c) and s ∈ Bn, together with gi ∈ A(ai; bi) and ti ∈ B|ai| for
i ∈ {1, . . . , n}.

The braiding is a symmetry if the actions satisfy s∗ = t∗ whenever |s| = |t| Alterna-
tively, and more simply, modify the definition above by replacing each occurrence of B by
S.

For concrete calculations it may be useful to reformulate this structure in terms
of the generating braids. To give bijections satisfying (1) is to give bijections f 7→
fβi for each i, subject to the braid relations (fβi)βj = (fβj)βi for j < i − 1 and
((fβi)βi+1)βi = ((fβi+1)βi)βi+1. The equivariance conditions become more complicated.
Given f ∈ A(a1, . . . , an; bi) and g ∈ A(b1, . . . , bm; c) they say

g ◦i fβj = (g ◦i f)βi+j−1 (5.8)

and

gβj ◦i f =


(g ◦i f)βj if j < i− 1

(g ◦i−1 f)βj+n−1 . . . βj if j = i− 1

(g ◦i+1 f)βj . . . βj+n−1 if j = i

(g ◦i f)βj+n−1 if j > i.

(5.9)

Braided skew multicategories. Now let A be a skew multicategory. For a braiding
on A we require, to begin with, that the ordinary multicategory Al of loose multimaps be
equipped with actions

s∗ : Al(a1, . . . , an; b)→ Al(as1, . . . , asn; b)

exhibiting it as a braided multicategory.
Consider the subgroup B1

n = 〈β2, . . . , βn〉 ≤ Bn; that is, we omit the single generator
having a non-trivial action on 1 ∈ {1, . . . , n}. Of course B1

n
∼= Bn−1. Observe also that

s(t1, . . . , tn) ∈ B1
m1+...mn

whenever s ∈ B1
n and t1 ∈ B1

m1
. In a braided skew multicategory

we also require:

(1*) for each s ∈ B1
n a function s∗ : At(a1, . . . , an; b)→ At(as1, . . . , asn; b) such that these

satisfy the action equations (fs)t = f(st), f1 = f as well as the compatibility
j(fs) = j(f)s.
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(2*) given f ∈ At(b1, . . . , bn; c), s ∈ B1
n, g1 ∈ At(a1; b1) and t1 ∈ B1

m1
, plus gi ∈ Al(ai; bi),

ti ∈ Bmi
for i ∈ {2, . . . , n}, we require the equivariance equation

(f(g1, . . . , gn))s(t1, . . . , tn) = fs(gs1ts1 , . . . , gsntsn).

Once again this can be reformulated in terms of the generators. There are assignments
g 7→ gβi for g tight n-ary and 1 < i < n; and g 7→ gβi for g loose n-ary and 1 ≤ i < n.
These satisfy the braid relations as well as equations (5.8) and (5.9) insofar as these make
sense. Finally the two actions should be compatible in the sense that j(gβi) = j(g)βi for
g tight n-ary and 1 < i < n.

For a symmetric skew multicategory we also require that s∗ = t∗ whenever |s| = |t|
and s, t ∈ B1

n.
Alternatively, letting S1

n ⊆ Sn denote the subgroup of permutations fixing 1 ∈ {1, . . . , n},
we obtain a simpler definition of symmetric skew multicategory, by replacing each appear-
ance of B by S.

5.6. Remark. Recall from Remark 5.2 that a skew multicategory A for which the com-
parison functions ja,b : At(a1, . . . , an; b) → Al(a1, . . . , an; b) are inclusions amounts to an
ordinary multicategory equipped with a subcollection of tight morphisms which are not
nullary, contain the identities and have the property that f(g1, . . . , gn) is tight just when
f and g1 are. Under this correspondence a braiding on the skew multicategory simply
amounts to a braiding on the associated multicategory with the property that if s ∈ B1

n

and f is a tight multimap of arity n then fs is tight too. There is a corresponding result
for symmetries with B1

n replaced by S1
n.

5.7. Example. The multicategory FP of Example 5.3 admits a symmetry lifted directly
from the cartesian multicategory Cat. For if s ∈ Sn then Fs : As1 × . . . × Asn → B will
preserve products in the ith variable just when F preserves products in the sith variable.
Since the tight multimaps in FP are defined to be those preserving products strictly in the
first variable Fs will be tight so long as F is and s ∈ S1

n. Accordingly FP is a symmetric
skew multicategory.

5.8. Braidings on left representable skew multicategories. Suppose that A
is a left representable skew multicategory corresponding to a skew monoidal category A.
Given a braiding on A, the generator β2 ∈ B1

3 induces a bijection β∗2 : At(A,C,B;D) →
At(A,B,C;D). By equivariance these isomorphisms are natural in A, as are the vertical
isomorphisms below.

A((AC)B;D)

∼=
��

A(sA,B,C ,D)
// A((AB)C,D)

∼=
��

At(A,C,B;D)
β∗2 // At(A,B,C;D).

