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MONOIDAL GROTHENDIECK CONSTRUCTION

JOE MOELLER AND CHRISTINA VASILAKOPOULOU

ABSTRACT. We lift the standard equivalence between fibrations and indexed categories
to an equivalence between monoidal fibrations and monoidal indexed categories, namely
lax monoidal pseudofunctors to the 2-category of categories. Furthermore, we investigate
the relation between this ‘global’ monoidal version where the total category is monoidal
and the fibration strictly preserves the structure, and a ‘fibrewise’ one where the fibres
are monoidal and the reindexing functors strongly preserve the structure, first hinted
by Shulman. In particular, when the domain is cocartesian monoidal, we show how
lax monoidal structures on a pseudofunctor to Cat bijectively correspond to lifts of the
pseudofunctor to MonCat. Finally, we give some examples where this correspondence
appears, spanning from the fundamental and family fibrations to network models and
systems.

1. Introduction

The Grothendieck construction [Gro61] exhibits one of the most fundamental relations in
category theory, namely the equivalence between contravariant pseudofunctors into Cat
and fibrations. This equivalence allows us to freely move between the worlds of indexed
categories and fibred categories, providing access to tools and results from both. Due to
its importance, it is only natural that one would be interested in possible extra structure
these objects may have, and how the correspondence extends.

The goal of this paper is to establish the appropriate correspondence in the monoidal set-
ting. As the first benchmark, Section 3.13 accomplishes this by lifting the standard equiv-
alence ICat ~ Fib induced by the Grothendieck construction to an equivalence between the
pseudomonoids in each 2-category. Using 2-categorical machinery, we obtain a canonical
correspondence between monoidal fibrations (fibrations which are strict monoidal functors
with a cartesian lifting condition on the domain tensor product functor) and monoidal
indezed categories (lax monoidal pseudofunctors into Cat). The monoidal Grothendieck
construction in this sense employs the monoidal structure of the pseudofunctor to equip
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the corresponding total category with a monoidal product, which is strictly preserved by
the fibration.

On a different but highly related note, Shulman introduced monoidal fibrations in
[Shu08] where he also explicitly constructed an equivalence between monoidal fibrations
over a cartesian monoidal base and ordinary pseudofunctors into MonCat; the latter were
already called indexed (strong) monoidal categories in [HMO6]. For this result, the exis-
tence of finite products was instrumental, making it impossible to extend it to arbitrary
monoidal products. Moreover, the involved monoidal fibrations have monoidal fibre cat-
egories and strong monoidal reindexing functors between them, which is certainly not
always the case for an arbitrary monoidal fibration.

This striking dissimilarity between Shulman’s equivalence and the one established here
motivated an investigation regarding a ‘fibrewise’ monoidal structure of a fibration as
opposed to a ‘global’ one. We show that from a high level perspective, these structures
are encompassed as pseudomonoids in different monoidal 2-categories: fixed-base fibra-
tions Fib(X) and arbitrary-base fibrations Fib, see (24). This crucial observation at that
stage implies that these two distinct versions only meet when the base category has a
(co)cartesian monoidal structure. Our key result and its 2-categorical proof, Section 4.2,
positions the general monoidal versus the special (co)cartesian case in their proper setting,
and expresses an unforeseen bijection between ordinary pseudofunctors into MonCat and
lax monoidal pseudofunctors into (Cat, x, 1), Section 4.3.

This stimulating subtlety concerning the transfer of monoidality from the target cat-
egory to the very structure of the functor and vice versa could potentially bring new
perspective into further variations of the Grothendieck construction. As an example, in
[BW19] the authors work towards a ‘fibrewise’ enriched correspondence: under certain as-
sumptions on a monoidal category V, they establish a bijection between ordinary functors
into V-Cat and V-functors over the free V-category on the base. Future work could ad-
dress the ‘global” enriched Grothendieck construction, namely one including an enriched
(rather than ordinary) functor into Cat — similarly to what is therein called fully enriched
correspondence — and there is evidence that the monoidal correspondence of our current
framework in fact underlies it.

Finally, the fact that the monoidal Grothendieck construction naturally arises in diverse
settings is what motivated its theoretical clarification, thoroughly presented in this work.
We gather a few examples in the last section of the paper so as to exhibit the various
constructions concretely, and we are convinced that many more exist and would benefit
from such a viewpoint. The examples include standard (op)fibrations like (co)domain
and families classified in their monoidal contexts, as well as certain special algebraic
cases of interest such as monoid-(co)algebras as objects in monoidal Grothendieck cate-
gories. For the special case of graphs, the monoidal Grothendieck correspondence is vig-
orously used to explicitly relate two distinct categorical frameworks for network theory,
namely decorated cospans and network models via Section 5.5. Moreover, global cate-
gories of (co)modules for (co)monoids in any monoidal category, as well as (co)modules
for (co)monads in monoidal double categories also naturally fit in this context. Finally,
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certain categorical approaches to systems theory employ algebras for monoidal categories,
namely monoidal indexed categories, as their basic compositional tool for nesting of sys-
tems; clearly these also fall into place, giving rise to total monoidal categories of systems
with new potential to be explored.

OUTLINE OF THE PAPER. In Section 2, we review the basic theory of fibrations and
indexed categories, as well as that of monoidal 2-categories and pseudomonoids. Section 3
contains the eponymous construction in the form of 2-equivalences between the respective
2-categories of monoidal objects: Sections 3.1 and 3.6 contains elementary descriptions
of (braided /symmetric) monoidal variations of fibrations and indexed categories, whereas
Section 3.11 details the relevant correspondences. In Section 4, we investigate the relation
between the ‘global’ and ‘fibrewise’ monoidal Grothendieck construction for cartesian
bases. Finally, Section 5 highlights some examples of this construction as it arises in
various contexts, and Appendix A presents some of the earlier structures in greater detail.

2. Preliminaries

We assume familiarity with the basics of monoidal categories, see e.g. [JS93], as well as
2-category theory, see e.g. [KS74, Lac10]. We denote by 2Cat the paradigmatic example
of a 3-category [Gurl3] which consists of 2-categories, 2-functors, 2-natural transforma-
tions and modifications between them. If we take pseudofunctors .#: K — L between
2-categories, i.e. assignments that preserve the composition and identities up to coher-
ent isomorphism, along with pseudonatural transformations .# = ¢ between them, i.e.
with components for which the usual naturality squares commute only up to coherent
isomorphism, we obtain a tricategory denoted by 2Cat,,.

2.1. FIBRATIONS AND INDEXED CATEGORIES. We recall some basic facts and construc-
tions from the theory of fibrations and indexed categories, as well as the equivalence
between them via the Grothendieck construction. A few indicative references for the
general theory are [Gra66, Her94, Bor94, Jac99, Joh02].

Consider a functor P: A — X. A morphism ¢: a — b in A over a morphism [ =
P(¢): * — y in X is called cartesian if and only if, for all g: ' — z in X and 0: a’ — b
in A with P = f o g, there exists a unique arrow ¢ : a’ — a such that Py = ¢ and

0= ¢o:

I Ty b in A
N ¢
/ : ;
g \ A :
T—p =Y in X

For x € obX, the fibre of P over x written A,, is the subcategory of A which consists
of objects a such that P(a) = z and morphisms ¢ with P(¢) = 1,, called vertical
morphisms. The functor P: A — X is called a fibration if and only if, for all f: z — y
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in X and b € A,, there is a cartesian morphism ¢ with codomain b above f; it is called a
cartesian lifting of b along f. The category X is then called the base of the fibration,
and A its total category.

Dually, the functor U: C — X is an opfibration if U°P is a fibration, i.e. for every
c€C,and h: x — y in X, there is a cocartesian morphism with domain ¢ above h, the
cocartesian lifting of ¢ along h with the dual universal property:

I
-~ s .
c=— > e in C
B 3
/
koh=U~y Yy
N q k .
T in X
n=vp Y

A bifibration is a functor which is both a fibration and opfibration.

If P: A — X is a fibration, assuming the axiom of choice we may select a cartesian
arrow over each f: x — y in X and b € A, denoted by Cart(f,b): f*(b) — b. Such
a choice of cartesian liftings is called a cleavage for P, which is then called a cloven
fibration; any fibration is henceforth assumed to be cloven. Dually, if U is an opfibration,
for any ¢ € C, and h: x — y in X we can choose a cocartesian lifting of ¢ along h,
Cocart(h,c): ¢ — hi(c). The choice of (co)cartesian liftings in an (op)fibration induces
a so-called reindexing functor between the fibre categories

A —-A, and h:C, —C, (1)

respectively, for each morphism f: x — y and h: x — y in the base category. It can be
verified by the (co)cartesian universal property that 14, = (1,)* and that for composable
morphism in the base category, g*o f* = (go f)*, as well as (1,); = 1¢, and (koh), = kjoh,.
If these isomorphisms are equalities, we have the notion of a split (op)fibration.

A fibred 1-cell (H, F): P — @ between fibrations P: A — X and ): B — ) is given
by a commutative square of functors and categories

AL 1 (2)
P\ \Q

where the top H preserves cartesian liftings, meaning that if ¢ is P-cartesian, then H¢
is (Q-cartesian. In particular, when P and @) are fibrations over the same base category,
we may consider fibred 1-cells of the form (H, 1) displayed by

A—H" . B (3)
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and H is then called a fibred functor. Dually, we have the notion of an opfibred 1-cell
and opfibred functor. Notice that any such (op)fibred 1-cell induces functors between
the fibres, by commutativity of (2):

H,: A, — Bp, (4)

A fibred 2-cell between fibred 1-cells (H, F') and (K, G) is a pair of natural trans-
formations (8: H = K,a: F = G) with 8 above a, i.e. Q(f,) = ap, for all a € A,
displayed as

H
/_\
AT
P|
X

oy

(5)

K
Q
F

e SV

|

a
A fibred natural transformation is of the form (5,1, ): (H,1x) = (K, 1x)

<

Dually, we have the notion of an opfibred 2-cell and opfibred natural transformation
between opfibred 1-cells and functors respectively.

We thus obtain a 2-category Fib of fibrations over arbitrary base categories, fibred 1-
cells and fibred 2-cells. There is also a 2-category Fib(X) of fibrations over a fixed base
category X, fibred functors and fibred natural transformations. Dually, we have the 2-
categories OpFib and OpFib(X’). Moreover, we also have 2-categories Fibs; and OpFib, of
split (op)fibrations, and (op)fibred 1-cells that preserve the cartesian liftings ‘on the nose’.

2.2. REMARK. Notice that Fib and OpFib are both sub-2-categories of Cat? = [2, Cat], the
arrow 2-category of Cat. Similarly, Fib(X) and OpFib(X) are sub-2-categories of Cat/X,
the slice 2-category of functors into X. In fact, both these categories form fibrations
themselves [Her99], see also Section 4.5 and Section 5.1; explicitly, cod: Fib — Cat maps
a fibration to its base. The 2-fibration structure is also explained in [Bucl4, 2.3.8].

We now turn to the world of indexed categories. Given an ordinary category X', an
X-indexed category is a pseudofunctor

M X — Cat

where X is viewed as a 2-category with trivial 2-cells; it comes with natural isomorphisms
Og.p: (Mg)o(M[) 2 M (gof)and v,: 14 =2 A (1,) for every x € X' and composable
morphisms f and g, satisfying coherence axioms. Dually, an X-opindexed category is
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an X°P-indexed category, i.e. a pseudofunctor X — Cat. If an (op)indexed category
strictly preserves composition, i.e. is a (2-)functor, then it is called strict.

An indexed 1-cell (F,7): .# — .4 between indexed categories .# : X°® — Cat and
A0 Y°P — Cat consists of an ordinary functor F': X — ) along with a pseudonatural
transformation 7: # = A o F°P

XOP

T

Fov J- 7 Cat (7)

"

yr

with components functors 7,: .#x — A Fx, equipped with coherent natural isomor-
phisms 7¢: (N Ff)or, = 1,0 (A f) for any f: x — y in X. For indexed categories
with the same base, we may consider indexed 1-cells of the form (1x,7)

M
/—\
X P »U«T Cat (8)
~_ A

N

which are called indexed functors. Dually, we have the notion of an opindexed 1-cell
and opindexed functor.
An indexed 2-cell («, m) between indexed 1-cells (F,7) and (G, o), pictured as

XOP

consists of an ordinary natural transformation a: F' = G and a modification m

M M

/_\
Xop Jr Cat & & G Jo  Cat
T UIBN U )

yOP Fop yOP

given by a family of natural transformations m,: 7, = 4 «a, o 0,. Notice that taking
opposites is a 2-functor (—)°?: Cat — Cat®, on which the above diagrams rely. An
indexed natural transformation between two indexed functors is an indexed 2-cell of
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the form (1;,,m). Dually, we have the notion of an opindexed 2-cell and opindexed
natural transformation between opindexed 1-cells and functors respectively.

