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EXPONENTIABILITY IN DOUBLE CATEGORIES
AND THE GLUEING CONSTRUCTION

SUSAN NIEFIELD

Abstract. We consider pre-exponentiable objects of a pre-cartesian double category
D, i.e., objects Y such that the lax functor − × Y :D // D has a right adjoint in the
2-category LxDbl of double categories and lax functors. When D has 2-glueing (in
the sense of [N12a]), we show that Y is pre-exponentiable in D if and only if Y is
exponentiable in D0 and − × Y is an oplax functor. Thus, such a D is pre-cartesian
closed as a double category if and only if D0 is a cartesian closed category. Applications
include the double categories Cat, Pos, Top, Loc, and Topos, whose objects are small
categories, posets, topological space, locales, and toposes, respectively.

1. Introduction

Adjunctions between double categories have been considered by Grandis and Paré [GP04]
in several categories. Since left adjoints are oplax and right adjoints are lax, the pair
is an orthogonal adjunction in the double category Dbl whose horizontal and vertical
morphisms are lax and oplax double functors, respectively. If the left adjoint is lax, then
it is an adjunction in the 2-category LxDbl whose morphisms are lax functors. If both
adjoints are pseudo functors, then it is an adjunction in the 2-category PsDbl whose
morphisms are pseudo functors. Since the left adjoints we consider are lax functors, the
setting for what follows will be LxDbl.

In [A18], Aleiferi defines a pre-cartesian double category D as one for which the di-
agonal ∆ : D // D × D has a right adjoint in the 2-category LxDbl. Then D is called
cartesian if the right adjoint is a pseudo functor, i.e., a right adjoint in the 2-category
PsDbl.

In this paper, we consider pre-exponentiable objects in pre-cartesian double categories
D, i.e., Y such that the lax functor − × Y :D // D has a right adjoint in the 2-category
LxDbl. We restrict to right adjoints in LxDbl rather than PsDbl because, in some of
our examples (e.g., Cat and Pos), the right adjoints that exist are not pseudo even though
D is cartesian, i.e., −× Y is pseudo.

The five examples of interest here are double categories D with 2-glueing, in the sense
of [N12a, N12b], which is a common generalization of Artin-Wraith glueing for toposes
[J77] and a special case of Bénabou’s equivalence LaxN(B,Prof) ' Cat/B used by Street
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in [St01]. In particular, D is a fibrant double category [Sh08] with cotabulators [GP99],
and there is an object 2 together with an equivalence of categories D1 ' D0/2. Using this
equivalence (and a little more), we obtain a general proof that Y is pre-exponentiable in
D if an only if it is exponentiable in D0. Thus, D is pre-cartesian closed if and only if D0

is cartesian closed.
It turns out that some of the structure in the definition of 2-glueing is not needed

to prove our general theorems here, but is only used to construct the pseudo inverse to
the functor D1

// D0/2 in the examples of interest. Consequently, rather than work in
the context of double categories with 2-glueing introduced in [N12a], our approach here
will be to first introduce the properties we need for our theorems, and only use the extra
conditions to show that our examples satisfy these properties. In particular, we need not
assume that D is fibrant.

We proceed as follows. In Section 2, we isolate the properties of 2-glueing that will be
used for our general results. We then recall the definitions of pre-cartesian and cartesian
double categories in Section 3, and show that our “glueing categories” are pre-cartesian.
In Section 4, we introduce pre-exponentiable objects and pre-cartesian closed double cat-
egories, and prove a theorem which applies to the five double categories of interest, as well
as their double slices. In Section 5, we recall the definition of a fibrant double category,
and show that the 2-glueing double categories of [N12a] are glueing categories in the sense
considered here. We conclude, in Section 6, with examples showing that Cat and Pos are
not cartesian closed double categories, and that D1 need not be cartesian closed when D

is pre-cartesian closed as a double category.

2. Glueing Categories

In this section, we introduce the notion of a glueing category, present the five relevant
examples, and show that if D is a glueing category, then so are its double slices D//B.

2.1. Definition. A double category is an internal pseudo category

D1 ×D0 D1
� // D1

oo id•
s //

t
// D0

in the 2-category CAT of locally small categories.

Unpacking this definition, D consists of objects and horizontal morphisms (those of
D0), vertical morphisms (objects of D1 with domain and codomain given by s and t), and
cells (morphisms of D1) denoted by

Xt Ytft
//

Xs

Xt

v

��

Xs Ys
fs // Ys

Yt

w

��
• •ϕ (2.1)
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Horizontal composition is denoted by ◦ and vertical composition by �, both of which are
sometimes elided. Note that when w is the vertical id•Y , we often denote the cell (2.1) by

Y

Xt

88

ftqqqqqq

Xs

Y

fs

&&MMMMMMXs

Xt

v

��
ϕ•

There are five double categories of interest here.