(5.10)

By the Yoneda Lemma there is a unique natural isomorphism

sA,B,C : (AB)C → (AC)B
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rendering the diagram above commutative.
In the appendix, we prove:

5.9. Theorem. Let A be a skew monoidal category, and A the corresponding left repre-
sentable skew multicategory. The above assignment defines a bijection between braidings
on A and braidings on A, which restricts to a bijection between symmetries on A and
symmetries on A.

6. Symmetric skew monoidal 2-categories and symmetric monoidal bicat-
egories

This last section is geared towards understanding the braidings on skew monoidal 2-
categories, like FProds as well as (bicategorical) braidings on the induced monoidal
bicategories. We do this using the corresponding skew multicategories, and the results of
the previous section.

We have not, thus far, mentioned 2-categorical (that is, Cat-enriched) structure. The
various structures that we have been dealing with — skew monoidal categories, skew
multicategories and their braided and symmetric variants — each admit Cat-enriched
analogues. For instance a skew monoidal 2-category involves a tensor product 2-functor,
as well as 2-natural transformations a, `, r all satisfying the usual five equations. For a
braided (or symmetric) skew monoidal 2-category we of course require that the braiding
be 2-natural as well. In a skew 2-multicategory A one has categories of tight and loose
multimaps connected by a functor j : At(a; b) → A`(a; b) and, again, the substitution
maps themselves become functors rather than just functions. In the braided/symmetric
variants the actions s∗ on the multihoms are themselves functors. Again we can speak of
Cat-enriched left representability, which now involves isomorphisms of categories rather
than mere bijections of sets.

Just as in the unenriched setting, skew 2-multicategories in which each j : At(a; b)→
A`(a; b) is the inclusion of a full subcategory (rather than a mere subset) can be identified
with 2-multicategories equipped with a subcollection of non-nullary tight multimorphisms
having the same closure properties described in 5.2. Again, a braiding/symmetry in this
context simply amounts to a braiding/symmetry on the 2-multicategory which respects
tight multimaps in the sense described in 5.6.

FP is a simple example of such a symmetric skew 2-multicategory: for each of x = t, l
the morphisms of FPx(A1, . . . ,An;B) are the natural transformations.

6.1. Examples. More generally any pseudocommutative 2-monad T on Cat [7] gives
rise to a skew 2-multicategory T-Alg. When T is the 2-monad for categories with finite
products we obtain the skew 2-multicategory described in Example 5.3. But there are
many more examples — the 2-monads for permutative categories, symmetric monoidal
categories and categories equipped with a given class of limits (or colimits) are all pseudo-
commutative [7, 13].
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For such a T an object of the skew 2-multicategory T-Alg is a strict T -algebra
A; we write A for the underlying category of the T -algebra A. A multimorphism
F : (A1, . . . ,An) → B is a functor F : A1 × . . . × An → B equipped with the structure
of an algebra pseudomorphism in each variable separately, with these n pseudomorphism
structures commuting with each other in the sense explained in [7]. Nullary morphisms
a : (−) → A are just objects a of A. There are also transformations between the multi-
morphisms: these are natural transformations which are T -algebra transformations in
each variable separately; once again, see [7] for the details.

We obtain a skew 2-multicategory T-Alg by defining a multimap F as above to be tight
if it is a strict algebra morphism in the first variable — that is, if for all a2 ∈ A2, . . . , an ∈
An the pseudomorphism F (−, a2, . . . , an) : A1 → B is strict. See Section 4.2 of [3] and
the references therein for more on this example.

6.2. Proposition. Let T be an accessible symmetric pseudo-commutative 2-monad on
Cat. Then the skew 2-multicategory T-Alg of Example 6.1 is symmetric. It is also left
representable and closed.

Proof. Left representability and closedness of the underlying skew multicategories are es-
tablished in Examples 4.8 of [3]. The additional 2-categorical aspects that must be verified
are straightforward. The underlying 2-multicategory of loose maps is symmetric by Propo-
sition 18 of [7]. A multimap F : (A1, . . . ,An) → B involves a functor A1 × . . .An → B
equipped with a pseudomap structure on the functor

F (a1, . . . , ai−1,−, ai+1, . . . , an) : Ai → B

for each i ∈ {1, . . . , n} and tuple (a1, . . . , ai−1, ai+1, . . . , an). The different pseudomap
structures are required to satisfy compatibility axioms. The symmetry s ∈ Sn per-
mutes the variables and the pseudomap structures — in particular, if s ∈ S1

n the mul-
timap Fs : (A1,As2 . . . ,Asn)→ B has pseudomap (Fs)(−, a2, . . . , an) : A1 → B given by
F (−, as−12, . . . , as−1n) : A1 → B which is strict whenever F is strict in the first variable.
Hence Fs is tight if F is tight and s ∈ S1

n, as required.

