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AN INTRINSIC APPROACH TO THE NON-ABELIAN TENSOR
PRODUCT VIA INTERNAL CROSSED SQUARES

DAVIDE DI MICCO AND TIM VAN DER LINDEN

Abstract. We explain how, in the context of a semi-abelian category, the concept of

an internal crossed square may be used to set up an intrinsic approach to the Brown-

Loday non-abelian tensor product.

1. Introduction

The aim of this article is to explain how, in the context of a semi-abelian category [22, 1],
internal crossed squares can be used to set up an intrinsic approach to the non-abelian
tensor product. Both concepts were originally introduced for groups (by Guin-Waléry,
Brown and Loday, in [16, 24, 5]) and for Lie algebras (by Ellis, in [13]).

Recall that a crossed module is a group homomorphism B : M Ñ L together with an
action of L on M , satisfying suitable compatibility conditions. The category XMod of
crossed modules is equivalent to the category GrpdpGrpq of internal groupoids in the
category of groups, via the following constructions. The normalisation functor sends an
internal groupoid (of which we only depict the underlying re�exive graph)

X
d ,2

c
,2 Lelr

to the map c�kd : Kd Ñ L (where kd : Kd Ñ X denotes the kernel of d), together with
the action ξ determined by conjugation in X. Its pseudo-inverse sends a crossed module
pB : M Ñ L, ξq to the semidirect product M �ξ L with the suitable projections on L.

A crossed square (of groups) is a two-dimensional crossed module, in the following
precise sense. The internal groupoid construction may be repeated, which gives us the
categoryGrpd2pGrpq � GrpdpGrpdpGrpqq of internal double groupoids inGrp. Given
such an internal double groupoid as in Figure 1.1, viewed as a diagram in Grp (in which
again the composition maps are omitted), we may take the normalisation functor vertically
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Z

dZ

��

cZ

��

d1 ,2

c1
,2 Xe1lr

dX

��

cX

��
Y

eZ

LR

d0 ,2

c0
,2 L

eX

LR

e0lr

Figure 1.1: An internal double groupoid, viewed as a double re�exive graph

and horizontally to obtain a commutative square

P
pM ,2

pN
��

M

µ
��

N ν
,2 L.

(A)

The given double groupoid structure naturally induces actions of L on M , P and N , of
M and N on P , etc. One may now ask, whether it is possible to equip a given com-
mutative square of group homomorphisms with suitable actions (and, possibly, additional
maps), in such a way that an internal double groupoid may be recovered�thus extending
the equivalence XMod � GrpdpGrpq in order to capture double groupoids in Grp as
commutative squares with extra structure. The concept of a crossed square ([16, 24, 5],
see De�nition 5.1 below) answers this question, and does indeed give rise to a category
equivalence XSqr � Grpd2pGrpq.

Internal crossed squares answer the same question, now asked for a general base cat-
egory A, which we take to be semi-abelian (in the sense of [22]; for the sake of simpli-
city, we ask our categories to satisfy a relatively mild extra condition called the Smith
is Huq condition (SH) in [29]�see Section 2 and Section 3 for detailed explanations).
The work of Janelidze [21] provides an explicit description of internal crossed modules
in A, together with an equivalence of categories XModpAq � GrpdpAq which reduces
to XMod � GrpdpGrpq when A � Grp. Since the category of internal groupoids in a
semi-abelian category is again semi-abelian [3], the category of internal crossed modules is
semi-abelian as well. Hence this construction may be repeated as in [14], and thus we ob-
tain an equivalence XMod2pAq � Grpd2pAq. We may now write XSqrpAq � XMod2pAq
and say that a crossed square in A is an internal crossed module of internal crossed modules
in A. Indeed, any such double internal crossed module has an underlying commutative
square in A, which the crossed module structures equip with suitable internal actions
in such a way that an internal double groupoid may be recovered. The internal action
structure is, however, far from being transparent, and thus merits further explicitation.

Yet, we shall see that even this tentative and very abstract general de�nition is concrete
enough to serve as a basis for an intrinsic approach to the non-abelian tensor product.
Originally this tensor product (of two groups M and N acting on each other in a certain
�compatible� way) was de�ned in [5] via a presentation in terms of generators and relations.
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In the article [10] we investigated how to extend the concept of a pair of compatible actions
(of two given objects M and N acting on each other) to the semi-abelian setting. A key
feature (known already for groups and Lie algebras) of such a pair of compatible actions
is that it is equivalent to the datum of a third object L and two internal crossed module
structures µ : M Ñ L and ν : N Ñ L. According to another result of Brown and Loday [5],
given two L-crossed modules µ and ν, the crossed module µ�pM � ν�pN : P Ñ L in a
crossed square of groups of the form (A) happens to be the tensor product of M and N
with respect to the actions of M and N on each other, induced by the crossed module
structures of µ : M Ñ L and ν : N Ñ L, if and only if the crossed square is the initial
object in the category of all crossed squares over the given crossed modules µ and ν.
This property of course determines the tensor product, and it may actually be taken as a
de�nition.

