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WEAK MODEL CATEGORIES IN CLASSICAL AND
CONSTRUCTIVE MATHEMATICS

SIMON HENRY

Abstract. We introduce a notion of “weak model category” which is a weakening
of the notion of Quillen model category, still sufficient to define a homotopy category,
Quillen adjunctions, Quillen equivalences, and most of the usual constructions of cat-
egorical homotopy theory. Both left and right semi-model categories are weak model
categories, and the opposite of a weak model category is again a weak model category.

The main advantage of weak model categories is that they are easier to construct than
Quillen model categories. In particular we give some simple criteria on two weak factor-
ization systems for them to form a weak model category. The theory is developed in a
very weak constructive, even predicative, framework and we use it to give constructive
proofs of the existence of weak versions of various standard model categories, includ-
ing the Kan–Quillen model structure, Lurie’s variant of the Joyal model structure on
marked simplicial sets, and the Verity model structure for weak complicial sets. We also
construct semi-simplicial versions of all these.
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1. Introduction and preliminaries

1.1. Introduction. Quillen model categories constitute, since their introduction by
D. Quillen in [24], one of the main frameworks for categorical homotopy theory. Let us
recall their definition (in a simplified form which can be found in [25]):

1.1.1. Definition. A Quillen model category is a complete and cocomplete category with
three classes of morphisms W (equivalences), Fib (fibrations), and Cof (cofibrations),
such that:

(i) W satisfies 2-out-of-3 and contains the isomorphisms.

(ii) (W ∩Cof,Fib) is a weak factorization system.

(iii) (Cof,Fib ∩W) is a weak factorization system.

It has been realized more recently that for many examples, some parts of this structure,
which are actually not useful in practice, are difficult, or even impossible to obtain. This
has motivated the introduction of several weakenings of this definition:

The notion of left semi-model category1 weakens axiom (ii) by:

� Only requiring that arrows with a cofibrant domain (instead of all arrows) can be
factored as an acyclic cofibration followed by a fibration.

� Only requiring that acyclic cofibrations with cofibrant domain (instead of all acyclic
cofibrations) have the left lifting property against fibrations.

� The stability under retracts of fibrations and acyclic cofibrations, no longer auto-
matic, is also required.

The dual notion of right semi-model category2 is obtained by instead weakening axiom
(iii), restricting the existence of factorizations to arrows with fibrant target, and the
lifting property to acyclic fibrations with fibrant target. We will not give many examples
of such structures, for which we refer to [29], [2] or [3]. The introduction of [3] contains
an up-to-date bibliography on the topic.

1First introduced in [29] under the name J-semi model structure.
2Introduced in [2].
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In this paper we introduce a new notion called “weak model category” where we
instead restrict the two weak factorization systems “on both sides”, i.e. we only require
that arrows with both a cofibrant domain and a fibrant target can be factored, and
only ask for the lifting property between (acyclic) cofibrations with cofibrant domain and
(acyclic) fibration with fibrant targets. The precise definition will be given in Section 2.1
(Definition 2.1.10). This is a generalization of the notion of Quillen model category
which encompasses both left and right semi-model categories. The notion is self-dual:
the opposite of a weak model category is also a weak model category, and it is still
sufficient to study and compare different homotopy theories: we will define the homotopy
category of a weak model category similarly to that of a Quillen model category, a notion
of Quillen adjunction and Quillen equivalence between weak model categories, and so on.
Our guiding principle will be that only the notion of cofibration with cofibrant domain
and fibration with fibrant target should be considered meaningful. As a consequence, if
X is an object which is neither fibrant nor cofibrant, it is not possible to construct fibrant
or cofibrant replacements for X, and hence such objects should not be considered when
talking about homotopy theoretic properties. For this reason the class W of equivalences
will be a class of arrows in the full subcategory Cc∪f = Ccof ∪ Cfib of objects of C that are
either fibrant or cofibrant.

Initially, the main reason for developing this theory was the appearance of some exam-
ples of such structures in my work: The structure defined on the category of pre-cylinder
categories in [13] is a weak model structure, and the main result of [14] (published simul-
taneously with the first version of the present paper) involves constructing and comparing
several weak model structures, and relies on results of the present paper.

But while developing the theory of weak model structures it appeared that there are
many examples of categories which, even if they do admit a full Quillen model structure,
it is considerably easier to construct only a weak model structure and, most of time, this
is enough for all the practical applications. This has allowed to tackle another important
problem: giving constructive proofs that some classical examples of model structure exist.
In the present paper we will show that the projective model structure on chain complexes
(Subsection 4.2), the Kan–Quillen model structure on simplicial sets (Subsection 5.2), the
Joyal–Lurie model structure on marked simplicial sets (Subsection 5.3), and the Verity
model structure on stratified simplicial sets (Subsection 5.4) can all be proved to exist
constructively as weak model structures, hence opening the door to a constructive theory
of higher categories. This has, in the subsequent work [10], allowed, up to some coherence
issue that still needs to be taken care of, to give a constructive version of Voevodsky’s
simplicial model of homotopy type theory. It was also shown (in [15] and [11]) that
the Kan–Quillen model structure on simplicial sets can be constructively proved to be
a proper Quillen model category, but this requires considerably more work, and uses
properties very specific to the Kan–Quillen model structure.3

The present paper is mostly focused on the aspect of the theory of weak model cate-

3In fact, the author believes a similar result for the Joyal model structures is out of reach at the
moment.



878 SIMON HENRY

gories that can be developed in constructive mathematics. In particular, many classical
topics of the theory of Quillen model categories, for example the notion of combinatorial
model structure, or the theory of Bousfield localizations, will be ignored in the present
paper as they require stronger logical assumptions. A subsequent paper [16] studies these
non-constructive aspects, and the theory of combinatorial and accessible weak model
categories. The precise relation between weak model structures and left and right semi-
model structure will also be studied in great details in [16]. A reader not interested in
constructive aspects can find a more concise introduction to weak model categories in
[16].

Another important objective of the present paper is to give several easy criteria for
constructing a weak model structure on a category, especially in the case where we start
from the cofibrations and the fibrations, but we do not have a good description of the
weak equivalences, as this is generally a hard task for Quillen model categories. This
is a key point for the constructive examples of weak model structure because, before
the present works, it was not known how to define a notion of “weak equivalences”, for
example between simplicial sets, that would allow to construct a model structure.

1.1.2. Acknowledgments. I would like to thank Nicola Gambino and John Bourke
for their many comments and suggestion while I was preparing the second version of this
paper. I would also want to thank Harry Gindy and Viktoriya Ozornova who indepen-
dently pointed out a mistake in the first version of the paper regarding my attempt to
give a simpler proof of the corner-product condition for complicial sets. This work was
supported by the Grant agency of the Czech republic under the grant P201/12/G028.

1.2. Overview of the paper. The paper is relatively long, but it does not need to be
read from the first page to the last in order. The core of the paper consists of Subsec-
tions 2.1 and 2.2 which contains the basic theory of weak model structures: their definition
and the construction of their homotopy categories. As such they are the only sections
that are necessary to read in order to follow the rest of the paper.

The rest of Section 2 contains other aspects of the general theory of weak model
structures: Subsection 2.3 gives additional criteria to identify weak model categories,
Subsection 2.4 introduces Quillen adjunctions and Quillen equivalences between weak
model categories.

Section 3 gives a couple of theorems (3.0.2 and 3.0.5) allowing to easily construct
weak model categories in the presence of a monoidal structure, an enrichment or a well-
behaved (left adjoint) cylinder functor. These theorems will be our main tools to construct
examples of weak model structures. They can be thought of as a version of Cisinski–
Olschok theory (as in [23]) for weak model categories.

Section 4 deals with two very simple examples of weak model categories (setoids and
chain complexes) which might be enlightening for readers unfamiliar with model categories
in general.

Section 5 deals with well-known simplicially based examples, but treats them in a com-
pletely constructive way (which is mostly new). One of the main differences with classical
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mathematics is that not all monomorphisms are cofibrations, and not all simplicial sets
are cofibrant if one does not assume the law of excluded middle. We will start with the
usual Kan–Quillen model structure on simplicial sets, then we treat a variant of the Joyal
model structure constructed by Lurie on the category of marked simplicial sets, which
we will refer to as the Joyal–Lurie model structure, and more generally we treat the case
of the Verity model structure for weak complicial sets (constructed by D. Verity in [32]),
which is supposed to give a model for (∞, n)-categories and even (∞,∞)-categories.

Finally, in Section 5.5 we develop “semi-simplicial” versions of all these model cate-
gories which as far as I know are new even classically. These examples cannot be Quillen
model categories and are only right semi-model categories.

Appendix A.1 briefly introduces the notion of “setoids” and “setoid-categories”, which
most readers will be happy to just replace by “sets” and “categories”. Appendix A.2 uses
these setoids to give tools to obtain a constructive version of the usual characterization
of equivalences between fibrant objects. These tools are used in Proposition 5.2.6 to
show that the equivalences of the Kan–Quillen model structure can be characterized as
the maps inducing isomorphisms of πn-setoids (which, assuming choice, is equivalent to
bijections of πn-sets). These setoids are useful in two situations:

� One wants to work in an extremely weak logical framework, where quotients of sets
by equivalence relations cannot always be constructed.

� One wants to work without the axiom of choice and read Appendix A.2 about the
π-setoids characterization of equivalences.

Appendix B reviews Joyal–Tierney calculus, which plays a key role in Section 3 and is
useful for the treatment of examples in Sections 4 and 5. Finally, Appendix C discusses
the small object argument in constructive mathematics.

1.3. Logical framework. Everything we do here can be formalized in P. Aczel’s con-
structive set theory (CZF) [1]. It can also be formalized in the internal logic of an elemen-
tary topos with a natural number object. One minor exception is the most general form
of the small object argument (as presented in Appendix C) applied to a large category,
which relies on constructing objects by induction on a natural number, but all concrete
applications of the small object argument we will use can be formalized both in an ele-
mentary topos with a natural number object or in (CZF). However, both these options
are far stronger than what we need, and we will not impose any specific framework.

Indeed, while it was not our goal to look for the absolute minimal logical framework
in which to do homotopy theory, it appeared that the natural framework for developing
this theory is in fact far lighter than we would have thought. In the end, most of the
general theory of weak model categories (i.e. Section 2) is developed in the internal logic4

of a mere category with finite limits. Note that this is only for the general theory of weak
model structures. Most examples will require a slightly stronger logical framework, mostly
in order to implement the small object argument (this is discussed in Appendix C). Also
technically speaking the definition of Cc∪f in 2.1.1 involves taking a disjoint union, so we

4It is not clear if the word “logic” is still suitable for such a low level.



880 SIMON HENRY

actually need the internal logic of an extensive5 category, but this is only for convenience
and could be avoided.

There is a reason for this: the only way to make the theory work without axiom
of choice is to require that everything that should exists (like diagonal fillers for lifting
problems, factorization of maps, the limits and colimits that we need, and so on) is
chosen. In particular, the correct way to interpret any quantification like “∀x,∃y” is
as the existence of an application which given an x produces a y. This has the effect
of removing all need for any kind of quantification or logic from the theory. Hence by
asserting that we work in the internal logic of a category with finite limits we avoid any
possible doubt of how a statement like this should be interpreted.

This being said, we will sometimes, to keep the exposition readable, (especially for
readers not interested in constructive aspects) still use quantifiers and say things like “for
all x there exists a y such that”. A statement like this should always be interpreted as a
function. We will leave to the reader interested in the constructive aspects to make the
appropriate translation. No confusion is possible here as our framework does not allow
for any other interpretation of such sentences.

Another requirement that we could have for our logical framework is the existence of
quotient sets. For example, morphisms in the homotopy category are defined as equiva-
lence classes of maps for the homotopy relation. As far as we know there are two ways to
deal with this:

� Require the existence of quotients in our logical framework. This would mean work-
ing internally in an exact category.

� Avoid the use of quotients by using “setoids” instead. This essentially amounts to
working internally in the exact completion of our category with finite limits.

For most of the paper the two options are equally valid, but for Appendix A.2 the
use of setoids is crucial in order to avoid the use of the axiom of choice, and it makes the
exposition smoother if the homotopy category has been previously introduced in terms of
setoids instead of quotient sets. For this reason we will use the setoid approach everywhere.

As mentioned before, Sections 4 and 5, being focused on examples, will require a
stronger logical framework in order to implement the small object argument. The pre-
cise nature of the required framework is a complicated matter that is discussed more in
Appendix C.

2. Weak model structures

2.1. Definition of weak model categories and homotopies. Weak model cate-
gories will be categories endowed with two classes of maps, “cofibrations” and “fibrations”,
satisfying some axioms. These axioms are considerably weaker than those of a Quillen
model category, but are still enough to define a homotopy category and to introduce clas-

5A category with finite limits and disjoint and universal finite coproducts.
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sical notions like (weak) equivalences, homotopy limits and colimits, Quillen adjunctions,
Quillen equivalences, etc.

2.1.1. Notation. A cofibration will always be denoted by a hooked arrow: A ↪→ B, and
a fibration by a double-headed arrow: X � Y .

In a category C which has an initial object 0 and a notion of cofibration, we say that
an object X is cofibrant if the unique map 0→ X is a cofibration. The full subcategory
of cofibrant objects is denoted Ccof.

Similarly, if C has a terminal object and a notion of fibration, we say that an object X
is fibrant if the unique map X → 1 is a fibration. The full subcategory of fibrant objects
is denoted Cfib.

If C has all these structures, an object will be called bifibrant if it is both fibrant and
cofibrant. The full subcategory of bifibrant objects is denoted Cbf.

The full subcategory of C of objects that are either fibrant or cofibrant will be denoted
by Cc∪f . More precisely, in the constructive setting, Cc∪f is defined as the category whose
set of objects is Cfib

∐
Ccof and whose morphisms are the morphisms between their images

in C.

2.1.2. Definition. A class of cofibrations on a category C is a set of maps called cofi-
brations which satisfies the following properties:

� C has an initial object 0 and it is cofibrant.

� Any isomorphism with a cofibrant domain is a cofibration.

� The composite of two cofibrations is a cofibration.

� Given a diagram

A C

B C
∐
A

B

i
p

f

with A and C two cofibrant objects and i a cofibration, then the pushout C
∐

AB
exists and the map C → C

∐
AB is a cofibration.

Dually, a class of fibrations on a category C is a set of maps, called fibrations in C
which form a class of cofibrations in Cop.

2.1.3. Remark. A weak model category will be a category C endowed with both a class
of fibrations and a class of cofibrations satisfying some additional compatibility axioms,
see Definition 2.1.10.

Here again, in a weak logical framework, everything should be interpreted following
the ideas of Appendix A: The fibrations and cofibrations are not necessarily subsets of
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morphisms, but sets Fib(C) and Cof(C) endowed with a map to the set of all arrows of
C, and all the axioms of the definition are interpreted as operations.

In particular we assume that we have chosen pushouts along cofibrations, but this
choice can depend on the “cofibration structure” of the map: If i, j ∈ Cof(C) have the
same underlying arrow in C pushouts along them can be different.

2.1.4. Remark. Given a class of cofibrations on a category C, the class of “cofibrations
between cofibrant objects” is again a class of cofibrations. Moreover, the definition of weak
model category, and all the relevant notions related to it will only involve the cofibrations
between cofibrant objects and fibrations between fibrant objects. Hence we could freely
add the assumptions that:

� The domain of every cofibration is cofibrant,
� The target of every fibration is fibrant,

without changing the content of any of the results we will give here. Even if we do not
explicitely make these assumptions to not restrict ourselves, we emphasize that:

We only ever consider cofibrations with cofibrant domain and fibrations with fibrant
target.

2.1.5. Remark. The reader may be surprised by the fact that we do not include closure
under retracts in the definition of a class of cofibrations. The reason for this is simply
that this property is not used anywhere in the paper.

2.1.6. Notation. As usual if f and g are two morphisms in a category C we say that f
has the left lifting property against g (or that g has the right lifting property against f)
and we write f t g if for each solid square

A X

B Y

f g∃

there is a (chosen) dotted diagonal filling.

2.1.7. Definition. Let C be a category endowed with a class of fibrations and a class of
cofibrations. An arrow is said to be:

� An acyclic fibration if it is a fibration and it has the right lifting property against
all cofibrations between cofibrant objects.

� An acyclic cofibration if it is a cofibration and it has the left lifting property against
all fibrations between fibrant objects.
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In diagrams, acyclic cofibrations are represented by
∼
↪→ and acyclic fibrations by

∼
�.

Technically speaking, our logical framework does not allow us to form the “set of
acyclic fibrations”, but we can still say that a map “is an acyclic fibration” to mean that
there is a function producing the desired lifts.

Of course, acyclic fibrations and cofibrations will end up being “equivalences” as soon
as we will have defined the notion (Proposition 2.2.3). In fact we will prove in 2.2.10 that in
a weak model category, a (co)fibration is acyclic if and only if it an equivalence. It should
also be noted (see for example Lemma 7.14 of [18]) that in a Quillen model category,
a cofibration is acyclic if and only if it has the left lifting property with respect to all
fibrations between fibrant objects. Hence the terminology introduced here is compatible
with the theory of Quillen model categories.

2.1.8. Lemma. Acyclic cofibrations are stable under composition and pushout (amongst
cofibrant objects) . A cofibration i which is a retract of an acyclic cofibration j is again
an acyclic cofibration. If i and j are composable cofibrations and if i ◦ j and i are acyclic,
then j is acyclic. All the dual conditions holds for acyclic fibrations.

Proof. This is just the classical fact that the class of maps f such that f t g is stable
under pushout, composition and retract. The “2-out-of-3” claim follows from the fact
being an acyclic cofibration is tested against fibrations between fibrant objects

U X

V Y

W

j

i

the lower dotted arrow is constructed using that Y is fibrant and i is acyclic, and the
upper one using that i ◦ j is acyclic and X → Y is a fibration between fibrant objects.
The composite V → X gives the diagonal filling we are after.

In a category with classes of fibrations and cofibrations as above, if X is a cofibrant
object, a fibrant replacement of X or bifibrant replacement of X is a fibrant object
Xfib endowed with an acyclic cofibration X

∼
↪→ Xfib. Dually a cofibrant replacement (or

bifibrant replacement) of a fibrant object X is a cofibrant object Xcof endowed with an

acyclic fibration Xcof
∼
� X.

2.1.9. Definition.

� A relative strong cylinder object for a cofibration A ↪→ B is a factorization of the
relative co-diagonal map B

∐
AB → B into

B
∐
A

B ↪→ IAB → B



884 SIMON HENRY

where the first map is a cofibration and its pre-composite with the first coproduct
inclusion B ↪→ B

∐
AB ↪→ IAB is an acyclic cofibration.

� A relative strong path object for a fibration Y � X is a factorization of the relative
diagonal map into

Y → PXY � Y ×X Y

where the second map is a fibration and its composite PXY � Y ×X Y � Y is an
acyclic fibration.

A (strong) cylinder object IX for a cofibrant object X is a relative cylinder for the
cofibration ∅ ↪→ X. A (strong) path object PY for a fibrant object Y is a relative path
object for the fibration Y � 1.

The apparent asymmetry of the definition (only one of the two “legs” is asked to be
acyclic) is artificial: in a weak model categories Definition 2.2.7 gives a notion of equiva-
lences satisfying the 2-out-of-3 condition, and we will show in Proposition 2.2.10.(i) that
(co)fibrations between (co)fibrant objects are acyclic if and only if they are equivalences,
so the second leg will automatically be acyclic as well.

We can now give the main definition:

2.1.10. Definition. A weak model category is a category C endowed with both a class
of cofibrations and a class of fibrations which satisfy the following:

� Factorization axiom: Any map from a cofibrant object to a fibrant object can be
factored both as a cofibration followed by an acyclic fibration and as an acyclic
cofibration followed by a fibration.

� Cylinder axiom: Every cofibration from a cofibrant object to a fibrant object admits
a relative strong cylinder object.

� Path object axiom: Every fibration from a cofibrant object to a fibrant object admits
a relative strong path object.

Weak model categories have the following elementary stability properties:

2.1.11. Proposition. Let C be a weak model category then:

� Cop is a weak model category whose (acyclic) fibrations and (acyclic) cofibrations are
respectively the (acyclic) cofibrations and (acyclic) fibrations of C.

� For any cofibrant object A of C, the coslice category A/C of arrows A → X is a
weak model category, whose cofibrations, acyclic cofibrations, fibrations and acyclic
fibrations are the maps whose image under the forgetful functor to C has the same
property.
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� Dually, for any fibrant object X of C the slice category C/X of arrows B → X is a
weak model category, whose cofibrations, acyclic cofibrations, fibrations and acyclic
fibrations are the maps whose image under the forgetful functor to C has the same
property.

In a weak model category, cofibrations between cofibrant objects and fibrations be-
tween fibrant objects still admit a kind of “relative cylinder object” and “relative path
object” which we call “weak cylinder objects” and “weak path objects”:

2.1.12. Definition.

� A relative weak cylinder object for a cofibration A ↪→ B is a diagram of the form

B
∐

AB B

IAB DAB

∼

where furthermore the first map ι0 : B
∼
↪→ IAB is an acyclic cofibration.

� A relative weak path object for a fibration Y � X is a diagram of the form

TXY PXY

Y Y ×X Y

∼

∆

where furthermore the first projection π0 : PXY
∼
� Y is an acyclic fibration.

The idea is simple: in general we do not have a map IAB → B, which would be
used for example to define self homotopies of a map B → X. Instead we have a copsan
IAB → DAB

∼←↩ B which defines such a map at least at the level of the homotopy
category. The object DAB (as well as TXY ) is called the reflexivity witness.

2.1.13. Remark.

� Any relative strong cylinder object can be seen as a relative weak cylinder object
by taking DAB = B.

� If a cofibration A ↪→ B has a relative weak cylinder object and B is furthermore
fibrant, then, using the lifting property of B, we can construct a retraction

B B

DAB

∼

IdB

r
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and the composite

B
∐
A

B ↪→ IAB → DAB
r→ B

forms a relative strong cylinder object of A ↪→ B.

� If A ↪→ B is a cofibration, and B
∼
↪→ B̃ is a fibrant replacement of B then a relative

strong cylinder object for the cofibration A ↪→ B̃ gives us a relative weak cylinder
object for A ↪→ B as follows

B
∐

AB B

B̃
∐

A B̃

IAB̃ B̃.