6.3. Corollary. Let T be an accessible symmetric pseudo-commutative 2-monad on
Cat. Then the 2-category T-Algs of strict algebras and strict morphisms admits a closed
symmetric skew monoidal structure.

Proof. The construction of a symmetric skew monoidal category from a left representable
symmetric skew multicategory given in Theorem 5.9 admits an evident Cat-enriched ver-
sion. Applying this, together with Proposition 6.2, we obtain the desired symmetric skew
monoidal structure on the 2-category T-Algs. For closedness we combine Proposition 6.2
above and Theorem 6.4 of [3] (in its Cat-enriched form).
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All of the pseudo-commutative 2-monads described in Examples 6.1 are accessible
symmetric pseudo-commutative [7, 13]. Accordingly it follows from Corollary 6.3 that the
categories of permutative categories, of symmetric monoidal categories, and of categories
with a given class of limits or a given class of colimits all admit closed symmetric skew
monoidal structures.

As a special case of this we obtain the symmetric skew structure on FProds described
in the introduction, in which maps AB → C correspond to functors A×B → C preserving
products strictly in the first variable and up to isomorphism in the second. The inter-
nal hom [A,B] is the usual category of finite product preserving functors (in the up to
isomorphism sense) with products pointwise as in B.

6.4. Braided monoidal bicategories. Finally, we explain how our 2-categorical ex-
amples give rise to symmetric monoidal bicategories [1, 6].

To begin with we observe that if C is a skew monoidal 2-category whose coherence
constraints are equivalences, then C is, in particular, a monoidal bicategory. (This is the
approach of Section 6.4.3 of [2], on which we now build.) To equip our monoidal bicategory
with a symmetry, we need to provide pseudonatural equivalences AB → BA together
with, replacing the symmetry equations, certain invertible modifications satisfying a host
of coherence axioms. Now the 2-variable morphisms AB → BA are not part of the
structure that we are, in the skew setting, presented with. However since the components
`AB : A ∗B = (IA)B → AB are equivalences, we can obtain a symmetry of the required
form as the composite

AB
`∗AB // (IA)B

sI,A,B // (IB)A
`BA // BA (6.1)

in which `∗A : A→ IA is the equivalence inverse of `A. The composite equivalence will be
the desired component of the braiding on our monoidal bicategory.

6.5. Proposition. Let C be a symmetric skew monoidal 2-category whose coherence
constraints are equivalences. Then C is a symmetric monoidal bicategory with braiding
components as in (6.1).

Proof. Let us firstly note that the symmetry axioms for a symmetric monoidal bicategory
do not refer to the unit. Using the prefix semi, as usual, to specify that part of a structure
not mentioning the unit, it follows that a symmetry on a monoidal bicategory amounts
to a symmetry on its underlying semimonoidal bicategory.

Now the analysis of Section 4.12 applies equally to this Cat-enriched context, and so
we obtain a skew semimonoidal 2-category with product A∗B = IA.B and a semimonoidal
2-functor (1, `1) : (C, .)→ (C, ∗). Since the associators for . are equivalences and since the
equivalences A ∗B → AB commute with the respective associators it follows, by 2 out of
3 for equivalences, that the associators for (C, ∗) are equivalences — thus (C, ∗) is a semi-
monoidal bicategory too. Furthermore, since by Proposition 4.14 the classical symmetry
axioms holds on the nose, (C, ∗) is in fact a symmetric semimonoidal bicategory.
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Finally we transport the braiding across the componentwise equivalence

(1, l1) : (C, .)→ (C, ∗)

of semimonoidal bicategories to obtain the structure of a symmetric semimonoidal bi-
category on (C, .). The resulting symmetry, obtained by transport of structure, is that
described in (6.1).

Now adapting the approach of [2, Section 6.4.3] let (T-Algs)c denote the full sub 2-
category of T-Algs containing the flexible (cofibrant) T -algebras. By [2, Proposition 6.5] if
T is an accessible pseudo-commutative 2-monad on Cat then the skew monoidal structure
on T-Algs restricts to (T-Algs)c where the coherence constraints become equivalences. If
moreover T is symmetric pseudo-commutative then, by Corollary 6.3, (T-Algs)c is a sym-
metric skew monoidal 2-category whose coherence constraints are equivalences, and so, by
Proposition 6.5 above, it is a symmetric monoidal bicategory. Finally we observe that, as
in [2, Lemma 6.6], the composite inclusion (T-Algs)c → T-Algs → T-Alg of the flexible
algebras and strict morphisms into the 2-category of strict algebras and pseudomorphisms
is a biequivalence of 2-categories; transporting the structure of a symmetric monoidal bi-
category along the biequivalence we obtain the symmetric monoidal bicategory structure
on T-Alg. That is:

6.6. Theorem. Let T be an accessible symmetric pseudo-commutative 2-monad on Cat.
Then the 2-category T-Alg admits the structure of a symmetric monoidal bicategory.