Concretely this means that in a semi-abelian category (satisfying the condition (SH)),
the non-abelian tensor product of two objects acting compatibly on one another may be
constructed as follows.

1. Consider the internal L-crossed modules µ : M Ñ L and ν : N Ñ L corresponding
to the given actions.

2. Use the equivalence XModpAq � GrpdpAq to obtain internal groupoids

Y
d0 ,2

c0
,2 L eX ,2e0lr X.

dX
lr

cXlr

3. Take the pushout of e0 and eX to �nd the double re�exive graph in Figure 1.1.

4. This double re�exive graph is not yet a double groupoid; re�ect it into Grpd2pAq
by taking the quotient of Z by the join of commutators rKcZ , KdZ s _ rKc1 , Kd1s.

5. The resulting internal double groupoid normalises to an internal crossed square

M bN
pM ,2

pN

��

M

µ

��
N ν

,2 L,

whose structure involves a crossed module M b N Ñ L. By de�nition, this is the
non-abelian tensor product of the given pair of compatible actions.

By known properties of the non-abelian tensor product for groups and Lie algebras, this
reduces to the classical de�nitions in those cases (Proposition 6.4 and Proposition 7.12).
In Section 7 we give further concrete information in the case of a pair of inclusions of
normal subobjects (where we obtain a crossed module whose image is a commutator) and
the case of a pair of abelian objects acting trivially upon one another (then we regain the
bilinear product of [19]).
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In the forthcoming article [11], we use this general version of the non-abelian tensor
product to prove a result on the existence of universal central extensions of internal
crossed modules over a �xed base object. Our present article is devoted to exploring some
basic properties of the de�nition, and showing that in certain cases, the tensor product
may be used to give an explicit description of an object of XSqrpAq as a square (A) in A
equipped with suitable actions and a morphism h : MbN Ñ P . This extends the explicit
descriptions for groups and Lie algebras to the general setting. It is, however, not yet
clear to us whether this description is always valid�see Section 8.

We start by recalling basic notions and techniques of commutators and internal actions
(Section 2) and crossed modules (Section 3) in semi-abelian categories. Section 4 discusses
double re�exive graphs and internal double groupoids, and Section 5 is devoted to the
basic theory of crossed squares. In Section 6 we explain how this may be used in an
intrinsic approach to the non-abelian tensor product. Section 7 gives examples. Section 8
treats a (partial) description of crossed squares in terms of the tensor product.

2. Commutators and internal actions

Here we recall basic properties of commutators and internal actions, needed in what
follows. We start with the equivalence between internal actions and split extensions.

A point pp, sq in a category A is a split epimorphism p : AÑ B together with a chosen
splitting s : B Ñ A, so that p�s � 1B. The category PtpAq of points in A has, as objects,
points in A, and as morphisms, natural transformations between such (as in Lemma 2.4).

If A is a semi-abelian category, then a point pp, sq with a chosen kernel k of p is the
same thing as a split extension in A: a split short exact sequence

0 ,2 K � ,2 k ,2 A
p � ,2B
s

lr ,2 0,

which means that k is the kernel of p, p is the cokernel of k, and p�s � 1B. In such a split
extension, k and s are jointly extremal-epimorphic.

Via a semi-direct product construction [4], we have an equivalence PtpAq � ActpAq,
where the latter category of (internal) actions in A consists of the algebras of the monad
pA5p�q, ηA, µAq de�ned through

0 ,2 A5B � ,2
kA,B ,2 A�B

v
1A
0

w
� ,2A ,2

ιA
lr 0. (B)

One of the functors in the equivalence sends a point pp, sq to the action pB,Kp, ξq in

0 ,2 B5Kp

ξ

��

� ,2
kB,Kp ,2 B �Kpv

s
kp

w
��

v
1B
0

w
� ,2B ,2 0

0 ,2 Kp
� ,2

kp
,2 A p

� ,2B ,2 0.
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The other functor sends an action pA,X, ξq to the induced semidirect product, which is
the point pπξ : X �ξ AÑ A, iξ : AÑ X �ξ Aq, where X �ξ A is the coequaliser

A5X
iX�ξ ,2
kA,X

,2 A�X
σξ ,2 X �ξ A,

the map πξ : X�ξAÑ A is the unique map such that
v

1A
0

w
� πξ�σξ, and �nally iξ � σξ�iA.

We will denote X �ξ A as X � A if there is no risk of confusion regarding the action
involved. The map k � σξ�iX : X Ñ X �ξ A is always the kernel of πξ: it is easy to see
that πξ�k � 0, whereas for the universal property some work needs to be done.

2.1. Example. The trivial action pA,X, τAXq is τ
A
X �

v
0

1X

w
�kA,X : A5X Ñ X. We have

pX �τAX
A, στAX q � CoeqpiX�p

v
0

1X

w
�kA,Xq, kA,Xq.

Both
v

1A
0

w
and

v
0

1X

w
coequalise the two maps, and it is indeed not hard to see that

CoeqpiX�
v

0
1X

w
�kA,X , kA,Xq � pA�X, x

v
1A
0

w
,
v

0
1X

w
y : A�X Ñ A�Xq.