Notice that an indexed 2-cell (a,m) is invertible if and only if both « is a natural
isomorphism and the modification m is invertible, due to the way vertical composition is
formed.

We obtain a 2-category ICat of indexed categories over arbitrary bases, indexed 1-cells
and indexed 2-cells. In particular, there is a 2-category 1Cat(X') of indexed categories with
fixed domain X, indexed functors and indexed natural transformations, which coincides
with the functor 2-category 2Cat,s(X°P, Cat).

Dually, we have the 2-categories OplCat and OplCat(X’) = 2Catps (X, Cat). Notice that
due to the absence of opposites in the world of opindexed categories, opindexed 2-cells
have a different form than (9), namely

M M

T
X\F\I - Gt X X o Cat
Ve
G\%y (/V G\)y/ﬂ

Moreover, we have 2-categories of strict (op)indexed categories and (op)indexed 1-cells
that consist of strict natural transformations 7, i.e. ICats(X)=[X°P, Cat| and OplCat (X) =
[X, Cat] the usual functor 2-categories.

2.3. REMARK. Similarly to Section 2.2, notice that these (1-)categories also form fibra-
tions over Cat, this time essentially using the family fibration also seen in Section 5.6. The
functor 1Cat — Cat is a split fibration that sends an indexed category to its domain and
an indexed 1-cell to its first component as in Section 4.5. In fact, it is also a 2-fibration
as explained in [Bucl4, 2.3.2].

In the first volume of the Séminaire de Géométrie Algébrique du Bois Marie |Gro61],
Grothendieck introduced a construction for a fibration P,: [# — X from a given
indexed category . : X°° — Cat as follows. If 6 and « are the structure pseudonatural
transformations of the pseudofunctor ., the total category [.# has

e objects (z,a) with x € X and a € A x;

e morphisms (f,k): (z,a) — (y,b) with f: + — y a morphism in X, and k: a —
(A f)(b) a morphism in . z;

e composition (g,¢) o (f,k): (z,a) = (y,b) — (z,¢) is given by go f: a — b — ¢ in
X and

(6f,g)c

a s (MD)B) T (Mo M) TS Mgo[)e) Az (10)
e unit 1,4 : (z,a) = (v,a) is given by 1,: v — 2 in X and

a=1p0a % (M1,)(a) in Mu.



1166 JOE MOELLER AND CHRISTINA VASILAKOPOULOU

The fibration P,: [# — X is given by (z,a) — x on objects and (f,k) — f on
morphisms, and the cartesian lifting of any (y,b) in [# along f: x — y in X is precisely
(f, Y wsp). Its fibres are precisely .#x and the reindexing functors between them are
M.

In the other direction, given a (cloven) fibration P: A — X', we can define an indexed
category A p: X°P — Cat that sends each object x of X to its fibre category A, and each
morphism f: x — y to the corresponding reindexing functor f*: A, — A, asin (1). The
isomorphisms of cartesian liftings f* o ¢* = (g o f)* and 14, = 1} render this assignment
pseudofunctorial.

Details of the above, as well as the correspondence between 1-cells and 2-cells can be
found in the provided references. Briefly, given a pseudonatural transformation 7: .# —
N oF°P (7) with components 7, : A x — A Fz, define a functor P,: [.# — |4 mapping
(x € X,a € M x) to the pair (Fz € Y, 7.(a) € A Fx) and accordingly for arrows. This
makes the square

[t L [
T )
X ——7)

commute, and moreover P, preserves cartesian liftings due to pseudonaturality of 7. More-
over, given an indexed 2-cell (a,m): (F,7) = (G,0) as in (9), we can form a fibred 2-cell

P
T
f# | P, N

Ps
Py Py (12)
F

X/Ua\‘y
~_

G

where a: F' = (G is piece of the given structure, whereas P, is given by components
(Pn)@a): Pr(z,a) = (Fz,7,0) = Py(z,a) = (Gx,0,a) in [A

explicitly formed by o, : Fr — Gz in Y and (my),: 7.0 = (AN ay)oa in A Fa.
The following theorem summarizes these standard results.

2.4. THEOREM.
1. Every fibration P: A — X gives rise to a pseudofunctor #p: X°P — Cat.

2. Every indexed category M : X°P — Cat gives rise to a fibration P, [# — X.
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3. The above correspondences yield an equivalence of 2-categories
|Cat(X) ~ Fib(X)
so that #Mp, = M and Py, = P.

4. The above 2-equivalence extends to one between 2-categories of arbitrary-base fibra-
tions and arbitrary-domain indexed categories

ICat ~ Fib

If we combine the above with Section 2.2 and Section 2.3 which point out that the
2-categories Fib and ICat are fibred over Cat with fibres Fib(X') and 1Cat(X’) respectively,
we obtain the following Cat-fibred equivalence

ICat > Fib

Su”

There is an analogous story for opindexed categories and opfibrations that results into
a 2-equivalences OplCat(X) ~ OpFib(X) and OplCat ~ OpFib, as well as for the split
versions of (op)indexed and (op)fibred categories.

2.5. MONOIDAL 2-CATEGORIES AND PSEUDOMONOIDS. Below we sketch some basic def-
initions and constructions relative to monoidal 2-categories, necessary for what follows;
relevant references where explicit axioms can be found are [Car95, GPS95, DS97, McCO00,
Gurl3).

A monoidal bicategory K comes equipped with a pseudofunctor ®: I x K — K and
a unit object I: 1 — K which are associative and unital up to coherent equivalence; a
monoidal 2-category is one whose underlying bicategory is really a 2-category. In fact
any monoidal bicategory is monoidally biequivalent to a special monoidal 2-category,
namely a Gray monoid, by the one-object case of coherence for tricategories. A 2-
monoidal 2-category is a monoidal 2-category whose tensor product is a 2-functor
rather than a pseudofunctor. Although our main examples in this paper are of the latter
kind, namely the cartesian monoidal 2-categories of fibrations and indexed categories,
the weaker structures are also required as they arise in the monoidal variants of the
Grothendieck construction.

A (weakly) lax monoidal pseudofunctor .%: K — L (called weak monoidal in
[DS97]) between monoidal 2-categories is a pseudofunctor equipped with pseudonatural

transformations
FXF

KxK—=LxL 1 Ir
®Kl UH l@c I)cl m (13)

K—r K—sC



1168 JOE MOELLER AND CHRISTINA VASILAKOPOULOU

with components (5 Fa® Fb— F(a®b), ug: I — F1, along with invertible modi-
fications

LxLx LS Ll LxLx LS el
FXFXF A Rr FXFXF ~ ®c
U«uxl FXF \ 1X®c ~
4 - w > ®
KxXKxK 25 KxK Ju L 5 KxKxK U 1xu LXL =25 L

~ 2

1X®X = en 4 1X®X T llué
KxIC = K -

(Fa® Fh) @ Fc —2 | Z(ab)® Fc
NJ( \]{l’“a@bc
Fa@ (Fbe Fc)  “u F((a®b) @ c) (14)
1®;Ufb,c\]( B ~
Fa® Fb@c) —p——— F(a® (b))
Fa =5 Faol 28 Faw FI  Fa "o 1®Fa S FIe Fa
& Y & e
N — F(ax]) - — F(®a)

subject to coherence conditions.

A (weakly) monoidal pseudonatural transformation 7: .7 = ¢ between two
lax monoidal pseudofunctors (%, u, o) and (¢, v, 1) is a pseudonatural transformation
equipped with two invertible modifications

FXF

— FxT I
KXxKxr LxL KxKZZ5LxL —£ 5L 1—=5 L

1
~_ 7 bpo N
® YxY ® u ® du ® I Yo by Ix Mff (15)
Jv > F 3 / Ur
7 K %

K——L K~ w L
4 \(2/!

that consist of natural isomorphisms with components

Uap: Vap © (Ta @ Tp) = Tawh © Hapy, Uo: Vo = 770 o (16)
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satisfying coherence conditions.
A monoidal modification between monoidal pseudonatural transformations (7, u, ug)
and (o, v,vp) is a modification

which consists of pseudonatural transformations m,: 7, = o0, compatible with the mon-
oidal structures, in the sense that

Ta®Th ga & gb Va,b 7'a®'rb/> ga & gb
/) \ / U ma@my /\

Fa®@Fb | vy T% (r®y) = a®9b/aa®ab Vvay “(a®D) (17)

Ma,b a ® b Ta®b ® b) Ta®@b

For any monoidal 2-categories IC, £, these form a 2-category Mon2Catp(IC, £); if K and
L were monoidal bicategories, this bicategory is denoted by WMonHom(/C, £) in [DS97] or
MonBicat(K, £) in [CG11]. If we take weakly lax monoidal 2-functors, i.e. whose underly-
ing pseudofunctors are 2-functors [McC00], and weakly monoidal 2-transformations, the
corresponding sub-2-category is denoted by Mon2Cat(/C, £). This should not be confused
with the stricter notions of lax monoidal 2-functors and monoidal 2-natural transforma-
tions, for which (13) are 2-natural and (14) and (16) are identities, corresponding to the
monoidal Cat-enriched definitions. Notice that in the later Section 3.6, in the strict con-
text we will come across an intermediate notion of a weakly lax monoidal 2-functor whose
structure maps (13) are strictly natural but (14) are still isomorphisms.

A pseudomonoid (or monoidale) in a monoidal 2-category (K, ®,I) is an object a
equipped with multiplication m: a ® a — a, unit j: I — a, and invertible 2-cells

1®
aRaRa — a®a a—>a®a<—a

- " \ l / (18)

a®aT>a

[R=

[Re

expressing assiociativity and unitality up to isomorphism, that satisfy appropriate coher-
ence conditions; we omitted the associativity and unit constraints of IC. A lax morphism
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between pseudomonoids a, b is a 1-cell f: a — b equipped with 2-cells

a®aﬁ>b®b I i
Wb bl N 19
aﬁb CLTH)

such that the following conditions hold:

me1

bbb "R b boa babob 22 beb
fofof m fefof a \Um
U o1, fof \ 1@m =
a®a®a 2% a®a = a®a®a I 1,00 b®b "3 b
\ \ / \ inw
a®Qa —pm— a a®a —>b®Db
(20)

f

1y

a—>b®be

W"ﬂ ref w/

a®a —m> a

1o

If (f,¢,¢0) and (g,,10) are two lax morphisms between pseudomonoids a and b, a
2-cell between them o: f = ¢ in K which is compatible with multiplications and units,
in the sense that

®f_—beb b®b
/umgg/\ \ / \

00a g el b = e
o
m\%a/g‘ /\

J J

=Y _ T b
j\saCW j\sa/g

g

We obtain a 2-category PsMon,(K) for any monoidal 2-category K, which is sometimes
denoted by Mon(K) [CLS10]. By changing the direction of the 2-cells in (19) and the
rest of the axioms appropriately, or asking for them to be invertible, we have 2-categories
PsMon,¢(K) and PsMon(K) of pseudomonoids with oplax or (strong) morphisms be-
tween them.
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2.6. ExaMmPLES. The prototypical example is that of the (2-)monoidal 2-category K =
(Cat, x, 1) of categories, functors, and natural transformations with the cartesian product
of categories and the unit category with a unique object and arrow. A pseudomonoid
in (Cat, x,1) is a monoidal category, a lax (resp. oplax, strong) morphism between
two of these is precisely a lax (resp. oplax, strong) monoidal functor, and a 2-cell is
a monoidal natural transformation. Therefore we obtain the well-known 2-categories
MonCat,, MonCat,,, and MonCat.

2.7. REMARK. There is an evident similarity between the structures defined above, e.g
(13) and (19), or (15) and (21). This is due to the fact that monoidal 2-categories,
lax monoidal pseudofunctors and monoidal pseudonatural transformations are themselves
appropriate pseudomonoid-related notions in a higher level; we do not get into such details,
as they are not pertinent to the present work.

For our purposes, we are interested in a different observation, see [DS97]: any pseu-
domonoid a in a monoidal 2-category K can in fact be expressed as a (weakly) lax monoidal
2-functor A: 1 — K with A(x) = a. Moreover, a monoidal 2-natural transformation
7: A = B:1 — K bijectively corresponds to a strong morphism between the pseu-
domonoids a and b, and similarly for monoidal modifications and 2-cells. Therefore the
2-category of pseudomonoids PsMon(K) can be equivalently viewed as Mon2Cat(1, K),
the 2-category of weakly lax monoidal 2-functors 1 — K, weakly monoidal 2-natural
transformations and monoidal modifications.