A. Proof of Theorem 5.9

In this appendix we give the remaining details in the comparison between braidings on
skew monoidal categories and braidings on the corresponding left representable skew
multicategory.

Suppose that A is a left representable skew multicategory corresponding to a skew
monoidal category A. Commutativity of the diagram

A((ac)b; d)

∼=
��

A(sa,b,c,d) // A((ab)c, d)

∼=
��

At(a, c, b; d)
β∗2 // At(a, b, c; d)

determines a bijection between isomorphisms sa,b,c : (ab)c → (ac)b and invertible actions
g 7→ gβ2 for each tight ternary g, subject to the requirement that f ◦1 gβ2 = (f ◦1 g)β2 for
all tight unary f . The first step is to understand braidings on A in terms of tight maps
in A.
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A.1. Theorem. There is a bijection between braidings on the skew monoidal category A
and invertible actions g 7→ gβj for tight m-ary g and 1 < j < m, subject to the braid
equations and satisfying the conditions

f ◦i gβj = (f ◦i g)βi+j−1 (A.1)

gβj ◦i f = (g ◦i f)βj if j < i− 1 (A.2)

gβj ◦i f = (g ◦i−1 f)βj+n−1 . . . βj if j = i− 1 (A.3)

gβj ◦i f = (g ◦i+1 f)βj . . . βj+n−1 if j = i (A.4)

gβj ◦i f = (g ◦i f)βj+n−1 if j > i (A.5)

for tight n-ary f . Under this bijection the braiding s corresponds as above to the action
g 7→ gβ2 for tight ternary g.

Suppose given isomorphisms sa,b,c : (ab)c → (ac)b and the corresponding actions g 7→
gβ2 for tight ternary g. Then (A.1) holds for n = 1 and m = 3 (in which case necessarily
i = 1 and j = 2). Naturality of s is equivalent to (A.3), (A.4), and (A.5) for n = 1 and
m = 3 (in which case necessarily j = 2). Note also that when n = 1 and m = 3 condition
(A.2) is empty.

Given objects a, b, c ∈ A, let θabc3 ∈ At(a, b, c; (ab)c) be the universal tight ternary map.
Postcomposing this by sa,b,c : (ab)c → (ac)b equally gives the map θacb3 β2. An arbitrary
tight ternary map g ∈ At(a, b, c;x) has the form g′ ◦1 θabc3 for a unique tight unary g′, and
we then have gβ2 = g′ ◦1 θabc3 β2. In the following we shall usually omit the superscripts in
the maps θabc3 .

Now for n ≥ 3 each tight n-ary g has the form g = g′ ◦1 θ3 for a unique tight n − 2
-ary g′. We may now define gβ2 to be g′ ◦1 θ3β2, and deduce that h ◦1 θ3β2 = (h ◦1 θ3)β2
for all tight h.

A.2. Proposition. The special case

f ◦1 gβ2 = (f ◦1 g)β2 (A.6)

of (A.1) holds for all tight f and g. Furthermore the action is uniquely determined by
that property together with the values of θ3β2.

Proof. Uniqueness follows on taking g = θ3. To verify (A.6) in general, write g = g′◦1θ3;
then

f ◦1 gβ2 = f ◦1 (g′ ◦1 θ3β2) = (f ◦1 g′) ◦1 θ3β2 = ((f ◦1 g′) ◦1 θ3)β2 = (f ◦1 g)β2.
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A.3. Proposition. Suppose that the equations (A.3)– (A.5) hold for all tight ternary g
and tight unary f . Then they hold for all tight g and tight unary f when j = 2.

Proof. This follows by

gβ2 ◦1 f = (g′ ◦1 θ3β2) ◦1 f
= g′ ◦1 (θ3β2 ◦1 f)

= g′ ◦1 (θ3 ◦1 f)β2 (by (A.5))

= (g′ ◦1 (θ3 ◦1 f))β2 (by (A.6))

= (g ◦1 f)β2

gβ2 ◦2 f = (g′ ◦1 θ3β2) ◦2 f
= g′ ◦1 (θ3β2 ◦2 f)

= g′ ◦1 (θ3 ◦3 f)β2 (by (A.4))

= (g′ ◦1 (θ3 ◦3 f))β2 (by (A.6))

= (g ◦3 f)β2

gβ2 ◦3 f = (g′ ◦1 θ3β2) ◦3 f
= g′ ◦1 (θ3β2 ◦3 f)

= g′ ◦1 (θ3 ◦2 f)β2 (by (A.3))

= (g′ ◦1 (θ3 ◦2 f)β2 (by (A.6))

= (g ◦2 f)β2.

In what follows we let θm ∈ At(a1, . . . , am; a1 . . . am) be a universal tight m-ary map
with m > 3. We can now define further actions g 7→ gβj as follows.

A.4. Proposition. There is a unique assignment g 7→ gβj for a tight m-ary g and
2 ≤ j < m, such that (A.5) holds for all tight f .