2.2. Example. For each object A we can de�ne the conjugation action pA,A, χAq through
χA �

v
1A
1A

w
�kA,A : A5AÑ A. Then we have that

pA�χA A, σχAq � Coeqpi2�p
v

1A
1A

w
�kA,Aq, kA,Aq � pA� A, x

v
1A
0

w
,
v

1A
1A

w
y : A� AÑ A� Aq.

2.3. Remark. From the de�nition, it follows that the square on the left

A5X � ,2
kA,X ,2

ξ

��

A�X

σξ

��
X � ,2

kπξ

,2 X �ξ A

A5X

iξ5kπξ
��

ξ ,2 X

kπξ
��

pX �ξ Aq5pX �ξ AqχpX�ξAq
,2 X �ξ A

is both a pushout and a pullback. In fact, also the square on the right commutes, which
means that �computing an action� is the same as �computing the conjugation in the
induced semidirect product�.

2.4. Lemma. Consider a morphism of points pf, gq : pp0, s0q Ñ pp1, s1q

A0

f

��

p0 ,2 B0
s0
lr

g

��
A1

p1 ,2 B1.
s1
lr

If f is an epimorphism then the right pointing square is a pushout. Dually, if f is a
monomorphism, then the left pointing square is a pullback.
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2.5. Basic commutator theory.We turn to the de�nition and stability properties of
binary and ternary Higgins commutators.

2.6. Definition. [28, 6, 18] Given two objects A and B in A, the morphism

ΣA,B �
v
x1A,0y
x0,1By

w
� x
v

1A
0

wv
0

1B

w
y : A�B ÝÑ A�B

is a regular epimorphism. Hence taking its kernel we �nd the short exact sequence

0 ,2 A �B ,2
hA,B ,2 A�B

ΣA,B ,2 A�B ,2 0

where A �B is called the cosmash product of A and B.

2.7. Definition. [20, 28] Given two subobjects pM,mq and pN, nq of an object X, we
de�ne their Higgins commutator as the image of the map

v
m
n

w
�hM,N , that is the subobject

of X given by the factorisation

M �N

_��

� ,2
hM,N ,2M �Nv

m
n

w
��

rM,N s ,2 ,2 X.

The Huq commutator rM,N sQX of M and N can be seen as the normal closure in X
of their Higgins commutator. Note that one vanishes if and only if so does the other.
An object X is said to be abelian when rX,Xs is trivial; this happens precisely when X
admits a (necessarily unique) internal abelian group structure�see [1].

2.8. Definition. [6, 18, 17] Given three objects A, B and C in A, consider the map

ΣA,B,C �

��iA iA 0
iB 0 iB
0 iC iC

�
: A�B � C ÝÑ pA�Bq � pA� Cq � pB � Cq

and its kernel hA,B,C : A �B �C Ñ A�B�C. The object A �B �C is called the cosmash
product of A, B and C.

Given three subobjects pK, kq, pM,mq and pN, nq of an object X, we de�ne their Hig-
gins commutator as the subobject of X given by the factorisation

K �M �N

_��

� ,2
hK,M,N,2 K �M �N$% k

m
n

,-
��

rK,M,N s ,2 ,2 X.

We call rK,M,N s the ternary Higgins commutator of K, M and N in X.
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2.9. Proposition. [18, 17] Suppose K1, K2, K3 ¤ X. Then we have the following
(in)equalities of subobjects of X:

0. if K1 � 0 then rK1, K2s � 0 � rK1, K2, K3s;

1. rK1, K2s � rK2, K1s and for σ P S3, rK1, K2, K3s � rKσp1q, Kσp2q, Kσp3qs;

2. f rK1, K2s � rfpK1q, fpK2qs ¤ Y and f rK1, K2, K3s � rfpK1q, fpK2q, fpK3qs ¤ Y
for f : X Ñ Y any regular epimorphism;

3. rL1, K2s ¤ rK1, K2s and rL1, K2, K3s ¤ rK1, K2, K3s when L1 ¤ K1;

4. rrK1, K2s, K3s ¤ rK1, K2, K3s;

5. rK1, K1, K2s ¤ rK1, K2s;

6. rK1, K2 _K3s � rK1, K2s _ rK1, K3s _ rK1, K2, K3s.

A semi-abelian category is said to satisfy the Smith is Huq condition (SH) when the
Smith-Pedicchio commutator [31] of two internal equivalence relations vanishes if and only
if so does the Huq commutator of their associated normal subobjects [1, 29]. As explained
in [18], in terms of Higgins commutators, this amounts to the condition that wheneverM ,
NCL are normal subobjects, rM,N s � 0 implies rM,N,Ls � 0. As a consequence, under
(SH), Higgins commutators su�ce for the description of internal groupoids. Furthermore,
the characterisation of internal crossed modules given in [21] simpli�es�see below. From
now on, unless mentioned otherwise, this is the context we shall work in. Examples of
semi-abelian categories that satisfy (SH) include the categories of groups, (commutative)
rings (not necessarily unitary), Lie algebras over a commutative ring with unit, Poisson
algebras and associative algebras, as are all varieties of such algebras, and crossed modules
over those. In fact, all Orzech categories of interest [30, 8] are examples. On the other
hand, the category of loops is semi-abelian but does not satisfy (SH).