In what follows, we want to make precise the natural idea that if two monoidal 2-
categories are equivalent, then their 2-categories of pseudomonoids are also equivalent.
As was already shown in [DS97, Prop. 5], any lax monoidal 2-functor .7 : K — L takes
pseudomonoids to pseudomonoids, and in fact [McCO00] there is a functor PsMon(.%) that
commutes with the respective forgetful functors

PsMon(KC) Pslton(7), PsMon(L)
K - > L.

Based on the above Section 2.7, we can define a hom-2-functor that clarifies these as-
signments. Its domain Mon2Cat is the 2-category of monoidal 2-categories, (weakly) lax
monoidal 2-functors and (weakly) monoidal 2-natural transformations, which lives inside
the more general tricategory MonBicat established in [CG11]. Although it may look sur-
prising at first, Mon2Cat can be explicitly verified to be a 2-category rather than a more
relaxed structure, using the ambient axioms and strictness of the underlying structures.

2.8. PROPOSITION. There is a 2-functor
PsMon(—) ~ Mon2Cat(1, —): Mon2Cat — 2Cat (22)

which maps a monoidal 2-category to its 2-category of pseudomonoids, strong morphisms
and 2-cells between them.
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The theory in [DS97, McC00] extends the above definitions to the case of braided and
symmetric pseudomonoids in braided and symmetric monoidal 2-categories. Briefly recall
that a braiding for (K, ®, I) is a pseudonatural equivalence with components 3, ;: a®b —
b ® a and invertible modifications satisfying axioms, whereas a syllepsis is an invertible
modification

a®bi>a®b3a®b@>b®aﬁb—’a>a®b

satisfying axioms, which is called symmetry if one extra axiom holds. With the ap-
propriate notions of braided and symmetric lax monoidal pseudofunctors and monoidal
pseudonatural transformations (and usual monoidal modifications), we have tricategories
BrMon2Cat,; and SymMon2Cat,s. For example, a braided lax monoidal pseudofunctor
comes equipped an invertible modification with components

Fa® Fb " Fla@b)
Bﬁu,kgbl U« Va,b l,?(ﬁa,b) (23)

As earlier, there exist 2-categories of braided and symmetric pseudomonoids with strong
morphisms BrPsMon(K) = BrMon2Cat(1, ) and SymPsMon(K) = SymMon2Cat(1, K).

2.9. PROPOSITION. There are 2-functors
BrPsMon: BrMon2Cat — 2Cat, SymPsMon: SymMon2Cat — 2Cat

which map a braided or symmetric monoidal 2-category to its 2-category of braided or
symmetric pseudomonoids.

Finally, there is a notion of a monoidal 2-equivalence arising as the equivalence internal
to the 2-category Mon2Cat.

2.10. DEFINITION. A monoidal 2-equivalence is a 2-equivalence .7 : K ~ L : 4 where
both 2-functors are lax monoidal, and the 2-natural isomorphisms 1x = F9, 4% = 1,
are monoidal. Similarly for braided and symmetric monoidal 2-equivalences.

As is the case for any 2-functor between 2-categories, PsMon as well as BrPsMon and
SymPsMon map equivalences to equivalences.

2.11. PROPOSITION. Any monoidal 2-equivalence K =~ L induces a 2-equivalence be-
tween the respective 2-categories of pseudomonoids PsMon(K) ~ PsMon(L). Similarly,
any braided or symmetric monoidal 2-equivalence induces a 2-equivalence BrPsMon(KC) ~

BrPsMon(L) or SymPsMon(K) ~ SymPsMon(L).

It would be reasonable to have a corresponding statement for biequivalent Gray monoids
and their pseudomonoids, by appropriately adjusting Section 2.8. Due to our case of
interest — fibrations and indexed categories — being equivalent in this stronger sense, we
do not need to work in that level of generality.
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3. The Monoidal Grothendieck Construction

In this section, we give explicit descriptions of the 2-categories of pseudomonoids in the
cartesian monoidal 2-categories of fibrations and indexed categories, Fib and ICat, and
we exhibit their equivalence induced by the monoidal Grothendieck construction. We
also consider the fixed-base case, namely pseudomononoids in Fib(X’) and ICat(X) and
their corresponding equivalence. These two cases are in general distinct, and can be
summarized in

Fib~ICat
PSV fix X
MonFib~MonlCat Fib(X')~2Cat,s(X°P, Cat)
fix Xl lPsMon(—)
MonFib(&X')~Mon2Cat,(X°P, Cat) PsMon(Fib(&X'))~2Cat,(X°P, MonCat)

(24)
The two feet turn out to coincide only under certain hypotheses, which reveal some inter-
esting subtleties on the potential monoidal structures on fibrations and pseudofunctors,
discussed in detail in Section 4.

3.1. MONOIDAL FIBRATIONS. The 2-categories Fib and OpFib of (op)fibrations over arbi-
trary bases, recalled in Section 2.1, have a natural cartesian monoidal structure inherited
from Cat?. For two fibrations P and @, their (2-)product

PxQ:AxB—Xx)Y (25)

is also an fibration, where a cartesian lifting is a pair of a P-lifting and a Q-lifting;
similarly for opfibrations. The monoidal unit is the trivial (op)fibration 1;: 1 — 1. Since
the monoidal structure is cartesian, they are both symmetric monoidal 2-categories.

A pseudomonoid in (Fib, X, 1;) is called a monoidal fibration. A detailed argument
of how the following proposition captures the required structure can be found in [Vas18§],
and also that was the original description of this notion in [Shu08]. See also [Her04] for
an alternative approach via fibrations of multicategories.

3.2. PROPOSITION. A monoidal fibration P: A — X is a fibration for which both the
total A and base category X are monoidal, P is a strict monoidal functor and the tensor
product ® 4 of A preserves cartesian liftings.

Explicitly, the multiplication and unit are fibred 1-cells m = (R4, ®x): P x P — P
and j = (I4,Ix): 1 — P displayed as

Ax A—24 oA and 1—2 4 (26)
PxPl jP llt P
X x X 1 X

X Ix
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and the fact that ® 4 is cartesian is expressed by f*z ®4 "y = (f Qx 9)"(z ®4 y).

A monoidal fibred 1-cell between two monoidal fibrations P: A - X and Q: B — Y
is a (strong) morphism of pseudomonoids between them, as defined in Section 2.5. It
amounts to a fibred 1-cell, i.e. a commutative

A28

Pl l@ (27)

X —Y

where H preserves cartesian liftings, along with invertible 2-cells (19) in Fib satisfying
axioms (20). By (5), these are fibred 2-cells

ity BXE_ou T
Ax A I ¢ B 1 U%/B

@A\A/H La >
PxP Q Iy ¢

P YV o 17 4w Y
X xX Jv Yy \ A

Ix F
@X\){/F X

where ¢ and ¢ are natural isomorphisms with components
Gap: Ha® Hb = H(a®b), t,,: Fr® Fy = F(z®y)
such that ¢ is above 1, i.e. the following diagram commutes:

Q¢a,b

Q(Ha ® Hb) QH(a @ b)
o E

OHa® QHb FP(a®D)
| oo

FPa® FPb R F(Pa® Pb)

Similarly, ¢ and v have single components ¢q: Iy — H(I4) and 1y: Iy = F(Ix) such
that Q(¢o) = 1. These two conditions in fact say that the identity transformation, a.k.a.
commutative square (27) is a monoidal one, as expressed in [Shu08, 12.5]. The relevant
axioms dictate that (¢, ¢g) and (¥, 1) give H and F' the structure of strong monoidal
functors, thus we obtain the following characterization.
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3.3. PROPOSITION. A monoidal fibred 1-cell between two monoidal fibrations P and Q)
is a fibred 1-cell (H, F') where both functors are monoidal, (H, ¢, ¢o) and (F,1),1y), such

that Q(bap) = Vpa,ps and Qoo = 1.

For lax or oplax morphisms of pseudomonoids in Fib, we obtain appropriate notions
of monoidal fibred 1-cells, where the top and bottom functors of (27) are lax or oplax
monoidal respectively.

Finally, a monoidal fibred 2-cell is a 2-cell between morphisms (H, F') and (K, G) of
pseudomonoids P, @) in Fib. Explicitly, it is a fibred 2-cell as described in Section 2.1

j\m

A Vs 5B

Pl Q
i
X | « Yy

G

=

\
;

satisfying the axioms (21); these come down to the fact that both 5 and « are monoidal
natural transformations between the respective lax monoidal functors.

3.4. PROPOSITION. A monoidal fibred 2-cell between two monoidal fibred 1-cells is an
ordinary fibred 2-cell (o, ) where both natural transformations are monoidal.

We denote by PsMon(Fib) = MonFib the 2-category of monoidal fibrations, monoidal
fibred 1-cells and monoidal fibred 2-cells. By changing the notion of morphisms between
pseudomonoids to lax or oplax, we obtain 2-categories MonFib, and MonFib,,,. There are
also 2-categories BrMonFib and SymMonFib of braided (resp. symmetric) monoidal
fibrations, braided (resp. symmetric) monoidal fibred 1-cells and monoidal fibred
2-cells, defined to be BrPsMon(Fib) and SymPsMon(Fib) respectively; see Section 2.9.

Dually, we have appropriate 2-categories of monoidal opfibrations, monoidal op-
fibred 1-cells and monoidal opfibred 2-cells and their braided and symmetric vari-
ations, MonOpFib, BrMonOpFib and SymMonOpFib. All the structures are constructed
dually, where a monoidal opfibration, namely a pseudomonoid in the cartesian monoidal
(OpFib, x, 1), is a strict monoidal functor such that the tensor product of the total cat-
egory preserves cocartesian liftings.

All the above 2-categories have sub-2-categories of monoidal (op)fibrations over a fixed
monoidal base (X, ®, I), e.g. MonFib(X’) and MonOpFib(X'). The morphisms are monoid-
al (op)fibred functors, i.e. fibred 1-cells of the form (H,1y) with H monoidal, and the
2-cells are monoidal (op)fibred natural transformations, i.e. fibred 2-cells of the
form (B, 11,) with 5 monoidal. These 2-categories constitute the lower left foot of the
diagram (24) on the side of fibrations, and correspond to the ‘global’ monoidal part of
the story.

Moreover, the above constructions can be adjusted accordingly to the context of split
fibrations. Explicitly, the 2-category PsMon(Fibs) = MonFibg has as objects monoidal
split fibrations, namely split fibrations P: A — X between monoidal categories which
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are strict monoidal functors and ® 4 strictly preserves cartesian liftings (compare to Sec-
tion 3.2). Furthermore, the hom-categories MonFibs(P, @)) between monoidal split fibra-
tions are full subcategories of MonFib(P, Q) spanned by the monoidal fibred 1-cells which
are split as fibred 1-cells, namely (H, F') as in Section 3.3 where H strictly preserves
cartesian liftings.

We end this section by considering a different monoidal object in the context of (op)fi-
brations, starting over from the usual 2-categories of (op)fibrations over a fixed base X,
(op)fibred functor and (op)fibred natural transformations Fib(&Xx’) and OpFib(X'). Notice
that contrary to the earlier devopment, there is no monoidal structure on . Both these
2-categories are also cartesian monoidal, but in a different manner than Fib and OpFib, due
to the cartesian monoidal structure of Cat/X’; see for example [Jac99, 1.7.4]. Explicitly,
for fibrations P: A — X and @: B — X, their tensor product P X @) is given by any of
the two equal functors to X from the following pullback

AxyB — A

N RN
l PX?\JP (28)

BT)X

since fibrations are closed under pullbacks and composition. The monoidal unit is the
trivial fibration 1y: X — X.

A pseudomonoid in (Fib(X),X, 1y) is an ordinary fibration P: A — X equipped with
two fibred functors (m,1ly): PX P — P and (j,1x): 1y — P displayed as

.AX;\{.A mn

> A X 7 > A
o N 29)
X X

along with invertible fibred 2-cells satisfying the usual axioms. In more detail, the pullback
A xx A consists of pairs of objects of A which are in the same fibre of P, and P X P
sends such a pair to their underlying object defining their fibre. The functor m maps
any (a,b) € A, to some m(a,b) := a®, b € A, and the map j sends an object z € X
to a chosen one, [, in its fibre. The invertible 2-cells and the axioms guarantee that
these maps define a monoidal structure on each fibre A,, providing the associativity,
left and right unitors. The fact that m and j preserve cartesian liftings translate into a
strong monoidal structure on the reindexing functors: for any f: x — y and a,b € A,
ffa®, f*b= f*(a®,0b) and I, = f*(1,).