2.2. Example. Cat has small categories as objects, functors and profunctors as horizon-
tal and vertical morphisms, respectively, and natural transformations v // w(fs−, ft−)
as cells of the form (2.1). Note that our profunctors v:Xs

//• Xt are Set-valued functors
on Xop

s ×Xt.

2.3. Example. Pos has partially-ordered sets as objects and order-preserving maps as
horizontal morphisms. Vertical morphisms v:Xs

//• Xt are order ideals v ⊆ Xop
s × Xt

(i.e., up-sets), and there is a cell of the form (2.1) if and only if

(xs, xt) ∈ v ⇒ (fs(xs), ft(xt)) ∈ w

2.4. Example. Top has topological spaces as objects and continuous maps as horizon-
tal morphisms. Vertical morphisms v:Xs

//• Xt are finite intersection-preserving maps
v:O(Xs) // O(Xt) on the open set lattices, and there is a cell of the form (2.1) if and
only if f−1

t � w ⊆ v � f−1
s .

2.5. Example. Loc has locales as objects, locale morphisms (in the sense of [J82]) as
horizontal morphisms, and finite meet-preserving maps as vertical morphisms. There is a
cell of the form (2.1) if and only if f ∗t � w ≤ v � f ∗s .

2.6. Example. Topos has Grothendieck toposes as objects, geometric morphisms (in the
sense of [J77]) as horizontal morphisms, and left exact functors as vertical morphisms,
and natural transformations f ∗t �w // v� f ∗s , or equivalently, w� fs∗ // ft∗� v, as cells
of the form (2.1) .

We will see that these double categories have “cotabulators” in the following sense.

2.7. Definition. A cotabulator of a vertical morphism v:Xs
//• Xt consists an object

Γv and a cell

Γv

Xt

88

itqqqqq

Xs

Γv

is
&&MMMMMXs

Xt

v

��
γv• (2.7)
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such that for any other cell

Y

Xt

88

ftqqqqqq

Xs

Y

fs

&&MMMMMMXs

Xt

v

��
ϕ•

there exists a unique horizontal morphism f : Γv // Y such that id•fγv = ϕ.

One can show that the cotabulator Γv exists, for all v, if and only if id•:D0
//D1 has

a left adjoint [GP99]. Thus, when D has cotabulators, we get a functor Γ:D1
//D0 which

is left adjoint to id•.

2.8. Example. Cotabulators in Cat are given by “collages.” Recall that the collage Γv
of a profunctor v:Xop

s ×Xt
// Set is defined as follows. Objects of Γv are pairs (xa, a),

where a ∈ {s, t} and xa ∈ Xa. Morphisms (xa, a) // (yb, b) are those of Xn, if a = b, and
elements of v(xs, xt), if a = s and b = t, modulo an equivalence relation. There are no
morphisms (yt, t) // (xs, s). Collages in Pos are defined similarly.

2.9. Example. Given v:Xs
//• Xt in Top, i.e., a finite intersection preserving map

v:O(Xs) // O(Xt), the space Γv is given by “glueing along v,” i.e., the disjoint union
Xs t Xt with U open if Us is open in Xs, Ut is open in Xt, and Ut ⊆ v(Us), where
Ua = U ∩Xa. The maps ia:Xa

// Γv are the usual inclusions.

2.10. Example. Cotabulators in Loc and Topos are also given by the glueing construc-
tion used in [N81] which is also know as “Artin-Wraith glueing” in the topos case [J77].

Suppose D has cotabulators and D0 has a terminal object 1. Then one can show that 1
is a horizontal terminal object, in the sense of [GP99]. Consider 2 = Γ( id•1), the Sierpinski
object. Then Γ:D1

// D0 induces a functor Γ2:D1
// D0/2 such that the diagram

D1

D0

Γ ��::::::D1 D0/2
Γ2 // D0/2

D0

Σ2�������

commutes, where Σ2 is the forgetful functor. If, in addition, D0 has pullbacks, then Γ2
has a right adjoint (denoted by Φ2), since a functor to a finitely complete slice category
has a right adjoint if and only if its composition with the forgetful functor does [N82a].

Each of our five double categories has a terminal object. One can show that 2 is the
non-discrete 2-element poset in Pos, the category 2 in Cat, the Sierpinski space 2 in Top,
the Sierpinski locale O(2) in Loc, and the Sierpinski topos Set2 in Topos.