3. Internal re�exive graphs, groupoids and (pre-)crossed modules

Here we recall how to characterise internal re�exive graphs and internal groupoids as
internal precrossed modules and internal crossed modules in a semi-abelian category A
that satis�es the Smith is Huq condition (SH). When the context is clear, we sometimes
drop the adjective internal.

3.1. Definition. A re�exive graph pC1, C0, d, c, eq in A is given by a diagram

C1

d ,2

c
,2 C0

elr

such that d�e � 1C0 � c�e. A morphism of re�exive graphs is a natural transformation
between two such diagrams. This determines a category RGpAq.
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3.2. Lemma. [29] Let A be a semi-abelian category with (SH). Given a re�exive graph
pC1, C0, d, c, eq, it admits a (unique) internal groupoid structure if and only if rKd, Kcs � 0.

The forgetful functor GrpdpAq Ñ RGpAq admits a left adjoint RGpAq Ñ GrpdpAq.
The image of a re�exive graph pC1, C0, d, c, eq through this functor is the re�exive graph
pC 1

1, C
1
0, d

1, c1, e1q where C 1
0 � C0, C

1
1 � C1{rKd, Kcs

Q
C1

and d1, c1, e1 are induced by d, c and
e, respectively. By Lemma 3.2 this is indeed an internal groupoid.

3.3. Definition. [21, 27] An internal pre-crossed module pX
B
ÝÑ A, ξq in a semi-abelian

category A with (SH) is given by an internal action pA,X, ξq and a morphism B : X Ñ A
such that the diagram

A5X

1A5B
��

ξ ,2 X

B
��

A5A χA
,2 A

commutes. We write PreXModpAq for the category of precrossed modules with the suit-
able morphisms between them, which are morphisms of arrows that preserve the action.

3.4. Construction. By using the correspondence between PtpAq and ActpAq we can
map each internal pre-crossed module to a particular re�exive graph

X � ,2 kd ,2 X �ξ A
d ,2

c
,2 A,elr

where c�e � 1A � d�e. Details of this construction are as follows: �rst we obtain X �ξ A
and the maps d, e and kd by computing the point associated to the action ξ. Then we
de�ne the map c, so that c�σξ �

v
1A
B

w
: A�X Ñ A. Notice that

v
1A
B

w
�piX�ξq �

v
1A
B

w
�kA,X due

to the fact that pA,X, ξ, Bq is a pre-crossed module. Finally we deduce that c�k � B and
that c�e � 1A. This determines a category equivalence between internal re�exive graphs
and internal pre-crossed modules.

3.5. Definition. [21, 27, 18] An internal crossed module in a semi-abelian category A

with (SH) is an internal pre-crossed module pX
B
ÝÑ A, ξq satisfying the so-called Pei�er

condition, which is the commutativity of the diagram

X5X

B51X
��

χX ,2 X

A5X
ξ
,2 X.

As follows from the results of [21, 27, 18], the equivalence PreXModpAq � RGpAq
restricts to an equivalence XModpAq � GrpdpAq.
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3.6. Example. Consider the pre-crossed module pX
0
ÝÑ A, τAXq given by the trivial action.

Then the situation simpli�es, and the associated re�exive graph is

X � ,2 x0,1Xy ,2 A�X
πA ,2

πA
,2 A.x1A,0ylr

Furthermore, from Lemma 3.2 it follows that pX
0
ÝÑ A, τAXq is a crossed module if and only

if X is an abelian object.

4. Double groupoids and double re�exive graphs

We recall the categories of internal double groupoids and internal double re�exive graphs,
and describe how one is embedded into the other as a re�ective subcategory. In this
section, A is a semi-abelian category that satis�es (SH).

4.1. Definition. A double re�exive graph in A is a re�exive graph in RGpAq. This
means that the category RG2pAq is de�ned as RGpRGpAqq.

4.2. Lemma. A double re�exive graph can be depicted as a diagram in A of the form in
Figure 1.1 in which each pair of adjacent vertices forms a re�exive graph.

4.3. Definition. An internal double groupoid in A is a groupoid in GrpdpAq. This
means that the category Grpd2pAq is de�ned as GrpdpGrpdpAqq.

4.4. Proposition.Double groupoids are diagrams as in Figure 1.1 in which each re�exive
graph has an internal groupoid structure.

Proof. This combines two facts: internal groupoid structures are necessarily unique, and
limits in functor categories are computed pointwise.