A (lax) morphism between two such fibrations is a fibred functor (3) such that the
induced functors H,: A, — B, between the fibres as in (4) are (lax) monoidal, whereas a
2-cell between them is a fibred natural transformation f: H = K (6) which is monoidal
when restricted to the fibers, 5,|4,: H, = K,. In this way, we obtain the 2-category
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PsMon(Fib(&Xx')) and dually PsMon(OpFib(X')). These 2-categories constitute the lower
right foot of the diagram (24) on the side of fibrations, and correspond to the ‘fibrewise’
monoidal part of the story.

Finally, taking pseudomonoids in the 2-category of split fibrations over a fixed base,
we obtain the 2-category PsMon(Fibg(X)) with objects split fibrations equipped with a
fibrewise tensor product and unit as above, but now the reindexing functors strictly
preserve that monoidal structure since the top functors of (29) strictly preserve cartesian
liftings: f*a ®, f*b = f*(a ®, b) and I, = f*(1,). Moreover, PsMon(Fibs(X))(P, Q) is
the full subcategory of PsMon(Fib(X))(P, Q) spanned by split fibred functors, namely
H: A — B which strictly preserve cartesian liftings but still H, are monoidal functors
between the monoidal fibres as before.

3.5. REMARK. As is evident from the above descriptions, the 2-categories MonFib(X') and
PsMon(Fib(X')) are different in general. A monoidal fibration over X is a strict monoidal
functor, whereas a pseudomonoid in fixed-base fibrations is a fibration with monoidal
fibres in a coherent way: none of the base or the total category need to be monoidal. This
corresponds to the two distinct legs of (24) concerning fibrations.

3.6. MONOIDAL INDEXED CATEGORIES. The 2-categories of indexed and opindexed cat-
egories |Cat and OplCat, recalled in Section 2.1, are both monoidal. Explicitly, given two
indexed categories . : X°? — Cat and A4": Y°° — Cat, their tensor product .# ®
N (X x V)P — Cat is the composite

(X X Y)P = XP x YP X7y Cat x Cat =5 Cat (30)
Le. (M @N)(x,y) =M (x) x A (y) using the cartesian monoidal structure of Cat. The
monoidal unit is the indexed category Al: 1°°? — Cat that picks out the terminal category
1 in Cat, and similarly for opindexed categories. Notice that this monoidal 2-structure,
formed pointwise in Cat, is also cartesian.
We call a pseudomonoid in (ICat, ®, Al) a monoidal indexed category. Explicitly,
it is an indexed category .# : X°P — Cat equipped with multiplication and unit indexed
1-cells (®x,p): M @ M — M, (0, 1o): A1 — A which by (7) look like

XOP x X°p 1°p
&op Uu Cat | Y . Cat
X X

These come equipped with invertible indexed 2-cells as in (18); the axioms this data is
required to satisfy, on the one hand, render X a monoidal category with ®: X x X — X
its tensor product functor and 7: 1 — X its unit. On the other hand, the resulting axioms
for the components

Yoy AT X My — M(xRY), po: 1 — (1) (31)
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of the above pseudonatural transformations precisely give .# the structure of a (weakly)
lax monoidal pseudofunctor, recalled in Section 2.5.

3.7. PROPOSITION. A monoidal indexed category (M , p, j1g): (X°P, ®°P I) — (Cat, x,1)
is a lax monoidal pseudofunctor, where (X, ®,1) is an (ordinary) monoidal category.

We then define a monoidal indexed 1-cell to be a (strong) morphism between pseu-
domonoids in (ICat,®, Al). In detail, it is an indexed 1-cell (F,7): A4 — N
x°p

I

Fop Jr Cat

"

Ve

between two monoidal indexed categories (., i, j1g) and (A", v, 1) equipped with two
invertible indexed 2-cells (¢, m) and (1o, mo) as in (19), which explicitly consist of natural
isomorphisms 9, ¢y and invertible modifications

X P x X°P Ak XOP % XoP MM
~
R .
~

Xop YoP x PP — yor —s Cat m XOP «# —— Cat
~
Lo e T e
op N op Ie)
y . » Y y
1°pP Al 10p Al
T AT
XoP Iop Cat g Xop 4 —— Cat

Fopl w0 Fopl \y
penS R AT

as dictated by the general form (9) of indexed 2-cells. The natural isomorphisms ¢ and
1y have components

Vot FT@ Fy =5 Fz®y), to: I = F(I) in %P

whereas the modifications m and mq are given by families of invertible natural transfor-
mations

N Fax N Fy 225 ¥ (Fr @ Fy) A (I)

THV \\\\\\\‘A J;/sz,y

MrX MYy U may NF(z®vy) 1 I mo N (FI)

V

M (x D y) A (1)

N o
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The appropriate coherence axioms ensure that the functor F: X — ) has a strong
monoidal structure (F,1,1y), and that the pseudonatural transformation 7: .# = A o
F°P is monoidal with m,,, mo as in (16). Notice that F°P being monoidal makes F
monoidal with inverse structure isomorphisms.

3.8. PROPOSITION. A monoidal indexed 1-cell between two monoidal indexed categories
M and N is an indexed 1-cell (F, 1), where the functor F' is (strong) monoidal and the
pseudonatural transformation T is monoidal.

Finally, a monoidal indexed 2-cell is a 2-cell between morphisms of pseudomonoids
in (ICat, ®, Al). Following the definition of Section 2.5, it turns out that an indexed 2-cell
(a,m): (F,7) = (G,0): M4 — A as in (9), which consists of a natural transformation
a: F'= G and a modification m with components

Tx

T

Nwax//%

is monoidal, exactly when a.: F' = G is compatible with the strong monoidal structures of
F and G, and the modification m: 7 = A4 a°P o o satisfies (17) for the induced monoidal
structures on its domain and target pseudonatural transformations.

3.9. PROPOSITION. A monoidal indezed 2-cell between two monoidal indezxed 1-cells (F, T)
and (G, o) is an indexed 2-cell (o, m) such that « is an ordinary monoidal natural trans-
formation and m is a monoidal modification.

We write PsMon(ICat) = MonlCat, the 2-category of monoidal indexed categories,
monoidal indexed 1-cells and monoidal indexed 2-cells. Moreover, their braided and sym-
metric counterparts form BrMonlCat and SymMonlCat respectively, as the 2-categories of
braided and symmetric pseudomonoids in (ICat, ®, A1) formally discussed in Section 2.5.
Similarly, we have 2-categories of (braided or symmetric) monoidal opindexed
categories, 1-cells and 2-cells MonOplCat, BrMonOplCat and SymMonOplCat.

All these 2-categories have sub-2-categories of monoidal (op)indexed categories with a
fixed monoidal domain (X, ®, I'), and specifically

MonlCat(X) = Mon2Cat,s(X°P, Cat) (32)
MonOplCat(X) = Mon2Cat, (X, Cat)

the functor 2-categories of lax monoidal pseudofunctors, monoidal pseudonatural trans-
formations and monoidal modifications; these belong to the lower left foot of the diagram
(24), now on the side of indexed categories.

Moreover, we can consider pseudomonoids in the strict context. Explicitly, the 2-
category PsMon(ICat;) = MonlCats has as objects monoidal strict indexed cate-
gories namely (2-)functors .# : X°°? — Cat from an ordinary monoidal category X which
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are weakly lax monoidal as before, but the laxator and unitor (31) are strictly natural
rather than pseudonatural transformations as in the original (13). The hom-categories
PsMon(ICatg) (.4, .4") between monoidal strict indexed categories are full subcategories
of MonlCat(.#, /") spanned by strict natural transformations — which are however still
weakly monoidal, i.e. equipped with isomorphisms (16).

Similarly to the previous Section 3.1 on fibrations, we end this section with the study
of pseudomonoids in a different but related monoidal 2-category, namely ICat(X) =
2Cat,s(X°P, Cat) of indexed categories with a fixed domain X. Working in this 2-category,
or in OplCat(X), there is no assumed monoidal structure on X. Their monoidal structure
is again cartesian: for two X-indexed categories .4, 4 : X°P — Cat, their product is

MR N XP D xP i xor XX Cat x Cat 55 Cat (33)
with pointwise components (.# X A")(x) = 4 (x) x A (x) in Cat. The monoidal unit is
just AP L1 2L Cat, which we will also call Al.

A pseudomonoid in (ICat(X), X, A1) is a pseudofunctor .Z : X°P — Cat equipped with
indexed functors (8) m: A4 W .# — A and j: A1 — A namely

XOP x Xop M Cat x Cat

! 1 Al
A —~ s \

Xop I m Cat Xop Ui Cat
\_/r
\—/ (%
M

with components my: #x x #x — #x and j,: 1 — .# = which are pseudonatural via

MIXAM

Mx X Mrx ——— My X My 1 —1
mzl o lmy J'zl = l (34>
M 7 > MY ///37—>///

If we denote m, = ®, and j, = I,, the pseudomonoid invertible 2-cells (18) and the
axioms these data satisfy make each .#x into a monoidal category (AZz,®,,1,), and
each . f into a strong monoidal functor: the above isomorphisms have components
Mf(a) @, Af(b) = M f(a®,;b) and I, = A f(I,) for any a,b € A .

Such a structure, namely a pseudofunctor .#Z: X°? — MonCat into the 2-category
of monoidal categories, strong monoidal functors and monoidal natural transformations,
was directly defined as an indezed strong monoidal category in [HMO6], and as indezed
monoidal category in [PS12]. We will avoid this terminology in order to not create con-
fusion with the term monoidal indexed categories.

A strong morphism of pseudomonoids (19) in (ICat(X), X, A1) ends up being a pseudo-
natural trasformation 7: .# = A": X°® — Cat (indexed functor) whose components
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Tp: M — N x are strong monoidal functors, whereas a 2-cell between strong morphisms
of pseudomonoids is an ordinary modification

whose components m,.: 7, = o, are monoidal natural transformations.
We thus obtain the 2-categories PsMon(ICat(X)) as well as PsMon(OplCat(X)); from
the above descriptions, it is clear that

PsMon(ICat(X')) = 2Catps (X", MonCat) (35)
PsMon(OplCat(X)) = 2Cat,s(X, MonCat)

which will also be rediscovered by Section 4.4. These 2-categories correspond to the right
foot of (24) on the side of indexed categories.

Finally, taking pseudomonoids in strict X-indexed categories [Cats(X) = [X°P, Cat]
produces the 2-category PsMon(ICats(X)) with objects functors .#: X°®* — MonCat
into monoidal categories with strict monoidal functors: the isomorphisms (34) are now
equalities due to strict naturality of the multiplication and unit. Then the hom-categories
PsMon(ICaty(X))(., #") are full subcategories of PsMon(ICat(X))(.#,./4") spanned by
strictly natural transformations 7: .#Z = .47, still with strong monoidal components 7,.
For example, it would not be correct to write PsMon(ICats(X')) = [X°?, MonCat(y)].

3.10. REMARK. Similarly to what was noted in Section 3.5, it is evident that MonlCat(X)
and PsMon(ICat(X)) are in principle different. A monoidal indexed category with base
X is a lax monoidal pseudofunctor into Cat (and X is required to be monoidal already),
whereas a a pseudomonoid in X-indexed categories is a pseudofunctor from an ordinary
category X into MonCat. This is also highlighted by the indexed category legs of (24).

3.11. THE EQUIVALENCE MonFib ~ MonlCat. In Section 2.1, we recalled the standard
equivalence between fibrations and indexed categories via the Grothendieck construction.
We will now lift this correspondence to their monoidal versions studied in Section 3.1
and 3.6, using general results about pseudomonoids in arbitrary monoidal 2-categories
described in Section 2.5.

Since both Fib and ICat are cartesian monoidal 2-categories, via (25) and (30) respec-
tively, our first task is to ensure that they are monoidally equivalent.

3.12. LEMMA. The 2-equivalence Fib ~ |Cat between the cartesian monoidal 2-categories
of fibrations and indexed categories is (symmetric) monoidal.