∼

� Hence, in the presence of the factorization axiom, the cylinder axiom is equivalent
to the requirement that every cofibration between cofibrant objects has a relative
weak cylinder object.

� All the remarks above can be dualized to path objects and fibrations.

2.1.14. Definition. Let f, g : X ⇒ Y be two maps from a cofibrant object to a fibrant
object in a category with fibrations and cofibrations.

� We say that f and g are homotopic relative to a (weak or strong) cylinder object
IX for X if the map (f, g) : X

∐
X → Y factors through X

∐
X ↪→ IX.

� We say that f and g are homotopic relative to a (weak or strong) path object PY
for Y if the map (f, g) : X → Y × Y factors through PY � Y × Y .

Note that if i : A ↪→ B is a cofibration (with A and B cofibrant) and f, g are two maps
f, g : B ⇒ Y (with Y fibrant) such that f ◦ i = g ◦ i we can also talk about “homotopy
relative to A”, that will be for example parametrized by a relative cylinder object for
A ↪→ B. This relative version will be very useful. We do not discuss this further simply
because it is the homotopy relation in the coslice category A/C, so it can be seen as a
special case of the non-relative version.

2.1.15. Lemma. Let f : X → Y be a map from a cofibrant object X to a fibrant object
Y , then there is a homotopy rf from f to f relative to any cylinder object for X or path
object for Y .
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Proof. For a weak cylinder object (IX,DX) for X we obtain the reflexivity homotopy
rf as follows

X
∐
X X Y

IX DX

∇ f

∼

rf

and dually for the case of a path object for Y .

2.1.16. Proposition. Consider two maps f, g : X ⇒ Y with X cofibrant and Y fibrant,
such that X admits at least one cylinder object and Y admits at least one path object.
Then the homotopy relations defined by any cylinder object for X or path object for Y are
equivalent.

We will hence just say that f and g are homotopic without specifying if it is with
respect to a cylinder object or to a path object nor with respect to which path object or
cylinder object, at least as long as we do not need to specify the homotopy itself. Of course
this proposition really means that we have an explicit construction which associates to
any homotopy relative to some path objects a homotopy relative to any other path object
or cylinder object.

Proof. Let f, g : X ⇒ Y be two arrows as in the proposition, with a homotopy h : IX →
Y between f and g relative to a weak cylinder object IX. Let PY be any weak path
object for Y . There is a commutative square

X PY

IX Y × Y

∼

r′f

(rf ,h)

where the left vertical map is the “first inclusion”, and rf and r′f denote the homotopy
from f to f produced by Lemma 2.1.15.

We obtain a diagonal filling w : IX → PY , and pre-composing it with the second
“inclusion” i2 : X → IX gives a map X → PY whose projections to Y are f and g, i.e. a
homotopy h′ between f and g relative to PY

X PY

X IX Y × Y.

i1

r′f

i2

h′

(f,g)

w

(rf ,h)
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Dually, a homotopy indexed by any path object will induce a homotopy between any
other cylinder object, which concludes the proof.

2.1.17. Theorem. Let C be a category with fibrations and cofibrations, let X be a cofi-
brant object admitting at least one cylinder object and Y a fibrant object admitting at least
one path object. Then the homotopy relation for maps from X to Y is an equivalence
relation.

We mean by that we have a setoid structure on the set of maps from X to Y and the
set of homotopies between them, this holds for whatever choice of cylinder and or path
objects we are using (and using several choices of path and cylinder object simultaneously
is also an option).

Proof. Reflexivity has been proved as Lemma 2.1.15. Let α, β, γ be three arrows X → Y
with homotopies h from α to β and h′ from β to γ.

There is a “homotopy” between α and γ relative to the object

X
∐

X ↪→ IX
∐
X

IX

this cofibration fits in a diagram

X
∐
X X

IX
∐

X IX DX
∐

X DX

∇

∼

and the stability of acyclic cofibrations under pushout and compositions gives all the
conditions that we need for this to be a weak cylinder object for X hence proves that α
is homotopic to γ.

Symmetry needs a little more work because of our asymetrical definition of cylinder
objects: Let h : IX → Y be a homotopy between f, g : X ⇒ Y . Let PY be any path
object for Y , and let P ′Y be PY composed with the exchange map τ : Y × Y → Y × Y .
As the proof of Proposition 2.1.16 did not use the assumption that the projections of the
path object are acyclic fibrations it also applies to P ′Y and hence the homotopy given
by IX produces a P ′Y -homotopy between f and g, but this is exactly a PY -homotopy
between g and f and this proves the symmetry of the homotopy relation.

2.2. Equivalences and the homotopy category.

2.2.1. Assumption. The results in this section apply to slightly more general structure
than weak model categories: We do not need the relative version of path objects and
cylinder objects. Instead we consider C a category with fibrations and cofibrations, which
satisfies the factorization axiom of Definition 2.1.10, and in which every bifibrant object
has both a cylinder object and a path object, or (equivalently, by Remark 2.1.13) in which
every cofibrant object has a weak cylinder object and every fibrant object has a weak path
object.
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2.2.2. Definition. We denote by Ho(Cbf ) the (setoid6) category whose objects are the
bifibrant objects of C and whose arrows are morphisms in C up to the homotopy relation.

We proved in Theorem 2.1.17 that the homotopy relation is an equivalence relation,
and, as Proposition 2.1.16 shows that it can be defined equivalently using a cylinder object
or a path object, it is clearly preserved both by pre-composition and post-composition,
hence the “quotient” of C by this equivalence relation is indeed a setoid-category.

2.2.3. Proposition. Acyclic cofibrations and acyclic fibrations between bifibrant objects
are invertible arrows in Ho(Cbf ).

Proof. It is enough to show it for acyclic cofibrations. Let j : X
∼
↪→ Y be an acyclic

cofibrations between two bifibrant objects.
A diagonal filling in the following square

X X

Y 1

∼ r

gives us a retraction of j. And j is an epimorphism in Ho(Cbf ): if two maps u, v : Y ⇒ Z
are such that u ◦ j and v ◦ j are homotopic then a diagonal filling in the square

X PZ

Y Z × Z

∼

h

(u,v)

gives a homotopy between u and v. Applying this to Z = Y , u = IdY and v = j ◦ r gives
that j ◦ r is homotopic to IdY and concludes the proof.

2.2.4. Proposition. The quotient functor Cbf → Ho(Cbf ) identifies Ho(Cbf ) with the
localization of Cbf at all acyclic cofibrations (dually at all acyclic fibrations).

What we mean here is that Ho(Cbf ) has the universal property of a localization, in the
sense that any functor F : Cbf → D which sends acyclic cofibrations (or acyclic fibrations)
to isomorphisms factors uniquely as Cbf → Ho(Cbf )→ D.

Moreover D can be taken to be a setoid-category in this statement.
In particular if the logical framework is strong enough to construct the formal (Gabriel–

Zisman) localization of Cbf (for example if Cbf is small and if we have list objects and
quotients by equivalence relations) then this formal localization will be equivalent to
Ho(Cbf ).

6See Appendix A for the notion of setoid-category. Though one can ignore this for most of the paper
and consider Ho(Cbf ) as an ordinary category.
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Proof. First, we observed in Proposition 2.2.3 that acyclic cofibrations (and acyclic
fibrations) are invertible in Ho(Cbf ). Let F : Cbf → D be a functor which inverts all
acyclic cofibrations, in particular, it inverts the map i1 : X ↪→ IX and hence also the map
u : IX → X as it is a retraction of the previous one. As i2 : X ↪→ IX is another section
of u we have F (i1) = F (i2) in D.

Any two homotopic maps in C are written as h◦ i1 and h◦ i2 and hence have the same
image in D. This shows that F factors uniquely through Ho(Cbf ) and hence proves that
the quotient functor Cbf → Ho(Cbf ) is the localization of Cbf at acyclic cofibrations. By
duality, Ho(Cbf ) is also the localization of Cbf at acyclic fibrations.

It is well known that in a Quillen model category the homotopy category of bifibrant
objects is in fact equivalent to the localization of the whole category at equivalences. To
obtain a similar result for weak model categories, we will gradually push this equivalence
between this homotopy category of bifibrant objects and localization of various larger full
subcategories of C using the following lemma:

2.2.5. Lemma. Let C be a category, D ⊂ C a full subcategory, W a class of maps in C
and W ′ a class of maps in D.

We assume that:

1. The localization D[W ′−1] exists.

2. For each object c ∈ C there is an arrow w : c→ d with w ∈ W and d ∈ D.

3. For each solid diagram

c d

d′

w

with c ∈ C, w ∈ W and d, d′ ∈ D there is a dotted arrow that makes the triangle
commute.

4. Each pair of arrows fitting in place of the dotted arrow in the diagram above have
the same image in D[W ′−1].

5. W is stable under composition.

Then the localization C[(W∪W ′)−1] exists and is equivalent to D[W ′−1] by the functor
induced by the inclusion D ⊂ C.

As previously mentioned, all the “there is” in the assumption are interpreted as “we
have operations giving us these objects”. The correct interpretation of assumption 4 in
setoid language is that given two arrows that makes the triangle commute there is a
(chosen) relation between them in the localization.
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Proof. We assume that D[W ′−1] exists, we will construct a functor F : C → D[W ′−1]:
Any object c ∈ C is sent to the chosen object F (c) = d such that there is an arrow

w : c → d with w ∈ W and d ∈ D. If f : c → c′ is an arrow and d and d′ are the images
of c and c′, we construct the image of f by taking a lift in

c d

c′ d′.

f

w∈W

F (f)

w′

Such an arrow exists because of the third assumption and is unique because of the
fourth assumption, hence the function exists. To be more precise, in the setoid lan-
guage, “unique” means that any two such arrows can be connected by a relation, and the
function “exists” means that it can be made into a morphism of setoids, i.e. that it acts
on relations as well.

Functoriality (in the setoid-categories sense) is immediate because of this uniqueness
result. It is easy to show that any arrow in W or W ′ is sent to an isomorphism by this
functor. Also the restriction of this functor to D ⊂ C is naturally isomorphic to the
universal functor D → D[W ′−1].

We can now show that any functor G : C → K which inverts all maps in W and W ′
factors through F up to equivalence:

First G restricted to D induces a functor GD : D[W ′−1] → K. For any object c ∈
C, there is an arrow w : c → F (c) with w ∈ W , and applying G on both sides gives
G(w) : G(c) → GD(F (c)). By assumption G(w) is an isomorphism, and it is immediate
to check that it is functorial in w. Hence this produces an isomorphism of functors
G ∼ GD ◦F hence proving that G factors through F up to isomorphism which shows that
D[W−1] has the universal property of the localization C[W−1,W ′−1]. (The uniqueness of
the factorization up to unique equivalence is clear).

2.2.6. Theorem. Let C be a weak model category. The following categories (see 2.1.1)
all exist and are equivalent:

1. Ho(Cbf )

2. The localization of Cbf at acyclic fibrations.

3. The localization of Cbf at acyclic cofibrations.

4. The localization of Ccof at acyclic cofibrations.

5. The localization of Cfib at acyclic fibrations.

6. The localization of Cc∪f at all acyclic cofibrations with cofibrant domain and all
acyclic fibrations with fibrant target.
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The equivalences are induced by the natural quotient functor from Cbf to Ho(Cbf ) and
the square of inclusions

Cbf Ccof

Cfib Cc∪f .
Proof. The equivalence of the first three categories has already been proved. We then
prove that Cbf → Ccof induces an equivalence after localizing at acyclic cofibrations using
Lemma 2.2.5 with W and W ′ both being the acyclic cofibrations. Condition 1 follows
from Proposition 2.2.4. Condition 2 is just the existence of factorization as an acyclic
cofibration followed by a fibration of X → 1. Condition 3 is the lifting property of acyclic
cofibrations with respect to the fibration d� 1. Condition 4: Given c

∼
↪→ d⇒ d′ with d′

fibrant. We construct a homotopy between the two maps as a diagonal filling in

c Pd′

d d′ × d′.

∼

Finally acyclic cofibrations are stable under composition (Condition 5).
This proves that the localization of Ccof at acyclic cofibrations is equivalent to the

localization of Cbf at acyclic cofibrations, i.e. is equivalent to Ho(Cbf ).
Dually, the localization of Cfib at acyclic fibrations is equivalent to Ho(Cbf ).
We now move to the localization of Cc∪f at all maps that are either an acyclic cofi-

bration with cofibrant domain or an acyclic fibration with fibrant target. We apply
Lemma 2.2.5 to the inclusion Cfib ⊂ Cc∪f with W being all acyclic cofibrations with cofi-
brant domain as well as identity maps, and W ′ being the class of acyclic fibrations with
fibrant domain. All the conditions are checked exactly in the same way as in the previous
case, except Condition 4: we construct instead a homotopy in the sense of a weak path
object Pd′, but this is enough to show that the two maps are equal in the localization at
acyclic fibrations.

2.2.7. Definition. An arrow in Cc∪f is said to be an equivalence if it is invertible in
the homotopy category, i.e. in the equivalent localization of Theorem 2.2.6.

Equivalences automatically satisfy the 2-out-of-3 condition, and even the stronger 2-
out-of-6 condition: If f, g and h are composable and both f ◦ g and g ◦ h are equivalences
then f, g, h and f ◦ g ◦ h are equivalences. They are also stable under retracts. Acyclic
cofibrations with cofibrant domain as well as acyclic fibrations with fibrant target are
equivalences. But as mentioned in the introduction, we do not have in general a good
notion of equivalences for objects which are neither fibrant nor cofibrant.
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2.2.8. Lemma. Let C be as in 2.2.1, given a diagram of the form

A X

B Y

i

w

∈Wf

with A and B cofibrant, i a cofibration, X and Y fibrant and f an equivalence, then there
is a diagonal filler which makes the upper triangle commute.

Proof. We first show the lemma when all the objects involved are bifibrant. In this
situation, as f is an isomorphism in Ho(Cbf ) there must exist a diagonal filler in the
category Ho(Cbf ). In particular there is a map v : B → X and a homotopy h : A → PX
from v◦i to w. We can then form the solid diagram below, which admits a dotted diagonal
filler

A PX X

B X .

w

i

h

∼π1

π2
∼

t

v

The composite π2 ◦ t gives us a map from B to X such that π2 ◦ t ◦ i = w hence this
concludes the proof.

We then show that given a square as in the proposition there is an “inner square” as

A X

A1 X1

B1 Y1

B Y

i

w

∼

∈Wfi1

w1

f1

∼

∼∼

with all the objects of the inner square being bifibrant. The map f1 is still an equivalence
because the acyclic fibrations with fibrant target are equivalences (by Theorem 2.2.6) and
equivalences satisfy the 2-out-of-3 property. A filler as above in the inner square produces
a filler in the outer square.

Indeed, we first factor the map A→ X as an acyclic cofibration followed by a fibration
A
∼
↪→ A1 � X to get a bifibrant object A1, and the map A1 → X as a cofibration followed
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by an acyclic fibration A1 ↪→ X1

∼
� X to get a bifibrant object X1. We get a diagram

A X

A1 X1

B Y

i

w

∼

∈Wf
w1

∼

and we form the pushout B′ = B
∐

AA1 and Y ′ = B
∐

AX1 to get a diagram

A X

A1 X1

B′ Y ′

B Y .

i

w

∼

∈Wf

p

w1

p

∼

∼

Finally we factor Y ′ → Y as a cofibration followed by an acyclic fibration Y ′ ↪→ Y1

∼
� Y

to get a bifibrant object Y1, then we factor the map B′ → Y1 as an acyclic cofibration
followed by a fibration B′

∼
↪→ B1 � Y1 to get a bifibrant object B1 and we obtain a

diagram with an inner square as claimed above.

Before going further we briefly recall the well-known:

2.2.9. Retract lemma. In any category, if there is a factorization f = pi and f has
the right lifting property against i, then f is a retract of p. Dually if f has the left lifting
property against p then f is a retract of i.

Proof. We prove the first claim. The lift in the square left below

X X X Y X

Y Z Z Z Z

i f f

i

p

w

f

p

w

produces the map to complete the retract diagram right above.

The next proposition, and more specifically the fact that any weak model structure
satisfies Condition (iv) and (v) is of the highest importance for the theory:
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2.2.10. Proposition. Let C be as in 2.2.1, i.e. it satisfies the factorization axiom of
Definition 2.1.10 and every bifibrant object has both a path object and a cylinder object.
Then the following conditions are equivalent:

(i) C is a weak model category.

(ii) Every cofibration between bifibrant objects has a relative cylinder object.

(iii) Every fibration between bifibrant objects has a relative path object.

(iv) A cofibration between cofibrant objects is an acyclic cofibration if and only if it is an
equivalence.

(v) A fibration between fibrant objects is an acyclic fibration if and only if it is an
equivalence.

Proof. It is clear that (i) ⇒ (ii) and (i) ⇒ (iii).
We prove (ii) ⇒ (iv): Acyclic cofibrations between cofibrant objects are equivalences

almost by definition of equivalences. Conversely let i : A ↪→ B be a cofibration between
cofibrant objects which is an equivalence, we will prove it is acyclic. Using the same
replacement as in the end of the proof of Lemma 2.2.8 it is enough to show it when A
and B are bifibrant. Using Lemma 2.2.8 in the square

A A

B B

i∈W

IdA

i∈W
IdB

gives us a retraction r : B → A of i. As a retract of an equivalence, r is also an equivalence,
hence we can use Lemma 2.2.8 in the square

B
∐

AB B

IAB A.

(i◦r,IdB)

r∈W

This gives a homotopy h : IAB → B between i ◦ r and IdB relative to A. We form the
commutative diagram

A B A

B IAB B

i

i

ι0

r

i

ι1 h
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which shows that A ↪→ B is a retract of B ↪→ IAB, hence it has the same lifting property
as the acyclic cofibration B ↪→ IAB, so as it is a cofibration, it is acyclic.

By duality, we also have (iii) ⇒ (v).
Then we show that (iv) ⇒ (v). Let f : X → Y be a fibration between fibrant objects

which is an equivalence. As above, we can freely assume that X is cofibrant. We then
factor f as a cofibration followed by an acyclic fibration. By 2-out-of-3 for equivalences,
the cofibration part is an equivalence and hence is acyclic by assumption, and hence has
the left lifting property against f . The retract Lemma 2.2.9 then implies that f is a
retract of the acyclic fibration part of the factorization and this concludes the proof. By
duality we can in fact deduce that (iv) ⇔ (v).

Finally assuming C satisfies (iv), and given a cofibration A ↪→ B from a cofibrant
object to a fibrant object, we consider a cofibration/acyclic fibration factorization of the
relative co-diagonal map

B
∐
A

B ↪→ IAB
∼
� B.

The composite B ↪→ IAB
∼
� B is the identity, hence is an equivalence. By 2-out-of-3

for equivalences and the fact that acyclic fibrations are equivalences we conclude that
B ↪→ IAB is an equivalence and hence is acyclic. Dually, we use (v) to construct relative
path objects for fibrations from a cofibrant object to a fibrant object. This shows that
the two equivalent conditions (v) and (iv) imply (i).

2.2.11. Corollary. Let C be a weak model category.

(i) Let X be a cofibrant object of C, then a map f between fibrant or cofibrant objects
in X/C is an equivalence if and only if it is an equivalence in C.

(ii) Let X be a fibrant object of C, then a map between fibrant or cofibrant objects in
C/X is an equivalence if and only if it is an equivalence in C.

Proof. Let f : Z → Y be a map from a cofibrant object to a fibrant object in X/C. Let

f : Z ↪→ Z ′
∼
� Y be a factorization of f as a cofibration followed by an acyclic fibration.

f is an equivalence in C (resp. in X/C) if and only if the cofibration part is in fact an
acylic cofibration in C (resp. in X/C), but acyclic cofibrations in C and in X/C are the
same thing and this proves the result in the case where the domain of f is cofibrant and
the target of f is fibrant. If the domain of f is instead fibrant we pre-compose it with an
acyclic fibration of cofibrant domain and if f has cofibrant target we post-composite with
an acyclic cofibration with fibrant domain to go back to the previous case.

2.3. Equivalent definitions.

2.3.1. Assumption. In this subsection, C is a category with cofibrations and fibrations
as in Definition 2.1.2, which satisfies the factorization axiom of Definition 2.1.10, i.e. every
arrow from a cofibrant object to a fibrant object can be factored both as a cofibration
followed by an acyclic fibration and as an acyclic cofibration followed by a fibration. We
will give equivalent fomulations for the other axioms of weak model categories.
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2.3.2. Proposition. The following conditions are equivalent:

(i) For any bifibrant object A and any factorization IdA : A ↪→ B
∼
� A of the identity

of A as a cofibration followed by an acyclic fibration, the cofibration is acyclic.

(ii) There is a class F of acyclic fibrations in C such that any arrow from a cofibrant
object to a fibrant object can be factored as a cofibration followed by an arrow in F ,
and condition (i) holds when the acyclic fibration part of the factorization is in F .

(iii) Any cofibration A ↪→ B with A cofibrant and B fibrant admits a relative cylinder
object.

(iv) Any cofibration A ↪→ B between bifibrant objects admits a relative cylinder object.

And this can be dualized for the existence of path objects.

Proof. The implications (i) ⇒ (ii) and (iii) ⇒ (iv) are immediate (one takes F to be
the class of all acyclic fibrations).

(ii) ⇒ (iii): Consider a factorization B
∐

AB ↪→ IAB
∈F
� B. The composite B ↪→

IAB
∈F
� B is a factorization of the identity of B, which is bifibrant, as in condition (ii),

hence B ↪→ IAB is an acyclic cofibration. This proves (iii)

(iv) ⇒ (i): Given A ↪→ B
∼
� A a factorization of the identity of a bifibrant object

A, we denote by r : B
∼
� A ↪→ B the idempotent induced on B. We obtain a (dotted)

diagonal filling h in the square on the left below

B
∐

AB B A B A

IAB B A B IAB B

(r,IdB)

∼ i1
h

∼ i2 h

which then fits in the retract diagram on the right above, showing that A ↪→ B is a retract
of B ↪→ IAB, and hence is an acyclic cofibration by Lemma 2.1.8.

2.3.3. Proposition. Assume furthermore that C satisfies the cylinder axiom of Defini-
tion 2.1.10; i.e. the equivalent conditions of Proposition 2.3.2. The following conditions
are equivalent:

(i) C is a weak model category, i.e. any fibration from a cofibrant object to a fibrant
object admits a relative strong path object.