4.5. Double groupoids induced by particular double reflexive graphs.

Consider a double re�exive graph as in Figure 4.1, such that the re�exive graph on the
right and the one at the bottom are already groupoids; in other words (Lemma 3.2),
rKdR , KcRs and rKdD , KcDs are trivial. We want to construct a double groupoid by divid-
ing the join

rKdL , KcLs
Q
A _ rKdU , KcU s

Q
A

out of A. This does indeed work, and is part of the construction in the following:

4.6. Proposition. The forgetful inclusion Grpd2pAq Ñ RG2pAq has a left adjoint
RG2pAq Ñ Grpd2pAq.

Let us explain in detail how this works. Recall that in a semi-abelian category, the
join of two subobjects A, B of an object X may be obtained via the image factorisation

A�B � ,2A_B ,2a_b ,2 X

of the map
v
a
b

w
: A�B Ñ X induced by representing monomorphisms a, b. When both a

and b are normal monomorphisms, then so is a_ b. In particular, we have:
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A

dL

��

cL

��

dU ,2

cU
,2 BeUlr

A

q

��$

qT � ,2

qS

_��

A
T

d1U ,2

c1U

,2

q̃S

_��

Be1U
lr

A
S q̃T

� ,2

d1L

��

c1L

��

A
S_T

d2L

��

c2L

��

d2U ,2

c2U

,2 Be2U
lr

dR

��

cR

��
C

eL

LR

C

e1L

LR

C

e2L

LR

dD ,2

cD
,2 DeDlr

eR

LR

Figure 4.1: Re�ecting a particular double re�exive graph to a double groupoid

4.7. Lemma. [1] Given two regular epimorphisms and their pushout

A
f � ,2

g
_��

h
� �%

B

f�pgq_��
C

g�pfq

� ,2D

the kernel of the diagonal h is the join of the kernels of f and g: Kh � Kf _Kg.

We apply this to the situation depicted in Figure 4.1, where S � rKdL , KcLs and
T � rKdU , KcU s. All dotted arrows are universally induced: to see this, use Lemma 3.2
and the fact that the re�exive graph on the right and the one at the bottom are groupoids.
Clearly,

pA{pS _ T q, B, d2U , c
2
U , e

2
Uq and pA{pS _ T q, C, d2L, c

2
L, e

2
Lq

are re�exive graphs. We need to prove that they are internal groupoids, that is

rKd2U
, Kc2U

sQA
S_T

� 0 and rKd2L
, Kc2L

sQA
S_T

� 0.

We shall only prove the �rst equality, since the strategy for the second one is the same.
Consider the following diagram, which has vertical and horizontal short exact sequences
by the 3� 3-Lemma.

Kq̃S
� ,2 ,2 Kd1U

� ,2
_��

��

Kd2U_��

��
Kq̃S

� ,2 ,2

_��

A
T

q̃S � ,2

d1U _��

A
S_T

d2U_��
0 � ,2 ,2 B B
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A

dL

��

cL

��

dU ,2

cU
,2 BeUlr

dR

��

cR

��

A
S_T

d2L

��

c2L

��

d2U ,2

c2U

,2 Be2U
lr

dR

��

cR

��

�
q 1B

1C 1D

�
,2

C

eL

LR

dD ,2

cD
,2 D

eR

LR

eDlr C

e2L

LR

dD ,2

cD
,2 D

eR

LR

eDlr

Figure 4.2: The unit of the adjunction, when we already have a groupoid on the right
and on the bottom

A

dL

��

cL

��

dU ,2

cU
,2 BeUlr

dR

��

cR

��

A1

dW

��

cW

��

dN ,2

cN
,2 B

1eNlr

dE

��

cE

��

�
α β
γ δ

�
,2

C

eL

LR

dD ,2

cD
,2 D

eR

LR

eDlr C 1

eW

LR

dS ,2

cS
,2 D

1

eE

LR

eSlr

Figure 4.3: A morphism of double re�exive graphs

In precisely the same way it is possible to describe the image factorisation of q̃S�kc1U . Now
we can apply Proposition 2.9 to the diagram

Kd1U

_��

� ,2 ,2 A
T

q̃S_��

Kc1U

_��

�lrlr

Kd2U

� ,2 ,2 A
S_T

Kc2U

�lrlr

to see that if rKd1U
, Kc1U

s is trivial, then rKd2U
, Kc2U

s is trivial as well.

4.8. Proposition. Given a double re�exive graph as in Figure 4.1 where the re�exive
graphs on the bottom and on the right are internal groupoids, the morphism of double
re�exive graphs in Figure 4.2 coincides with the unit of the adjunction between double
groupoids and double re�exive graphs induced by the adjunction between groupoids and
re�exive graphs.

Proof. Consider another morphism of double re�exive graphs as in Figure 4.3 in which
the codomain is a double groupoid. We want to de�ne a morphism φ : A{pS _ T q Ñ A1
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such that φ�q � α. In order to do this, consider the diagrams

A

α

��

qT

~�$

dU ,2

cU
,2 BeUlr

A
T

φTz�

d1U ,2

c1U

,2 B

β

��

e1U
lr

A1
dN ,2

cN
,2 B

1eNlr

A

α

��

qS

~�$

dL ,2

cL
,2 CeLlr

A
S

φSz�

d1L ,2

c1L

,2 C

γ

��

e1L
lr

A1
dW ,2

cW
,2 C

1eWlr

using the notation of in Figure 4.1. Here the dotted maps are de�ned through the universal
property of the unit of the adjunction between RGpAq and GrpdpAq. Now we de�ne φ
via the universal property of the pushout in the diagram

A

q

��$

qT � ,2

qS
_��

A
T

q̃S_�� φT

��

A
S q̃T

� ,2

φS +1

A
S_T

φ
�&
A1.