PROOF. Since they form an equivalence, both 2-functors from Section 2.4 preserve limits,
therefore are monoidal 2-functors. Moreover, it can be verified that the natural isomor-
phisms with components .# = %p_ and P = Pg, are monoidal with respect to the
cartesian structure, due to universal properties of products. ]
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As a result, and since MonFib = PsMon(Fib) and MonlCat = PsMon(ICat), we obtain
the following equivalence as a special case of Section 2.11; also for OpFib ~ OplCat.

3.13. THEOREM. There are 2-equivalences

MonFib ~ MonlCat
BrMonFib ~ BrMonlCat
SymMonFib ~ SymMonlCat

between the 2-categories of monoidal fibrations and monoidal indexed categories, as well
as their braided and symmetric versions.

Dually, there is a 2-equivalence MonOpFib >~ MonOplCat between the 2-categories of
monoidal opfibrations and monoidal opindexed categories, as well as their braided and
symmetric versions.

3.14. COROLLARY. The above 2-equivalences restrict to the sub-2-categories of fixed bases
or domains, which by (32) are

MonFib(X) ~ Mon2Cat,s(X°?, Cat)
MonOpFib(X) ~ Mon2Cat,s(X°?, Cat)

These results are summarized by the equivalences on the left foot of (24), and corre-
spond to the global monoidal structure of fibrations and indexed categories. Even though
they were directly derived via abstract reasoning, for exposition purposes we briefly de-
scribe this equivalence on the level of objects; some relevant details can also be found in
[BEMP17, §6]. Independently and much earlier, in his thesis [Shu09] Shulman explores
such a fixed-base equivalence on the level of double categories (of monoidal fibrations and
monoidal pseudofunctors over the same base).

Suppose that (., u, po): (X°P,®, 1) — (Cat, x,1) is a monoidal indexed category, i.e.
a lax monoidal pseudofunctor with structure maps (31). The induced monoidal product
Qu: JlM X [ M — [# on the Grothendieck category is defined on objects by

(2, 0) ©u (y,0) = (x @y, iz y(a, b)) (36)

and I, = (I, po(*)) is the unit object. Clearly, the induced fibration [# — X which
maps each pair to the underlying X-object strictly preserves the monoidal structure.
Moreover, pseudonaturality of p implies that ®,, preserves cartesian liftings, so all clauses
of Section 3.2 are satisfied. For a more detailed exposition of the structure, as well as the
braided and symmetric version, we refer the reader to the Appendix A.1.

We can also restrict to the context of split fibrations and strict indexed categories. Again
by applying PsMon(-) to the 2-equivalence ICats ~ Fibg, we obtain equivalences between
the respective structures discussed in Sections 3.1 and 3.6, as the strict counterparts of
Section 3.13 and Section 3.14. Recall that a monoidal strict indexed category is a weakly
lax monoidal 2-functor X°®* — Cat whose structure maps (¢, @g) are strictly natural
transformations, and corresponds to a split fibration which is monoidal like before, only
the tensor product of the total category strictly preserves cartesian liftings.
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3.15. THEOREM. There are 2-equivalences

MonFibs ~ MonlCat
MonOpFib, ~ MonOplCat,

between monoidal split (op)fibrations and monoidal strict (op)indexed categories, as well
as for the fized-base case.

3.16. REMARK. Based on an observation made by Mike Shulman in private correspon-
dence with the authors, this monoidal version of the Grothendieck construction may in
fact be further generalized to the context of double categories. More specifically, there
is evidence of a correspondence between discrete fibrations of double categories, and lax
double functors into the double category Span of sets and spans. If such a result was also
true for arbitrary fibrations of double categories, Section 3.13 would be a special case for
double categories with one object and one vertical arrow, namely monoidal categories.

We close this section in a similar manner to Sections 3.1 and 3.6, namely by working in
the cartesian monoidal 2-categories (Fib(X), X, 1x) and (ICat(X), X, A1) of fibrations and
indexed categories with fixed bases and domains, to begin with. Since Fib(X') ~ ICat(X)
is also a monoidal 2-equivalence, Section 2.11 applies once more — recall (35).

3.17. THEOREM. There are 2-equivalences between (op)fibrations with monoidal fibres
and strong monoidal reindexing functors, and pseudofunctors into MonCat

PsMon(Fib(&X')) ~ 2Cat,s(X°P, MonCat)
PsMon(OpFib(X')) ~ 2Cat,(X°?, MonCat)

Moreover, these restrict to 2-equivalences between split (op)fibrations with monoidal fibres
and strict monoidal reindexing functors, and ordinary functors into MonCatyg.

These equivalences establish the right leg of (24), and correspond to the fibrewise
monoidal structure on fibrations and indexed categories. In more detail, a pseudofunctor
M X°P — MonCat maps every object z to a monoidal category .# = and every morphism
f:x — y to a strong monoidal functor Z f: .#y — .# x; under the usual Grothendieck
construction, these are precisely the fibre categories and the reindexing functors between
them for the induced fibration, as described at the end of Section 3.1. Notice how, in
particular, X is not a monoidal category, as was the case in Section 3.14.

3.18. REMARK. A very similar, relaxed version of the fibrewise monoidal correspondence
seems to connect the concepts of an indexed monoidal category, defined in [HMO6] as
a pseudofunctor .Z: X°° — MonCaty, and that of of a laz monoidal fibration, defined
in [Zawll]. Notice that these terms are misleading with respect to ours: an indexed
monoidal category is not a monoidal indexed category, and also a lax monoidal fibration
is not a functor with a lax monoidal stucture.

Briefly, there is a full sub-2-category Fibype(X) C Cat/X of fibrations, namely fibred
1-cells (2) which are not required to have a cartesian functor on top. As discussed in
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[Shu08, Prop.3.6], this is 2-equivalent to 2Cat,s o, (X°P, Cat), the 2-category of pseudo-
functors, oplax natural transformations and modifications. Describing pseudomonoids
therein appears to give rise to a fibration with monoidal fibres and laz monoidal reindex-
ing functors between them, or equivalently a pseudofunctor into MonCat,. We omit the
details so as to not digress from our main development.

4. (Co)cartesian case: fibrewise and global monoidal structures

In the previous section, we obtain two different equivalences between fixed-base fibrations
and fixed-domain indexed categories of monoidal flavor: Section 3.14 where both total
and base categories are monoidal, and Section 3.17 where only the fibres are monoidal,
namely the two different legs of (24). Clearly, neither of these two cases implies the
other in general. The global monoidal structure as defined in (36) sends two objects in
arbitrary fibres to a new object lying in the fibre of the tensor of their underlying objects
in the base, whereas having a fibrewise tensor products does not give a way of multiplying
objects in different fibres of the total category.

In [Shu08], Shulman introduces monoidal fibrations (Section 3.2) as a building block
for fibrant double categories. Due to the nature of the examples, the results restrict to
the case where the base of the monoidal fibration P: A — X is equipped with specifi-
cally a cartesian or cocartesian monoidal structure; the main idea is that these fibrations
form a “parameterized family of monoidal categories”. Formally, a central result therein
lifts the Grothendieck construction to the monoidal setting, by showing an equivalence
between monoidal fibrations over a fixed (co)cartesian base and ordinary pseudofunctors
into MonCat.

4.1. THEOREM. [Shu08, Thm. 12.7] If X is cartesian monoidal,
MonFib(&X') ~ 2Catps(X°?, MonCat) (37)
Dually, if X is cocartesian monoidal, MonOpFib(X') ~ 2Catps (X', MonCat).

Evidently, this result provides an equivalence between the two separate feet of (24).
Bringing all these structures together, we obtain the following.

4.2. THEOREM. If X is a cartesian monoidal category,
MonFib(X) —— Mon2Cat,(X°P, Cat)

| !

PsMon(Fib(X)) — 2Cat,s(X°P, MonCat)
Dually, if X is a cocartesian monoidal category,

MonOpFib(X) —— Mon2Cat,(X, Cat)

zi ﬁz

PsMon(OpFib(X')) — 2Cat,(X, MonCat)
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In the strict context, the restricted equivalences give a correspondence between monoidal
split (op)fibrations over X and functors X°P) — MonCat.

The original proof of Section 4.1 is an explicit, piece-by-piece construction of an equiv-
alence, and employs the reindexing functors A* and 7* induced by the diagonal and
projections in order to move between the appropriate fibres and build the required struc-
tures. The global monoidal structure is therein called external and the fibrewise internal.

Here we present a different argument that does not focus on the fibrations side. The
equivalence between lax monoidal pseudofunctors X°? — Cat and ordinary pseudofunctors
X — MonCat, which essentially provides a way of transferring the monoidal structure
from the target category to the functor itself and vice versa, brings a new perspective on
the behavior of such objects.

4.3. LEMMA. For any two monoidal 2-categories K and L, the following are true.

1. For an arbitrary 2-category A,

2Catps(A, Mon2Catps (K0, £)) ~ Mon2Cat, (K, 2Cat,s( A, £)) (38)

2. For a cocartesian 2-category A,

2Catys(A, Mon2Cat,s(KC, £)) ~ Mon2Cat,s(A x K, L) (39)

PROOF. First of all, recall [Str80, 1.34] that there are equivalences
2Cats(A, 2Catps (I, £)) =~ 2Catys (A x I, L) =~ 2Catps (K, 2Catps(A, L))

which underlie (38) and (39) for the respective pseudofunctors; so the only part needed is
the correspondence between the respective monoidal structures. Notice that A x K is a
monoidal 2-category since both A and K are, and also 2Cat,s (A, £) is monoidal since £ is:
define ®j and Iy by (¥ ®9)(a) = Fa @, Ya (similarly to (33)) and Ij: A S1
(1) Take a pseudofunctor .%: A — Mon2Cat,(KC, £). For every a € A, its image
pseudofunctor #a is lax monoidal, i.e. comes equipped with morphisms in £

Ooy: (Fa)(x) @c (Fa)(y) = (Fa)(x @k y), ¢ Le = (Fa)lk (40)

for every x,y € K, satisfying coherence axioms. B
Now define the pseudofunctor .#: K — 2Catp(A, £), with (Fx)(a) == (Fa)(z). It
has a lax monoidal structure, given by pseudonatural transformations

Fr Q0 ij = j(w Qi Y), Iy = j([@

whose components evaluated on some a € A are defined to be (40). Pseudonaturality and
lax monoidal axioms follow, and in a similar way we can establish the opposite direction
and verify the equivalence.
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(2) If A'is a cocartesian monoidal 2-category, a lax monoidal pseudofunctor #: A —
Mon2Cat,(/C, £) induces a pseudofunctor .#: A x K — L by F(a,x) := (Fa)(x). Its
lax monoidal structure is given by the composite

I I
a)(z) ®c (Fb)(y) (F(a+0b))(z@xy)

(‘G/\LW %

(F(a+b)(x) @c (F(a+b))(y)

F(a,5) @ F(byy) —-nmmmmmmmmem O » Fla+b,2@xy)
F

(

0
where a <% a 4+ b <~ b are the inclusions, and g: I & Z (0, Ir); the respective axioms

follow.
In the opposite direction, starting with some pseudofunctor ¢: A x K — L equipped
with a lax monoidal structure 1 (q ) ) and 1o, we can build ¢: A — Mon2Cat,(IC, £)

for which every “a is a lax monoidal pseudofunctor, via

(o)) ©c (FB)(y) -----n--mmmn-" O » (Do) @xy)
Il Il

Y(a,x) @c Y (a,y) Poman Y(a+a,x®cy) oD Y (a,z @k y)

G(,1)
-y

o I % G(0, Ix) G(a, I)

The equivalence follows, using the universal properties of coproducts and initial object. m

PROOF PROOF OF SECTION 4.2. The top and bottom right 2-categories of the first
square are equivalent as follows, where A'°P is cocartesian.

2Cat,s(X°P, MonCat) ~ 2Cat,s(X°?, PsMon(Cat)) (22)
~ 2Catps (AP, Mon2Cat,(1, Cat)) (39)
~ Mon2Catps(X°P x 1, Cat)
~ Mon2Catp(X°P, Cat)

The strict context equivalence can be explicitly verified as a special case of the above,
where the corresponding 1-cells and 2-cells are as described in Sections 3.1 and 3.6. [

The decisive step in the above proof is the much broader Section 4.3; for a grounded
explanation of the correspondence of the relevant structures, see Appendix A.2. In simpler
words, a lax monoidal structure of a pseudofunctor F': (A,+,0) — (Cat, x,1) gives a
pseudofunctor F': A — MonCat and vice versa: in a sense, ‘monoidality’ can move between
the functor and its target.