(ii) If A
i
↪→ B

j
↪→ C are two cofibrations between bifibrant objects, such that i and j ◦ i

are acyclic then j is acyclic.
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(iii) There is a class J of acyclic cofibrations such that any arrow from a cofibrant
object to a fibrant object can be factored as an arrow in J followed by a fibration,
and condition (ii) holds when we further assume that i ∈ J .

Proof. We proved in 2.2.10 that in a weak model category acyclic cofibrations between
cofibrant objects are exactly the cofibrations that are invertible in the homotopy category,
hence (ii) holds in any weak model category. The implication (ii) ⇒ (iii) is immediate.

We now assume (iii), and consider a factorization A
∈J
↪→ B

p
� A of the identity of a

bifibrant object A, and (following the dual of Proposition 2.3.2) we will prove that p is

acyclic. We further factorize p as B ↪→ C
∼
� A, which gives us a factorization of the

identity of A as

A
∼
↪→
∈J

B ↪→ C
∼
� A.

As C has strong cylinder objects, it also satisfies condition (i) of Proposition 2.3.2, hence
the composite cofibration A ↪→ C is an acyclic cofibration and hence, because of (iii), the
cofibration B ↪→ C is acyclic. The retract lemma (2.2.9) then shows that p is a retract of

the acyclic fibration C
∼
� A and hence is also acyclic.

2.3.4. Remark. Proposition 2.3.3 gives a characterization of weak model categories,
which, except for the factorization axiom, only involves the cofibrations and the acyclic
cofibrations. As an application of this, if we start from a given weak model structure
and we modify its class of fibrations in a way that does not change the class of acyclic
cofibrations and so that the factorization axiom is preserved, we still have a weak model
structure.

For example, one can take the closure of the class of fibrations under retracts, or take
them to be “all the arrows having the right lifting property against cofibrations between
cofibrant objects”, as soon as these are well defined in the logical framework, and still form
a class of fibrations. The same remark applies dually to modify the class of cofibrations.

Let us also recall:

2.3.5. Proposition. Assume that C satisfies the cylinder axiom and that every bifibrant
object of C admits a strong path object. Then C is a weak model category.

Proof. Such a category has both cylinder and path objects for all bifibrant objects, hence
we can apply Proposition 2.2.10 and conclude from the fact that it satisfies the cylinder
axiom that it is a weak model category.

Finally, we observe that “path objects” without units are enough to get actual path
objects:

2.3.6. Lemma. [“Self-composed span trick”] Let X be a fibrant object in C. Assume that
there is a fibrant object X ′, and a fibration

C � X ×X ′
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whose components C � X and C � X ′ are acyclic then X admits a weak path object.

This lemma applies as soon as we have a class of fibrations and acyclic fibrations stable
under pullbacks and compositions.

2.3.7. Remark. Dually, there is a version for weak cylinder objects constructed out of
cospans of acyclic cofibrations, and applying the results in (co)slices of C automatically
gives a version of the statement for relative weak path objects and relative weak cylinder
objects. For example, if A ↪→ B is a cofibration that fits into a diagram

A B

B′ I

∼

∼

such that the map B
∐

AB
′ → I is a cofibration, then the cofibration A ↪→ B admits a

relative weak cylinder object.

Proof. P = C ×X′ C is a weak path object, with C as reflexivity witness object

C

P C X

C X ′

X

∆

IdC

IdC
y

∼

∼

∼

∼

∼

∼

C P

X X ×X

∼

∆

2.4. Weak Quillen functors and Quillen equivalences. In this subsection we
introduce “Quillen pairs” and “Quillen equivalences”, which are the natural notions of
morphisms and equivalences between weak model categories. For classical Quillen model
categories they are defined as pairs of adjoint functors F : C � D : G satisfying some
conditions, but in the weak context it is natural to ask only for the left adjoint functor
F to be defined on cofibrant objects and for the right adjoint functor G to be defined on
fibrant objects. More precisely:

2.4.1. Definition. A weak Quillen pair F : C � D : G between two weak model cate-
gories C and D is a pair of functors F : Ccof → Dcof and G : Dfib → Cfib such that:

1. F and G are “adjoint” in the sense that there is an isomorphism

HomD(F (X), Y ) ' HomC(X,G(Y ))

natural in X ∈ Ccof and Y ∈ Dfib.
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2. F sends cofibrations to cofibrations.

3. G sends fibrations to fibrations.

F is called a left (weak) Quillen functor and G a right (weak) Quillen functor. In the
rest of the paper we will omit the “weak” and just talk about Quillen pairs and Quillen
functors.

2.4.2. Example. Let C be a weak model category and let X and Y be cofibrant objects
and f : X → Y a map. There is a Quillen pair

Pf : X/C � Y/C : Uf

where Pf is the functor which takes a cofibrant X ↪→ Z to its pushout Y ↪→ Z
∐

X Y and
Uf takes a fibrant Z with a map Y → Z to the composite X → Y → Z.

This example is the main reason why we do not ask Quillen pairs to be globally defined
adjoint functors: As we do not assume that C has all finite colimits, but only pushouts
along cofibrations, the functor Pf is only defined for cofibrant objects of X/C.

There is a dual version: if X and Y are fibrant objects of C and f : X → Y is any
map there is a Quillen pair

Uf : C/X � C/Y : Pf

where Uf sends any cofibrant object Z → X to the composite Z → X → Y and Pf is the
pullback functor taking a fibration Z � Y to its pullback Z ×Y X � X.

2.4.3. Proposition. Let F : C � D : G be a Quillen pair. Then the two functors

F : Ccof → Dcof G : Dfib → Cfib

both send equivalences to equivalences and induce functors

Ho(F ) : Ho(Ccof)→ Ho(Dcof) Ho(G) : Ho(Dfib)→ Ho(Dfib).

Moreover, up to the equivalences of categories of Theorem 2.2.6, Ho(F ) is left adjoint to
Ho(G) on the homotopy categories.

Proof. The adjunction property between F and G and the fact that G sends fibrations
to fibrations imply that F sends acyclic cofibrations to acyclic cofibrations. As Ho(Ccof)
and Ho(Dcof) are localization at acyclic cofibrations this shows that F induces a functor
Ho(F ) : Ho(Ccof) → Ho(Dcof). Dually G induces a functor Ho(Dfib) → Ho(Cfib). This
shows in particular that F and G send equivalences to equivalences.

Now given X ∈ Ccof and Y ∈ Dfib, the adjunction isomorphism Hom(X,G(Y )) '
Hom(F (X), Y ) is compatible with the homotopy relation (because F preserves cylinder
objects and G preserves path objects) hence it descends to an isomorphism

HomHo(C)(X,G(Y )) ' HomHo(C)(F (X), Y ).

We easily check that this isomorphism is natural on the homotopy category (for example
by restricting to X and Y bifibrant), and this concludes the proof.
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2.4.4. Corollary. In a weak model category:

� Pushouts along a cofibration between cofibrant objects send equivalences between cofi-
brant objects to equivalences.

� Pullbacks along fibrations between fibrant objects send equivalences between fibrant
objects to equivalences.

Proof. This is Proposition 2.4.3 applied to Example 2.4.2.

2.4.5. Proposition. For a Quillen pair F : C � D : G between two weak model cate-
gories the following conditions are equivalent:

(i) Ho(F ) : Ho(Ccof)→ Ho(Dcof) is an equivalence of categories.

(ii) Ho(G) : Ho(Dfib)→ Ho(Cfib) is an equivalence of categories.

(iii) For any X ∈ Ccof and Y ∈ Dfib a map f : X → G(Y ) is an equivalence if and only
if its adjoint transpose F (X)→ Y is an equivalence.

(iv) For any X ∈ Ccof the map X → G(F (X)fib) where F (X)
∼
↪→ F (X)fib is a fibrant

replacement of F (X) is an equivalence, and the dual condition holds for any Y ∈
Dfib.

(v) For any X ∈ Ccof the map X → G(F (X)fib) as in (iv) is an equivalence, and G
detects equivalences between (bi)fibrant objects, i.e. if f is a morphism in Dfib (or
even just Dbf) such that G(f) is an equivalence then f is also an equivalence.

A Quillen pair satisfying these conditions is called a (weak) Quillen equivalence. Also
conditions (iv) and (v) do not depend on the choice of the fibrant replacement of F (X)
or on the cofibrant replacement of G(Y ) because of Proposition 2.4.3.

Proof. The equivalence of (i) and (ii) is immediate from the adjunction property satisfied
by Ho(F ) and Ho(G). They imply (iii) because f : X → G(Y ) is an equivalence if and
only if it is invertible in Ho(Cc∪f ) and its adjoint transpose f ∗ : F (X)→ Y has been shown
in the proof of Proposition 2.4.3 to represent the adjoint transpose of f by the adjunction
between Ho(F ) and Ho(G), hence if those are equivalences of categories, f will be an
equivalence if and only if f ∗ is an equivalence. Condition (iii) immediately implies (iv),
and (iv) implies (i) and (ii) as the maps described represent the unit and co-unit of the
adjunction between Ho(F ) and Ho(G) in the homotopy category, hence asking them to
be an equivalence makes Ho(F ) and Ho(G) inverse of each other. So conditions (i) to (iv)
are all equivalent.

Condition (v) implies that the unit of the adjunction Ho(F ) and Ho(G) is an isomor-
phism and that Ho(G) is conservative, which by a classical category theoretic argument
implies that Ho(F ) and Ho(G) are equivalences, i.e. (i) and (ii). Conversely, condition
(iv) contains the first half of condition (v), and the second half of condition (v), follows
from (ii).
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The last condition of Proposition 2.4.5 can be further simplified:

2.4.6. Proposition. For a right Quillen functor G : Dfib → Cfib, the following conditions
are equivalent:

(i) G detects equivalences between (bi)fibrant objects, i.e. Ho(G) is conservative.
(ii) For any fibration between (bi)fibrant objects p, if G(p) is acyclic then p is acyclic.

Proof. The implication (i) ⇒ (ii) follows immediately from Proposition 2.2.10.(v). We
assume (ii). Let f : X → Y be an arrow between bifibrant objects such that G(f) is an

equivalence. Consider X
∼
↪→ Z

p
� Y an (acyclic cofibration,fibration) factorization of f ,

G sends the acyclic cofibration to an equivalence because of Proposition 2.4.3, hence G(p)
is an equivalence by 2-out-of-3, hence it is acyclic, and hence p is acyclic by (ii), which
proves that f is an equivalence.

3. Cisinski–Olschok type theorems

The goal of this section is to provide simpler criterions for constructing a weak model
structure out of two weak factorization systems in the special case where either:

(i) the underlying category has a well-behaved and left adjoint weak cylinder functor
(Theorem 3.0.5),

(ii) the underlying category is monoidal closed and usual compatibility conditions be-
tween the monoidal structure and the factorization system are satisfied (Theo-
rem 3.0.2),

(iii) the underlying category is enriched in a category that already has a weak model
structure and this enrichment is compatible with the factorization system (Theo-
rem 3.0.2 as well).

The special case (i) is similar in form to M. Olschok’s generalization of D-C. Cisinski’s
theory from [8], see more precisely Theorem 3.16 from [23]. In [16] we will show how we
can recover and generalize Olschok’s theorem from Theorem 3.0.5. The case (iii) can be
seen as a generalization of the main result of [20], which essentially corresponds to a weak
form of our Theorem 3.0.2 in the special case of a simplicially enriched category.

This section heavily relies on properties of the corner-product, recalled in Defini-
tion B.0.4, and what is often called the Joyal–Tierney calculus, introduced in the appendix
of [18], which we review in Appendix B.

3.0.1. Assumption. In all this section, as well as in all the examples treated in the
rest of the paper, we will consider a category C with a set of generating cofibrations I
and a set of “generating anodyne maps”or “pseudo-generating7 acyclic cofibrations” J .
Cofibrations will be the I-cofibrations and fibrations will be the J-fibrations in the sense
of Definition B.0.8. It will always be the case that maps in J are I-cofibrations.

7This terminology comes from section 9.9 of [28]. In a model category, it refers to the fact that this
set of acyclic cofibrations is only sufficient to characterize fibrations between fibrant objects, but not
necessarily all fibrations.
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3.0.2. Theorem. Let A and C be two complete and cocomplete categories such that:

(i) There is a functor � : A× C → C divisible on both sides as in B.0.1.

(ii) C is endowed with two classes of maps I and J such that (I-cof,I-fib) and (J-cof,J-
fib) (as in Definition B.0.8) form weak factorization systems.8

(iii) A is endowed with two classes of maps IA and JA.

(iv) J ⊂ I-cof and JA ⊂ IA-cof.

(v) We have
IA �I ⊂ I-cof

where � denotes the corner-product, or pushout-product, as defined in B.0.4.

(vi) Any map in IA �J or in JA �I has the left lifting property with respect to all
J-fibrations between J-fibrant objects.

(vii) There is an IA-cofibrant object I in A such that I � is isomorphic to the identity
endofunctor of C.

(viii) There is a diagram in A of the form

I
∐

I C

I D

O

i

∼

such that i is an IA-cofibration, and both the map I ↪→ D and the first map I→ C
are acyclic cofibrations, in the sense that they are IA-cofibrations with the left lifting
property with respect to all JA-fibrations between JA-fibrant objects.

Then there is a weak model structure on C such that the fibrations between fibrant ob-
jects are the J-fibrations and the cofibrations between cofibrant objects are the I-cofibrations.

Proof. I-cofibrations and IA-cofibrations will be called cofibrations, J-fibrations and JA-
fibrations will be called fibrations, and J-cofibrations and JA-cofibrations will be called
anodyne maps. As in Definition 2.1.7, IA or I-cofibrations with the left lifting prop-
erty against all JA or J-fibrations between JA or J-fibrant objects will be called acyclic
cofibrations, and similarly for acyclic fibrations.

Any I-fibration is automatically a fibration, because J ⊂ I-cof, and in fact an I-
fibration is an acyclic fibration as it has the right lifting property against all maps in I,

8See the discussion of the small object argument in Appendix C for methods to show this type of
conditions.
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hence against all cofibrations as well. Similarly, J-cofibrations (i.e. anodyne morphisms)
are acyclic cofibrations.

The existence of weak factorization systems (I-cof, I-fib) and (J-cof, I-fib) implies that
C satisfies the factorization axioms. We use the symbol a t p to denote that a has the
left lifting property against p as in Appendix B.

Claim 1: If a : A ↪→ B and i : X ↪→ Y are cofibrations between cofibrant objects in
A and C respectively, then a �i is also a cofibration between cofibrant objects. Indeed,
the assumption IA �I ⊂ I-cof, together with Lemma B.0.10, shows that such a map is
always a cofibration and hence Lemma B.0.12 shows that its domain is cofibrant.

Claim 2: If i : A ↪→ B is a cofibration between cofibrant objects in A and f : X → Y
is a fibration between fibrant objects in C then i\f (as defined in B.0.4) is a fibration
between fibrant objects.

Indeed, the assumptions of the theorem show that IA �J t f for f any fibration
between fibrant objects. Hence for any such f and i any IA-cofibration we have J t i\a ,
i.e. i\a is a J-fibration. We apply Lemma B.0.12 to the bi-functor \ : A × Cop → Cop
to conclude that i\a is always a fibration between fibrant objects.

Claim 3: If i : A ↪→ B is a cofibration between cofibrant objects in C and f : X → Y
is a fibration between fibrant objects in C then f/i is a fibration between fibrant objects
in A.

Indeed, the assumptions of the theorem show that JA �I t f for f any fibration
between fibrant objects. This shows that for i and f as in the claim JA t f/i , i.e. that
f/i is a JA-fibration. Then applying Lemma B.0.12 to the bi-functor / : Cop×C → Aop
shows that i\a is always a J-fibration between J-fibrant objects.

From these observations we deduce:
Claim 4: If a : A ↪→ B and i : X ↪→ Y are two cofibrations between cofibrant objects

in A and C respectively and one of them is an acyclic cofibration then a �i is an acyclic
cofibration.

It is a cofibration by Claim 1, so we need to prove that a �i t p for p a fibration
between fibrant objects. This is equivalent to a t p/i and to i t a\p . If we assume
for example that a is an acyclic cofibration, then Claim 3 shows that p/i is a fibration
between fibrant objects and hence a t p/i does hold. If instead i is an acyclic cofibration,
then Claim 2 shows that i t a\p .

Claim 5: If j is an acyclic cofibration between cofibrant objects in A and p is a
fibration between fibrant objects in C then j\p is an acyclic fibration in C.

Indeed, as j is in particular a cofibration, this map is a fibration between fibrant
objects by Claim 2. We need to prove that it has the right lifting property with respect
to all cofibrations between cofibrant objects. Let i be such a cofibration in C, we have
j �i t p. Claim 4 shows that i t j\p which concludes the proof.

All the other similar expected claims will of course hold as well and are obtained with
the same methods, but those we proved above are the only ones needed in the rest of the
proof.

We can now construct relative weak cylinder objects for cofibrations and relative weak
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path objects for fibrations between bifibrant objects:
Let i : A ↪→ B be a cofibration between bifibrant objects of C, then the map w :=

(I
∐

I ↪→ I) �(A ↪→ B) is a cofibration

w : (B
∐

B)
∐
A
∐
A

(I � A) ↪→ I �B.

Moreover, the map A ↪→ D � A is an acyclic cofibration by Claim 4 because it is (I ↪→
D) �(0 ↪→ A) and (I ↪→ D) is an acyclic cofibration. As A is fibrant, it admits a retraction
r : D � A→ A.

In particular, we define a map from the domain of w to B
∐

AB by sending B
∐
B to

B
∐

AB by the obvious map, and I � A to B
∐

AB by the composite

I � A→ D � A r→ A→ B
∐
A

B.

We define the object IAB and the cofibration

w′ : B
∐
A

B ↪→ IAB

as the pushout of w along the map (B
∐
B)
∐

A
∐
A(I�A)→ B

∐
AB constructed above,

and we will show that it is a relative cylinder object with the expected properties.
The first map B ↪→ IAB can be checked to be the pushout of the map B

∐
A I �A→

I �B (induced by the first map B ↪→ I �B and the natural map I �A→ I �B) along
the map B

∐
A I �B (induced by the identity on B and the obvious map I �A→→ B).

And the map B
∐

A I � A → I � B mentioned above is exactly (I ↪→ I) �(A ↪→ B)
hence it is an acyclic cofibration by Claim 4, and this shows that the first map B ↪→ IAB
is indeed an acyclic cofibration.

Finally the map (I ↪→ D) �(A ↪→ B) is also an acyclic cofibration because of Claim 4.
This map is

(D � A)
∐
A

B ↪→ D �B.

If we consider the map (D � A)
∐

AB → B induced by the identity of B and the map

D �A r→ A→ B, then as B is fibrant we can extend it to a map r′ : D �B → B, which
induces a map, also denoted r′ : I � B → B. By construction, r′ is r when restricted to
I � A ↪→ I � B and is the co-diagonal map when restricted to B

∐
B ↪→ I � B, those

properties exactly show that r′ defines, by the universal property of the pushout defining
IAB a map IAB → B which factors the codiagonal

B
∐
A

B ↪→ IAB → B.

This conclude our construction of relative cylinder objects. At this point we could, almost
by the exact dual argument, construct a relative path object. But by Proposition 2.3.5 it is
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enough to show that every bifibrant object has a strong path object, or (by Remark 2.1.13)
that every fibrant object has a weak path object. This is directly produced by applying
( \X) to the diagram in ((viii))

D\X X

I\X X ×X

q

∼

∆

p

where p is a fibration by Claim 2, and q, as well as the composite I\X � X, are acyclic
fibrations by Claim 5, applied to the fibration X � 1 and in each case the corresponding
(acyclic) cofibration in A.

3.0.3. Remark. Using the “self-composed span trick” lemma of 2.3.6, condition (viii) of
Theorem 3.0.2 can be replaced by the sometimes simpler condition:

(viii)’ There is an IA-cofibration in A of the form

I
∐

X
i
↪→ C

such that X is IA-cofibrant and both maps I ↪→ C and X ↪→ C are acyclic cofibra-
tions.

Indeed, applying the dual of Lemma 2.3.6 to this span will produce exactly the weak
cylinder object that we needed.

3.0.4. Construction. We conclude with a special case of interest of our theorem. Take
A to be the category of presheaves over the following category D

P
(e0,e1)

⇒ C.

We define
JA = {e0, e1 : P ⇒ C}

IA = {∅ → P, P
∐

P
e0,e1→ C}

where we have identified the objects P and C with the corresponding representable func-
tors. Following the third point of Example B.0.2, a divisible bi-functor D̂�C → C is given
by two left adjoint functors P,C from C to C with natural transformations e0, e1 : P ⇒ C.
We assume that P is the identity endofunctor. In this special case, Theorem 3.0.2 (with
the modification of Remark 3.0.3) reduces to:
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3.0.5. Theorem. [Variant of Cisinski–Olschok’s theorem] Let C be category with two
classes of maps I and J such that:

1. I and J generates weak factorization systems and J ⊂ I-cof as in Theorem 3.0.2.(ii).

2. C is endowed with a left adjoint endofunctor X 7→ CX, as well as natural transfor-
mations

Id
e0,e1
⇒ C.

3. For any i : A→ B ∈ I the map

(B
∐

B)
∐
A
∐
A

CA→ CB

is an I-cofibration.

4. For any i : A→ B in I the two maps

B
∐
A

CA⇒ CB

have the left lifting property against all J-fibrations between J-fibrant objects.

5. For any j : A→ B ∈ J the map

(B
∐

B)
∐
A
∐
A

CA→ CB

has the lift lifting property against all J-fibrations between J-fibrant objects.

3.0.6. Remark. Note that there are other options for the choice of small category D
and hence of A = D̂ as in Construction 3.0.4 that give variations of Theorem 3.0.5. Take
D to have three objects P,Q,C with maps P → C and Q → C with only P acting as
the identity. This corresponds to the most general form of the (dual of the) “span trick
Lemma” 2.3.6, where we only ask to have a cospan X ← C → P in order to construct a
cylinder for X. Alternatively, we can also9 use a D that has the shape of the diagram in
Theorem 3.0.2.(viii). This gives a version where we have left adjoint functors C and D,
providing functorial weak cylinder. In this case we only need to ask the first leg inclusion
P → C to be acyclic instead of both.