Obviously,
�
φ β
γ δ

�
is a morphism of double groupoids, the only one where

�
φ β
γ δ

�
�
�
q 1B

1C 1D

�
��

α β
γ δ

�
.

Proposition 4.6 follows as a straightforward consequence of this result; the main thing
to be done is to re�ect the bottom and the right re�exive graph in Figure 4.1 to internal
groupoids before applying Proposition 4.8.

5. Crossed squares of groups and internal crossed squares

Crossed squares are to double groupoids what crossed modules are to groupoids. Before
studying this principle in the semi-abelian context, we recall the de�nition in the category
of groups. The case of Lie algebras shall be treated much later, in Subsection 7.5.

5.1. Definition. [16, 24, 5] A crossed square (of groups) is a commutative square

P
pM ,2

pN
��

M

µ

��
N ν

,2 L

in Grp, together with actions of L on M , N and P (and hence actions of M on P
and N via µ, and of N on M and P via ν) and a function (not a group morphism!)
h : M �N Ñ P such that the following axioms hold:



1280 DAVIDE DI MICCO AND TIM VAN DER LINDEN

(X.0) hpmm1, nq � mhpm1, nqhpm,nq and hpm,nn1q � hpm,nqnhpm,n1q;

(X.1) the maps pM and pN preserve the actions of L, furthermore with the given actions

pM
µ
ÝÑ Lq, pN

ν
ÝÑ Lq and pP

µ�pM�ν�pNÝÝÝÝÝÝÝÑ Lq are crossed modules;

(X.2) pMphpm,nqq � mnm�1 and pNphpm,nqq �
mnn�1;

(X.3) hppMppq, nq � pnp�1 and hpm, pNppqq �
mpp�1;

(X.4) lhpm,nq � hplm, lnq;

for all l P L, m, m1 PM , n, n1 P N and p P P .
A map of crossed squares is given by four group morphisms which are compatible with

the actions and with the map h. Crossed squares and morphisms between them form the
category XSqrpGrpq.

5.2. Definition. [5] Given a pair of L-crossed modules pM
µ
ÝÑ L, ξMq and pN

ν
ÝÑ L, ξNq

in Grp, we have an action ξMN of M on N induced via µ and an action ξNM of N on M
induced via ν. We say that a map h : M � N Ñ P is a crossed pairing if the following
hold, for each m, m1 PM and n, n1 P N :

hpmm1, nq � hpmm1,mnqhpm,nq, hpm,nn1q � hpm,nqhpnm, nn1q.

5.3. Remark. Notice that if we have a crossed square, then the map h : M �N Ñ P is
actually a crossed pairing. Indeed, by using (X.4) and the fact that the actions involved
are induced from the actions of L, we can show the equivalence between condition (X.0)
and h being a crossed pairing, through the equalities

mhpm1, nq � µpmqhpm1, nq � hpµpmqm1, µpmqnq � hpmm1,mnq,
nhpm,n1q � νpnqhpm,n1q � hpνpnqm, νpnqn1q � hpnm, nn1q.

In Proposition 5.2 in [24], it is proved that De�nition 5.1 is equivalent to the concept
of a cat2-group. Using that crossed modules are equivalent to cat1-groups, that is using
the equivalences of categories

cat1-Grp � GrpdpGrpq � XModpGrpq,

we may view a crossed square as an internal crossed module in the category of crossed
modules of groups. This means that we have equivalences

XSqrpGrpq � cat2-Grp � Grpd2pGrpq � XModpXModpGrpqq.

In particular, the functor from Grpd2pGrpq to XSqrpGrpq is given by normalisation;
that is, given a double groupoid as in Figure 5.1 where the outer square is obtained by
taking kernels of the domain morphisms, the induced maps admit suitable internal actions
induced by the conjugation in A, making it a crossed square. Similarly, a morphism of
internal crossed squares is the (unique) normalisation of a morphism of double groupoids.

We return to the context of semi-abelian categories.
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P � ,2
kdT ,2

_��

kdW

��

KdL

dT ,2

cT
,2_��

kdL

��

KdR
eTlr

_��

kdR

��
KdU

dW

��

cW

��

� ,2
kdU

,2 A

dL

��

cL

��

dU ,2

cU
,2 BeUlr

dR

��

cR

��
KdD

eW

LR

� ,2
kdD

,2 C

eL

LR

dD ,2

cD
,2 D

eR

LR

eDlr

Figure 5.1: The normalisation of a double groupoid

5.4. Definition. In a semi-abelian category A that satis�es (SH), an internal crossed
square is an internal crossed module in XModpAq. This means that the category XSqrpAq
is de�ned as XModpXModpAqq.