2.11. Definition. Suppose D is a double category with cotabulators and D0 has finite
limits. Then D is called a glueing category if the functor Γ2:D1

//D0/2 is an equivalence
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of categories, and the diagrams

1 2
is
//

Xs

1
��

Xs Γv
is // Γv

2

Γ2(v)

��
and

1 2
it
//

Xt

1
��

Xt Γv
it // Γv

2

Γ2(v)

��
(2.11)

are pullbacks in D0, for all v:Xs
//• Xt, where is and it are the morphisms in diagram

(2.7) of Definition 2.7.

The double categories in Examples 2.2-2.6 are all glueing categories. We know each
has cotabulators and the required finite limits, and the pullback condition follows directly
from the descriptions of cotablulators cited above. For an alternate proof, in the Section 5,
we will show that Definition 2.11 agrees with the notion of 2-glueing considered in [N12a]
when D is a fibrant double category, in the sense of [Sh08], but first we show that glueing
is preserved by slicing.

Recall that Paré [P11] extends the Bénabou equivalence [St01]

LaxN(B,Prof) ' Cat/B

to double categories by replacing Cat/B with the slice double category Cat//B defined,
in general, as follows. Objects of D//B are horizontal morphisms X // B, horizontal
arrows are commutative triangles, vertical arrows are cells

Xt Bpt
//

Xs

Xt

v

��

Xs B
ps // B

B

id•B
��

• •π

and cells are commutative diagrams of cells

Xt

B
$$JJJJJXt YtYt

B
zzttttt

Xs

B
$$JJJJJXs Ys// Ys

B
zzttttt

Xs

Xt

��
•

Ys

Yt
��
•

B

B
��
•−− //

with the induced horizontal and vertical composition. Thus,

(D//B)0 = D/B and (D0//B)1 = D1/ id•B

2.12. Proposition. If D is a glueing categoryy, then Γ2( id•B) is given by the projection
π2:B × 2 // 2.
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Proof. To show that Γ2 id• ∼= 2
∗, consider the diagram

D1

Γ2 //oo
Φ2

D0/2
Σ2 //oo
2
∗

D0

where Φ2 is a right adjoint pseudo inverse of Γ2 and 2
∗ is right adjoint to the forgetful

functor Σ2. It suffices to show that Φ2Γ2 id• ∼= Φ22
∗, or equivalently, id• ∼= Φ22

∗. Since
Σ2Γ2 a Φ22

∗, Σ2Γ2 = Γ, and Γ a id•, the desired result follows.

Verification of the following proposition is straightforward. Since the result will only be
used as a source of examples when we compare exponentiability in D and D1 in Section 6,
we omit the details.

2.13. Proposition. If D is a glueing category, then so is D//B, for every B. Moreover,

(D//B)1 ' D0/(B × 2)

Proof. The first part is a direct consequence of the assumption that D is a glueing
category. Since Γ2( id•B) is isomorphic to the projection by Proposition 2.12, it follows
that

(D//B)1 = D1/ id•B ' (D0/2)/(B × 2
π2 // 2) ∼= D0/(B × 2)

as desired.

3. Cartesian Double Categories

In this section, we recall the definitions of oplax/lax adjunction [GP04] and cartesian
double category [A18], and apply these to our five examples.

3.1. Definition. A lax functor F :D //E consists of functors F0:D0
//E0 and F1:D1

//E1,
compatible with s and t, together with comparison cells

id•FX // F ( id•X) and Fw � Fv // F (w � v)

for every object X and every composition w� v in D, and satisfying naturality and coher-
ence conditions. An oplax (or colax) functor is defined with the comparison cells in the
opposite direction.

Note that we drop the subscripts on F when the context is clear. There is a double cat-
egory Dbl, introduced in [GP04], whose objects are double category, horizontal morphisms
are lax functors, and vertical morphisms are oplax functors, with suitable cells.

3.2. Definition. An oplax/lax adjunction is an orthogonal adjunction in Dbl.

These adjunctions are characterized in Theorem 3.6 of [GP04] as follows.
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3.3. Proposition. An oplax functor F :D // D′ has a lax right adjoint G if and only if
(1) for every object X ′ in D

′, there is a universal arrow εX′ :FGX
′ //X ′ from the functor

F0 to the object X ′, and (2) for every vertical morphism v′:X ′s //• X ′t in D
′, there is a

universal cell

FGX ′t X ′tεX′t

//

FGX ′s

FGX ′t

v′

��

FGX ′s X ′s
εX′s // X ′s

X ′t

FGv′

��
εv′• •

from the functor F1 to the object v in D
′
1.

Note that this universality says that F1 a G1 and F0 a G0. Moreover, one can show
that, given such adjoints, F is oplax if and only if G is lax, and so we get:

3.4. Corollary. The following are equivalent for functors Fn:Dn //En and Gn:En //Dn,
where n = 0, 1, compatible with s and t.

(a) F :D // E is oplax and G:E // D is a lax right adjoint.