As another corollary of Section 4.3, we can formally deduce that pseudomonoids in
(ICat(&X'), X, A1) are functors into MonCat, as described at the end of Section 3.6.
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4.4. PROPOSITION. For any X, PsMon(ICat(X)) =~ 2Cat,s(X°?, MonCat).

PROOF. There are equivalences

PsMon(ICat(X)) = PsMon(2Cat,(X°P, Cat))
~ Mon2Cat,(1, 2Catps (X, Cat)) (38)
~ 2Cat,s(X°P, Mon2Cat,(1, Cat)) (22)
~ 2Cat,s(X°P, PsMon(Cat))
~ 2Cat,s(X°P, MonCat) O

As a first and meaningful example of Section 4.2, recall by Remarks 2.2 and 2.3 that the
categories Fib and ICat are themselves fibred over Cat, with fibres Fib(X') and 1Cat(X’) re-
spectively. The base category in both cases is the cartesian monoidal category (Cat, X, 1),
therefore Section 4.2 applies. The following proposition shows that the monoidal struc-
tures of Fib, ICat and Fib(X'), ICat(&X'), instrumental for the study of global and fibrewise
monoidal structures, follow the very same abstract pattern.

4.5. PROPOSITION. The fibrations Fib — Cat and 1Cat — Cat are monotidal, and more-
over their fibres Fib(X) and I1Cat(X') are monoidal and the reindexing functors are strong
monotdal.

PRrOOF. The pseudofunctors inducing Fib — Cat and ICat — Cat are

Cat® —— CAT Cat® —— CAT
X ——— Fib(X) X — 1Cat(X)
A I
Y——— 5 Fib() Y ICat(Y)

where CAT is the 2-category of possibly large categories, F** takes pullbacks along F' and
— o F°P precomposes with the opposite of F. These are both lax monoidal, with the
respective structures essentially being (25) and (30) giving the global monoidal structure
on the fibrations.

Since the base of both monoidal fibrations is cartesian, the global monoidal structure is
equivalent to a fibrewise monoidal structure, as per the theme of this whole section. The
induced monoidal structure on each Fib(X) is given by (28) and on each ICat(X) by (33),
and F*, — o F°P are strong monoidal functors accordingly. [

The above essentially lifts the global and fibrewise monoidal structure development
one level up, exhibiting fibrations and indexed categories as examples of the monoidal
Grothendieck construction themselves.

Concluding this investigation on monoidal structures of fibrations and indexed cate-
gories, we consider the (co)cartesian monoidal (op)fibration case; for example, a monoidal
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fibration P: (A, x,1) — (X, x,1) as in Section 3.2 where P preserves products (or co-
products for opfibrations) on the nose. As remarked in [Shu08, 12.9], the equivalence (37)
restricts to one between pseudofunctors which land in cartesian monoidal categories, and
monoidal fibrations where the total category is cartesian monoidal. With the appropriate
1-cells and 2-cells that preserve the structure, we can write the respective equivalences as

2Cats(X°P, cMonCat) ~ cMonFib(X) for cartesian X (41)
2Cat (X, cocMonCat) =~ cocMonOpFib(X) for cocartesian X

where the prefixes ¢ and coc correspond to the respective (co)cartesian structures. Explic-
itly, in order for the total category to specifically be endowed with (co)cartesian monoidal
structure, it is required not only that the base category is but also the fibres are and the
reindexing functors preserve finite (co)products.

4.6. REMARK. This special case of the monoidal Grothendieck construction that con-
nects the existence of (co)products and initial/terminal object in the fibres and in the
total category, is reminiscent (and also an example of) the general theory of fibred limits
originated from [Gra66]. Explicitly, [Her99, Cor. 4.9] deduces that if the base of a fibration
P: A — X has J-limits for any small category J, then the fibres have and the reindexing
functors preserve J-limits if and only if A has J-limits and P strictly preserves them,
and dually for opfibrations and colimits. Hence for finite (co)products in (op)fibrations,
(41) re-discovers that result using the monoidal Grothendieck correspondence.

Moreover, since the squares of Section 4.2 reduce to their (co)cartesian variants, we
would like to identify the conditions that the corresponding lax monoidal pseudofunctor
into Cat needs to satisfy in order to give rise to a (co)cartesian monoidal (op)fibration.
Recall that by a folklore result presented in [HV12], any symmetric monoidal category
equipped with suitably well-behaved diagonals and augmentations must in fact be carte-
sian monoidal. We employ its dual version to tackle the opfibration case: if, in a symmetric
monoidal category X', there exist monoidal natural transformations with components

Veix®@®r —x, uz: I —x

satisfying the commutativity of

I®xuz—®1>x®a: x®]%x®x

ol Tk @

then & is cocartesian monoidal. In fact, it is the case that a symmetric monoidal category
is cocartesian if and only if Mon(X') = X.

Suppose (A , i, j1g): X — Cat is a (symmetric) lax monoidal pseudofunctor, such that
the corresponding Grothendieck category ([#,®,,1,) described in Section 3.11 is co-
cartesian monoidal. This means there are monoidal natural transformations with compo-
nents

Va: (@,0) Q@ (z,a) = (x,a) and  upe: (1, po(x)) = (z,a)
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making the diagrams (42) commute. Explicitly, by (36), V(4,4 consists of morphisms
ferx @2 — xin X and ke (A fr)(plap(a,a)) = a in Az, whereas vy consists of
ip: I — xin X and \y: (Aiy)po — ain A x.

The conditions (42) say that the composites

V(@)

‘l'a®]‘wa
L) P (o) (z,a) ®, (z,a) —= (x,a)

(I, :uo) ®# (SL’, a)

L(2,0)®nl(e,a) V(z,a)
) 5

(x,a) ®, (I, 1o r,a) ®, (x,a) —— (z,a)

are equal to the left and right unitor on x, where all respective structures are detailed in
Appendix A.1. Using the composition inside [# analogously to (10), these conditions
translate, on the one hand, to the base being cocartesian monoidal (X, +,0) with f, =V,
and i, = u,. On the other hand, x, and A\, form natural transformations

M x Mr"ZS M (x+ x) 15 7(0)

M x U &= M x Mx U A= M x
\_/

\/ :

1

satisfying the commutativity of

M (Vo0 (t + 1)) (pt0.2(10(%), @) —2= (M (V) 0 A (g + 1)) (30,210 (), @)
| (V) iz 1)

M (Vo) (oo (A (t2) (10 (%), a)))

id L0 e 0 02))

M (V) (o n(a; a))

! . I

M (L) (10,0 (110(x), @) = X

and a similar one with pg on second arguments. The above greatly simplifies if .Z is just
a lax monoidal functor: the first condition becomes 1, = k¥ o A (V) (ftz (A2, 1)), and
the second one 1, = Kk o M (V) (pzz(1a; AL)).

4.7. COROLLARY. A lax monoidal pseudofunctor A : (X,+,0) — (Cat, x,1) equipped
with natural transformations k and A as in (43) corresponds to an ordinary pseudofunctor
M . X — cocMonCat, or equivalently (41) to a cocartesian monoidal opfibration.

5. Examples

In this section, we explore certain settings where the equivalence between monoidal fi-
brations and monoidal indexed categories naturally arises. Instead of going into details
that would result in a much longer text, we mostly sketch the appropriate example cases
up to the point of exhibition of the monoidal Grothendieck correspondence, providing
indications of further work and references for the interested reader.
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5.1. FUNDAMENTAL (BI)FIBRATION. For any category X, the codomain or fundamental
opfibration is the usual functor from its arrow category

cod: X? — X

mapping every morphism to its codomain and every commutative square to its right-hand
side leg. It uniquely corresponds to the strict opindexed category, i.e. mere functor

X —— Cat

r—— X/x

fl lfz

yl—)X/y

that maps an object to the slice category over it and a morphism to the post-composition
functor fi = f o — induced by it.

If the category has a monoidal structure (X, ®, I), this (2-)functor naturally becomes
weakly lax monoidal with structure maps

Xjex Xy x/(aoy), 15 X/I (45)

These components form strictly natural transformations, and for example the invertible
modification w (14) has components the evident isomorphisms, for (f, g, h) € X' /rx X /yx
X /z, between
f®(g®h) ~
a®(b®c) — >R YR2) = (rQY) ® = (46)

h
(a®b)®c%(m®y)®z

By Section 3.15, this monoidal strict opindexed category correspondes to a monoidal
split fibration, i.e. (X2, ®,1) is monoidal and cod strict monoidal, where ® 2 strictly
preserves cartesian liftings via fik ® gf = (f ® g)i(k ® ) — which can of course be
independently verified. However in general, the slice categories X'/z do not inherit the
monoidal structure: there is no way to restrict the global monoidal structure to a fibrewise
one.

According to Section 4.2, there is an induced monoidal structure on the categories X' /x
and a strict monoidal structure on all f, only when the monoidal structure on X is given by
binary coproducts and an initial object (i.e. cocartesian). In that case, for each k: a — x
and £: b — z in the same fibre X' /z, their tensor product in X' /z is given by

k4t Ve
a+b—t—>x—|—a:—>x

as a simple example of (54). In fact, this is precisely the coproduct of two objects in

X/x, and 0 15 2 the initial object, due to the way colimits in the slice categories are
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constructed. Therefore this falls under the cocartesian-fibres special case (41), bijectively
corresponding to the cocartesian structure on X2 inherited from X.

Now suppose an ordinary category X has pullbacks. This endows the codomain functor
also with a fibration structure, corresponding to the indexed category

XP — Cat

r—— X/x

fl Tf )

y|—>X/y

with the same mapping on objects as (44) but by taking pullbacks rather than post-
composing along morphisms, a pseudofunctorial assignment. This gives cod: X? — X a
bifibration structure, also by that classic fact that fy 4 f*.

In this case, if X has a general monoidal structure, there is no naturally induced lax
monoidal structure of that pseudofunctor as before: there is no reason for the pullback
of a tensor to be isomorphic to the tensor of two pullbacks. However, if X’ is cartesian
monoidal (hence has all finite limits), the components

X/zx Xy X/(xxy), 125X/

are pseudonatural since pullbacks commute with products. Moreover, this bijectively cor-
responds to monoidal fibres and strong monoidal reindexing functors, in fact also cartesian
ones: for morphisms k: a — x and ¢: b — x in X' /x, their induced product is given by

e — s axb

|
5*(k><£)l lkxé

[
T —> T XZT

and 1,: x — z is the unit of each slice X' /z, this indexed monoidal category also described
in [HMO06, 3.3(1)]. The monoidal fibration structure on cod: (X? x,1;) — (X, x,1) is
the evident one, so it again falls in the special case (41) now for cartesian fibres, by
construction of products in slice categories.

As a final remark, analogous constructions hold for the domain functor which is again
a bifibration: its fibration structure comes from pre-composing along morphisms, whereas
its opfibration structure comes from taking pushouts along morphisms. In fact, Section 2.2
as well as Section 4.5 can be thought as special cases of this more general setting, for the
categories of fibrations themselves.

5.2. MODELING GRAPHS AND NETWORKS. Denote by Grph = Set*~* the usual category
of (directed, multi) graphs, and consider the functor

V. Grph — Set (47)
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which sends a graph to its set of vertices. It is well-known that this functor is a split
opfibration, which can also be obtained as the Grothendieck construction on the strict
opindexed category (i.e. functor) Grph _): Set — Cat described as follows. A set X is
mapped to the category Grph, of graphs with vertex set X and homomorphisms which
fix the vertices, namely Set/X x X with morphisms

E k s I

E b s
\ / or equivalently § s’
(s,t) (s',t) s 4
X

X xX

Moreover, any function f: X — Y gives rise to the post-composition functor

Grphy = Set/X x X e, Set/Y x Y = Grphy
that maps an X-graph (s,t): E== X to the Y-graph (fos,fot): E=Y . Clearly,
this functor Grph_, = Set/(—x—) relates to the codomain functor (44) described earlier.
As explained via (45), considering Set with its cocartesian monoidal structure induces a
(symmetric) weakly lax monoidal structure on the (2-)functor, namely

(Grph(_y, U, 1o): (Set, +,0) — (Cat, x, 1), (48)
with natural structure maps
Ux,y: Grphy x Grphy — Grphy_y, 1p: 1 — Grph,

where Lyy( B X , F%;Y) - E+F‘Z::;X+Y.