9The reader can consult 3.2.2 in the first arXiv version of the present paper for a full statement of
this form of the theorem.
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4. Simple examples

In this section we will mostly show how the framework above applies to some very simple
examples. In terms of logical background, we now need slightly stronger assumptions in
order to use the small object argument. As this is a subtle matter, we refer to Appendix C
for a precise discussion of what this means, though we do not have the final answer to
that question yet. In any case, everything below would be valid either in the internal logic
of an elementary topos with a natural number object or in (CZF).

4.1. The model structure for setoids. Here we construct a model structure cor-
responding to the notion of setoids as presented in Appendix A.

We consider G the category of oriented graphs. By a graph X we mean a set of vertices
V (X) and a set of arrows R(X), with two maps s, t : R(x) ⇒ V (X). We endow G with
a monoidal structure where for two graphs X and Y their tensor product is X ⊗ Y such
that

V (X ⊗ Y ) := V (X)× V (Y )

R(X ⊗ Y ) := [V (X)×R(Y )]
∐

[R(X)× V (Y )]

where the source and target map s and t are defined by

s(x, g) := (x, s(g) t(x, g) := (x, t(g)) if x ∈ V (X) and g ∈ R(Y )
s(f, y) := (s(f), y) t(f, y) = (t(f), y) if f ∈ R(X) and y ∈ V (Y ).

So for example the graph (x
f→ y)⊗ (a

g→ b) is simply

(x, a) (x, b)

(y, a) (y, b) .

(f,a)

(x,g)

(f,b)

(y,g)

This makes the category of graphs a symmetric monoidal closed category. Morphisms
X ⊗ Y → Z correspond to the definition in Appendix A.1 of two-variable functions
between setoids.

We will use our Theorem 3.0.2 to endow the category of graphs with a “monoidal”
weak model structure. By that we mean that we will apply the theorem with A = C = G,
the bi-functor being the tensor product and with I = IA and J = JA.

The set of generating cofibrations is I = {iV , iR}, with

iV : ∅ ↪→ • iR : (• •) ↪→ (• → •).

The small object argument applies in its “good” version of C.0.3.

4.1.1. Lemma. The I-cofibrations are the complemented inclusions, i.e. the monomor-
phisms f : X → Y such that for all y ∈ Y either y ∈ X or y /∈ X.
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Proof. The generating cofibrations satisfy this condition and the condition is stable
under retracts, coproducts, pushouts and compositions so all cofibrations satisfy it. Con-
versely note that each such levelwise complemented inclusion can be constructed by first
using pushout along iV to add all the missing vertices and then pushout along iR to add
all missing arrows.

In particular every graph is I-cofibrant. The I-fibrations are the maps f : X → Y
such that for every cell y ∈ Y there is an x ∈ X such that f(x) = y and for every
arrow v : f(x) → f(y) in Y there is an arrow w : x → y such that f(w) = v. Also, the
corner-product conditions for cofibrations are easily checked: iV ⊗iV = iV , (iV ⊗iR) =
(iR ⊗iV ) = iR and iR ⊗iR is an isomorphism.

The generating anodyne maps will be given by J = {j1, jt, jinv}, with

j1 := (x) ↪→ (x→ y)

jt :=
(
• • •

)
↪→

 • • •


ji :=

(
• •

)
↪→
(
• •

)
.

Here again the small object argument applies without any problems and gives us a
weak factorization system in J-cofibrations/J-fibrations. The corner-product conditions
against iV are all trivial as iV ⊗f = f for all f . We only need to check the corner-product
of the form iR ⊗j? (and the corner-product is symmetric as the tensor product is). We
have

iR ⊗j1 =

 • •

• •

 ↪→

 • •

• •

 .

4.1.2. Lemma. Any J-fibration f : X → Y between J-fibrant objects has the right lifting
property against iR ⊗j1.

Proof. A lifting square of f : X → Y against iR ⊗j1 corresponds to a solid diagram of
the form

• •

• •
in X, together with a dotted filling in Y . Using the lifting property of X against jt and
ji we can extend this diagram to

• •

• • .
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Using the two new arrows, the dotted filling then becomes a solution to a lifting problem
against jt, and hence it can be lifted from Y to X using the lifting property of f against
jt.

The two other corner-product maps iR ⊗jt and iR ⊗ji are both identity maps, respec-
tively of

• • •

• • •
and

• •

• • .

In order to finish the proof that the conditions of Theorem 3.0.2 are satisfied we only
need to construct a weak cylinder object for the graph •. It is given by

(•
∐
•) •

(• → •)
(
•

)
.

jr

That is the cylinder object I and the reflexivity witness D are respectively given by

I := (• → •) D =
(
•

)
with the obvious map •

∐
• ↪→ I (all the other maps being the unique possible map).

The first leg • ↪→ I is the map j1, so it is an anodyne map. In order to conclude we need
to show that jr is an acyclic cofibration, i.e.:

4.1.3. Lemma. The map
jr : (•) ↪→

(
•

)
has the left lifting property against all J-fibrations f : X → Y between J-fibrant objects.

Proof. A lifting problem for f : X → Y against jr is a vertex v in X together with an
arrow r : f(v) → f(v) in Y . Using that X is J-fibrant we can find in X a vertex y and
arrows a : x → y and b : y → x. We now have a lifting problem against jt, which has a
solution as f is a fibration.

It is also worth noting that:

4.1.4. Proposition. A graph X is J-fibrant if and only it is a Setoid in the sense of
Definition A.1.1.

Proof. A structure of setoids on a graph X is exactly the same as chosen liftings against
jt, ji and jr for the map X → 1. We have seen that a fibrant object has the lifting
property against jr, and conversely for a map of the form X → 1 the lifting property
against jr clearly implies the lifting property against j1 so this concludes the proof.
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4.1.5. Theorem. There is a weak model structure on the category G of graphs such that:

� Every object is cofibrant, cofibrations are the complemented monomorphisms of
graphs, i.e. monomorphisms f : X → Y such that for each vertex or edge y ∈ Y ,
either y ∈ X or y /∈ X.

� Fibrant objects are the setoids.

� Fibrations and acyclic fibrations between fibrant objects are the I-fibrations and J-
fibrations.

� Two maps between fibrant objects f, g : X ⇒ Y are homotopic if and only if they
are equivalent in the sense of Definition A.1.2.(ii).

� The equivalences between fibrant objects correspond to the notion of isomorphisms
of setoids as in Definition A.1.2.(v).

Note that (as every object is cofibrant) this weak model structure can be seen, at least
non-constructively, to be a right semi-model structure. But it is not a full Quillen model
structure: indeed the map (• •) → • is an I-fibration as there is no arrow to lift in its
target, but is not an equivalence.

Proof. The first three points follow immediately from Theorem 3.0.2, all the assumptions
have been checked in the discussion above. The fourth point is exactly the description
of a homotopy as a map I ⊗X → Y . The last point is also immediate: a map between
bifibrant objects is an equivalence if and only if it is invertible in the homotopy category,
and once homotopies are translated into equivalencees of maps between setoids then this
is exactly the condition of the theorem.

4.1.6. Remark. This example also shows that for the model structure constructed out
of Theorem 3.0.2 or 3.0.5, the acyclic cofibrations are not always the J-cofibrations, for
example the maps

j2 : y ↪→ (x→ y) jr : (•) ↪→
(
•

)
cannot be written as retracts of composite of pushouts of coproducts of maps in J , but
are acyclic cofibrations.

4.2. The projective model structure for chain complexes. We consider chain
complexes of arbitrary degree, with a homological (i.e. degree decreasing) differential, so
sequences of R-modules

. . . C−1
∂← C0

∂← C1
∂← . . .

∂← Cn
∂← . . .

subject to the condition ∂ ◦ ∂ = 0, with morphisms being the morphisms of diagrams. It
is endowed with its usual closed monoidal structure.
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4.2.1. Construction. The generating cofibrations are the maps

ik :


. . . 0 0 R 0 0 . . .

. . . 0 0 R R 0 . . .

1

1


where the two nontrivial components are in degree k − 1 and k. Taking a pushout by
ik means adding an element to ck with a specified differential. In particular the unit
object can be obtained as a pushout of i0 (so is cofibrant) and, more generally, the
objects that can be obtained from the zero object as finite iterated pushouts of maps in
I = {(ik), k ∈ Z} are exactly the complexes which are free in each degree with a finite
number of generators in total. General cofibrant objects are a little more complicated to
describe, but they are in particular retracts of free modules (projective) in each degree.
The corner-product condition for cofibrations is very easy to check: a computation shows
that ik ⊗ik′ is a pushout of ik+k′ .

The generating anodyne maps are given by

jk :


. . . 0 0 0 0 0 . . .

. . . 0 0 R R 0 . . .
1


with the two nontrivial components being in degrees k and k + 1, hence a pushout of jk
adds both an element in degree k + 1 and its differential in degree k. And jk ⊗ik′ is just
ik′ tensored by the target of jk and is a pushout of jk+k′ .

The cylinder object for the unit is given by

. . . 0← R⊕R← R← 0← . . .

with R⊕R in degree 0, and ∂ : R→ R⊕R is r 7→ (−r,+r). The two maps from the unit
are just the two coproduct inclusions in dimension 0. Moreover, the two maps R→ R⊕R
corresponding to the first component and the diagonal map, also identify R ⊕ R as the
coproduct of R and R in another way, and this shows that our interval can be decomposed
as the coproduct of the unit and the target of j0, hence showing that the map from the
unit to the interval is anodyne.

4.2.2. Theorem. There is a weak model structure on the category of chain complexes
such that:

(i) All objects are fibrant. A map is a fibration if on each component it admits a
(possibly non-linear) section.
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(ii) Cofibrant objects are objectwise projective10 R-modules (but not all objectwise pro-
jective are necessarily cofibrant).

(iii) Two maps f, g : X ⇒ Y with X cofibrant are homotopic if they are homotopic in the
sense of homological algebra, i.e. if we have a collection of linear maps h : Xn → Yn+1

such that ∂h+ h∂ = f − g.

(iv) A map f : X → Y between two chain complexes is an equivalence if and only if for
each n the map f : Hn(X) → Hn(Y ) is an isomorphism of setoids, where Hn(X)
denotes the group quotient {x ∈ Xn|∂x = 0}/{∂x|x ∈ Xn+1} constructed as a setoid.

Of course, classically, this is in fact a Quillen model structure.

Proof. We just apply Theorem 3.0.2 with the choices explained above. Fibrations are
characterized by the right lifting property against the jk, as the jk all have a retraction
(the 0 map) any object is fibrant, and a map from the target of jk to X is just the choice
of an element in Xk+1, which implies the description of fibrations given. Condition (iii)
is just a spelled-out description of what is a map I ⊗ X → Y . Condition (iv) can be
deduced from Appendix A.2 with some work; we will treat in detail the corresponding
statement for simplicial sets as Proposition 5.2.6 which is similar but harder.

5. Simplicial examples

5.1. Generalities on simplicial sets and their cofibrations. Let ∆ be the
category whose objects are the finite non-empty ordinals

[n] = {0, . . . , n}

for n > 0 and whose morphisms are the order-preserving maps. We denote ∆̂ the category
of presheaves of sets over ∆, called simplicial sets. ∆[n] denotes the representable presheaf
corresponding to [n]. For a simplicial set X, X([n]) is often abbreviated to Xn and for
f : [n]→ [m] we denote by f ∗ the corresponding map X([m])→ X([n]).

A cell in X([n]) is said to be degenerate if it is of the form s∗y for s : [n] → [m]
a surjection (called a degeneracy). Using the factorization of maps in ∆ as surjection
followed by an injection, any cell of the form v∗y with v a non-injective map is degenerate.
We say that a cell is non-degenerate if it is not degenerate, but one should be careful:
being degenerate is not always a decidable property.

5.1.1. Lemma. In ∆ a pushout of two degeneracies

[n] [i]

[j] [k]
p

10i.e. retract of a free module. We could also restrict to free modules as we are not assuming that
cofibrations have to be stable under retract.
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always exists, its two structural maps are again degeneracies and it is an absolute pushout
(i.e. preserved by any functor).

Proof. The standard proof of this fact is constructive. A direct proof with a rather
explicit computation specifically for the category ∆ can be found in the first pages of
[19]. It can also be deduced from the more general theory of elegant Reedy categories
introduced in [4]: the property in the lemma is one of the equivalent definitions of elegant
Reedy categories, and there are other equivalent definitions considerably easier to check
for the category ∆.

The following is a constructive version of the classical Eilenberg–Zilber lemma:

5.1.2. Lemma.

(i) If a cell x ∈ Xn is degenerate in two ways, i.e. if x = s∗1y = s∗2v with s1 and s2 two
degeneracies, then there exists a cell t such that y = s∗3t and v = s∗4t with s3 and s4

two degeneracies and s3s1 = s4s2 in ∆.

(ii) If a cell x has an expression of the form x = s∗y for s a degeneracy and y non-
degenerate, then this expression is unique.

(iii) Given a cell x ∈ Xn if for every expression x = s∗y with s a degeneracy it is
decidable whether y is degenerate or not, then x admits a (unique) expression of the
form s∗y with s a degeneracy and y non-degenerate.

Proof. (i) is a translation of the fact that, by Lemma 5.1.1 the pushout of s1 and s2 in
∆ exists and is preserved by X : ∆→ Setop.

For (ii), if x has two such expressions x = s∗1y = s∗2v then the first point implies that
y and v have to be degeneracies of a same cell t, but as they are non-degenerate those
degeneracies have to be identities, hence y and v are both equal to t and s1 = s2. Finally
(iii) follows by induction on n: The result is trivially true for x ∈ X0, and for x ∈ Xn

either11 x is non-degenerate, in which case the result is trivially true, or x = s∗y for s a
degeneracy, but then y also satisfies the hypothesis of our claim and has strictly smaller
dimension, so that y = s′∗z for z non-degenerate and s′ a degeneracy and x = (s′s)∗z.

5.1.3. Construction. We consider the following subobjects of ∆[n]

(∂∆[n])k = {f : [k]→ [n] non-surjective}

(Λi[n])k =

f : ∆k → ∆n

∣∣∣∣∣∣
f is not surjective,
nor a surjection onto
{0, . . . , n}\{i}

 .

We denote by ∂[n] : ∂∆[n] ↪→ ∆[n] and λk[n] : Λk[n] ↪→ ∆[n] the natural inclusions. Let
also ∂i[n], or simply ∂i : ∆[n − 1] → ∆[n] be the i-th face map, i.e. the map that at the
level of finite ordinals is injective and skips i.

11Here we use the assumption for the degeneracy map d = Id.
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Alternatively, ∂∆[n] is the union (in ∆̂) of the images of all the ∂i[n] and Λi[n] is the
union of the images of all the ∂[n]j for j 6= i. Geometrically, ∂∆[n] corresponds to the
boundary of ∆[n] and Λi[n] to this same boundary minus the interior of the face opposed
to the i-th vertex.

The model structures we will consider on the category of simplicial sets have for
generating cofibrations

I = {∂[n] : ∂∆[n] ↪→ ∆[n]}.
The small object argument produces (constructively) a weak factorization system on the
category of simplicial sets into “I-cofibrations” and “I-fibrations”. This is the “good”
version of the small object argument described in C.0.3. In classical mathematics, it
follows from the Eilenberg–Zilber lemma that I-cofibrations are exactly the monomor-
phisms and hence that every object is I-cofibrant. Using the constructive version of the
Eilenberg–Zilber lemma, we get instead:

5.1.4. Proposition. The I-cofibrations between simplicial sets, are the maps f : X → Y
such that:

� f is a levelwise complemented monomorphisms, i.e. for all n, f : Xn → Yn identifies
Xn with a complemented (i.e. decidable) subset of Yn.

� For every cell y ∈ Yn which is not in the image of Xn, the proposition “y is a
degenerate cell” is decidable.

In particular:

� I-cofibrant objects are the simplicial sets where it is decidable if a cell is degenerate
or not.

� I-cofibrations between I-cofibrant objects are just the levelwise complemented mono-
morphisms.

This recovers in particular that classically every object is cofibrant and cofibrations are
just the monomorphisms. The fact that not every object is cofibrant constructively is fairly
new, but it was somehow expected from some negative results of T. Coquand, M. Bezem
and E. Parmann [5], [6] about the homotopy theory of Kan complexes in constructive
mathematics, and the key point of all their obstructions is exactly the undecidability of
degeneracy in general.

Proof. As we are working in a presheaf category, co-limits are computed levelwise and
so the “good case” of the small object argument presented in C.0.3 applies. In partic-
ular, cofibrations are retracts of ω-compositions of pushouts of coproducts of generating
cofibrations.

The generating cofibrations ∂∆[n] ↪→ ∆[n] satisfy all the conditions of the proposition
and these conditions are transferred to coproducts, pushouts, transfinite compositions and
retracts, so that any I-cofibration satifies them as well.
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Conversely, assume that f : A ↪→ B is a map satisfying the conditions in the propo-
sition, then essentially the usual proof that every monomorphisms of simplicial set is
a cofibration can be carried over constructively, thanks to those additional decidability
assumptions:

First if x is a cell in B not in A and if x = v∗y for v a degeneracy, then the cell y cannot
be in A either (otherwise x would be). In particular it is decidable if y is degenerate or
not, hence our Eilenberg–Zilber Lemma 5.1.2 shows that x = s∗y for a unique degeneracy
map s and non-degenerate cell y.

Let An be the subset of cells of B which are either in A or degeneracies of a cell of
dimension strictly less than n. So A0 = A and B =

⋃
nA

n. Each An is a sub-simplicial
set and they are all levelwise complemented. We claim that for each n, An is obtained
from An−1 as a pushout of a coproduct of copies of the map ∂∆[n] ↪→ ∆[n]. For each

cell d ∈ Bn which is neither degenerate nor in A, the composed map ∂∆[n]→ ∆[n]
d→ B

factors in An−1, as its only non-degenerate cells are of dimension strictly smaller than n.
Let An−1 → C be the pushout of the coproduct of one copy of ∂∆[n] ↪→ ∆[n] for each such
cell d. We have a natural map from C to B. It is rather immediate from Lemma 5.1.2
and our various decidability assumptions that this map is a monomorphism, and that it
identifies C with An.

5.1.5. Proposition. If i and i′ are I-cofibrations then i ×i′ also is.

Proof. It is enough to check the result for two generating cofibrations ∂[n] and ∂[m] and
in this case it is immediate that ∂[n] ×∂[m] satisfies the conditions of Proposition 5.1.4.

5.2. The weak Kan–Quillen model structure. The goal of this subsection is to
prove the following:

5.2.1. Theorem. There is a weak model structure on the category of simplicial sets such
that:

� The fibrant objects and fibrations between fibrant objects are characterized by the
right lifting property against simplicial horn inclusions λk[n] : Λk[n] ↪→ ∆[n].

� The cofibrant objects and cofibrations between them are those of Proposition 5.1.4.

� Acyclic fibrations between fibrant objects are characterized by the lifting property
against the boundary inclusions ∂[n] : ∂∆[n] ↪→ ∆[n].

The class of equivalences between fibrant objects will be described in 5.2.6. The
theorem will be proved by applying Theorem 3.0.2 to the cartesian monoidal structure.
The proof will be completed in 5.2.4. As usual, the important point is to check the
corner-product condition which we will deduce from:
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5.2.2. Lemma. [Joyal] The following set of morphisms generates the same weak factor-
ization systems:

(i) The set of horn inclusions λk[n] : Λk[n] ↪→ ∆[n],

(ii) The set of morphisms iε ×∂[n] with ∂[n] : ∂∆[n] ↪→ ∆[n] the boundary inclusion and
i0, i1 : ∆[0]⇒ ∆[1] the two endpoint inclusions.

We call anodyne maps the elements of the left class of this weak factorization system.

Proof. This corresponds to Theorem 3.2.3 in [19], see also Proposition 2.1.2.6 in [21]
(which is slightly different, but the lemma can be deduced by combining this statement
and its dual). The proofs given in both these references are completely constructive:

One first observes that the maps iε ×∂[n] can be explicitly constructed as a pushout
of horn inclusions, hence the set (ii) is included in the left class generated by (i). Then,
as an application of Joyal–Tierney calculus, we observe that the left class generated by
(ii) contains all the morphisms iε ×v for any cofibration v. Another explicit construction
shows that the morphism λk[n] : Λk[n] ↪→ ∆[n] is a retract of iε ×λk[n] (for ε = 1 if k > 0
and ε = 0 if k < n). As (Λk[n] ↪→ ∆[n]) is a cofibration it does show that the set (i) is
included in the left class generated by (ii).

5.2.3. Corollary. In the category of simplicial sets, if i is a cofibration and j is an
anodyne morphism, i.e. in the left class of the weak factorization system of Lemma 5.2.2,
then j ×i is also an anodyne morphism.

Proof. This follows directly from Lemma 5.2.2 and the results of Appendix B. It is
enough to check that if i is a cofibration and j = iε ×∂[n] is one of the generators,
then j ×i = iε ×∂[n] ×i = iε ×(∂[n] ×i). But by Proposition 5.1.5, the map ∂[n] ×i
is a simplicial cofibration, hence the map iε ×(∂[n] ×i) is in the class generated by the
iε ×∂[n], i.e. is anodyne, which proves the result.

5.2.4. Proof of Theorem 5.2.1. We apply Theorem 3.0.2 to the cartesian monoidal
structure on ∆̂. The corner-product axiom for cofibrations has been proved in 5.1.5 and for
anodyne morphisms in Corollary 5.2.3. The good version of the small object argument
applies to both these classes. The unit for the cartesian tensor product is ∆[0] and is
cofibrant. Finally a cylinder for ∆[0] is given by

∆[0]
∐

∆[0]
∂[1]
↪→ ∆[1]→ ∆[0].

The two maps ∆[0] ⇒ ∆[1] are part of our generating acyclic cofibrations, so this con-
cludes the proof. The description of acylic fibrations is immediate from the description of
cofibrations and the fact that the generating cofibrations have cofibrant domains.
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The end of Subsection 5.2 is devoted to the proof of Proposition 5.2.6 below, which
recovers a constructive version of the usual characterization of equivalences in terms of
homotopy groups.