(b) F0 a G0, F1 a G1, and F is oplax.

(c) F0 a G0, F1 a G1, and G is lax.

Recall [GP04] that if the left adjoint F above is also lax, then it is an adjunction in
the 2-category LxDbl whose morphisms are lax functors. If both adjoints are pseudo
functors, then it is an adjunction in the 2-category PsDbl whose morphisms are pseudo
functors.

3.5. Definition. A double category D is called pre-cartesian if the functors ∆:D //D×D
and !:D // 1 have right adjoints, denoted by × and 1, respectively. If × and 1 are pseudo
functors, we say D is a cartesian double category.

We will see that our five examples are pre-cartesian. We know that the first two are
cartesian (see [A18] for Cat, Pos is similar). Although we do not know if our other three
examples are cartesian, we will only need to know −×Y :D //D is pseudo (actually, just
oplax) when Y is exponentiable in D0, and that will follow from a result in [N12b].

Recall [GP99] that D is called horizontally invariant if, for all vertical morphisms
w:Ys //• Yt and isomorphism fs:Xs

// Ys and ft:Xt
// Yt

Xt Ytft
//

Xs

Xt

v

��

Xs Ys
fs // Ys

Yt

w

��
• •ϕ

there exists a vertical morphism v:Xs
//• Xt and an invertible cell ϕ: v // w such that

s(ϕ) = fs and t(ϕ) = ft.
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3.6. Theorem. If D is a horizontally invariant glueing category, then D is pre-cartesian.

Proof. By Corollary 3.4, !:D //1 has a lax right adjoint since D has a horizontal terminal
object 1.

To see that ∆:D //D×D has a lax right adjoint, by Corollary 3.4, it suffices to show
that ∆1:D1

//D1×D1 does, since ∆ is colax and ∆0:D0
//D0×D0 has a right adjoint. Given

v:Xs
//• Xt and w:Ys //• Yt, let X = Γv and Y = Γw. We know X ×2 Y , with the usual

projection to 2, is the product of Γ2(v) and Γ2(w) in D0/2 and (X ×2 Y )n ∼= Xn × Yn
(for n = s, t) since pullback along in: 1 // 2 preserves equalizers (being right adjoint
composition with in) and there is an equalizer

X ×2 Y //X × Y
π1 //
π2

// 2

Since D is horizontally invariant, there is a vertical morphism v × w:Xs × Ys //• Xt × Yt
and an invertible cell

Xt × Yt (X ×2 Y )t//

Xs × Ys

Xt × Yt

v×w
��

Xs × Ys (X ×2 Y )s// (X ×2 Y )s

(X ×2 Y )t

Φ2(X×2Y //
2)

��
θ

∼=

∼=

• •

and so v × w is the product of v and w in D1.

3.7. Corollary. Pos, Cat, Top, Loc, and Topos are pre-cartesian double categories.

4. Pre-cartesian Closed Double Categories

In this section, we introduce the notion of an pre-exponentiable object in a double cat-
egory. We consider pre-exponentiability in pre-cartesian, rather than cartesian, double
categories since (even when − × Y is pseudo) the exponentials that exist in D are not
always pseudo. For certain glueing categories D such that D0 is finitely cocomplete, we
show that Y is pre-exponentiable in D if and only if it is exponentiable in D0.

We begin by recalling, from [N82a], some properties of exponentiability in D/B, where
D is a category with finite limits.

4.1. Remark. When q:Y // B is exponentiable in D/B and r:Z // B, we write the
exponential as qr:ZY //B. Given b: 1 //B, let ( )b:D/B //D denote the functor defined
by pullback along b. Note that ( )b is usually denoted by b∗, but we avoid this notation
here due to its use in the definition of conjoin in 5.1 below. It is well known that ( )b has a
left adjoint denoted by Σb and defined by composing with the morphism b. Since pullback
along any morphism preserves exponentiability, we know Yb is exponentiable, whenever



1216 SUSAN NIEFIELD

q:Y //B is. In this case, (ZY )b ∼= ZYb
b , since the diagram of left adjoints

D/B D/B
−×BY

//

D

D/B

Σb

��

D D−×Yb // D

D/B

Σb

��

commutes up to isomorphism.

4.2. Definition. Suppose D is a pre-cartesian double category. An object Y is called pre-
exponentiable in D if the lax functor −× Y :D // D has a right adjoint in the 2-category
LxDbl. If every object is pre-exponentiable, then D is called pre-cartesian closed.

Note that, by Proposition 2.12, the functor (−× Y )1:D1
//D1 is actually −× id•Y on

D1 which corresponds to −×2 (Y × 2) on D0/2 via the equivalence D1 ' D0/2.