We would like to have an explicit description of an internal crossed square as a diagram
in the underlying category A like in the case of groups, but this is far from straightforward.
Certainly any double groupoid can be normalised to a commutative square as in Figure 5.1,
and it is also possible to deduce suitable actions. The normalisation is the �underlying
commutative square� of the given crossed module of crossed modules, so we have a forgetful
functor. This raises the question, what kind of structure needs to be added to the square
so that this forgetful functor can be lifted to an equivalence. In other words, we are
confronted with a kind of descent problem. Part of the aim of the paper is to answer this
question, and we actually manage to provide partial answers in several special cases: the
concept of a weak crossed square�see Section 8�does it for groups, Lie algebras, and
the case where we �nd a pairing that happens to be a suitable regular epimorphism.

For now, let us consider a basic example and prove some preliminary results. In
Section 6 we use the idea of a crossed square in the de�nition of the non-abelian tensor
product.

5.5. Example. Given two normal subobjects M , N CL of an object L in a semi-abelian
category with (SH), the square induced by taking their intersection (the pullback of their
representing monomorphisms) carries a canonical crossed square structure. Indeed, by
taking cokernels, any pullback square of normal monomorphisms is seen to be part of a
3�3-diagram; replacing the kernels by kernel pairs we �nd a �denormalised 3�3-diagram�
as in [2]. If pR, r1, r2q and pS, s1, s2q denote the respective denormalisations of M and N
(the kernel pairs of the cokernels of their inclusions into L), then the upper left corner of
this diagram is a double equivalence relation as in Figure 5.2 on the left, which may be
constructed as the pullback on the right. Hence it is a double groupoid, which forgets by
normalisation to the given intersection of normal subobjects, viewed as crossed modules.
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R � S
πS2 ,2

πS1

,2

πR2

��

πR1

��

Slr

s2

��

s1

��
R

LR

r1 ,2

r2
,2 Llr

LR R � S
xπS1 ,π

S
2 y ,2

xπR1 ,π
R
2 y

��

S � S

xs1,s2y�xs1,s2y

��
R �R

xr1�r1,r2�r2y
,2 L4

Figure 5.2: The parallelistic double equivalence relation R � S and its construction

5.6. The diagonal internal crossed module in an internal crossed square.

We �nd ourselves in a semi-abelian category that satis�es (SH). Referring to Figure 5.1
we will write j for the diagonal of the upper left square, with pD,A, c, d, eq the re�exive
graph structure induced diagonally in the lower right square (c � cD�cL, d � dD�dL,
e � eL�eD) and λ � c�j.

Given an internal double groupoid as in Figure 5.1 we can de�ne an action of D on P
in the following di�erent ways:

� First of all we can de�ne it as the dotted arrow in the diagram

D5P

ξ

��

e5k ,2 A5A

χA

��

xdU ,dLy5xdU ,dLy,2 pB � Cq5pB � Cq

χpB�Cq
��

P � ,2
j

,2 A
xdU ,dLy

,2 B � C

(C)

where j � kdL�kdT � kdU �kdW is the kernel of xdU , dLy;

� next we induce it through any of the diagrams

D5P

ξ

��

eR5kdW ,2 B5KdU

ψU
��

dR5dW ,2 D5KdD

ψD
��

P � ,2
kdW

,2 KdU dW
,2 KdD

D5P

ξ

��

eD5kdT ,2 C5KdL

ψL
��

dD5dT ,2 D5KdR

ψR
��

P � ,2
kdT

,2 KdL dT
,2 KdR .

Notice that these three actions are uniquely determined by the universal property of the
kernels and that they are actually the same: indeed it su�ces to show that if such a ξ
makes one of the previous diagrams commute, then also the other does. This is easily
seen via the diagrams

D5P

ξ

��

eR5kdW ,2 B5KdU

ψU
��

eU 5kdU ,2 A5A

χA

��
P � ,2

kdW

,2 KdU
� ,2

kdU

,2 A

and

D5P

ξ

��

eD5kdT ,2 C5KdL

ψL
��

eD5kdL ,2 A5A

χA

��
P � ,2

kdT

,2 KdL
� ,2

kdL

,2 A.
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In each rectangle the square on the right commutes by Remark 2.3. Therefore, since kdU
and kdL are monomorphisms, the square on the left in each rectangle commutes if and
only if the corresponding outer rectangle does. These, however, coincide with the left
hand square in (C). Hence the three de�nitions are the same.

We can also de�ne an action of D on P in the following, a priori di�erent, way.
Consider the diagram

P � ,2
kdT ,2

l
!)

_��
kdW

��

KdL

��

KdL_��

kdL

��

KdU
,2 KdL _KdU� !)

kdL_kdU
!)

KdU
� ,2

kdU

,2 A.