5.2.5. Construction. Given a fibrant simplicial sets X, and x ∈ X0, we define, follow-
ing Appendix A.2

πn(X, x) := π∂[n](X, x)

where x denotes the constant morphism ∂∆[n] → ∆[0]
x→ X. For n = 0, we define

π0(X) = π∆[0]/∅(X, !) where ! denotes the unique morphism ∅ → X. “π” is defined in
Appendix A.2, we remind the reader that πi(X, x) is defined as a setoid (see Appendix A)
whose quotient set is the usual homotopy group. Assuming the axiom of choice, these
setoids can be identified with the usual homotopy groups, but constructively they need to
be considered as different objects and contain more information than the usual homotopy
groups.

If follows from Remark A.2.2 that if f : X → Y is an equivalence then the induced
morphism

πi(f) : πi(X, x)→ πi(Y, f(x))

is an equivalence of setoids.

5.2.6. Proposition. A morphism f : X → Y between fibrant simplicial sets is an equiv-
alence if and only if the induced morphisms

π0(X)→ π0(Y ) and πi(X, x)→ πi(X, f(x))

for all i > 0 and all x ∈ X, are equivalences of setoids.

Proof. By Theorem A.2.6 we need to show that under the assumption on π-setoids in
the proposition, the map π∂[n](X,λ) → π∂[n](Y, f ◦ λ) is a surjection of setoids (as in
A.1.2.(iv)) for all n and λ : ∂∆[n] → X. It follows immediately from our assumption in
the case n = 0 or when λ is a constant map.

The proof will be in two parts:

(i) We show that given some element v ∈ π∂[n](X,λ) we can construct a structure of
surjection on the map π∂[n](X,λ)→ π∂[n](Y, f ◦ λ).

(ii) We show that given an element in π∂[n](Y, f ◦ λ) we can construct an element in
π∂[n](X,λ).

The combination of these two constructions provides the structure of surjection: any
element w in π∂[n](Y, f ◦ λ) gives an element v ∈ π∂[n](X,λ), that in turn can be used
to construct a surjection structure on π∂[n](X,λ)→ π∂[n](Y, f ◦ λ), which can be used to
produce a preimage (and a witness) for w.

We start with (i). λ : ∂∆[n] → X and let v : ∆[n] → X be an element of π∂[n](X,λ).
The general idea is that v shows that λ is homotopic to a constant morphism, hence the
π-sets concerned are equivalent to those appearing from a constant map and for these the
problem is already solved.
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More precisely, by Lemma A.2.4.(2) there is an equivalence of setoids

π∂[n](X,λ) ' π∂[n]′(X, v)

where ∂[n]′ is the morphism ∆[n] ↪→ ∆[n]
∐

∂∆[n] ∆[n]. Now as ∆[n] is equivalent to ∆[0]

(it is possible to construct an explicit homotopy equivalence) the morphism v is homotopic
to a constant morphism v′ : ∆[n]→ X. By Lemma A.2.4.(3) this produces an equivalence
of setoids π∂[n]′(X, v) ' π∂[n]′(X, v

′). Using again Lemma A.2.4.(2) this π-setoid is also
equivalent to π∂[n]′′(X, v

′) where ∂[n]′′ is obtained from ∂[n]′ by collapsing ∆[n] to ∆[0]

∂[n]′′ : ∆[0]→

∆[n]
∐
∂∆[n]

∆[n]

∐
∆[n]

∆[0] ' ∆[n]
∐
∂∆[n]

∆[0].

Applying Lemma A.2.4.(2) once more this shows that our π-set is equivalent to π∂[n](X, v
′)

where v′ is the constant map with the same value as the v′ mentioned earlier. All these
equivalences are functorial in X, so this shows that it is the same to put a surjection
structure on π∂[n](f, λ) or on π∂[n](f, v

′), but the second case follows from the observation
above that the problem is already solved for constant morphisms ∂∆[n]→ X.

We now prove (ii). We need to show that given any element in π∂[n](Y, f ◦ λ) we can
construct an element of π∂[n](X,λ). Here the informal idea is that, by a construction
we will explain below, a map λ : ∂∆[n] → X can itself be thought of as an element of
πn−1(X,λ0) (where λ0 is the composite of λ with the vertices 0 : ∆[0]→ ∂∆[n] ). Having
an element in π∂[n](Y, f ◦λ) allows to show that the corresponding element of πn−1(X,λ0)
has a trivial image in πn−1(Y, f ◦ λ0), but as the map πn−1(X,λ0) → πn−1(Y, f ◦ λ0)
is a bijection of setoids there should also be a trivialization in X which, by the same
construction, corresponds to an element of π∂[n](X,λ).

To make this formal, we need to clarify how a function λ : ∂∆[n] → X corresponds
to an element of πn−1(X,λ0), and how a trivialization of such an element corresponds to
an extension to ∆[n]→ X. We start with some constructions: Consider the two pushout
diagrams defining the objects Sn and Bn (the choice of the value of i is irrelevant here)

Λi[n] ∂∆[n] ∆[n]

∆[0] Sn−1 Bn .
p p

θ θ′

p in

All the vertical maps, as well as both the horizontal composites are equivalences
(∆[0]→ Λi[n] is an acylic cofibration by 2-out-of-3).

Note that Sn−1 is also isomorphic to ∆[n − 1]
∐

∂∆[n−1] ∆[0] through the inclusion of

∆[n− 1] in ∂∆[n] as the i-th face.
As the morphism θ : ∂∆[n] → Sn−1 is an equivalence and X is fibrant, there exists a

morphism µ : Sn−1 → X such that the composite µθ is homotopy equivalent to λ, and
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as above, combining points (2) and (3) of Lemma A.2.4 there is an equivalence of π-
setoids (natural in X) π∂[n](X,λ) ' πin(X,µ). This gives us in particular an element in
πin(Y, fµ). The morphism µ : Sn−1 → X, can be seen, by the observation that Sn−1 is
isomorphic to ∆[n− 1]

∐
∂∆[n−1] ∆[0], as an element of π∂[n−1](X,µp).

Finally, we will prove that there is an element in πin(X,µ) if and only if µ is trivial as
an element of π∂[n−1](X,µp) (trivial means equivalent to the constant map); this allows
to conclude the proof by the informal argument explained above.

An arrow ∆[n] → X (constant on the boundary) is homotopy equivalent to a point
relative to ∂∆[n] if it can be extended to a morphism ∆[n] × ∆[1] which is constant on
∂∆[n] × ∆[1] ∪ ∆[n] × {1}. That is, a morphism µ : Sn → X is homotopically constant
(relative to its base point) if it can be extended along

Sn ↪→

∆[n]×∆[1]
∐

∂∆[n]×∆[1]∪∆[n]×{1}

∆[0]

 = B′n+1.

The cofibration ∂∆[n]×∆[1]∪∆[n]×{1} ↪→ ∆[n]×∆[1] used in the diagram above is the
corner-product of ∂[n] by one of the endpoint inclusions ∆[0]→ ∆[1] hence is an acyclic
cofibration, hence the inclusion ∆[0] ↪→ B′n is an acyclic cofibration. It follows that Bn+1

and B′n+1 are equivalent in the homotopy category Ho(∂∆[n]/∆̂) (their maps to ∆[0] are
equivalences). This shows, by Lemma A.2.4.(1), that πBn+1/Sn(X,µ) and πB′

n+1/Sn(X,µ)
are equivalent. The first one being inhabited exactly means that µ is trivial as an element
of π∂[n−1](X,µp)) by definition, and so this concludes the proof.

5.3. The weak Joyal–Lurie model structure on marked simplicial sets. In
this subsection we will construct a weak version of a variant of the Joyal model structure
for quasicategories due to J. Lurie, which we will refer to as the Joyal–Lurie model struc-
ture. It is a model structure on the category of marked simplicial sets, that also models
quasicategories.

5.3.1. Definition. A marked simplicial set (X, E) is a simplicial set X together with
a set of “marked” 1-cells: E ⊂ X([1]) containing all degenerate cells. A morphism of
marked simplicial set is a morphism of simplicial sets that send marked cells to marked
cells. The category of marked simplicial sets will be denoted by ∆̂m.

We will sometimes make the abuse of language to say that a simplicial set has no
marked cells to mean that only its degenerate cells are marked.

The idea of this model structure is as follows. In the Kan–Quillen model structure con-
structed in the previous section, the fibrant objects can be thought of as “∞-groupoids”,
where the 0-cells are objects, the 1-cells are morphisms and the higher cells encode arrows
of higher dimension with more complicated boundary, for example a 2-cell corresponds to
a 2-arrow of the form

•

• • .
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The Joyal–Lurie model structure (like the Joyal model structure) models a notion of
(∞, 1)-category, i.e. where not all 1-cells are invertible, and the marked arrows correspond
to the invertible ones.

It is very similar to the Joyal model structure, which is a model structure on plain
simplicial sets, where invertibility of 1-cells is instead defined explicitly by the existence
of an inverse. The Joyal–Lurie model structure is slightly better behaved (for example,
it is a simplicial model structure), more expressive (a minor modification allows to model
cartesian fibrations over a base quasicategories), and actually simpler to construct. The
main reason for this is that the generators of the Joyal–Lurie model structure, as well as
its interval objects are simpler to describe, and it leads to simpler combinatorics when
checking the corner-product conditions. However, a relatively direct proof of the corner-
product conditions for the additional generator of the Joyal model structure can be found
in [9] (see Lemma A.4 there). This can be used to provide a constructive proof of the
existence of a weak Joyal model stucture on plain simplicial sets along the same lines as
what we will do in the present section, with just a slightly more complicated combinatorics
to deal with.

5.3.2. Construction. We introduce the following marked simplicial sets:

� ∆0[n] (resp. ∆n[n]) denotes respectively ∆[n] where only the 1-cell corresponding
to {0, 1} (resp. {n− 1, n}) is marked (and the degenerate cells).

� The object ∆0[1] = ∆1[1], i.e. ∆[1] with its unique non-degenerate cell being marked,
will often be denoted I.

� ∆i[n] for 0 < i < n, or ∆[n] denotes just ∆[n] with only the degenerate cells marked.

� Λi[n] is defined as in Construction 5.1.3 but endowed with the marking induced by
∆i[n]. That is, no non-degenerate marked cell when 0 < i < n and only one when
i = 0 or i = n.

� If X is any simplicial set, X] denotes the marked simplicial set where all 1-cells of
X are marked and X[ denotes the marked simplicial set where only degenerate cells
are marked.

5.3.3. Construction.

� The set I of generating cofibrations of the Joyal–Lurie model structure are the

∂[n] : ∂∆[n] ↪→ ∆[n]

with no markings, and the arrow

ι : ∆[1]→ I

which is the identity of the underlying simplicial sets.
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� The set J of (pseudo) generating anodyne maps of the Joyal–Lurie model structure
are the:

λk[n] : Λk[n] ↪→ ∆k[n]

for all 0 6 k 6 n, and the morphism

S : ∆[3]2/6 → ∆[3]]

where ∆[3]2/6 denotes ∆[3] where the cells corresponding to {0, 2} and {1, 3} (as
well as the degenerate cells) are marked and ∆[3]] is the one where all 1-cells are
marked.

This last arrow S essentially corresponds to the 2-out-of-6 property: a morphism
∆[3]→ X is interpreted as a series of three composable arrows f, g, h, with their compos-
ites. Saying that it extends to ∆[3]2/6 means that g ◦ f and h ◦ g are marked, and saying
that it extends to ∆[3]] means that f, g, h and their composite are all marked. Hence the
lifting property of an object against S enforces those marked cells to satisfy the 2-out-of-6
property.

5.3.4. Remark. The usual fact that the 2-out-of-6 property implies the 2-out-of-3 prop-
erty corresponds here to the fact that the three arrows •

• •
∼

∼

→
 •

• •,
∼

∼

∼


 •

• •
∼∼

→
 •

• •,
∼

∼

∼


 •

• •∼

∼

→
 •

• •,
∼

∼

∼


which encode the 2-out-of-3 property in the same sense as S encodes the 2-out-of-6 prop-
erty, are all pushouts of S, along the three different degeneracy morphisms ∆[3]→ ∆[2].
The second of these arrows, encoding the fact that marked arrows are “stable under
composition”, will be denoted C.

5.3.5. Remark. Products in the category of marked simplicial sets are simply given by
(X, E)× (X ′, E ′) = (X ×X ′, E ×E ′); in particular they commute with all colimits in each
variable. In fact the category of marked simplicial sets is cartesian closed.



WEAK MODEL CATEGORIES IN CLASSICAL AND CONSTRUCTIVE MATHEMATICS 923

5.3.6. Lemma. An arrow between marked simplicial sets is an I-cofibration if and only
if the underlying map of simplicial sets is a cofibration in the sense of Proposition 5.1.4.
In particular if i and i′ are I-cofibrations then i ×i′ is an I-cofibration.

Proof. It immediately follows from the proof of Proposition 5.1.4 that the unmarked
inclusion ∂∆[n] ↪→ ∆[n] generates all maps A ↪→ B whose underlying simplicial map
is a cofibration and such that only cells in A and degenerate cells are marked. Taking
further pushout by ∆[1] ↪→ I has the effect of making any set of cells in B marked. So
any morphism whose underlying simplicial map is a cofibration is an I-cofibration. The
converse is immediate as the forgetful functor from marked simplicial sets to simplicial
sets commutes with colimits. The second part of the claim hence follows from the similar
statement for cofibrations of plain simplicial sets, proved in 5.1.5.

The following lemmas are due to Joyal in the unmarked case and Lurie in the case of
marked simplicial sets. We give references to [21], but many of the proof originally come
from [17]. They all have completely explicit combinatorial proofs and together will allow
us to check the corner-product condition between anodyne morphisms and cofibrations.

5.3.7. Lemma.

1. λn[n] : Λn[n] ↪→ ∆n[n] is a retract of λ1[1] ×λn[n].

2. λ0[n] : Λ0[n] ↪→ ∆0[n] is a retract of λ0[1] ×λ0[n].

3. ∂[n] ×λ1[1] is an iterated pushout of maps of the form λi[n+ 1] for i > 0.

4. ∂[n] ×λ0[1] is an iterated pushout of maps of the form λi[n+ 1] for i < n+ 1.

5. λi[n] : Λi[n] ↪→ ∆[n] for 0 < i < n is a retract of λ1[2] ×λi[n].

6. ∂[n] ×λ1[2] is a pushout of the coproduct of the λi[n+ 2] for 0 < i < n+ 2.

Proof. 1 and 3 are proved in the proof of Proposition 3.1.1.5 of [21]. 2 and 4 are
respectively duals of 1 and 3 and are proved in the exact same way. 5 and 6 only involve
plain (unmarked) simplicial sets, and are proved in the proof of Proposition 2.3.2.1 of
[21].

5.3.8. Remark. If f and h are morphisms of marked simplicial sets, and h is an isomor-
phism of the underlying simplicial sets then f ×h is also an isomorphism of the underlying
simplicial sets. Indeed the forgetful functor to simplicial sets preserves corner-product,
and a corner-product by an isomorphism is an isomorphism.

More precisely, if we have f : X → Y and h : Z ′ → Z, then the target of f ×h is
Z × Y , where marked cells are all pairs of cells that are marked in Y and in Z, while its
domain has the same underlying simplicial set, but the marked cells are only the pairs of
cells marked in Y and Z ′, together with all pairs of a cell marked in Z and the image of
a cell marked in X.
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In particular, if we additionally assume that any cell marked in Y is the image of a
cell marked in X, for example if f : X → Y is an inclusion of unmarked simplicial sets
where all the 0-cells of Y are in X (this is necessary so that the degenerate 1-cells in Y
are indeed images of marked cells in X), then f ×g is an isomorphism.

5.3.9. Lemma. Let ι : ∆[1] → I as in Construction 5.3.3. The morphism ι ×ι is a
pushout of the morphism C of Remark 5.3.4, in particular it is also a pushout of the
morphism S of Construction 5.3.3.

Proof. The domain of ι ×ι is ∆[1] × ∆[1] where all 1-cells have been marked except
the one corresponding to the diagonal map ∆[1] → ∆[1] × ∆[1]. Its target is I × I
i.e. ∆[1]×∆[1] with all arrows marked. So we can indeed realize it as a pushout of C in
two different ways, using either of the two non-degenerate cells ∆[2]→ ∆[1]×∆[1].

5.3.10. Proposition. The corner-product of a J-cofibration with an I-cofibration (as
defined in 5.3.3) is a J-cofibration.

Proof. We first observe that all the morphisms of the form

λi[n] ×ι

are J-cofibrations. Indeed, for n > 1 they are isomorphisms by Remark 5.3.8. For n = 1,
the map λ0[1] ×ι is

λ0[n] ×ι :

 • •

• •

∼

∼ ∼

→
 • •

• •
∼

∼

∼ ∼

∼


which is an iterated pushout of two of the morphisms in Remark 5.3.4, hence is a J-
cofibration. This works similarly for λ1[1] ×ι. Moreover by Lemma 5.3.9, S ×ι is an
iterated pushout of C because S is an iterated pushout of ι, hence it is a J-cofibration as
well. So far we have proved that if f is a J-cofibration then ι ×f is also a J-cofibration.

It follows from points (3), (4) and (6) of Lemma 5.3.7 that if j is λ1[2], λ0[1] or λ1[1]
then ∂[n] ×j is a J-cofibration. As this has been proved for ι ×j above, it shows that for
any I-cofibration i, and j any of the three maps above j ×i is a J-cofibration.

It follows from points (1), (2) and (5) of Lemma 5.3.7 that all generators λi[n] are in
the class generated by the j ×i for j = λ1[2], λ0[1] or λ1[1] and i an I-cofibration, but
this class is clearly stable by corner-product by an I-cofibration (by associativity of the
corner-product) and is included in J as shown above, so this proves that λi[n] ×i is a
J-cofibration when i is an I-cofibration.

Finally, S ×∂[n] is an isomorphism for all n > 1 and is just S when n = 0, hence it is
always a J-cofibration, which concludes the proof.
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5.3.11. Theorem. [Joyal–Lurie model structure]
There is a weak model structure on the category of marked simplicial sets such that:

� The cofibrations are the I-cofibrations of Construction 5.3.3, i.e. the morphisms that
are cofibrations of the underlying simplicial sets.

� The fibrations are the J-fibrations of Construction 5.3.3.

It is easy to see, assuming a bit of theory of quasicategories that the fibrant objects
are exactly the quasicategories, where the marked cells are the equivalences, hence this
model structure is exactly the same as Lurie’s model structure on marked simplicial sets
from [21].

Proof. We proceed exactly as for the proof of Theorem 5.2.1: We checked the corner-
product condition in Lemma 5.3.6 and Proposition 5.3.10, and I produces an interval for
the cartesian unit ∆[0] which satisfies all the conditions of Theorem 3.0.2.

5.3.12. Remark. If in the definition of J we remove S, and take instead the three
morphisms of Remark 5.3.4, imposing the weaker 2-out-of-3 condition instead of the 2-
out-of-6 condition, the proofs of Proposition 5.3.10 and Theorem 5.3.11 remain completely
unchanged, and we also obtain a weak model structure.

This weak12 model structure is different from the Joyal–Lurie model structure: its
fibrant objects are still quasicategories but their marked cells are only forced to satisfies
the 2-out-of-3 condition. In particular it is no longer necessary that all equivalences are
marked.

For example taking any quasicategory X if we mark all the 1-cells which are equal to an
identity 1-cell in the homotopy category of X , then the resulting object is indeed fibrant
in this modified version of the model structure: it has the right lifting property against
the inner horn inclusion because it is a quasicategory, the lifting property against the
marked outer horn inclusion follows from the fact that the marked cells are in particular
invertible and a classical lemma in quasicategory theory (see13 Proposition 1.2.4.3 of [21]),
and the lifting property against the three maps of Remark 5.3.4 follows from the fact that
identities in any category satisfy the 2-out-of-3 property. This shows that this model
structure has strictly more fibrant objects than the Joyal–Lurie model structure.

More generally the fibrant objects of this second model structure are quasicategories,
together with a subgroupoid of their homotopy category of “marked cell” which contains
all identities and satisfies 2-out-of-3. And they are fibrant for the Joyal–Lurie model
structure if and only if this subgroupoid is the maximal subgroupoid (contains all isomor-
phisms).

12It can be shown to be a full model structure classically, for example using Theorem 3.16 of [23].
13We have not checked the constructivity of this claim explicitly.
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5.4. The weak Verity model structure for complicial sets. In this section, we
will discuss a weak model structure on “stratified simplicial sets” whose fibrant objects are
the so-called (weak) complicial sets (see [32]). The classical version has been introduced by
D. Verity in [32] and is a Quillen model structure. This will be done using Theorem 3.0.2
with the monoidal structure given by the cartesian product of stratified simplicial sets.14

Intuitively, this model structure is supposed to model weak (∞,∞)-categories.15 It
also provides models for (∞, n)-categories for any n, the case n = 0 and n = 1 corre-
sponding exactly to the model structure constructed in Subsection 5.2 and 5.3. In the
sense of this definition, (∞,∞)-categories are supposed to be the fibrant objects, which
are called “complicial sets” or “weak complicial sets”.

5.4.1. Definition. A stratified simplicial set is a simplicial set X, together with a set
of cells tX ⊂ X called thin such that no 0-cell is thin and all degenerate cells are thin.
The category of stratified simplicial sets is denoted ∆̂s. An n-stratified simplicial set is a
stratified set where all m-cells for m > n are thin. Morphisms of stratified simplicial sets
are the morphisms sending thin cells to thin cells.

The reason we say “stratified” and “thin” instead of “marked” as in Subsection 5.3 is
both to avoid confusion and because this is the standard terminology used by most texts
on complicial sets.

5.4.2. Remark. Note that a 1-stratified simplicial set is essentially the same as a marked
simplicial set as in Subsection 5.3. Similarly to what happened with the Joyal–Lurie model
structure, the idea is that “thin” cells are invertible higher cells.

5.4.3. Construction. Following [32]:

� ∆[n] denotes ∆[n] with no non-degenerate thin cells. ∆[n]t is ∆[n] where only the
unique non-degenerate n-cell is thin.

� ∆k[n] is ∆[k] where all the non-degenerate cells α : [r] ↪→ [n] which contain {k −
1, k, k + 1} are thin.

� Λk[n] is endowed with the stratification induced from ∆k[n].

� ∆k[n]′ is ∆k[n] where in addition the faces ∂k−1[n], ∂k+1[n] : [n− 1]→ [n] are thin.

� ∆k[n]′′ is ∆k[n]′ where in addition ∂k[n] is thin, i.e. it is ∆k[n] where all the (n− 1)-
cells are made thin.