Proof. For the uniqueness, take f = θj−1, to see that

(g′′ ◦1 θj−1)βj = g′′β2 ◦1 θj−1 (A.7)

and use the fact that any tight g can be written as g′′ ◦1 θj−1 for a unique tight g′′.
If f is an arbitrary tight n-ary map, write θj−1 ◦i f = f ′ ◦1 θn+j−2, where f ′ is tight



54 JOHN BOURKE AND STEPHEN LACK

unary, and now

gβj ◦i f = (g′′β2 ◦1 θj−1) ◦i f
= g′′β2 ◦1 (θj−1 ◦i f)

= g′′β2 ◦1 (f ′ ◦1 θn+j−2)
= (g′′β2 ◦1 f ′) ◦1 θn+j−2
= (g′′ ◦1 f ′)β2 ◦1 θn+j−2 (Proposition A.3)

= ((g′′ ◦1 f ′) ◦1 θn+j−2)βn+j−1 (by definition)

= (g′′ ◦1 (f ′ ◦1 θn+j−2)βn+j−1
= (g′′ ◦1 (θj−1 ◦i f))βn+j−1

= (g ◦1 f)βn+j−1

gives the result.

A.5. Proposition. There is a bijection between natural isomorphisms s and invertible
assignments g 7→ gβj for tight m-ary g and for 2 ≤ j < m, subject to equation (A.1) for
i = 1 and all tight g and f ; (A.2) and (A.5) for all tight g and f ; (A.3) and (A.4) for all
tight g and tight unary f .

Proof. We have proved (A.5) in Proposition A.4. The relevant parts of (A.1) hold by
the calculation

f ◦1 gβj = f ◦1 (g′′β2 ◦1 θj−1)
= (f ◦1 g′′β2) ◦1 θj−1
= (f ◦1 g′′)β2 ◦1 θj−1 (by (A.6))

= ((f ◦1 g′′) ◦1 θj−1)βj (by (A.7))

= (f ◦1 g)βj.

For (A.4) with tight unary f we have

gβj ◦j f = (g′′β2 ◦1 θj−1) ◦j f
= (g′′β2 ◦2 f) ◦1 θj−1
= (g′′ ◦3 f)β2 ◦1 θj−1 (Proposition A.3)

= ((g′′ ◦3 f) ◦1 θj−1)βj (by (A.7))

= (g′′ ◦1 θj−1) ◦j+1 f)βj

= (g ◦j+1 f)βj.
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A similar argument gives (A.3) for tight unary f . Finally for (A.2) with g tight m-ary, f
tight n-ary, and j + 1 < i ≤ m, write g = g′ ◦1 θj+1; then

gβj ◦i f = (g′ ◦1 θj+1)βj ◦i f
= (g′ ◦1 θj+1βj) ◦i f (Proposition A.4)

= (g′ ◦i−j f) ◦1 θj+1βj

= ((g′ ◦i−j f) ◦1 θj+1)βj (Proposition A.4)

= ((g′ ◦1 θj+1) ◦i f)βj

= (g ◦i f)βj.

Next we investigate the various conditions on s in terms of the corresponding assign-
ments g 7→ gβj. First, we observe:

A.6. Proposition. If g is tight m-ary and 2 ≤ j < j + 1 < i < m then gβiβj = gβjβi.

Proof. Write g = g′ ◦1 θi−1. Then

(gβi)βj = (g′β2 ◦1 θi−1)βj (defn)

= g′β2 ◦1 θi−1βj (by (A.1) with i = 1)

= g′β2 ◦1 (θi−j+1 ◦1 θj−1)βj
= g′β2 ◦1 (θi−j+1β2 ◦1 θj−1) (defn)

= (g′β2 ◦1 θi−j+1β2) ◦1 θj−1
= (g′ ◦1 θi−j+1β2)βi−j+2 ◦1 θj−1 (by (A.5))

= ((g′ ◦1 θi−j+1β2) ◦1 θj−1)βi (by (A.5))

= (g′ ◦1 (θi−j+1β2 ◦1 θj−1))βi
= (g′ ◦1 (θi−j+1 ◦1 θj−1)βj)βi (defn)

= (g′ ◦1 θi−1βj)βi
= ((g′ ◦1 θi−1)βj)βi (by (A.1) with i = 1)

= (gβj)βi.

A.7. Proposition. Let s : (ab)c→ (ac)b be natural isomorphisms in A, and g 7→ gβj the
corresponding actions on tight morphisms in A. The following conditions are equivalent:

(a) s satisfies (2.4);

(b) θ2 ◦2 θ3β2 = (θ2 ◦2 θ3)β3;

(c) (A.1) holds for all tight f and g.
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Proof. The equivalence of (a) and (b) is a straightforward translation using universality
of the θs, while (b) is a special case of (c). So we just need to check that the general case
follows from the special one.