4.3. Theorem. Suppose D is a horizontally invariant pre-cartesian double category. If
Y is pre-exponentiable in D, then − × Y :D // D is oplax and Y is exponentiable in D0.
Moreover, the converse holds when D is a glueing category.

Proof. The first part clearly follows from Corollary 3.4. For the converse, suppose D is
a glueing category. Applying Corollary 3.4 again, since −× Y :D //D is oplax, it suffices
to show that the right adjoint ( )Y to − × Y :D0

// D0 extends to an endofunctor of
D1. Since D is horizontally invariant, using the equivalence D1

∼= D0/2 as in the proof
of Theorem 3.6, we need only show that, for r:Z // 2, the exponential rπ2 :ZY×2 // 2

satisfies
(ZY×2)s ∼= (Zs)

Y and (ZY×2)t ∼= (Zt)
Y

but that follows from Remark 4.1.

4.4. Corollary. Suppose D is a horizontally invariant pre-cartesian double category and
−×Y :D //D is oplax. Then Y is pre-exponentiable in D if and only if it is exponentiable
in D0.

To apply this theorem, we will see that − × Y :D // D is a pseudo functor in each
of our examples, whenever Y is exponentiable in D0. There are several ways to see this
using results from [N12a] and [N12b]. We present an approach here which, unlike [N12a]
and [N12b], avoids the assumption that D is fibrant.

Suppose D is glueing category such that D0 has pushouts. Let 3 denote the pushout

2 3
i01

//

1

2

it
��

1 2
is // 2

3

i12

��
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where is and it are the morphism defining Γ( id•1) in 2.7. There is also a morphism
i02: 2 // 3 induced by vertically pasting the following diagrams along i1 = i12is = i01it.

2

1

==

it
zzz

zzz

1

2

is
DDD

!!DDD

1

1

id•1

��

γ• 2 3i01
//

1

3

i0

))RRRRRRRRRRRRRRRRR

1

3

i1

55lllllllllllllllll

2

1

==

it
zzz

zzz

1

2

is
DDD

!!DDD

1

1

id•1

��

γ• 2 3i12
//

1

3

i1

))RRRRRRRRRRRRRRRRR

1

3

i2

55lllllllllllllllll

where i0 = i01is and i2 = i12it.
Given Xs

v //• Xt
w //• Xu, let j: Γ(w � v) // Γv tXt Γw denote the morphism induced

by the diagram of cells

Γw

Xu

88
qqqqq

Xt

Γw
&&MMMMMXt

Xu

w

��
γw• Γw

Γw tXt Γv55llllll

Γv

Xt

88
qqqqq

Xs

Γv
&&MMMMMXs

Xt

v

��
γv• Γv

Γw tXt Γv
))RRRRRRR

Then we have a commutative diagram

2 3
i02

//

Γ(w � v)

2

Γ2(w�v)

��

Γ(w � v) Γw tXt Γv
j // Γw tXt Γv

3
��

(4.5)

where the unlabelled morphism is induced by the coproducts.

4.5. Definition. Suppose D is a glueing category. Then D has the 02-pullback condition

if D0 has pushouts and the diagram (4.5) is a pullback, for every Xs
v //• Xt

w //• Xu in D.

4.6. Lemma. Suppose D is a glueing category satisfying the 02-pullback condition. If Y
is exponentiable in D0, then −× Y :D // D is a pseudo functor.

Proof. Given Xs
v //• Xt

w //• Xu, we will show that

θ: (w × Y )� (v × Y ) //• (w � v)× Y

is invertible in D1, by showing that Γθ is invertible in D0 so that Γ2θ is invertible in D0/2.
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Since Γ(v × Y ) ∼= Γv × Y , for all v, applying the 02-pullback condition, we see that

2 3
i02

//

Γ((w × Y )� (v × Y ))

2
��

Γ((w × Y )� (v × Y )) (Γw × Y ) tXt×Y (Γv × Y )// (Γw × Y ) tXt×Y (Γv × Y )

3
��

is a pullback, and

2 3
i02

//

Γ(w � v)× Y

2
��

Γ(w � v)× Y (Γw tXt Γv)× Y// (Γw tXt Γv)× Y

3
��

is also a pullback being the vertical composite of two pullbacks. Since Y is exponentiable,
we know that the induced morphism

(Γw × Y ) tXt (Γv × Y ) // (Γw tXt Γv)× Y

is invertible, it follows that the corresponding morphism

Γθ: Γ((w × Y )� (v × Y )) // Γ(w � v)× Y

is invertible, as desired.

Applying Theorem 4.3 and Lemma 4.6, we get:

4.7. Corollary. Suppose D is a glueing category satisfying the 02-pullback condition.
Then Y is pre-exponentiable in D if and only if Y is exponentiable in D0.