14We thank Harry Gindy and Viktoriya Ozornova who independently pointed out a mistake in my
attempt at a simpler proof of the corner-product conditions in an earlier version.

15More precisely, it is intended to model “inductive”∞-categories, i.e. the projective limit of the tower
of “(∞, k)-cat” and functors that sends an (∞, k + 1)-category C to the (∞, k)-category obtained by
dropping the non-invertible k-arrows of C.
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5.4.4. Construction. The set of generating cofibrations I is made of:

� The ∂∆[n] ↪→ ∆[n], the unmarked boundary inclusions.

� The ∆[n]→ ∆[n]t.

Similarly to Lemma 5.3.6, the I-cofibrations are just the morphisms whose underlying
simplicial morphism is an I-cofibration. In particular, if i and i′ are I-cofibrations then
i ×i′ is again an I-cofibration from the similar result for simplicial sets proved in 5.1.5.

5.4.5. Construction. Still following [32], we take as generating anodyne maps of strat-
ified simplicial sets the set Js = JHorn

∐
JThin made of:

� The “complicial horn inclusions”

JHorn = {Λk[n] ↪→ ∆k[n]}
for n > 1 and k ∈ [n].

� The “complicial thinness extensions”

JThin = {∆k[n]′ ↪→ ∆k[n]′′}
for n > 2 and k ∈ [n].

All the maps in Js are clearly Is-cofibrations.

5.4.6. Definition. A complicial set is a stratified simplicial set which has the right lifting
property against all the generating anodyne maps.

Those are sometimes called weak complicial sets, the original definition of complicial
sets being the stratified simplicial sets that have the unique right lifting property against
maps in Js.

In terms of the intuitive idea that thin cells correspond to invertible higher cells, the
lifting property against complicial thinness extensions implements properties like 2-out-
of-3 and the fact that cells that are actually invertible up to thin cell are themselves
thin, while the lifting property against the complicial horn inclusions implements weak
composition operations (up to thin cells) and the fact that thin cells are actually invertible
(up to higher thin cells).

The fact that the corner-product condition for complicial sets are satisfied has been
proved by D. Verity in [32] using an explicit combinatorial argument that seems con-
structive to us. Completely reproducing the argument to show its constructivity in detail
seems to be outside of the scope of the present paper, hence we will admit the following:

5.4.7. Proposition. The corner-product j ×i of a J-cofibration (in the sense of Con-
struction 5.4.5) with an I-cofibration (in the sense of Construction 5.4.4) is again a
J-cofibration.

Proof. As usual it is enough to check it on the generators, and this is done in [32]
as Lemma 72. Note that [32] uses the symbol ~ to denote the cartesian product of
stratified simplicial sets. This is to emphasize that it corresponds to the pseudo Gray
tensor product.
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5.4.8. Theorem. There exists a weak model structure on the category of stratified sim-
plicial sets such that:

� The cofibrant objects are those in which degeneracy of cells is decidable.

� The cofibrations between cofibrant objects are the levelwise complemented monomor-
phisms.

� Fibrant objects and fibrations are defined by the lifting property against the class Js

of Construction 5.4.5.

� The acyclic fibrations between fibrant objects are the maps that detect thinness and
whose underlying simplicial maps have the lifting property against all the ∂∆[n] ↪→
∆[n].

This model structure for complicial sets is the same as the one in [32], or rather a
“weak” version of it, but we now know it exists constructively, even predicatively.

Proof. We apply Theorem 3.0.2 to the category of stratified simplicial sets seen as a
cartesian closed category (for the cartesian product as our bi-functor). The small object
argument is immediately applicable. The corner-product conditions have been proved in
5.1.5 for cofibrations and admitted in 5.4.7 for acyclic cofibrations. The interval for the
unit is given by ∆[0]

∐
∆[0]→ ∆[1]t → ∆[0].

It also immediately follows that:

5.4.9. Theorem. There is a weak model structure on the category of n-stratified sim-
plicial sets, whose cofibrations and fibrations are the morphisms that are cofibrations and
fibrations as morphisms of stratified simplicial sets.

Proof. Consider Tn the functor from the category of stratified simplicial sets to the
category of n-stratified simplicial sets that makes thin all the cells of dimension greater
than n. We take as generating cofibrations and trivial cofibrations of this model structure
the image under Tn of the generators of the Verity model structure (from Theorem 5.4.8)
on stratified simplicial sets. We then apply Theorem 3.0.2 exactly as in the proof of 5.4.8;
the corner-product conditions follow from the fact that the functor Tn preserves products
and pushouts.

5.4.10. Remark. It is immediate to see that the case n = 0 of Theorem 5.4.9 corresponds
exactly to the weak model structure of Theorem 5.2.1: the image of the generators given
in 5.4.5 and 5.4.4 by the functors that makes everything thin are exactly the generators
of the weak model structure of Theorem 5.2.1.

The case n = 1 corresponds almost to the Joyal–Lurie model structure (Theorem 5.3.11),
but not quite.

Indeed, the functor T1 that makes every cell above dimension 1 thin, sends the Λk[n] ↪→
∆k[n] of Construction 5.4.5 to the maps of Construction 5.3.3, the ∆k[n]′ → ∆k[n]′′

of Construction 5.4.5 are sent to isomorphisms for n > 2 and to the three maps of
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Remark 5.3.4 for n = 2, but the morphism S of 5.3.3 is not obtained. So we do not
obtain the Joyal–Lurie model structure but its “unsaturated” modification mentioned in
Remark 5.3.12.

5.4.11. Remark. It is also possible to modify the weak model structures of Theo-
rem 5.4.8 and 5.4.9 in order to add an analogue of this map S to the generators. The
fibrant objects are then called saturated complicial sets (or 1-saturated complicial set
depending on which generators we add), we refer the reader to Section 3 of [26] for the
details of this.

5.5. Semi-simplicial versions. In this section we construct versions of all the weak
model structures constructed above on the category of semi-simplicial sets (see 5.5.1)
instead of simplicial sets. The main advantages of these semi-simplicial versions is that
even constructively, every object will be cofibrant.

It seems that the existence of these model structures has been overlooked in classical
mathematics. This is probably due to the fact that it is well known that this type of model
structure on semi-simplicial sets “cannot exist”, in the sense that they are not Quillen
model structures. They are at best right semi-model structures (see Remark 5.5.7).

5.5.1. Definition. Let ∆+ ⊂ ∆ be the subcategory of finite non-empty ordinals and
injective order-preserving morphisms. A presheaf on ∆+ is called a semi-simplicial set.
We denote by ∆+[n] the representable semi-simplicial set attached to the ordinal [n].

Informally, a semi-simplicial set is a “simplicial set without degeneracies”.

5.5.2. Construction. The forgetful functor ∆̂→ ∆̂+ has a left adjoint X 7→ X, called
simplicial completion which “freely adds degeneracies”.

X admits an explicit description, which is very typical of the theory of Reedy categories

Xn = {(s, x)|s : [n]� [m] order-preserving surjection, x ∈ Xm}.

The functoriality on an order-preserving map f : [n′] → [n] is given by forming the com-
posite s ◦ f and factoring it into a surjection g followed by a monomorphism i

[n′] [n]

[m′] [m]

g

f

s

i

and defining f ∗(s, x) := (g, i∗x). In particular, in X a pair (s, x) is equal to s∗(Id[k], x),
and as x 7→ (Id[k], x) is the unit of adjunction X → X, we will simply denote (Id[k], x) by
x and identify X with its image in X. Hence, X contains X as a sub-semi-simplicial set
and a general cell of Xn is of the form s∗x for a unique x ∈ Xm and a unique degeneracy
map s : [n]� [m].

In particular, if X is a semi-simplicial set, it identifies naturally with the set of cells
of X which are non-degenerate. Moreover, in X degeneracies are decidable (i.e. X is
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cofibrant) and a face of a non-degenerate cell is always non-degenerate. Conversely, given
a simplicial Y set with these properties, then its subset of non-degenerate cells is a semi-
simplicial set X, and because of the Eilenberg–Zilber lemma (5.1.2) there is a canonical
isomorphism Y ' X. Putting all this together, we deduce:

5.5.3. Proposition. The category of semi-simplicial sets is equivalent to the non-full
subcategory of simplicial sets such that:

� Objects are the simplicial sets in which it is decidable if a cell is degenerate or not,
and any face of a non-degenerate cell is non-degenerate.

� Morphisms are the morphisms which send non-degenerate cells to non-degenerate
cells.

5.5.4. Construction. The cartesian product of simplicial sets induces, through the
identification of Proposition 5.5.3, a monoidal structure on the category of semi-simplicial
sets. We denote this tensor product by X ⊗ Y and it is characterized by the (functorial)
identification

X ⊗ Y = X × Y .

The tensor product of semi-simplicial sets always contains their cartesian product as semi-
simplicial sets, but it is in general larger: indeed a pair (x, y) ∈ X × Y of two degenerate
cells in x ∈ X and y ∈ Y can be non-degenerate in the product, and hence be a cell of the
semi-simplicial tensor product, without being a pair of cells of the semi-simplicial sets. It
is not very hard to see that this monoidal structure on semi-simplicial sets is closed as it
commutes with colimits in each variable.

5.5.5. Remark. The simplicial sets ∆[n], ∂∆[n] and Λk[n] (see 5.1.3) all satisfy the
conditions of Proposition 5.5.3, hence they are the simplicial completion of semi-simplicial
sets, which we denote

∆+[n] ∂∆+[n] Λk
+[n].

Note that the ∆+[n] are exactly the representable semi-simplicial sets.

Similarly we will also consider:

� The category ∆̂+

m
of marked semi-simplicial sets, which are semi-simplicial sets

with a collection of 1-cells called “marked” cells.

� The category ∆̂+

s
of stratified semi-simplicial sets, which are semi-simplicial sets

with a collection of cells (not containing any 0-cells) called “thin” cells.

Note that if X is a marked or stratified semi-simplicial set, then X has a unique
marking/stratification (as a simplicial sets) compatible with the one on X: non-degenerate
cells are marked/thin if and only if they are marked/thin as cells of X and all degenerate
are marked/thin.
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In particular, the identification of Proposition 5.5.3 extends to the marked and strat-
ified case and identifies respectively the categories of marked or stratified semi-simplicial
sets with the (non-full) subcategories of marked or stratified simplicial sets satisfying the
conditions of Proposition 5.5.3. In particular, exactly as in Construction 5.5.4 there is
a unique closed monoidal structure on marked and stratified semi-simplicial sets, that
makes simplicial completion into a monoidal functor.

Also, as in 5.5.5 we denote by

∆k
+[n] ∆+[n]t ∆k

+[n]′ ∆k
+[n]′′

the semi-simplicial versions of all the simplicial objects introduced in the previous sub-
sections. Their simplicial completions identify with the corresponding simplicial objects.

5.5.6. Theorem. For each of the weak model structures constructed in Theorem 5.2.1,
Theorem 5.3.11, Remark 5.3.12, Theorem 5.4.8 or Remark 5.4.11 on the category of
plain, marked or stratified simplicial sets, there is a weak model structure on the category
of plain, marked or stratified semi-simplicial sets such that:

(i) Its generating cofibrations and anodyne morphisms are same as the simplicial ver-
sion, seen through the equivalence of Proposition 5.5.3.

(ii) Cofibrations are the levelwise complemented monomorphisms, i.e. the monomor-
phisms f : X → Y such that for all x ∈ Y ([n]) we have x ∈ X([n])∨ x /∈ X([n]). In
particular, every object is cofibrant.

(iii) The model structure is monoidal for the semi-simplicial tensor product of Construc-
tion 5.5.4.

(iv) The forgetful functor from simplicial sets to semi-simplicial sets is both a left and a
right Quillen equivalence. In particular, the simplicial completion functor X 7→ X
is a left Quillen equivalence.

Proof. First we observe that taking the maps ∂∆+[n] ↪→ ∆+[n], and ∆+[n] ↪→ ∆+[n]t
(in the marked/stratified case) as specified in point (i) as generating cofibrations gives
the class of cofibrations described in point (ii). In the case of plain semi-simplicial sets
this is proved exactly as the proof of 5.1.4 (ignoring the treatment of degeneracies), the
extension to the marked/stratified case works exactly as in Lemma 5.3.6. It immediately
follows that cofibrations satisfy the corner-product condition with respect to the tensor
product of Construction 5.5.4, as corner-products of generating cofibrations clearly satisfy
the condition of point (ii).

The key results are Proposition 5.5.14 and its Corollary 5.5.15 below which allows us
to deduce the corner-product conditions for the monoidal structure on (plain, marked or
stratified) semi-simplicial sets from the similar condition for simplicial sets:

If f is a cofibration and g is an acyclic cofibration of (plain, marked or stratified) semi-
simplicial sets then f and g are respectively a cofibration and an acyclic cofibration of
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(plain, marked or stratified) simplicial sets simply because this is true for the generators.
As the simplicial completion functor X 7→ X is monoidal and preserves colimits, it satisfies

f ⊗g = f ×g
and f ×g is an acyclic cofibration because of the corner-product conditions for (plain,
marked or stratified) simplicial sets. Finally Corollary 5.5.15.(iii) implies that f ⊗g is
an acyclic cofibration of (plain, marked or stratified) semi-simplicial sets because f ⊗g is
one.

∆+[0] is the unit for the monoidal product, and the dual of the self-composed span trick
of 2.3.6 applied to ∆+[1]t provides a weak cylinder object for it. The small object argument
applies to semi-simplicial sets in its “good form” (from C.0.3) hence, Theorem 3.0.2 proves
the existence of a model structure satisfying points (i), (ii) and (iii).

It is clear that the simplicial completion functor is a left Quillen functor as it sends
the generating (acyclic) cofibrations to the generating (acyclic) cofibrations. Moreover,
Proposition 5.5.14 applied to a cofibration ∅ ↪→ X shows that the unit of adjunction
X → X is anodyne for each (marked/stratified) semi-simplicial set X.

To conclude that the simplicial completion/forgetful functor is a Quillen equivalence
we will use point (v) of Proposition 2.4.5 and check that the forgetful functor detects
equivalences between bifibrant objects.

Let f : X → Y be a morphism between two bifibrant (marked/stratified) simplicial
sets such that its image under the forgetful functor is an equivalence.

We factor f (in the category of simplicial sets) as p ◦ i, with i an anodyne morphism
followed by a fibration p. Corollary 5.5.15.(ii) shows that i is an equivalence both in
simplicial sets and in semi-simplicial sets, hence in both categories f is an equivalence if
and only if p is an equivalence, i.e. an acyclic fibration. But being an acyclic fibration is
characterized by the lifting property against maps in the image of the simplicial completion
functor, so p is an acyclic fibration if and only if its image under the forgetful functor is
an acyclic fibration.

The forgetful functor preserves all limits and colimits so is also a right adjoint functor,
and it also preserves cofibrations and anodyne morphisms, by Corollary 5.5.15.(ii), hence
it is a right Quillen functor. It is already known to induce an equivalence on the homotopy
category by its action on bifibrant objects, because it is a left Quillen equivalence, so it
is a right Quillen equivalence.

5.5.7. Remark. None of the weak model structures given by Theorem 5.5.6 can be
Quillen model structures: in all of them the map ∆+[0]

∐
∆+[0] → ∆+[0] is a “trivial

fibration” (in the sense that is has the right lifting property against all cofibrations) that
is not an equivalence. As all their objects are cofibrant, they are, at least classically,
right semi-model categories (see [16]). However, constructively it is not completely clear
how a map whose target is not fibrant can be factored as a cofibration which is an
equivalence followed by a “fibration” that has the lifting property against all cofibrations
that are equivalences, while non-constructively, this factorization can be obtained as a
“left saturation” in the sense of Section 4 of [16].
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The end of the paper is about proving Proposition 5.5.14 and Corollary 5.5.15, used in
the proof above. We will focus on the case of stratified semi-simplicial sets, and the case of
the weak model structure of Theorem 5.4.8 as it is the most general one and all the other
cases easily follow from it. In particular when we say “anodyne” we refer to the class of
maps generated by the semi-simplicial versions of the sets given in Construction 5.4.5. If
one is only interested in the unmarked case, this would simplify considerably the proof of
lemmas 5.5.12 and 5.5.13, but leave the rest of the proof mostly unchanged.

5.5.8. Remark. Another possible approach to prove Theorem 5.5.6 would be to rely on
the proof that a semi-simplicial Kan complex can be endowed with choices of degeneracy
maps making it into a simplicial set. This was originally proved in [27] using topological
methods. A combinatorial proof has been given in [22], and a different combinatorial
proof extending the result to the case of quasicategories has been given in [30]. These
results probably allow to give a different proof of Theorem 5.5.6 in the case of the Kan–
Quillen and the Joyal–Lurie model structures, bypassing the end of the paper for these
cases. A version of this claim for the Verity model structure, while plausible, is unknown.
Moreover we have not been able to make the proofs of [22] or [30] constructive, in fact we
are very unsure whether the claim that semi-simplicial Kan complexes can be endowed
with the structure of a simplicial set has an interesting constructive content. Hence the
rest of the paper seems necessary both for the semi-simplicial version of weak complicial
sets and for the constructiveness of the semi-simplicial versions of the Kan–Quillen and
Joyal–Lurie model structures.

Before moving to the proof of Proposition 5.5.14 and Corollary 5.5.15, we need some
preliminaries:

5.5.9. Construction. Let X be a stratified semi-simplicial set. We define a stratified
semi-simplicial CX, which is essentially a semi-simplicial version of the join of X with
∆+[0]. This definition only serves a technical purpose and we do not want to develop the
theory of the join, so we will give a very explicit definition of this object. The cells of CX
are:

� For each k-cell x of X, x is also a k-cell of CX.

� ∗ is a cell of dimension 0 of CX.

� For each k-cell x of X, x∗ is a k + 1-cell of CX.

The face operations are defined as follows:

� X is a subobject of CX, i.e. for a cell of the form x for x ∈ X, face operations are
as in X.

� A face map i : [k] ↪→ [n] either factors through [n− 1], in which case it restricts to
a map i′ : [k]→ [n− 1] or satisfies i(k) = n, in which case, as i is injective, we can
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restrict it to a map i′ : [k − 1]→ [n− 1]. We define
i∗(x∗) = i′∗(x) if i restricts to i′ : [k]→ [n− 1].
i∗(x∗) = ∗ if k = 0 and i(0) = n.
i∗(x∗) = (i′∗(x))∗ if k 6= 0, i(k) = n, and i restricts

to i′ : [k − 1]→ [n− 1].

The functoriality on ∆+ of this definition can be checked by a case by case analysis.
Thinness in CX is defined by declaring α and α∗ to be thin in CX if and only α is thin
in X.

5.5.10. Example. If X is ∆+[n] then CX is ∆+[n + 1] with the canonical morphism
X → CX corresponding to the inclusion [n] ⊂ [n+ 1]. Indeed, the 0-cell ∗ corresponds to
{n+ 1} ⊂ [n+ 1]; if α ⊂ [n] is a cell of ∆+[n] then the corresponding cell α of ∆+[n+ 1]
is simply α ⊂ [n] ⊂ [n+ 1], and the cell α∗ is α ∪ {n+ 1} ⊂ [n+ 1]. It is not difficult to
check that all face maps as defined above identify with these of ∆+[n+ 1].

For a case with markings, if X = ∆k
+[n] for k < n then CX ' ∆k

+[n + 1]. Indeed a
cell β ⊂ [n + 1] is marked in ∆k

+[n + 1] if and only if it contains {k − 1, k, k + 1} which
is a subset of [n] ⊂ [n+ 1] and so cells of the form α or α∗ for α ⊂ [n] are indeed thin in
∆k

+[n+ 1] if and only if α is thin as a cell of ∆k
+[n].

In the case k = n, CX has more thin cells than ∆k
+[n + 1]: the cells of CX that are

thin are exactly the cells that contain {n− 1, n}, while thin cells of ∆k
+[n + 1] are those

that contain {n− 1, n, n+ 1}. In particular, C∆n
+[n] can be described as the pushout

∆+[n] ∆n
+[n+ 1]

∆n
+[n] C∆n

+[n]
p

5.5.11. Remark. When seen as a functor from stratified semi-simplicial sets to pointed
stratified semi-simplicial sets (pointed by the cell ∗), C commutes with all colimits, hence
it is also a left adjoint functor.

5.5.12. Lemma. If X
∼
↪→ Y is anodyne in ∆̂+

s
then

CX
∐
X

Y → CY

is again anodyne.

Proof. By Remarks 5.5.11 and B.0.11, it is enough to check it in the case of the generating
anodyne maps Λk

+[n] ↪→ ∆k
+[n] and ∆k

+[n]′ ↪→ ∆k
+[n]′′.

In the first case the resulting map

CΛk
+[n]

∐
Λk
+[n]

∆k
+[n]→ C∆k

+[n]
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only misses cells of the form x∗ when x is not in Λk
+[n], that is the two cells: t∗ and ∂kt∗

for t ∈ ∆k
+[n] the top dimensional cell, and ∂kt∗ its k-th face. They can both be added by

a pushout of Λk
+[n+ 1] ↪→ ∆k[n+ 1]; indeed ∂k(t∗) = (∂kt)∗, and for any α : [v] ↪→ [n+ 1]

which contains {k − 1, k, k + 1}, α∗(t∗) is thin because if α factors into [n], then this is
α∗t, which is thin as α contains {k − 1, k, k + 1}. If n+ 1 is in the image of α, then this
is equal to α′∗(t)∗, where α′ is the restriction of α missing (n+ 1); this cell is thin if and
only if α′∗t is thin in ∆k

+[n] i.e. if α′ contains {k − 1, k, k + 1} ∧ [n] in its image, which is
always the case.

In the case of ∆k
+[n]′ ↪→ ∆k

+[n]′′, the resulting map

C∆k
+[n]′

∐
∆k

+[n]′

∆k
+[n]′′ → C∆k

+[n]′′

is only making one additional cell thin ((∂kt)∗), and it is a pushout of a ∆k
+[n + 1]′ ↪→

∆k
+[n + 1]′′. Indeed consider the cell t∗ ∈ C∆+[n], which gives a morphism ∆+[n + 1]→

C∆+[n] (in fact, an isomorphism). The corresponding map ∆k
+[n+ 1]′ → C∆k

+[n]′ can be
checked to preserve thinness, and taking the pushout of ∆k

+[n + 1]′ ↪→ ∆k
+[n + 1]′′ along

the map ∆k
+[n+ 1]′ → C∆k

+[n]′
∐

∆k
+[n]′ ∆k

+[n]′′ exactly makes the cell (∂kt)∗ thin.