5.3. REMARK. Restricting the domain of (48) to the monoidal subcategory FinSet of
finite sets and post-composing with the forgetful to Set which discards morphisms be-
tween graphs, we obtain the motivating example in Fong’s so-called theory of decorated
cospans [Fon15].! In more detail, therein a category F'Cospan is constructed from a given
symmetric lax monoidal functor

(F, ¢, ¢0): (FinSet, +,0) — (Set, x, 1)

with the broad goal of modelling open networks. The objects of such a category are finite
sets, and a morphism is a cospan of finite sets X - N <= Y equipping the ‘network’ N
with a certain notion of input and output, along with a decoration of the apex, namely
an object s € F(N). For example, a graph decorated cospan with one input and two
output designated nodes looks like

L As noticed by the reviewer of this manuscript, this does not really form an ordinary lax monoidal
structure on Grph(_: FinSet — Set as assumed in [Fonl5, § 5.1], due to pseudoassociativity as in (46).
Here we consider the existing theory of decorated cospans with this subtlety in mind, leaving suitable
generalizations to [BCV20).
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/’v’?

where the middle graph is the chosen decoration of the three-element set. In fact, the
apex of any F-decorated cospan can be viewed as an object of the (discrete) Grothendieck
category [F on that functor, since it is a finite set that always comes together with an
element of the set of all its possible decorations.

We call such a functor F© € SymMonCat,((FinSet, +,0), (Set, x,1)) a decorator. In
fact, the construction of a (symmetric monoidal) category F'Cospan induces a functor
from decorators into SymMonCat. More details can be found in [BCV20], where a corre-
spondence between decorated and structured cospans is established, partially due to the
monoidal Grothendieck construction.

Since the domain Set of the weakly lax monoidal functor Grph_, of (48) is taken with
its cocartesian monoidal structure, the strict version of Section 4.2 ensures it bijectively
corresponds to a functor Set — MonCaty, namely the fibres Grphy have a monoidal
structure which is strictly preserved by the reindexing — o f: Grphy — Grphy.. It can be
verified that the fibres are cocartesian themselves, falling under the equivalence (41): for
any two graphs (s,t): E = X, (¢',t'): E' =2 X over the set of vertices X, (54) gives

E+F —= X+X 33 x (49)
t+t
explicitly constructed by
E E'

t E + E' s’
5 azs“uaw
X

as is the case of colimits in slice categories. The resulting graph is the overlay of the
two given graphs, identifying corresponding vertices. This is the same as computing the
pushout over the obvious inclusions of the graph with vertex set X and no edges into each
of the given graphs. The initial object of its fibre Grphy is (I,!): 0 = X.

5.4. REMARK. Should we want to view the (symmetric) monoidal categories Grphy as
commutative monoids of X-graphs with overlay (49) as the binary operation on the set
of objects, we can formally take isomorphism classes of objects and then forget the mor-
phisms in each Grphy. Putting all this data together, for CMon the category of commu-
tative monoids, there is an induced ordinary symmetric lax monoidal functor

(Grph(_y, U, 1p): (Set, +,0) — (CMon, x, 1).
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If we furthermore restrict its domain to the symmetric groupoid of finite sets and bijections
S, we obtain the so-called network model for graphs. In more detail, in [BFMP17] an
operad Op is constructed from a given symmetric lax monoidal functor

(F, ¢, ¢0): (S,+,0) — (Mon, x,1)

and such a functor is called a network model. The monoids F'(n) are called the con-
stituent monoids of F', and Op is the underlying operad of the induced monoidal cate-
gory ([F, ®g, 1) described in Appendix A.1. The category of network models is denoted
NetMod = SymMonCat,((S, +,0), (Mon, x,1)) and the mapping on F' — Op defines a
functor NetMod — Opd into the category of operads.

The intuition behind this work is that a large complex network can be built from smaller
ones by gluing them together in ways written as combinations of a few basic operations,
expressed via monoid multiplications and monoidal functors. As an example, let X be a
finite set and F'(X) be the set of graphs with vertex set X; the monoid operation says
that two graphs with the same vertex set can be overlaid by identifying the corresponding
vertices:

e o e — e D omo@
~_
\ U _ \
[ ] [ ) [ ]

The above considerations exhibit a relation between the theory of decorated cospans
(Section 5.3) and network models (Section 5.4) via the machinery of the monoidal Groth-
endieck correspondence.

5.5. THEOREM. There is a faithful, injective-on-objects functor from the category of dec-
orators into the category of network models

SymMonCat,((FinSet, +,0), (Set, x,1)) — SymMonCat,((S, +,0), (Mon, x,1))

PROOF. Starting with a lax monoidal functor (F, ¢, ¢g): (FinSet,+,0) — (Set, x,1), we
can view it as a special case of a monoidal strict opindexed category (namely w,¢,( as
in (14) are identities) which is in fact discrete, post-composing with Set < Cat. Under
Section 4.2, this bijectively corresponds to an ordinary functor FinSet — MonCaty but
with two particular characteristics. First of all, the fibres end up being strict monoidal, see
Appendix A.3; combining this with the fact that they are mere sets rather than categories,
means that the fibres are monoids, with structure as in (54). Second, it can be verified
that the original laxator and unitor (¢, ¢g) of I are in fact morphisms of monoids due to
their strict naturality and functoriality of F'. Therefore the ordinary functor F' becomes
lax monoidal (FinSet,+,0) — (Mon, x,1). Pre-composing with the inclusion from the
groupoid of finite sets and bijections S concludes this proof. [
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As a result, any decorator gives rise to a network model but not vice versa: the con-
structed network model has always commutative constituent monoids. Noncommutative
network models exist and arise in applications, see [Moe20)].

Concluding this section, the symmetric weakly lax monoidal functor Grph_, (48) gives
rise to a symmetric monoidal opfibration structure on the vertex functor V': (Grph, +,0) —
(Set, +,0) from the very beginning of this section (47). This is the well-known fact that
the forgetful V' (strictly) preserves all coproducts and the initial object, falling under the
cocartesian monoidal fibration case of (41) and Section 4.7.

5.6. FAMILY FIBRATION: ZUNINO AND TURAEV CATEGORIES. Recall that for any cat-
egory C, the standard family fibration is induced by the (strict) functor

[—,C]: Set®® — Cat (50)

which maps every discrete category X to the functor category [X,C] and every function
f: X — Y to the functor f* = [f, 1], i.e. pre-composition with f. The total category of
the induced fibration Fam(C) — C has as objects pairs (X, M: X — C) essentially given
by a family of X-indexed objects in C, written {M,},cx, whereas the morphisms are

namely a function f: X — Y together with families of morphisms o, : M, — Ny, in C.
Notice the similarity of this description with (7), which for the strict indexed categories
case looks like a non-discrete version of the family fibration, for C = Cat; see also Sec-
tion 2.3. Moreover, it is a folklore fact that Fam(C) is the free coproduct cocompletion on
the category C.

On the other hand, we could consider the opfibration induced by the very same functor
(50), denoted by Maf(C) — Set®. The objects of Maf(C) are the same as Fam(C), but
morphisms {M, },ex — {Ny},ev between them are functions g: ¥ — X (ie. X - Y in
Set?) together with families of arrows 3,: My, — N, in C. Notice that these are now
indexed over the set Y rather than X like before, and in fact Maf(&x’) = Fam(X°P)°P.

In the case that the category is monoidal (C, ®, I'), the (2-)functor [—, C] has a canonical
weakly lax monoidal structure. Explicitly, by taking its domain Set®® to be cocartesian
by the usual cartesian monoidal structure (Set, x, 1), the structure maps are

dxy: [X.C]x [Y.C] = [X xY,Cl.  ao: 175 [1.0]=C
where ¢xy corresponds, under the tensor-hom adjunction in Cat, to

[X,C]x[Y,C] x X xY S [X,C] x X x[\,C] x Y <X e ¢ & ¢
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These are again natural components, and for example (14) has components the natural
isomorphisms between the assignments Mz ® (Ny ® Uz) and (Mz ® Ny) ® Uz. By
Section 3.15, this monoidal strict indexed category endows the corresponding split fibra-
tion Fam(X) — Set with a monoidal structure via {M,} ® {N,} = {M, ® Ny} xxy.
On the other hand, we could use the dual part of the same theorem, and instead con-
sider the induced monoidal split opfibration Maf(X') — Set®® corresponding to the same
([=,Cl, &, ¢0).

Moreover, since Set is cartesian, Section 4.2 also applies in both cases, giving a monoidal
structure to the fibres as well: for M: X — C and N: X — C, their fibrewise tensor
product and unit are given by

XS xxxM™Nevwese xhi1he

which are precisely constructed as in (54). Once again, notice the direct similary with
(33), the fibrewise monoidal structure on I1Cat(X'); see also Section 2.3 and Section 4.5.

As an interesting example, consider C = Modg for a commutative ring R, with its
usual tensor product ®g. In [CDLO06], the authors introduce a category T of Turaev
R-modules, as well as a category Z of Zunino R-modules, which serve as symmetric
monoidal categories where group-(co)algebras and Hopf group-(co)algebras, [Tur00], live
as (co)monoids and Hopf monoids respectively.

In more detail, the objects of both 7 and Z are defined to be pairs (X, M) where X
is a set and {M,},cx is an X-indexed family of R-modules, and their morphisms are
respectively

(7 s: My — Ny in Modpg (2) t: M, — Ny in Modpg
g:Y — X in Set f: X =Y in Set

There is a symmetric pointwise monoidal structure, {M, ® N, } x«y, and there are strict
monoidal forgetful functors 7 — Set®?, Z — Set. It is therein shown that comonoids in 7
are monoid-coalgebras and monoids in Z are monotid-algebras, i.e. families of R-modules
indexed over a monoid, together with respective families of linear maps

(T) Cg*h — Cg (029 Ch (Z) Ag & Ah — Ag*h
C.—> R R — A,

satisfying appropriate axioms. Based on the above, it is clear that 7 = Maf(Modg) and
Z = Fam(Modpg), which clarifies the origin of these categories and can be directly used to
further generalize the notions of Hopf group-(co)monoids in arbitrary monoidal categories.

5.7. GLOBAL CATEGORIES OF MODULES AND COMODULES. For any monoidal category
V), there exist global categories of modules and comodules, denoted by Mod and Comod
[Vas14, 6.2]. Their objects are all (co)modules over (co)monoids in V, whereas a morphism



MONOIDAL GROTHENDIECK CONSTRUCTION 1197

between an A-module M and a B-module N is given by a monoid map f: A — B together
with a morphism k: M — N in V satisfying the commutativity of

Ao M " s M

] Js

where p denotes the respective action, and dually for comodules. Both these categories
arise as the total categories induced by the Grothendieck construction on the functors

Mon(V)°P Cat  Comon(V) Cat (51)
Ab > Mody(A) C' 1o > Comody (C')
f Tf* gj lg!
Bl > Mody(B) Do -~ Comody (D)

where f* and g, are (co)restriction of scalars: if M is a B-module, f*(M) is an A-module
via the action
AeM I Bo M M.

The induced split fibration and opfibration, Mod — Mon(V) and Comod — Comon(V),
map a (co)module to its respective (co)monoid.

Recall that when (V, ®, I, 0) is braided monoidal, its categories of monoids and como-
noids inherit the monoidal structure: if A and B are monoids, then A ® B has also a
monoid structure via

A9BRAQB®, A A B B2 AeB, I~Iol’% A0B

where m and j give the respective monoid structures. In that case, the induced split
fibration and opfibration are both monoidal. This can be deduced by directly checking
the conditions of Section 3.2, as was the case in the relevant references, or in our setting
by using Section 3.15 since both (2-)functors (51) are weakly lax monoidal. For example,
for any A, B € Mon(V) there are natural maps

®a,5: Mody(A) x Mody(B) = Mody(A ® B) ¢o: 1 — Mody(I)
with ¢4 5(M,N) =M ® N, with the A ® B-module structure being
ABIMON 2 AQM@BON 45 MeN
and ¢g(*) = I, which are pseudoassociative and pseudounital in the sense that e.g. for

any M, N, P € Mody(A) x Mody(B) x Mody(C), M ® (N ® P) is only isomorphic to
(M®N)® P as (A® B) ® C-modules.
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Notice that in general, the monoidal bases Mon(V) and Comon(V) are not (co)cartesian,
since they have the same tensor as (V,®,I,0). Therefore this case does not fall under
Section 4.2, hence the fibre categories are not monoidal. For example in (Vecty, ®x, k),
the k-tensor product of two A-modules for a k-algebra A is not an A-module as well.

We remark that the induced monoidal opfibration Comod — Comon()) in fact serves
as the monoidal base of an enriched fibration structure on Mod — Mon(V) as explained
in [Vasl8], built upon an enrichment between the monoidal bases Mon(V) in Comon(V)
established in [HLFV17]. Moreover, analogous monoidal structures are induced on the
(op)fibrations of monads and comonads in any fibrant monoidal double category, see
[Vas19, Prop. 3.18].