To prove the 02-pullback condition for our five examples, given Xs
v //• Xt

w //• Xu,
consider the diagram

Y

Γw tXt Γv

f

**VVVVVVVVVVVVVVVVVVVVVVY

2

q

��66666666666666666Y

Γ(w � v)
$$I

I
I

I
I

2 3
i02

//

Γ(w � v)

2
��

Γ(w � v) Γw tXt Γv
j // Γw tXt Γv

3
��

In each case, D has an object 0 which is horizontally initial, and vertically both initial
and terminal. It is the empty object for Pos, Cat, and Top, the one element locale for
Loc, and the one object topos for Topos.
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We know q = Γ2(y), for some y:Ys //• Yu. One can show that there is a unique cell

Yu YuidYu

//

Ys

Yu

Ys Ys
idYs // Ys

Yu

y

��

•

Ys

0
��
•

0

Yu
��

•

α

and Y is the lax colimit of this diagram. Moreover,

Y

3

i02q ��?????????Y Γw tXt Γv
f // Γw tXt Γv

3
����������

is induced by taking lax colimits of the diagram of cells

0 Xtft
//

Ys

0
��

Ys Xs
fs // Xs

Xt

v

��
• ϕv

Yu Xufu
//

0

Yu
��

0 Xt
// Xt

Xu

w

��

• ϕw

Xu XuidXu

//

Xs

Xu

Xs Xs

idXs // Xs

Xu

w�v

��

•

Xs

Xt

��
•

Xt

Xu

��

•

id• =

Yu YuidYu

//

Ys

Yu

Ys Ys
idYs // Ys

Yu

y

��

α

Yu Xufu
//

Ys

Yu
��

Ys Xs
fs // Xs

Xu

w�v

��

• •ϕw�v

Ys

0
��

•

•

0

Yu
��

Thus, f is completely determined by the cell ϕw�v, and so there exists a unique morphism
f̄ :Y //Γ(w�v) making the pullback diagram commute. Therefore, the double categories
in Examples 2.2–2.6 satisfy the 02-pullback condition.

Since Cat0 and Pos0 are cartesian closed, we get:

4.8. Corollary. Cat and Pos are pre-cartesian closed double categories.

4.9. Corollary. A space Y is pre-exponentiable in Top if and only if the set O(Y ) of
open subsets is a continuous lattice (in the sense of Scott [Sc72]), or equivalently, Y is
locally compact, if Y is sober.

Proof. This follows from Corollary 4.7 and the Day/Kelly characterization [DK70] of
exponentiable spaces, and the Hoffman/Lawson characterization [HL78] of locally com-
pact sober spaces.

4.10. Corollary. A locale Y is pre-exponentiable in Loc if and only if Y locally com-
pact, or equivalently, Y is a continuous lattice.

Proof. This follows from Corollary 4.7 and Hyland characterization [H81] of exponen-
tiable locales.
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4.11. Corollary. A Grothendieck topos Y is pre-exponentiable in Topos if and only if
Y is a continuous category.

Proof. This follows from Corollary 4.7 and the Johnstone/Joyal characterization [JJ82]
of exponentiable toposes.

4.12. Remark. Suppose D satisfies the 02-pullback condition and B is an object of D.

Given Xs
v //• Xt

w //• Xu, in D//B, consider the commutative diagram

B × 2 B × 3//

Γ(w � v)

B × 2

��

Γ(w � v) Γw tXt Γv// Γw tXt Γv

B × 3

��

2 3//

B × 2

2
��

B × 2 B × 3// B × 3

3
��

By the 02-pullback condition, we know that the rectangle is a pullback. Since the bottom
square is a pullback, in any case, it follows that the top square is a pullback, and so D//B
satisfies the 02-pullback condition. Thus, we get:

4.13. Corollary. Suppose D is a glueing category satisfying the 02-pullback condition.
Then Y //B is pre-exponentiable in D//B if and only if it is exponentiable in D0/B.

Applying Corollary 4.13 to the five examples, we get the following results. A morphism
q:Y // B is pre-exponentiable in Cat if and it is a Giraud/Conduché fibration, i.e., it
satisfies a factorization lifting property introduced independently in [G64] and [C72], and
one is pre-exponentiable in Pos if and only if it is an interpolation-lifting map [N01], i.e.,
it satisfies a weak factorization lifting condition. By [N82a], pre-exponentiable morphisms
in Top are those satisfying a generalization of the Day/Kelly result [DK70]. For a sober
space B with locally closed points, this is equivalent to the corresponding internal locale
being locally compact in the topos Sh(B) of sheaves on B [N82b]. Since Hyland’s theorem
[H81] is constructive, one gets the analogous latter characterization for Loc. Similarly,
for a Grothendieck topos B, the pre-exponentiables in Topos/B are the B-continuous
categories.