First we show that f ◦2 θ3β2 = (f ◦2 θ3)β3 for all tight f . Write f = f ′ ◦1 θ2 with f ′

tight, then:

f ◦2 θ3β2 = (f ′ ◦1 θ2) ◦2 θ3β2
= f ′ ◦1 (θ2 ◦2 θ3β2)
= f ′ ◦1 (θ2 ◦2 θ3)β3 (by (b))

= (f ′ ◦1 (θ2 ◦2 θ3))β3 (by (A.1) with i = 1)

= ((f ′ ◦1 θ2) ◦2 θ3)β3
= (f ◦2 θ3)β3.

For i > 2 write f = f ′ ◦1 θi−1, and observe that

f ◦i θ3β2 = (f ′ ◦1 θi−1) ◦i θ3β2
= (f ′ ◦2 θ3β2) ◦1 θi−1
= (f ′ ◦2 θ3)β3 ◦1 θi−1 (by the preceding calculation)

= ((f ′ ◦2 θ3) ◦1 θi−1)βi+1 (by (A.5))

= ((f ′ ◦1 θi−1) ◦i θ3)βi+1

= (f ◦i θ3)βi+1.

Thus (A.1) holds for g = θ3. For tight g and j = 2 write g = g′ ◦1 θ3, so that

f ◦i gβ2 = f ◦i (g′ ◦1 θ3β2)
= (f ◦i g′) ◦i θ3β2
= ((f ◦i g′) ◦i θ3)βi+1 (by the preceding calculation)

= (f ◦i (g′ ◦1 θ3))βi+1

= (f ◦i g)βi+1.

Finally for j > 2 write g = g′′ ◦1 θj−1, so that

f ◦i gβj = f ◦i (g′′β2 ◦1 θj−1)
= (f ◦i g′′β2) ◦i θj−1
= (f ◦i g′′)βi+1 ◦i θj−1 (by the preceding calculation)

= ((f ◦i g′′) ◦i θj−1)βi+j−1 (by (A.5))

= (f ◦i (g′′ ◦1 θj−1))βi+j−1
= (f ◦i g)βi+j−1

as required.
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A.8. Proposition. Let s : (ab)c→ (ac)b be natural isomorphisms in A, and g 7→ gβj the
corresponding actions on tight morphisms in A. The following conditions are equivalent:

(a) s satisfies (2.2);

(b) θ3β2 ◦3 θ2 = (θ3 ◦2 θ2)β3β2;

(c) (A.3) holds for all tight f and g.

Proof. The equivalence of (a) and (b) is a straightforward translation using universality
of the θs, while (b) is a special case of (c). So we just need to check that the general case
follows from the special one.

First we show that gβ2 ◦3 θ2 = (g ◦2 θ2)β3β2 for all tight g (of arity at least 3). Write
g = g′ ◦1 θ3; then

gβ2 ◦3 θ2 = (g′ ◦1 θ3)β2 ◦3 θ2
= (g′ ◦1 θ3β2) ◦3 θ2 (by (A.5))

= g′ ◦1 (θ3β2 ◦3 θ2)
= g′ ◦1 (θ3 ◦2 θ2)β3β2 (by (b))

= (g′ ◦1 (θ3 ◦2 θ2)β3)β2 (by (A.1) with i = 1)

= (g′ ◦1 (θ3 ◦2 θ2))β3β2 (by (A.1) with i = 1)

= (g ◦2 θ2)β3β2.
For j > 2 write g = g′′ ◦1 θj−1, and observe that

gβj ◦j+1 θ2 = (g′′ ◦1 θj−1)βj ◦j+1 θ2

= (g′′β2 ◦1 θj−1) ◦j+1 θ2 (by (A.5))

= (g′′β2 ◦3 θ2) ◦1 θj−1
= (g′′ ◦2 θ2)β3β2 ◦1 θj−1 (by the preceding calculation)

= ((g′′ ◦2 θ2)β3 ◦1 θj−1)βj (by (A.5))

= ((g′′ ◦2 θ2) ◦1 θj−1)βj+1βj (by (A.5))

= (g ◦j θ2)βj+1βj.

Finally prove the general case by induction on the arity n of f . The base case n = 1
holds by Proposition A.5. Write f = f ′ ◦1 θ2; then f ′ has arity strictly less than that of
f , allowing the induction, and

gβj ◦j+1 f = gβj ◦j+1 (f ′ ◦1 θ2)
= (gβj ◦j+1 f

′) ◦j+1 θ2

= (g ◦j f ′)βj+n−2 . . . βj ◦j+1 θ2 (ind hyp)

= ((g ◦j f ′)βj+n−2 . . . βj+1 ◦j θ2)βj+1βj (previous case)

= ((g ◦j f ′) ◦j θ2)βj+n−1 . . . βj (by (A.5))

= (g ◦j f)βj+n−1 . . . βj

as required.
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Similarly we have:

A.9. Proposition. Let s : (ab)c→ (ac)b be natural isomorphisms in A, and g 7→ gβj the
corresponding actions on tight morphisms in A. The following conditions are equivalent:

(a) s satisfies (2.3);

(b) θ3β2 ◦2 θ2 = (θ3 ◦3 θ2)β2β3;

(c) (A.4) holds for all tight f and g.