5.8. SYSTEMS AS MONOIDAL INDEXED CATEGORIES. In [SSV20] as well as in earlier
works e.g. [VSL15], the authors investigate a categorical framework for modeling systems
of systems using algebras for a monoidal category. In more detail, systems in a broad
sense are perceived as lax monoidal pseudofunctors

We — Cat

where We is the monoidal category of C-labeled bozes and wiring diagrams with types in
a finite product category C. Briefly, the objects in W, are pairs X = (X™, X°u) of finite
sets equipped with functions to obC, thought of as boxes

ai b1

X

am bn

where X™ = {ay,...,a,} are the input ports, X° = {b,...,b,} the output ones and all
wires are associated to a C-object expressing the type of information that can go through
them. A morphism ¢: X — Y in this category consists of a pair of functions

¢in: Xin _>Xout+yin
¢out: Yout N Xout

that respect the C-types, which roughly express which port is ‘fed information’ by which.
Graphically, we can picture it as

b XY

(52)
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Composition of morphisms can be thought of a zoomed-in picture of three boxes, and the
monoidal structure amounts to parallel placement of boxes as in

—

e Xy 4

There is a close connection between the definition of W, and that of Dialectica categories
as well as lenses; such considerations are the topic of work in progress [FHIJSV20].

The systems-as-algebras formalism uses lax monoidal pseudofunctors from this category
We to Cat that essentially receive a general picture such as

(which really takes place in the underlying operad of W) and assign systems of a certain
kind to all inner boxes; the lax monoidal and pseudofunctorial structure of this assignment
formally produce a system of the same kind for the outer box.

Examples of such systems are discrete dynamical systems (Moore machines in the finite
case), continuous dynamical systems but also more general systems with deterministic or
total conditions; details can be found in the provided references. Since all these systems
are lax monoidal pseudofunctors from the non-cocartesian monoidal category of wiring
diagrams to Cat, i.e. monoidal indexed categories, the monoidal Grothendieck construction
Section 3.13 induces a corresponding monoidal fibration in each system case, and this
global structure does not reduce to a fibrewise one.

For example, the algebra for discrete dynamical systems [SSV20, §2.3]

DDS: Wse, — Cat (53)

assigns to each box X = (X™ X°u) the category of all discrete dynamical systems with
fixed input and output sets being [ ], v = and Hye wout Y Tespectively. There exist mor-
phisms between systems of the same input and output set, but not between those with
different ones. To each morphism, i.e. wiring diagram as in (52), DDS produces a functor
that maps an inner discrete dynamical system to a new outer one, with changed input
and output sets accordingly. (Pseudo)functoriality of this assignment allows the coherent
zoom-in and zoom-out on dynamical systems built out of smaller dynamical systems, and
monoidality allows the creation of new dynamical systems on parallel boxes.

Being a monoidal indexed category, (53) gives rise to a monoidal opfibration over Wse,.
Its total category [DDS has objects all dynamical systems with arbitrary input and output
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sets, morphisms that can now go between systems of different inputs/outputs, and also a
natural tensor product inherited from that in Wse; and the laxator of jDDS. In a sense,
this category has all the required flexibility for the direct communication (via morphisms
in the total category) between any discrete dynamical system, or any composite of systems
or parallel placement of them, whereas the wiring diagram algebra (53) focuses on the
machinery of building new discrete dynamical systems systems from old.

This classic change of point of view also transfers over to maps of algebras, i.e. indexed
monoidal 1-cells. As an example, see [SSV20, §5.1], discrete dynamical systems can
naturally be viewed as general total and deterministic machines denoted by Mch', via a
monoidal pseudonatural transformation

WSet

Ys

[} Cat

%td

Wiite
which also changes the type of input and output wires from sets to discrete interval sheaves
Inty. This gives rise to a monoidal opfibred 1-cell

which provides a direct functorial translation between the one sort of system to the other
in a way compatible with the monoidal structure.

As a final note, this method of modeling certain objects as algebras for a monoidal
category (a.k.a. strict or general monoidal indexed categories) carries over to further
contexts than systems and the wiring diagram category. Examples include hypergraph
categories as algebras on cospans [FS18] and traced monoidal categories as algebras on
cobordisms [SSR17]. In all these cases, the monoidal Grothendieck construction gives a
potentially fruitful change of perspective that should be further investigated.

A. Summary of structures

The bulk of the main body of this paper is dedicated to proving various monoidal vari-
ations of the equivalence between fibrations and indexed categories, using general re-
sults in monoidal 2-category theory. In this appendix, we detail the descriptions of the
(braided/symmetric) monoidal structures on the total category of the Grothendieck con-
struction, assuming the appropriate data is present. We also provide a hands-on cor-
respondence that underlies the proof of Section 4.2 regarding the transfer of monoidal
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structure from a functor to its target and vice versa. We hope this section can serve as a
quick and clear reference on some fundamental constructions of this work.

A.1. MONOIDAL STRUCTURES. As sketched under Section 3.14, let (X', ®, ) be a mon-

oidal category, and
(A, 11, p1o): (XP, QP T) — (Cat, x, 1)

a monoidal indexed category, a.k.a. lax monoidal pseudofunctor. Recall that p is pseudo-
natural transformation consisting of functors i, ,: A xx My — M (x®y) for any objects
x and y of X, and natural isomorphisms

MfX Mg

Mz X Mw M X My
,U'z,wl “ég lruryy
M(z @ w) I M (R Y)

for any arrows f: x — z and g: y — w in X. Also the unique component of pg is the
functor pg: 1 — A (1).

The induced tensor product functor on the total category, denoted as ®,,: [# X |4 —
J# , is given on objects by

(QL’, CL) Op (ya b) = (QJ ® Y, Nx,y(% b))

On morphisms (f: z — z,k: a = (A f)c) and (g: y = w,l: b — (M g)d), we get

(f1 k) ®u (9,6) = (z @y L% 2 @ w, 174 (11 (k, £)))

where the latter is the composite morphism

(@, 0) 2B ()0, (MG)(d) S5 A (f © g)(p12(c,d)) in A (z @ ).

The monoidal unit is 1, = (I, yo).
fa,,. (r®y)®z— 2® (y® 2) denotes the associator in X, the associator for
(J ,®,,1,) is given by

Q(z,b),(y,¢),(2,d) — (ax,y,za Wx,y,z(ba G, d))

where w is the invertible modification (14).
Ifl,: I®x — zand r,: © ® I — x are the left and right unitors in X', the unitors in
[ are defined as

Ao = (I, &' ()1 (1, o) @y (2,0) = (2, 0)
pr = (12, G(a)): (2, 0) @u (1, po) — (,0)

where ¢ and ¢ are invertible modifications as in (14).
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We now turn to the correspondence between 1-cells of Section 3.13: given a monoidal
indexed 1-cell
(X, ®,1)°P

%7“0)

(Fyab,tbo)°P I+ (Cat, x, 1)

%7”0)

(Y, ®, 1)

where .# and .4/ are lax monoidal pseudofunctors and F' is a monoidal functor, as in
Section 3.8, we first of all obtain an ordinary fibred 1-cell (P,, F'): P, — P, as explained
above (11)

[t - [

P ,ﬂl lp,v

with P.(z,a) = (Fx,7,(a)). The functor F' is already monoidal, and P, obtains a
monoidal structure too: for example, there are isomorphisms

Pr(x,a) ®, Pr(y,b) = Pr((z,a) @, (y,b)) in fA
between the objects

Pr(x,a) @, Pry,b) = (Fz, 72(a) @y (Fy, 7y(b) = (Fz @ Fy, Ve py(Ta(a), 7 (b))
Pr((z,0) ®, (y,0)) = Pr(x @y, pray(a,0)) = (F(z @ y), Twgy (1 y(a, )

given by ¢, ,: Fox ® Fy = F(x ® y) and by

Vg, ry(Te(), 7y (0) = A (Yry) (Tawy (14 (a, D))

essentially given by the monoidal pseudonatural isomorphism (16) for 7: .# = A F°P.
As a result, (P, F') is indeed a monoidal fibred 1-cell as in Section 3.3.

Finally, it can be verified that starting with a monoidal indexed 2-cell as in Section 3.9,
the induced fibred 2-cell (12) is monoidal, i.e. P, satisfies the conditions of a monoidal
natural transformation.

Regarding the induced braided and symmetric monoidal structures, let (X, ®, 1) be a
braided monoidal category with braiding b with components

Buy: TRY = yQm;

then X°P is braided monoidal with the inverse braiding, namely (X, ®@°P, I, 371). Now if
(A, 11, o) : X°P — Cat is a braided lax monoidal pseudofunctor, i.e. a braided monoidal
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indexed category, by Section 3.13 we have an induced braided monoidal structure on
(Jt ,®,,1,), namely

B(w»a):(%b) : (:L‘, a) Qu (ya b) = (:L‘ Xy, :ux,y(a’ b)) — (ya b) gn (x’ a) = (y Xz, ,Uy,m<b7 a))

are given by 8, 2@y = y®x in X and (Vg y)(ap): fay(a,b) = A (B ,) 1y (b, a)), where

v is as in (23).
If A is a symmetric lax monoidal pseudofunctor, it can be verified that

B(y,b),(w,a) o B(x7a‘)7(y7b) - 1(I7a)®u(y7b)
therefore [.# is also symmetric monoidal, as is the monoidal fibration P,: [# — X.

A.2. MONOIDAL INDEXED CATEGORIES AS ORDINARY PSEUDOFUNCTORS. Here we de-
tail the correspondence between monoidal opindexed categories and a pseudofunctors into
MonCat when the domain is a cocartesian monoidal category, as established by Section 4.2;
the one for indexed categories is of course similar. We denote by V,: x + x — x the in-
duced natural components due to the universal property of coproduct, and ¢,: * — x +y
the inclusion into a coproduct.

Start with a lax monoidal pseudofunctor .#: (X,+,0) — (Cat, x, 1) equipped with
Yoyt A (x) X M(y) — A (x+y) and po: 1 — #(0), which gives the global monoidal
structure (36) of the corresponding opfibration. There exists an induced monoidal struc-
ture on each fibre .#(x) as follows:

Qo M () % M(2) 25tz +2) LD o (2) (54)
L1 2(0) 2% a(x)

Moreover, each A f: #x — Ay is a strong monoidal functor, with ¢, ,: (A f)(a) ®,
(A [)(b) = A f(a®,b) and ¢o: I, = (A f)I, essentially given by the following isomor-
phisms

M x My~ gy <ty 11— #(0)
Hvac,xl H;f lﬂy,y /‘Ol
M+ 7) — G — My + ) NVAORE A0 (55)
M(Vz)l N lﬁ/mvy) //Z(I)l

since V and ! are natural and .# is a pseudofunctor.

In the opposite direction, take an ordinary pseudofunctor .#: X — MonCat into the
2-category of monoidal categories, strong monoidal functors and monoidal natural trans-
formations, with ®,: 4 (x) x A (x) — A (x) and I, the fibrewise monoidal structures
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in every .# x. We can use those to endow .# with a lax monoidal structure via

AR ACY z+y
ALEPID, (w4 y) x M (3 +y) 2 M ()

Ho': 1I—0>.///(0)

Py A () X A (Y)

The fact that all .Z f are strong monoidal imply that the above components form pseudo-
natural transformations, and all appropriate conditions are satisfied.

A.3. REMARK. In the strict context, a weakly lax monoidal 2-functor .#: (X, +,0) —
(Cat, x,1) with natural laxator and unitor bijectively corresponds to a functor X —
MonCaty; since (55) are in fact strictly commutative, by naturality of p, o and functori-
ality of ..

In the even more special case of an ordinary lax monoidal functor .Z: (X,+,0) —
(Cat, x, 1), the fibres .# (x) turn out to be strict monoidal. For example, strict associa-
tivity of the tensor is established by

My X Mx X Mx X ®a s Mxr X Mz
T ~
m (54) /1><//Z(V)
M X M(x+ )
~

Pa,z+a AM(14+V)

~ —

(+) Mz + 7+ )

T ~

Hr+x,x %(V+1)

—
M(x+1x) X M

4 V)x1
~ /

Mx X Mr X Mx s Mx X Mz

Q%1

where the three diamond-shaped diagrams on the right commute due to naturality of u as
well as associativity of V and functoriality of .# already in the monoidal strict opindexed
case, whereas (%) is in general w from (14) which in this case is an identity.
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