For each of these double categories D, the pre-exponentiable inclusions in D0 are pre-
cisely the “locally closed” ones (see [N81], [BN00], [N01]). These are the usual “intersec-
tions” of open and closed subspaces, sublocales, and toposes, and pullbacks of discrete
fibrations and discrete opfibrations for posets and categories. In [N12a], we defined a
locally closed inclusion in a double category as follows, and used cotabulators to give a
general construction of their exponentials in D0 which applied to each of the five examples.
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4.14. Definition. Morphism is:Xs
// B and it:Xt

// B are called open inclusion and
closed inclusions, respectively, if there is a cotabulator diagram in D of the form

B

Xt

88

itqqqqqq

Xs

B

is
&&MMMMMMXs

Xt

v

��
γv•

A morphism is locally closed if it is the pullback of open and closed inclusions.

5. Fibrant Glueing Categories

In this section, we recall the definition of a fibrant double category (also known as a
framed bicategory), and show that our definition of glueing agrees with that of [N12a]
when D is fibrant. Since our five main examples of double categories are fibrant, we thus
obtain another justification that they satisfy our definition of glueing category.

5.1. Definition. [GP04] A companion for a horizontal morphism f :X //Y is a vertical
morphism f∗:X //• Y together with cells

X Y
f
//

X

X

id•X
��

X X
idX // X

Y

f∗

��

• •α

Y Y
idY

//

X

Y

f∗

��

X Y
f // Y

Y

id•Y
��

• •β

whose horizontal and vertical compositions are identity cells.
A conjoint for f is a vertical morphism f ∗:Y //• X together with cells

X X
idX

//

X

X

id•X
��

X Y
f // Y

X

f∗

��

• •ρ

X Y
f
//

Y

X

f∗

��

Y Y
idY // Y

Y

id•Y
��

• •σ

whose horizontal and vertical compositions are identity cells.

5.2. Definition. [Sh08] A double category D is called fibrant if every horizontal mor-
phism has a companion and a conjoint.

Our five examples are fibrant double categories. For f :X // Y in Cat

f∗ = Y (f−,−) and f ∗ = Y (−, f−)

and in Pos
f∗ = {(x, y)|fx ≤ y} and f ∗ = {(y, x)|y ≤ fx}
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Companions in Loc and Topos are given by direct and inverse images, respectively. For
f :X // Y in Top, f∗ and f ∗ agree with those of O(f):O(X) //O(Y ) in Loc.

Suppose D is a fibrant double category, and let Φ2:D0/2 //D1 be the functor defined on

objects by Φ2(X
p //2) = (Xs

js∗ //• X
jt∗ //• Xt), where js and jt are defined by the pullbacks

1 2
is
//

Xs

1
��

Xs X
js // X

2

p

��
1 2

it
//

Xt

1
��

Xt X
jt // X

2

p

��

Given a morphism

X

2

p ��99999X Y
f // Y

2

q�������

Φ2(f) is the vertical composition of the cells

X Y
f
//

Xs

X

js∗
��

Xs Ys
fs // Ys

Y

js∗
��

ϕs• •

Xt Ytft
//

X

Xt

jt∗

��

X Y// Y

Yt

jt∗

��
ϕt• •

where fs and ft are induced by the pullbacks defining Φ2(p) and Φ2(q). Note that the
left square of

X Y
f
//

Xs

X

js
��

Xs Ys
fs // Ys

Y

js
��
Y 2q

//

Ys

Y
��

Ys 1// 1

2

is

��

is a pullback, since the right square and the outer rectangle are pullbacks, by definition
of Φ2. The square defining ft is similarly seen to be a pullback.

In [N12a], fibrant double categories with 2-glueing are defined to be those for which
the functor Φ2, defined above, is an equivalence of categories. Thus, this agrees with the
definition of glueing category given in Section 2 when D is fibrant, if we can show that
Γ2 a Φ2, since any right adjoint to Γ2 will be an equivalence of categories when Γ2 is.