The next result completes the proof of Theorem A.1.

A.10. Proposition. Let s : (ab)c → (ac)b be natural isomorphisms in A, and g 7→ gβj
the corresponding actions on tight morphisms in A. If (A.1) holds for all tight g and f
then the following conditions are equivalent:

(a) s satisfies (2.1);

(b) θ4β2β3β2 = θ4β3β2β3;

(c) gβjβj+1βj = gβj+1βjβj+1 for all tight n-ary g.

Proof. Once again (a) and (b) are clearly equivalent and (b) is a special case of (c).
Thus it remains to prove that (b) implies (c). First observe that if g = g′ ◦1 θ4 then

gβ2β3β2 = (g′ ◦1 θ4)β2β3β2
= g′ ◦1 θ4β2β3β2 (by (A.1))

= g′ ◦1 θ4β3β2β3 (by (b))

= (g′ ◦1 θ4)β3β2β3 (by (A.1))

= gβ3β2β3

and now if g = g′′ ◦1 θj−1 then

gβjβj+1βj = (g′′ ◦1 θj−1)βjβj+1βj

= g′′β2β3β2 ◦1 θj−1 (by (A.5))

= g′′β3β2β3 ◦1 θj−1 (by preceding calculation)

= (g′′ ◦1 θj−1)βj+1βjβj+1 (by (A.5))

= gβj+1βjβj+1.
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This completes the proof of Theorem A.1. We now turn to the loose maps. A loose
m-ary morphism g can be written as g′◦1u for a unique tight (m+1)-ary morphism, where
u is the (loose) nullary morphism classifier. If 1 ≤ j < m we define gβj = g′βj+1 ◦1 u.
This clearly gives an action of the braid groups on loose morphisms and moreover this
definition is forced by the requirement that the equation (A.5) hold for loose morphisms,
as it must in a braided skew multicategory; furthermore, the actions on tight and loose
maps are mutually compatible.

A.11. Lemma. Equations (A.2)–(A.5) hold for all tight g with f = u.

Proof. For (A.5), first consider the case that i = 1. This says that gβj ◦1u = (g◦1u)βj−1
and holds by definition of the right hand side. For i > 1 write g = h ◦1 θi with h tight.
Then

gβj ◦i u = (h ◦1 θi)βj ◦i u
= (hβj−i+1 ◦1 θi) ◦i u (by (A.5))

= hβj−i+1 ◦1 (θi ◦i u)

= (h ◦1 (θi ◦i u))βj−1 (by (A.5) and fact that θi ◦i u is tight)

= ((h ◦1 θi) ◦i u)βj−1

= (g ◦i u)βj−1.

For (A.3) we first observe that the special case θ3β2 ◦3 u = θ3 ◦2 u is equivalent to the
equality in Proposition 2.8. Thus it remains to show that the general case follows from
this special case. For this let us write g = g′ ◦ θj+1.

gβj ◦j+1 u = (g′ ◦1 θj+1)βj ◦j+1 u

= ((g′ ◦1 θ3) ◦1 θj−1)βj ◦j+1 u

= ((g′ ◦1 θ3)β2 ◦1 θj−1) ◦j+1 u (by (A.5))

= ((g′ ◦1 θ3β2) ◦1 θj−1) ◦j+1 u (by (A.1))

= (g′ ◦1 (θ3β2 ◦1 θj−1)) ◦j+1 u

= g′ ◦1 ((θ3β2 ◦1 θj−1) ◦j+1 u)

= g′ ◦1 ((θ3β2 ◦3 u) ◦1 θj−1)
= g′ ◦1 ((θ3 ◦2 u) ◦1 θj−1) (by special case)

= g′ ◦1 ((θ3 ◦1 θj−1) ◦j u)

= (g′ ◦1 θj+1) ◦j u
= g ◦j u.

For (A.4) observe that the special case θ3β2 ◦2 u = θ3 ◦3 u is equivalent to the equality
in Proposition 2.11, and use a similar argument to show that the general case follows from
this special case.



60 JOHN BOURKE AND STEPHEN LACK

Finally for (A.2) write g = h ◦1 θj+1 with h tight. Then

gβj ◦i u = (h ◦1 θj+1)βj ◦i u
= (h ◦1 θj+1βj) ◦i u (by (A.1))

= (h ◦i−j+1 u) ◦1 θj+1βj

= ((h ◦i−j+1 u) ◦1 θj+1)βj (by (A.1) and fact that h ◦i−j+1 u is tight)

= ((h ◦1 θj+1) ◦i u)βj

= (g ◦i u)βj.

To complete the proof of Theorem 5.9 it remains to show:

A.12. Proposition. The remaining conditions (A.1)–(A.5) also hold when f or g are
loose.