5.5.13. Lemma. The map ∆+[n] ↪→ ∆n+1
+ [n+1] induced by the canonical inclusion [n] ⊂

[n+ 1] is anodyne.

Proof. For X a semi-simplicial set (without marking or stratification), we consider the
semi-simplicial set CCX where C is as constructed in 5.5.9. In order to distinguishe the
cells x∗ coming from the two applications of C we will use the symbol ∗ for the first
application and + for the second, i.e. the cells of CCX are ∗,+,∗+, x,x∗,x+ and x∗+ for
x a cell of X.

We will define a stratified semi-simplicial set DX whose underlying semi-simplicial set
is CCX and in which the thin cells are all the cells of the form ∗+ and x∗+. We consider
the natural inclusion ηx : CX ↪→ DX sending the cells ∗, α or α∗ to the cells with the
same name.

We claim that for all semi-simplicial setsX, the map CX ↪→ DX is anodyne. Applying
this to X = ∆+[n− 1] (or ∅ for n = 0) immediately gives the lemma.

This claim can be proved by induction on cells of X. Indeed for X = ∅, CX = ∆+[0]
and DX = ∆1

+[1] so that η∅ is one of our generating anodyne maps. Everytime we add
a k-cell x to X (to get a new semi-simplicial set X ′), it adds two cells x, x∗ to CX and
two additional cells x+ and x∗+ to DX. The map CX ′ = CX ∪ {x, x∗} ↪→ DX ∪ {x, x∗}
is already known to be anodyne by induction, as it is a pushout of CX → DX, so it
remains to see that DX ∪ {x, x∗} ↪→ DX ′ = DX ∪ {x, x∗, x+, x∗+} is anodyne.

If x is a k-cell, then x∗+ is a (k + 2)-cell, and ∂k+1x∗+ = x+. Moreover any λ : [n] →
[k + 2] which contains {k + 1, k + 2} in its image satisfies λ∗(x∗+) = (λ∗(x))∗+ where
λ′ is the restriction of λ as a map [n − 2] → [k]; in particular λ∗(x∗+) is thin. This
shows that the map DX ∪ {x, x∗} ↪→ DX ′ = DX ∪ {x, x∗, x+, x∗+} is a pushout of

Λk+1[k + 2]
∼
↪→ ∆k+1[k + 2] and proves the lemma.
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5.5.14. Proposition. For any i : X ↪→ Y a cofibration of stratified semi-simplicial sets,
the map

X
∐
X

Y ↪→ Y

is an anodyne map of stratified semi-simplicial sets.

Proof. Note that this map is indeed a cofibration (it is easy to check from the explicit
formula X). As X 7→ X is a left adjoint functor, checking that the proposition is true for
∆+[n] ↪→ ∆+[n]t and ∂∆+[k] ↪→ ∆+[k] for all k < n implies that it is automatically true
for any cofibration X ↪→ Y of stratified simplicial sets such that the cells in Y not in X
are of dimension < n.

Note that in the case where the map X → Y is an isomorphism of the underlying semi-
simplicial sets (so that it is only a change of stratification) then the map X

∐
X Y ↪→ Y

is an isomorphism. Hence the proposition automatically holds for the ∆+[n] ↪→ ∆+[n]t.
We will prove this claim by induction. More precisely we assume that the result holds

for all ∂∆+[k] ↪→ ∆+[k] for k < n, and hence for any cofibration between objects of
dimension < n, and we will show that it holds for ∂∆+[n] ↪→ ∆+[n], i.e. that

∂∆[n]
∐

∂∆+[n]

∆+[n] ↪→ ∆[n]

is anodyne, where ∆[n] and ∂∆[n] are endowed with their stratification coming from the

category ∆̂s of stratified simplicial sets, i.e. all the degenerate cells are thin.
The k-cells of ∆[n] are all maps [k]→ [n]. The subobject

S = ∂∆[n]
∐

∂∆+[n]

∆+[n]

corresponds to all non-surjective maps, and the identity of [n]. This map does not appear
to be directly a (transfinite) composite of pushouts of the generating cofibrations, but
only a retract of such map, so we need to explicitly construct “bigger” objects these will
be retract of.

We define Tn the semi-simplicial set such that

Tn([k]) := {f : [k]→ [n] ∪ {∗}| f is order-preserving and f−1{∗} = ∅ or {k} }

where “∗” is added as a maximal element of [n]. ∆[n], seen as a semi-simplicial set,
naturally identifies as a retract of Tn

∆[n]→ Tn → ∆[n]

where the first map corresponds to the inclusion of the sub-complex of cells such that
f−1{∗} = ∅ and the second map sends a cell [k] → [n] ∪ {∗} to its composite with the
map sending ∗ to n. We endow Tn with the stratification where a cell is thin if and only if
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its image in ∆[n] is thin, and this retraction is in the category of stratified semi-simplicial
sets.

In particular it is enough to show that the composite

∂∆[n]
∐

∂∆+[n]

∆+[n] ↪→ ∆[n] ↪→ Tn

is anodyne.
If x is a cell of ∆[n] of dimension k, then we denote by x∗ the unique cell of Tn of

dimension k + 1 which is not in X and such that ∂k+1x∗ = x, i.e. x∗ is x on [k] ⊂ [k + 1]
and ∗ on k+1. The cells of Tn are exactly the x ∈ ∆[n], the x∗ ∈ ∆[n] and one additional
cell of dimension 0, denoted ∗. So as semi-simplicial sets, we have Tn = C∆[n], but their
stratifications are not the same.

We now define for any i > n

T in([k]) = {α ∈ Tn([k])|α−1[n]→ [n] is not surjective or |α−1[n]| 6 i}

(|α−1[n]| denotes the cardinal of α−1[n]).
We then check that T i−1

n ↪→ T in is a pushout of a coproduct of several copies of
Λi+1

+ [i + 1] ↪→ ∆i+1
+ [i + 1]. First, the cells of T in that are not in T i−1

n are exactly the
α ∈ ∆[n] which are surjective and of dimension i, and the α∗ for such α. For each such α
we can add α∗ and α together with a pushout of Λn+1

+ [i + 1] ↪→ ∆i+1
+ [n + 1]. Indeed, α∗

is a cell of dimension i, such that all its faces except its (i + 1)-face are in T i−1
n and its

i + 1-face is α. Moreover, α∗ is always thin and for any v : [u]→ [i + 1] which contains i
and i + 1 in its image, v∗(a∗) is always thin, as its image in ∆n will take the value n at
least twice (on i and i+ 1) so is a non-injective cell.

This proves that T nn → Tn is anodyne. So it remains to show that

∂∆[n]
∐

∂∆+[n]

∆+[n] ↪→ T nn

is anodyne. Note that at the level of the underlying semi-simplicial sets, T nn is exactly
C(∂∆[n]

∐
∂∆+[n] ∆+[n]), but endowed with a different stratification. More precisely, there

is a morphism

C

∂∆[n]
∐

∂∆+[n]

∆+[n]

→ T nn

which makes thin the cells a∗ for a ∈ ∆+[n] which contains n in its image. Indeed the
cells of T nn are thin if and only if their image in ∆[n] (by the map sending ∗ to n) is thin,
i.e. non injective, while a cell a or a∗ in C(∂∆[n]

∐
∂∆+[n] ∆+[n]) is thin if and only if a is

non-injective. So the only case a cell can be non-thin in C(∂∆[n]
∐

∂∆+[n] ∆+[n]) and thin

in T nn is if it is of the form a∗, with a injective, but the image of in ∆[n] non-injective,
hence, with a ∈ ∆+[n] but containing n in its image.
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By our induction hypothesis, the map ∂∆+[n] → ∂∆[n] = ∂∆+[n] is anodyne, hence
by Lemma 5.5.12 applied to its pushout ∆+[n] ↪→ ∂∆[n]

∐
∂∆+[n] ∆+[n], the map:

∂∆[n]
∐

∂∆+[n]

C(∆+[n]) ↪→ C

∂∆[n]
∐

∂∆+[n]

∆+[n]

 (1)

is also anodyne. Note that C(∆+[n]) is exactly ∆+[n + 1], and making thin all the cells
α∗ for α ∈ ∆+[n] which contain n in their image, exactly means making all the cells of
∆+[n + 1] which contain n and n + 1 thin, i.e. it is the marking of ∆n+1

+ [n + 1]. This
means that

∂∆[n]
∐

∂∆+[n]

∆n+1
+ [n+ 1] ↪→ T nn

is anodyne as a pushout of the map (1) (the pushout just serving to make a few additional
cells thin). Finally ∆+[n] ↪→ ∆n+1

+ [n+ 1] is anodyne by Lemma 5.5.13. This shows that

∂∆[n]
∐

∂∆+[n]

∆+[n] ↪→ T nn

is anodyne and concludes the proof.

5.5.15. Corollary.

(i) If f : X
∼
↪→ Y is anodyne in ∆̂+

s
, then f : X → Y is also anodyne in ∆̂+

s
.

(ii) If f : X → Y is anodyne in ∆̂s, then its image in ∆̂+

s
is also anodyne.

(iii) If f : X → Y is a cofibration in ∆̂+

s
and f : X → Y is an acylic cofibration in ∆̂+

s

or is anodyne in ∆̂s then f is an acyclic cofibration in ∆̂+

s
.

Proof.

(i) As A
∼
↪→ B is anodyne, the map

A
∼
↪→ A

∐
A

B

is also anodyne, and by Proposition 5.5.14, the map

A
∐
A

B ↪→ B

is anodyne, which proves the claim.

(ii) The forgetful functor from ∆̂s to ∆̂+

s
is a left adjoint functor. Hence it is enough to

check the result on generating anodyne maps: Λk[n] ↪→ ∆k[n] and ∆k[n]′ ↪→ ∆k[n]′′,
i.e. that these map are anodyne in ∆+

s
. But this follows immediately from the

previous point applied to Λk
+ ↪→ ∆k

+[n] and ∆k
+[n]′ ↪→ ∆k

+[n]′′.
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(iii) We consider the square

X Y

X Y

f

∼ ∼

f

in ∆̂s
+. Because of the previous point if f is anodyne in ∆̂s, then it is also anodyne

in ∆̂+

s
. So in both cases, the composite

X ↪→ Y
∼
↪→ Y

is acyclic in ∆̂+

s
, and therefore X ↪→ Y is an acyclic cofibration (last point of

Lemma 2.1.8).

A. Setoids

A.1. Preliminaries on Setoids and Setoid-categories. Setoids are a way to rep-
resent “quotient sets” without actually taking quotient. A setoid is given by an underlying
set X endowed with an equivalence relation, except that the equivalence relation does not
have to be subset of X ×X, but only a set endowed with two maps to X

XR ⇒ X.

So this is what we might want to call a “proof relevant equivalence relation”. More
precisely:

A.1.1. Definition. A setoid X is the data of:

� A set of elements X.

� A set of relations XR with two maps s, t : XR ⇒ X. An element of a ∈ XR such
that s(a) = x and t(a) = y is represented by x

a⇒ y or a : x⇒ y.

� For each x ∈ X there is a chosen relation reflx : x⇒ x.

� For each relation a : x⇒ y, there is a chosen relation inv(a) : y ⇒ x.

� For each pair of “composable” relations: a : x ⇒ y, b : y ⇒ z there is a composed
relation a ◦ b : x⇒ z.

But no other axioms (“associativity” of the composition, or compatibility between
composition and inverse) are required.

We define moreover:
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A.1.2. Definition.

(i) A morphism of setoids f : X → Y is a morphism of the underlying graphs (X,XR)→
(Y, YR).

(ii) A relation r : f ⇒ g between two morphisms f, g : X ⇒ Y is a function r from X
to YR such that for all x, r(x) : f(x)⇒ g(x).

(iii) A morphism of setoids f : X → Y is said to be an injection if for each relation
r : f(x)⇒ f(y) in Y , there is a chosen relation f inj(r) : x⇒ y.

(iv) A morphism of setoids f : X → Y is said to be a surjection if for all y ∈ Y there is
a chosen f s(y) ∈ X and a chosen f sw(y) : y ⇒ f(f s(y)).

(v) A morphism of setoids is said to be an isomorphism if it is both a surjection and an
injection.

(vi) If X, Y and Z are setoids, a 2-variable function f : X × Y → Z means a function
which to every x ∈ X and y ∈ Y associates f(x, y) ∈ Z, to every α : x1 ⇒ x2 in
XR and y ∈ Y associates f(α, y) : f(x1, y)⇒ f(x2, y) and to every β : y1 → y2 and
x ∈ X associates f(x, β) : f(x, y1)⇒ f(x, y2).

Of course16 if X is a setoid, then “∃r : x⇒ y” is an equivalence relation on the sets of
vertices of R, and for any setoid X there is an associated quotient set |X|. Assuming the
axiom of choice, two setoids are isomorphic (in the sense of existence of an “isomorphism”
as above) if and only if their quotient sets are isomorphic, and the categories of setoids
(with equivalence classes of maps between them) is equivalent to the category of sets
through this quotient set functor. But this statement is exactly equivalent to the axiom
of choice.

There are essentially two reasons to introduce setoids:

� If we work in weaker logical framework where quotients and/or existential quantifi-
cations are not available (like in Martin-Löf type theory, or in the internal logic of
a category with finite limits) then they actually replace the use of quotients.

� If we work without the axiom of choice, then setoids keep track of more information
than the quotient sets, and this information can sometimes be relevant.

In the present paper we are mostly interested in the second aspect: the use of this extra
information that setoids carry will allow us to recover some constructive characterization
of equivalences as the maps that “induce bijections on all πn” where the πn will be defined
as setoids. And it is known that a similar characterization in terms of πn defined as sets
fails. We will also use setoids to define the homotopy category without referring to
existential quantification or quotient sets, but the real reason we are doing this is because

16if we are working in a regular category.
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it makes the treatement of π-setoids smoother if the homotopy category is defined in
terms of setoids.

We also emphasize that when talking about setoids we consider the precise data of
the “transitivity”, “reflexivity” and “symmetry” operations on its relation completely
irrelevant. We only care about the fact that they exist and that each setoid comes with
a canonical choice of these. This is made apparent in the fact that they do not play any
role in the definition of morphisms, so that two different setoid structures on a graph are
automatically isomorphic as setoids. In particular in the rest of the paper when we say
that something is a setoid we will often not make the choice of these operations explicit,
but we always mean that at least one explicit choice exists. Similarly for the “structure”
of being an injection, a surjection or an isomorphism on a morphism of setoids.

A.1.3. Remark. If we follow the convention explained in Section 1.3 that every state-
ment of the form “∀x∃y” should be interpreted as the existence of a function attaching
a y to each x, then the fact that a morphism of setoids is injective can be written more
naively as “if f(x) ∼ f(y) then x ∼ y ” (where ∼ means there is a relation between x
and y), i.e. ∀r : f(x) ⇒ f(y),∃r′ : x ⇒ y). Similarly, surjectivity of f : X → Y can be
rewritten as for all y ∈ Y there is an x ∈ X such that f(x) ∼ y.

The following easy lemma should be noted:

A.1.4. Lemma. A setoid morphism f : X → Y is an isomorphism if and only if it is
invertible in the category of setoids and equivalence classes of morphisms, i.e. if there is
a setoid morphism g : Y → X and relations f ◦ g ⇒ IdY and g ◦ f ⇒ IdX .

We mean here that given the structure of an isomorphism on f we can construct
explicitly such an inverse, and that conversely given the structure of such an inverse we
can construct the structure of an isomorphism on f . The proof is an immediate translation
of the usual fact that an injective and surjective map is bijective, using the convention of
Remark A.1.3.

A.1.5. Definition. A setoid-category C is the data of the following structure:

� A set of objects Co.

� For each pair of objects x, y in Co a setoid of arrows C(x, y) from x to y.

� For each object x ∈ Co a chosen arrow IdX : x→ x.

� For each x, y, z ∈ Co, a 2-variable composition morphism

◦ : Hom(y, z)× Hom(x, y)→ Hom(x, z).

� For each arrow f : x→ y two chosen “identity witnesses”

lf : (f ◦ Idx)⇒ f and rf : (Idy ◦f)⇒ f.
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� For each triple of composable arrows f, g, h an associativity witness

αf,g,h : (f ◦ g) ◦ h⇒ f ◦ (g ◦ h).

Of course this definition is engineered so that if we take the quotient set of all the
setoids of morphisms we get an ordinary category (the homotopy category in some sense).

Very similarly, and respecting the idea that everything that we need in the definition
should be given by some operations, and not using any kind of existential or universal
quantification, we also define the following notions:

� Functors between setoid-categories.

� Presheaves of setoids on a setoid-category.

� Invertible arrows in a setoid-category.

� Fully faithful functors and essentially surjective functors.

And we can check that:

� Given two setoids, morphisms between them and relations between these morphisms
form a setoid.

� This makes the category of setoids into a setoid-category.

� A presheaf is the same as a contravariant functor to the category of setoids.

� We can define the Yoneda embedding and prove the Yoneda lemma.

� A functor F : C → D between setoid-categories is fully faithful and essentially
surjective if and only if there is a functor G : D → C and natural isomorphisms
λ : G ◦ F → IdC µ : F ◦G→ IdD.

A.2. π-Setoids. The goal of this subsection is to show how we can get back the usual
simpler characterization of equivalences in terms of “bijection on all πn”. If πn are defined
as sets this cannot be constructive. But in a rather unexpected way, it appears that by
defining the πn as setoids we do get such a characterization.

In all this section we fix C a weak model category.

A.2.1. Definition. Let i : A ↪→ B be a cofibration with cofibrant domain, let X be a
fibrant object of C and let x : A→ X be any morphism. We define

πi(X, x) := HomHo(A/C)(B,X)

as a setoid.
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We will also use the notation πB/A(X, x). More explicitly, πi(X, x) is the setoid of
maps from B → X which makes the triangle

A X

B

x

i

commute, and the relation is given by the homotopy relation in A/C, that is the homotopy
relation relative to A, which is either parametrized by maps IAB → X or maps from B
to PX such that the restriction to A is a trivial homotopy. The choice of the path or
cylinder is irrelevant and it is a setoid.

A.2.2. Remark. If f : X → Y is any map between two fibrant objects there is a mor-
phism of setoids

πi(f, x) : πi(X, x)→ πi(Y, f(x)).

If f is an equivalence between two fibrant objects then all these maps πi(f, x) are isomor-
phisms of setoids because of the Hom-set definition of π-setoids.

Conversely, if all the πi(f, x), for all i and all x, are bijections then f is an equivalence:
in fact only asking this for i : ∅ ↪→ A already shows that HomHo(C)(A, f) : HomHo(C)(A,X)→
HomHo(C)(A, Y ) are bijections for all cofibrant objects A, and as every object in the ho-
motopy category is equivalent to a cofibrant object this immediately gives that f is an
isomorphism in the homotopy category (in fact it is enough to know it for i : ∅ ↪→ X and
i : ∅ ↪→ Y ).

Our goal is to find more convenient small sets of cofibrations i on which to test whether
a map is an equivalence. For example, in the category of spaces we only want to test in
the case of the maps i : {∗} ↪→ Sn from a point to the n-sphere.

A.2.3. Example. Given a morphism f : X → Y , saying that the induced morphism

πi(X, x)
πi(f,x)→ πi(Y, f(x))

is a surjection of setoids means that any square of the form

A X

B Y

i

x

f

y

admits a diagonal filling such that the upper triangle commutes and the lower triangle
commutes up to homotopy relative to A. Indeed such a square means that y is an element
of πi(Y, f(x)), and surjectivity of πi(f, x) means that to each such square we can attach
an element of v ∈ πi(X, x), i.e. a diagonal filling making the upper triangle commute, and
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a relation in πi(Y, f(x)) between y and f(v), i.e. a homotopy h relative to A making the
lower triangle commute. This filling can be represented as a diagram

A X

B

IAB

B Y

i

x

i f

v

h

y

We say that the map f has the weak right lifting property against i.

We start by some lemmas on invariance properties of the π-setoids.

A.2.4. Lemma.

(1) Any isomorphism (B, i)→ (B′, i′) in Ho(A/Ccof) induces an isomorphism πi(X, x) '
πi′(X, x), natural in (X, x) ∈ A/C, by pre-composition.

(2) Given a pushout square of cofibrant objects

A B

A′ B′

g

i

p
g′

i′

then for any map x : A′ → X, pre-composition with g′ induces an isomorphism of
setoids

πi′(X, x)
∼→ πi(X, x ◦ g)

natural in (X, x) ∈ A′/C.

(3) If h : IA → X is a homotopy between two maps x, x′ : A ⇒ X then there is17 an
isomorphism of setoids

πi(X, x) ' πi(X, x
′)

natural in (X, h) ∈ IA/C.

(4) A fibration between fibrant objects p : X � Y has the right lifting property with

respect to i : A ↪→ B if and only if the map πi(X, x)
πi(p,x)→ πi(X, p(x)) is surjective

for all x : A→ X.

17See the proof below for its precise construction.
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Proof. Point (1) is trivial from the definition in terms of homotopy Hom-setoids. Point
(2), when formulated in terms of the homotopy Hom-setoid definition corresponds to the
adjunction formula in the homotopy category of Proposition 2.4.3 for the Quillen pair:
Pf : A/C ↔ A′/C : Uf . For the third we need to construct the isomorphism:

Given a cofibration A ↪→ B and a cylinder object IA we construct a cylinder object IB
for B such that there is a cofibration IA ↪→ IB compatible with the boundary inclusion.

This can be done by factoring the map B
∐

A IA
∐

AB ↪→ IB
∼
� Bf where Bf is a fibrant

replacement of B. Using (2) we obtain a bijection

πi(X, x)
'→ πi′(X, h)

where i′ is the map IA ↪→ B
∐

A IA. Now the map B
∐

A IA → IB is a homotopy
equivalence (in A/C) hence by point (1) there is an isomorphism

πi′′(X, h)
'→ πi′(X, h)

with i′′ the cofibration i′′ : IA ↪→ IB. The same construction for x′ gives us an isomor-
phism

πi(X, x) ' πi′′(X, h) ' πi(X, x
′).

As all the individual isomorphisms mentioned are natural in X, the total bijection is also
natural in X.