5.3. Proposition. If D is a fibrant double category with cotabulators satisfying the pull-
back condition (2.11), then the functor Φ2, defined above, is right adjoint to Γ2.
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Proof. Let ηv: v // Φ2Γ2v denote that cell given by the diagram on the left

Xt XtidXt

//

Xs

Xt

v

��

Xs Xs

idXs // Xs

Xt

i∗t is∗
��

• •ηv

Xt Γv
it
//

Xs

Xt

v

��

Xs Γv
is // Γv

Γv

id•Γv

��
• •γv

To show that Γ2 a Φ2, we will show that for all q:Y // 2 and all cells α: v // Φ2q,
there exists a unique f : Γ2v // q such that

Φ2Γ2v Φ2qΦ2f
//

v

Φ2Γ2v

ηv

����������
v

Φ2q

α

��::::::::

Since there exists f such that the diagram

Γv

Xt

==

itzzzzzzz

Xs

Γv

is

!!DDDDDDXs

Xt

v

��

γv
• Y

Yt

==

jtzzzzzzz

Ys

Y

js

!!DDDDDDDYs

Yt
��

•

Xs Ys
fs //

Xt Ytft
//

Γv Y//

α

f

of cells commutes if and only if there exists f such that

Xt Ytft
//

Xs

Xt

v

��

Xs Ys
fs // Ys

Yt

•

Ys

Y

js∗
��
•

Y

Yt

jt∗

��

•

α =

Xt XtidXt

//

Xs

Xt

v

��

Xs Xs

idXs // Xs

Xt

•

Xs

Γv

is∗
��
•

Γv

Xt

it∗

��

•

ηv

Xt Ytft
//

Γv

Xt

��

Γv Y
f // Y

Yt

j∗t
��

•ϕt

Γv Y//

Xs

Γv
��

Xs Ys
fs // Ys

Y

js∗
��

ϕs

the desired result follows.

Since our five examples are fibrant double categories, we get the following:

5.4. Corollary. The double categories in Examples 2.2-2.6 are glueing categories.

6. Counterexamples

In this section, we show that (Pos//2)1 is not cartesian closed. Thus, D pre-cartesian
closed does not imply that D1 is cartesian closed. The only objects of D1 that need to be
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exponentiable are the vertical identities id•Y . We conclude with an example to show why
we restricted to right adjoints in LxDbl rather than PsDbl. In particular, we will see
that the right adjoints that exist in Pos are not pseudo even though Pos is cartesian, i.e.,
−× Y is pseudo. Thus, Pos (and Cat) are pre-cartesian closed but not cartesian closed.

The first counterexample is straighorward. By Proposition 2.13, we know

(Pos//2)1 ' Pos/(2× 2)

and the latter is not cartesian closed, since one easily shows that the weak factorization
lifting property [N01] does not hold.

The second one is elementary, but technical. To see that the right adjoints are not
pseudo in Pos, we will show that ( )Y does not preserve vertical composition when Y = 2,

i.e., (J � I)2 6= J2 � I2, for some Zs
I //• Zt

J //• Zu .
Recall that vertical morphisms I:Zs //• Zt in Pos are order ideals, i.e., I ⊆ Zs × Zt

satisfying
(zs, zt) ∈ I, z′s ≤ zs, zt ≤ z′t =⇒ (z′s, z

′
t) ∈ I

with the usual composition of relations. Using the construction of exponentials in Pos//2
given in [N01] and the equivalence Pos1 ' Pos//2, we see that

IY = {(σs, σt) ∈ ZY
s × ZY

t | (σs(y), σt(y)) ∈ I,∀y ∈ Y }

where ZY is the usual exponential of posets, i.e., the set of order preserving maps Y //Z.
Consider

Zt

Zu

J

��

•

zu z′u

zt

zu

zt z′tz
′
t

z′u

zt

z′u

?????????

≤

Zs

Zt

I

��

•

zt z′t

zs

zt

zs z′sz
′
s

z′t

zs

z′t

????????? ≤

Zs

Zu

J�I
��

•

zu z′u

zs

zu

zs z′sz
′
s

z′u

zs

z′u

????????? ≤

≤

where Zs = {zs ≤ z′s}, Zt = {zt, z′t}, and Zu = {zu ≤ z′u}, where Zt is discrete, and
let I = {(zs, zt), (zs, z′t), (z′s, z′t)} and J = {(zt, zu), (zt, z′u), (z′t, z′u)}. Then J � I =
{(zs, zu), (zs, z′u), (z′s, z′u)}. One can visualize these ideals as:

Define σs: 2 //Zs and σu: 2 //Zu by σs(0) = zs, σs(1) = z′s, σu(0) = zu, and σu(1) = z′u.
Then (σs, σu) ∈ (J � I)2. To see that (σs, σu) 6∈ J2 � I2, suppose (σs, σt) ∈ I2 and
(σt, σu) ∈ J2, for some σt ∈ Z2

t . Then σt(0) ≤ σt(1), but σt(0) = zt, since (σt(0), zu) =
(σt(0), σu(0)) ∈ J , and σt(1) = z′t, since (z′s, σt(1)) = (σs(1), σt(1)) ∈ I, contradicting that
Zt is discrete.

Therefore, Pos, and similarly, Cat, are not cartesian closed.
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Richard Blute, Université d’ Ottawa: rblute@uottawa.ca
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