Proof. Consider (A.5). If g is tight, but f is loose, write f = f ′ ◦1 u with f ′ tight of
arity n+ 1; then

gβj ◦i f = gβj ◦i (f ′ ◦1 u)

= (gβj ◦i f ′) ◦i u
= (g ◦i f ′)βj+n ◦i u ((A.5) for tight morphisms)

= ((g ◦i f ′) ◦i u)βj+n−1 (by Lemma A.11)

= (g ◦i (f ′ ◦1 u))βj+n−1

= (g ◦i f)βj+n−1.

If g is loose, write g = g′ ◦1 u with g′ tight, and then observe that

gβj ◦1 u = (g′ ◦1 u)βj ◦1 u
= (g′βj+1 ◦1 u) ◦1 u (by definition)

= (g′βj+1 ◦2 u) ◦1 u
= (g′ ◦2 u)βj ◦1 u (previous case)

= ((g′ ◦2 u) ◦1 u)βj−1 (by definition)

= ((g′ ◦1 u) ◦1 u)βj−1

= (g ◦1 u)βj−1

gβj ◦i f = (g′ ◦1 u)βj ◦i f
= (g′βj+1 ◦1 u) ◦i f (by definition)

= ((g′βj+1 ◦i+1 f) ◦1 u
= ((g′ ◦i+1 f)βj+n ◦1 u (previous case)

= ((g′ ◦i+1 f) ◦1 u)βj+n−1 (previous case)

= ((g′ ◦1 u) ◦i f)βj+n−1

= (g ◦i f)βj+n−1



BRAIDED SKEW MONOIDAL CATEGORIES 61

which completes all cases of (A.5).
Next we do (A.1). If f is tight but g loose, write g = g′ ◦1 u with g′ tight. Then

f ◦i gβj = f ◦i (g′ ◦1 u)βj

= f ◦i (g′βj+1 ◦1 u) (by definition)

= (f ◦i g′βj+1) ◦i u
= (f ◦i g′)βi+j ◦i u (by (A.5))

= ((f ◦i g′) ◦i u)βi+j−1 (by (A.5))

= (f ◦i g)βi+j−1.

If f is loose, write f = f ′ ◦1 u with f ′ tight. Then

f ◦i gβj = ((f ′ ◦1 u) ◦i gβj
= (f ′ ◦i+1 gβj) ◦1 u
= (f ′ ◦i+1 g)βi+j ◦1 u (previous case)

= ((f ′ ◦i+1 g) ◦1 u)βi+j−1 (by (A.5))

= (f ◦i g)βi+j−1

which completes all cases of (A.1).
Now consider (A.2). If g is tight but f loose, write f = f ′ ◦1 u with f ′ tight; then

gβj ◦i f = gβj ◦i (f ′ ◦1 u)

= (gβj ◦i f ′) ◦i u
= (g ◦i f ′)βj ◦i u (by (A.2) for tight morphisms)

= ((g ◦i f ′) ◦i u)βj (by Lemma A.11)

= (g ◦i f)βj.

If g is loose write g = g′ ◦1 u with g′ tight:

gβj ◦i f = (g′ ◦1 u)βj ◦i f
= (g′βj+1 ◦1 u) ◦i f (by Lemma A.11)

= (g′βj+1 ◦i+1 f) ◦1 u
= (g′ ◦i+1 f)βj+1 ◦1 u (previous case)

= ((g′ ◦i+1 f) ◦1 u)βj (by (A.5))

= (g ◦i f)βj.

This completes (A.2).
Next we do (A.3), so that j = i − 1. If g is tight and f loose, write f = f ′ ◦1 u with
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f ′ tight; then:

gβj ◦j+1 f = gβj ◦j+1 (f ′ ◦1 u)

= (gβj ◦j+1 f
′) ◦j+1 u

= (g ◦j f ′)βj+n . . . βj ◦j+1 u (by (A.3) for tight morphisms)

= (g ◦i−1 f ′)βj+n . . . βj+1 ◦j u (by Lemma A.11)

= ((g ◦i−1 f ′) ◦i−1 u)βj+n−1 . . . βj (by repeated use of (A.5))

= (g ◦i−1 f)βj+n−1 . . . βj

while if g is loose we may write g = g′ ◦1 u and

gβj ◦j+1 f = (g′ ◦1 u)βj ◦j+1 f

= (g′βj+1 ◦1 u) ◦j+1 f (by definition)

= (g′βj+1 ◦j+2 f) ◦1 u
= (g′ ◦i f)βj+n . . . βj+1 ◦1 u (previous case)

= ((g′ ◦i f) ◦1 u)βj+n−1 . . . βj (by repeated use of (A.5))

= (g ◦i−1 f)βj+n−1 . . . βj

completing the proof of (A.3).
That leaves only (A.4), where j = i. This is entirely analogous to the case of (A.3),

and is left to the reader.
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