For (4), we have seen in Example A.2.3 that saying that πi(p, x) is surjective for all x,
means that p has the weak right lifting property against i. In particular, this will be the
case if p has the actual right lifting property against i. Conversely, if p is a fibration with
this weak lifting property, then any lifting problem against a cofibration i can be, as in
Example A.2.3, extended to

A X

B

IAB

B Y

i

i p∼

Hence we can construct the dotted diagonal lift using that p is a fibration and B ↪→ IAB
is an acyclic cofibration, and this gives a diagonal lift, which concludes the proof.

A.2.5. Definition. In a weak model category C, a set of cofibrations I is said to be a
pseudo-generating set of cofibrations if any fibration between fibrant objects which has the
lifting property against all maps in I is an acyclic fibration.
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A.2.6. Theorem. Let C be a weak model category with I a pseudo-generating set of
cofibrations of C. A map f between fibrant objects is an equivalence if and only if it
induces a surjection of setoids

πi(X, x)→ πi(Y, f(x))

for all i : A ↪→ B in I and x : A→ X.

See Proposition 5.2.6 for an example of how this theorem, combined with the various
invariance properties of π-setoids proved in Lemma A.2.4, can be used to recover usual
characterizations of equivalences in concrete model categories.

Proof. Let X̃ be a bifibrant replacement ofX and consider an (acyclic cofibration,fibration)
factorization of the composite map

X̃ V

X Y .

∼

∼ p

f

As the top map and the left maps are equivalences between fibrant objects, the right map
satisfies the same condition as f of surjectivity on π-sets, and hence, as it is a fibration,
by the last point of Lemma A.2.4 it has the right lifting property with respect to I, hence
it is an acyclic fibration, hence an equivalence and hence f is an equivalence.

A.2.7. Remark. Using Example A.2.3, this theorem can be rephrased in a way not
involving π-setoids explicitly. It says that a morphism between fibrant objects is a weak
equivalence if and only if it has the weak right lifting property (as in Example A.2.3)
against a set of pseudo-generating cofibrations.

This is essentially the “HELP lemma” of R. M. Vogt in [33], or the observation by
J. Bourke in [7] that the map f between fibrant objects is an equivalence if and only if it is
an injective object in the category of arrows against the arrow from A ↪→ B to B ↪→ IAB.

B. Corner-product and Joyal–Tierney calculus

This appendix reviews the now well-known “Joyal–Tierney calculus” introduced in [18],
though lots of aspects involved here were known before.

Let E1, E2 and E3 be three complete and cocomplete categories endowed with a functor

E1 × E2 → E3

(A,B) 7→ A�B .

B.0.1. Definition. We say that � is left divisible if for all X1 ∈ E1 the functor X2 7→
X1�X2 has a right adjoint, denoted X3 7→ X1\X3, and that it is right divisible if for all
X2 ∈ E2 the functor X1 7→ X1 �X2 has a right adjoint, denoted X3 7→ X3/X2. That is,
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� is divisible on both sides (we just say “divisible” in that case) if there are adjunction
isomorphisms

Hom(X1 �X2, X3) ' Hom(X1, X3/X2) ' Hom(X2, X1\X3)

for Xi ∈ Ei. Note that / and \ are automatically functors E3×Eop2 → E1 and Eop1 ×E3 → E2.

B.0.2. Example. We mostly have three types of divisible functor in mind here:

� E1 = E2 = E3 is a monoidal closed category, � is the tensor product, and X\Y and
Y/X correspond to the left and right internal Hom object.

� E1 is a monoidal category and E2 = E3 is a tensored and co-tensored E1-enriched
category. Then Y/X corresponds to the E1-valued Hom object, � is the tensoring
action of E1 on E2 and X\Y is the cotensor action.

� If E and F are complete cocomplete categories, C is a small category, and Ĉ is the
category of presheaves of sets over C, then a divisible bi-functor Ĉ × E → F , is the
same as a functor c 7→ λc from C to the category of left adjoint functors from E to
F . Using ends and coends notation the correspondence is given by

S � E =

∫ C
S(c)× λc(E) S\F =

∫
C
(λ∗c(F ))S(c)

F/E = (c 7→ HomF(λc(E), F )) .

However, the “associativity” properties present in the first two situations appear to
play no role in what follows and it is convenient to work in this general setting (with
all three categories possibly distinct) for better typing and symmetries. See for example
the next lemma. This also allows to consider situations where there is a non-associative
“tensor product”, typically a tensor product that will be associative only up to homotopy,
as for example the tensor product of dendroidal sets.

B.0.3. Lemma. Let � : E1 × E2 → E3 be a divisible bi-functor. Then the two bi-functors

E1 × Eop3 → Eop2 E2 × Eop3 → Eop1

(X1, X3) 7→ (X1\X3) (X2, X3) 7→ (X3/X2)

are both divisible on both sides.

Proof. As � is divisible on both sides there are functorial isomorphisms

HomE3(X1 �X2, X3) ' HomE2(X2, X1\X3) ' HomE1(X1, X3/X2).

By just taking opposite categories, this gives functorial isomorphisms

HomEop3 (X3, X1 �X2) ' HomEop2 (X1\X3, X2) ' HomE1(X1, X3/X2)
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which shows that X1\X3 is divisible on both sides when seen as a functor E1×Eop3 → E
op
2 .

Similarly, we have

HomEop3 (X3, X1 �X2) ' HomE2(X2, X1\X3) ' HomEop1 (X3/X2, X1)

which shows that (X3/X2) is divisible on both sides when seen as a functor Eop3 ×E2 → Eop1 .

B.0.4. Construction. Let Ar(Ei) be the category of arrows of Ei, whose morphisms are
the commutative squares. Following A. Joyal and M. Tierney in [18], given a bi-functor
� : E1 × E2 → E3 we define a bi-functor

� : Ar(E1)× Ar(E2)→ Ar(E3)

called the “pushout-product” or “corner-product”. For f1 : X1 → Y1 ∈ E1 and f2 : X2 →
Y2 ∈ E2 the map f1 �f2 is the map

f1 �f2 : (X1 � Y2)
∐

(X1�X2)

(Y1 �X2)→ Y1 � Y2

induced by the square

X1 �X2 X1 � Y2

Y1 �X2 Y1 � Y2

X1�f2

f1�X2 f1�Y2
Y1�f2

If � is left or right divisible, then � also is, with the division functors given by f1\f3

and f3/f2 defined as:

� For f1 : X1 → Y1 ∈ E1 and f : X3 → Y3 ∈ E3, we denote by f1\f3 the map

f1\f3 : Y1\X3 → (Y1\Y3) ×
(X1\Y3)

(X1\X3)

induced by the square:

Y1\X3 X1\X3

Y1\Y3 X1\Y3 .

f1\X3

Y1\f3 X1\f3
f1\Y3

� Dually, for f2 : X2 → Y2 ∈ E2 and f3 : X3 → Y3 ∈ E3 the map f3/f2 is the map

f3/f2 : X3/Y2 → (X3/X2) ×
(Y3/X2)

(Y3/Y2)

induced by the square

X3/Y2 X3/X2

Y3/Y2 Y3/X2 .

X3/f2

f3/Y2 f3/X2

Y3/f2
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B.0.5. Example. Here are some important examples of values of f �g. We assume that
∅�E2 ' E1�∅ ' ∅ where ∅ denotes the initial objects of the three categories E1, E2 and
E3. This is the case as soon as � is divisible.

� (0→ X1) �(0→ X2) = (0→ X1 �X2)

� (0→ X1) �(f : X2 → Y2) = (X1 � f : X1 �X2 → X1 � Y2).

B.0.6. Remark. If we consider X3/X2 and X1\X3 as divisible bi-functors Eop3 ×E2 → Eop1

and E1×Eop3 → E
op
2 following Lemma B.0.3, then their “corner” versions are simply f3/f2

and f1\f3 . This follows from the explicit formula for f3/f2 and f1\f3 given in B.0.4.

We also have the following easy but very important proposition (also observed by
A. Joyal and M. Tierney in [18]):

B.0.7. Proposition. If we denote by f t g the fact that f has the left lifting property
with respect to g, then we have the following equivalences

f1 �f2 t f3 ⇔ f1 t f3/f2

as soon as � is right divisible, and

f1 �f2 t f3 ⇔ f2 t f1\f3

as soon as � is left divisible.

More precisely, if we think of a lifting problem (i.e. a square) as a morphism in the
arrow category, then a given lifting problem f1 �f2 → f3 has a solution if and only if
its adjoint transpose f1 → f3/f2 and f2 → f1\f3 have solutions, in fact there is even a
bijection between the sets of solutions of these different lifting problems.

B.0.8. Definition.

� If I and F are sets of maps we write I t F for18 i t f for all i ∈ I and all f ∈ F .

� If I is a set of maps, an arrow f is an I-fibration if and only if I t f . We denote
by I-fib the class of I-fibrations.

� An arrow f is an I-cofibration if f t I-fib. We denote by I-cof the class of
I-cofibrations.

We clearly have I-cof t I-fib. In situations where the small object argument applies
(see Appendix C) I-cofibrations and I-fibrations form a weak factorization system. If we
assume enough classical logic, or if we are in the “good” case of the small object arguments
as in C.0.3, then I-cofibrations are the retracts of transfinite compositions of pushouts (of
coproducts) of maps in I.

18Following are usual convention, we mean the existence of a structure producing a solution of each
lifting problem of an i ∈ I against a f ∈ F .
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B.0.9. Remark. Assuming divisibility of �, the equivalence

I1 �I2 t I3 ⇔ I1 t I3/I2 ⇔ I2 t I1\I3

holds as well for sets of maps. We also have the following easy equivalences

I t F ⇔ F ⊂ I-fib⇔ I-cof t F

J ⊂ I-cof⇔ J t I-fib⇔ J-cof ⊂ I-cof

The next lemma follows formally from these relations:

B.0.10. Lemma. Let E1, E2 and E3 be complete and cocomplete categories endowed with
a divisible bi-functor � as above, for each i let Ii be a class of arrows in E1 and assume
that I1 �I2 ⊂ I3-cof, then:

(i) I1-cof �I2-cof ⊂ I3-cof

(ii) I1-cof\I3-fib ⊂ I2-fib

(iii) I3-fib/I2-cof ⊂ I1-fib

Note that the three stability properties correspond to the “same” stability property
for the three ways of dualizing the bi-functors � following Lemma B.0.3 (and exchanging
cofibrations and fibrations when dualizing a category). This being said, that does not
make the proof of these three points symmetric as the assumptions of the lemma are not
symmetric under these dualizations.

Proof. As I1 �I2 ⊂ I3-cof we have I1 �I2 t I3-fib hence I2 t I1\I3-fib which can
be rewritten as I1\I3-fib ⊂ I2-fib. Similarly I3-fib/I2 ⊂ I1-fib.

Now this in turn implies that I1-cof t I3-fib/I2 , which is equivalent to I2 t
I1-cof\I3-fib which exactly means that I1-cof\I3-fib ⊂ I2-fib, i.e. (ii). Point (iii)
follows symmetrically.

Finally, as I1-cof\I3-fib ⊂ I2-fib, we have I2-cof t I1-cof\I3-fib , hence
I1-cof �I2-cof t I3-fib, which gives (i).

B.0.11. Remark. A special case of this observation which will be useful later is when

E1 is the category of presheaves over the category (a
f→ b), with I1 = {f}.

This means that there are two left adjoint functors λa, λb : E2 ⇒ E3 and a natural
transformation f : λa → λb. Given an arrow g : X → Y ∈ E2, f �g is the arrow

λa(Y )
∐
λa(X)

λa(X)→ λb(Y )

and Lemma B.0.10 above says that if the map f �i ∈ I3-cof for all i ∈ I2 then it also
holds for any i ∈ I2-cof. Applied to X = 0 this shows in particular that in this case
fY : λa(Y )→ λb(Y ) is an I3-cofibration for any I2-cofibrant object Y .

Finally, as our framework of weak model categories suggests to look at lifting properties
against only cofibrations between cofibrant objects, it is important to know that those
are also stable under corner-product:
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B.0.12. Lemma. Let � : E1 × E2 → E3 be a functor divisible on both sides and let I1, I2

and I3 be classes of maps such that for any I1-cofibration between I1-cofibrant objects i1
and any I2-cofibration between I2-cofibrant objects i2, the arrow i1 �i2 is an I3-cofibration.
Then for any two such maps i1 and i2, the map i1 �i2 also has an I3-cofibrant domain.

Proof. Let i1 : X1 → Y1 and i2 : X2 → Y2 be as in the lemma, the domain of i1 �i2 is

(Y1 �X2)
∐

X1�X2

(X1 � Y2).

The map 0 → Y1 � X2 is the same as (0 ↪→ Y1) �(0 ↪→ X2) (see B.0.5), so it is an
I3-cofibration, the map X1 � X2 → X1 � Y2 is (0 ↪→ X1) �(X2 ↪→ Y2) (see also B.0.5)
so it is also an I3-cofibration and the map from the initial object to the pushout above
is just the composite of the first map with a pushout of the second, so it is indeed an
I3-cofibration, as I3-cofibrations are stable under composition and pushout.

C. The small object arguments in constructive mathematics

The small object argument is the main technique to produce weak factorization systems,
and the main reason why we always assumed we had weak factorization systems at our
disposal.

It generally starts from a set (and not a class) of maps I in a cocomplete category C
and, under some conditions that are only there to ensure that some transfinite construction
terminate, it shows that any map in C can be factored into a “I-cofibration” followed by
a “I-fibration” as in Definition B.0.8, hence producing a weak factorization system. It
also tends to more precisely factor any map as a “transfinite iterated pushout” of maps in
I followed by an I-fibration, hence, using Lemma 2.2.9, it shows that any I-cofibration is
a retract of such a transfinite composition of pushouts of maps in I. However, this second
aspect is less often true constructively than classically as we will see.

The status of the small object argument regarding constructivity is essentially the same
as the special adjoint functor theorem: it is not really possible to make it constructive in
full generality, but it is for example always true in the internal logic of a Grothendieck
topos, or if the category C is a finitely presentable category and the set of maps I are
maps between finitely presentable objects, then it can be made constructive under mild
assumptions on the natural number object. In fact it is equivalent to the special adjoint
functor theorem, in the sense that any instance of each can be translated into an instance
of the other.

The general idea is that we start with a map f : X → Y and we would like to factorize
it as an I-cofibration followed by an I-fibration. In order do that we consider the set of
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all possible squares:

Ai X

Bi Y

ai

i∈I f

bi

(2)

and we force all these lifting problems to have solutions by defining a new object X1 in
which the solutions exist: More precisely, we define X1 to be the object obtained by gluing
on X all these maps A→ B, which is achieved by taking a pushout(∐

Ai

)
X

(∐
Bi

)
X1 Y

(ai)

∐
i

p

f

(bi)

of the coproduct of the maps Ai → Bi indexed by the set of all square as in (2).
This construction gives us a first factorization of X → X1 → Y . The map X → X1 is

an I-cofibration: In order to construct a diagonal filler in a square

X U

X1 V

p∈I-Fib

we exactly need to choose a solution to all the lifting problems of Ai
i→ Bi against p for

all the i appearing in the definition of X1. As p is assumed to have chosen lifts against
all maps in I this is automatic. Moreover the map X1 → Y is “closer” to be a fibration
in the sense that, by construction, each diagram of the form

X

A X1

B Y

∈I f

has a canonical filling, given by canonical mapsB → X1 corresponding to the outer square.
The idea is then to iterate this construction (possibly through a transfinite construction).
If we do this a sufficient ordinal number λ of times, and if Hom(A, ) commutes19 with

19This is why this is called the small object argument. The key assumption is that the object A have
to be “small” in some sense, like λ-presentable or λ-compact.
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colimits of λ-chains then any maps from A to Xλ will factor through one of the Xλ′ for
λ′ < λ and hence we will be able to construct diagonal fillers of any square. This should
make the map X → Xλ → Y into a factorization as an I-cofibration followed by an
I-fibration. There are however some issue with constructivity, and some details to be
careful with. We distinguish essentially two, maybe three, versions of this construction:

C.0.1. Quillen’s small object argument. This corresponds to the version described
above: we just iterate the construction described above and we stop at some large enough
limit ordinal which we will call ∞. If the domain of all the arrows in I are finitely
presentable objects, then ∞ = ω is a good place to stop. In classical mathematics this
works fine, but constructively this is often insufficient: we always get that X∞ → Y has
the “existential” lifting property with respect to all maps in I, but not always a chosen
lift: the choice of a diagonal filling is completely determined by the choice of a lifting of
the map A→ X∞ to one of the Xα but such liftings are not always unique, or canonical:

� It might not be possible to decide for which level there is lifting A → Xα, so it is
not always possible20 to find a smallest level such that the lifting exists, nor to say
that at each stage we only want to take pushout for maps that do not already have
a lifting.

� If the maps Xi → Xi+1 are not monomorphisms there might be several liftings
A→ Xα at a given level.

Furthermore, constructively there is in general no way to make the choice of a lift for each
map A→ X∞.

But on the other hand this construction has a big advantage: the map X → X∞
is explicitly constructed as a transfinite composition of pushouts of coproducts of maps
in I. By Lemma 2.2.9, this implies in particular that any I-cofibration is a retract of a
transfinite composition of pushouts of coproducts of arrows in I.

Note that, assuming the axiom choice, any pushout of a coproduct of maps in I
can be seen as a transfinite composition of pushouts of maps in I by choosing a well-
ordering on the indexing set of the coproduct and doing each pushout one after the other.
Constructively this is of course not always possible, which is why at many places in the
paper we talk about “transfinite composition of pushouts of coproducts of maps in I”
where classical references only talk about “transfinite composition of pushouts of maps in
I”.

There are essentially two ways to fix this problem in the constructive theory:

C.0.2. Garner’s small object argument. This was introduced [12]. This construc-
tion differs from the one above in the fact that at each stage we additionally collapse

20Constructively, the fact that every inhabited subset of N has a smallest element only holds for
complemented (decidable) subsets.
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together the maps B → Xα that come from squares

A Xα′

B Y

∈I

at an earlier stage α′ < α and for which the maps A→ Xα coincide. We refer to [12] for
the technical details of the construction, but a short way to explain it is that it corresponds
to the special adjoint functor theorem applied to construct a left adjoint functor to the
forgetful functor from the category of arrows in C equipped with chosen diagonal filling
for each lifting problem against a map in I (with morphisms the square preserving those
chosen diagonal filling) to the category of arrows in C.

This version of the construction works constructively as soon as we are able to talk
about ordinals large enough so that the process stabilizes (and that it is possible to
construct sets by induction on these ordinals). For the case of interest to us, we need:

(i) There is a natural number object N.

(ii) In C, pushouts of coproducts of maps in I exist,21 equalizers exist, and colimits of
N-chain exist.

(iii) For any domain A of an arrow in I, the functor Hom(A, ) commutes with colimits
of N-chains.

(iv) The induction principle for the natural number object can be used to construct an
N-chain of objects of C, using a colimit at each step. This is for example the case
if the category C has chosen colimits and we can use the induction principle of the
natural number object with value in the set of objects C (which is nontrivial if C
is not small). Or C does not have chosen colimits, but we either have the axiom of
dependent choice, or the ability to use the induction principle for N in an “up to
isomorphisms” version.

This applies to all the examples mentioned in the paper, as soon as we add the existence
and requirement on the natural number object mentioned above, and sometimes the
existence of quotient sets (in order to construct pushouts) to our framework.

This version of the small object argument has lots of good categorical properties that
Quillen’s version does not have, but it has one big drawback: it no longer exhibits the
map X → X∞ as an iterated pushout, as there is also the need to collapse some maps
at each stage, and it no longer proves that any I-cofibration is a retract of an iterated
pushout of coproducts of maps in I.

21We can make sense of the “pushout of a coproduct” even if the coproduct itself does not exist if
needed.
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C.0.3. The good case of the small object argument. This corresponds essen-
tially to the situation where the two versions of the small object argument become equiv-
alent. We add the requirement that for any pushout of coproducts of maps in I (as in
the construction of X → X1) and any object A the source of one of the maps in I, the
map of sets

Hom(A,X)→ Hom(A,X1)

is a complemented monomorphism, i.e. it exhibits Hom(A,X) as a complemented (decid-
able) sub-object of Hom(A,X1).

This is the case in all the examples treated in the paper. In each case, the reason for
this is that these pushouts are complemented monomorphisms on the underlying sets, and
the objects A are always “finitely generated” (in an appropriate sense depending on the
case under consideration), so that the question of whether a map from A to X1 factors in
X can be decided22 by testing separately for each generator of A if its image in X1 is in
X or not.

Under this condition, a map A → X∞ admits a unique lift to one of the Xn with
n minimal for this property. And so the problem we had with Quillen’s small object
argument disappears and it can be applied constructively without problems. In this case
this gives a constructive proof that cofibrations are retracts of (transfinitely) iterated
pushouts of coproducts of maps in I.

Also in this case we can modify Quillen’s small object argument by saying that at each
(finite) step Xn, we take the coproduct only for the squares for which the map A → Xn

does not factor into An−1. If we do that, then this version of the small object argument
becomes equivalent to Garner’s small object argument.

When this special case applies, very similarly to C.0.2, the only additional requirements
on C are that:

(i) C has a natural number object.

(ii) Pushouts of coproducts of maps in I exist, and colimits of N-indexed chains, whose
transition maps are pushouts of coproducts of maps in I, exist.

(iii) If A is the domain of one of the maps in I then Hom(A, ) sends pushouts of
coproducts of maps in I to decidable inclusions and commutes with colimits of
N-chains of the form of the previous point.

(iv) We can construct objects of C by induction on the natural number object, with a
pushout of a coproduct of maps in I at each step. See the discussion of condition
(iv) in C.0.2.

C.0.4. Remark. In fact, we expect that most instances of the small object argument we
use in this paper (in fact, all of them except maybe the one of Section 4.2, which might also
require quotients), can be formalized in (the internal logic of) just a cartesian category

22a finite conjunction of decidable propositions is decidable.
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with parametrized list objects. This is based on the fact that in this case the elements of
the object obtained by forming the factorization have a (unique) “syntactic” description,
and it should be possible to formalize such a description using only list objects. But
proving this directly requires a lot of work, outside the scope of the present paper. I
am hoping to find a more conceptual way to prove such claims in a future work. In
the meantime, a more precise account of the formalization of the small object argument
internally to a category with enough structure can be found in [31].
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