Consider the diagonal split extension

KdL _KdU
� ,2 kd ,2 A

d ,2 D
e

lr

de�ned through Figure 5.1. Notice that KdL_KdU is the kernel of d (and kd � kdL _ kdU )
because of Lemma 4.7 and Lemma 2.4. Since kd�l is a normal monomorphism, we can
construct the diagram

P_��
l

��

� ,2
kd̂ ,2 Â

l�1D

��

d̂ ,2 D
ê

lr

KdL _KdU
� ,2

kd
,2 A

d ,2 D
e

lr

(D)

through Lemma 2.6 in [9], which gives us an action of D on P .

5.7. Lemma. The two internal actions de�ned above coincide.

Proof. In order to show this, it su�ces to prove that the equivalence ActpAq � PtpAq
sends the point constructed in (D) into the action ξ uniquely de�ned through the com-
mutativity of (C). To do this, consider the diagram

D5P

��

� ,2
kD,P ,2 D � Pv

ê
kd̂

w
��

v
1D
0

w
,2 D

iD
lr

P � ,2
kd̂

,2 Â
d̂ ,2 D.
ê

lr

Let us prove that kd̂�ξ �
v
ê
kd̂

w
�kD,P . The map l � 1D is a monomorphism since l is so,

therefore we need to show that pl � 1Dq�kd̂�ξ � pl � 1Dq�
v
ê
kd̂

w
�kD,P . The left hand side is
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equal to k�ξ which in turn (by de�nition of ξ) is χA�pe5kq, whereas the chain of equalities

pl � 1Dq�
v
ê
kd̂

w
�kD,P �

v
pl�1Dq�ê
pl�1Dq�kd̂

w
�kD,P �

v
e
k

w
�kD,P �

v
1A
1A

w
�pe� kq�kD,P

�
v

1A
1A

w
�kA,A�pe5kq � χA�pe5kq

gives us the right hand side.

5.8. Proposition. In the situation above, pP
λ
ÝÑ D, ξq is an internal crossed module.

Proof. Notice that if we de�ne ĉ � c�pl � 1Dq, then we have that ĉ�kd̂ � c�j � λ.
Therefore it su�ces to show that the �rst row in (D) is actually a groupoid, once it is
endowed with ĉ as a second leg. In order to prove this, since P � Kd̂, by Lemma 3.2 we
only need to show that rP,Kĉs is trivial. But Kĉ ¤ Kc implies rP,Kĉs ¤ rP,Kcs, hence it
su�ces that rP,Kcs � 0. This follows from the chain of inequalities of subobjects

rP,Kcs � rP,KcU _KcLs � rP,KcU s _ rP,KcLs _ rP,KcU , KcLs

¤ rKdU , KcU s _ rKdL , KcLs _ rKcU , KcU , As � 0_ 0_ 0 � 0

which we have by Lemma 4.7 and Proposition 2.9.

5.9. Proposition. Given a morphism of internal double groupoids

A

����

,2
,2 Blr

����

A1

����

,2
,2 B

1lr

����

�
α β
γ δ

�
,2

C

LR

,2
,2 D

LR

lr C 1

LR

,2
,2 D

1

LR

lr

consider the unique morphism of internal crossed squares induced between their normal-
isations, and denote ρ : P Ñ P 1 the upper-left component. Then

pP
λ
ÝÑ D, ξq

pρ,δq
ÝÝÝÑ pP 1 λ1

ÝÑ D1, ξ1q

is a morphism of internal crossed modules.

Proof. We want to show the commutativity of the diagrams

P

ρ

��

λ ,2 D

δ
��

P 1

λ1
,2 D1

and

D5P

δ5ρ
��

ξ ,2 P

ρ

��
D15P 1

ξ1
,2 P 1.

The �rst one is obvious by construction of the map ρ. For the second one we need to use
one of the explicit constructions for the actions ξ and ξ1, in particular the one depicted
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in (C). From this we construct the cube

D5P e5k ,2

ξ

��

δ5ρ

�$

A5A

χA

��

α5α

�$
D15P 1

e15k1
,2

ξ1

��

A15A1

χA1

��

P � ,2
k1

,2

ρ
�$

A

α

�$
P 1 � ,2

k1
,2 A1.

We want to prove that the face on the left commutes. Since we already know that every
other face commutes, this follows from the fact that k1 is a monomorphism.

6. Construction of the non-abelian tensor product

6.1. The case of groups. First of all, let us examine what happens in the category
Grp. The aim of this subsection is to explain how to obtain the non-abelian tensor product
of two coterminal crossed modules of groups, without passing through set-theoretical
constructions.

LetM and N be groups acting on each other via ξMN : M5N Ñ N and ξNM : N5M ÑM .
Denote mn the action of m PM on n P N , and nm the action of n P N on m PM .

6.2. Definition. [5] Given two groupsM and N acting on each other (and on themselves
by conjugation) we de�ne their non-abelian tensor product M bN as the group generated
by the symbols mb n for m PM and n P N , subject to the relations

pmm1q b n � pmm1 b mnqpmb nq mb pnn1q � pmb nqpnmb nn1q

for all m, m1 PM and n, n1 P N .

Although the above de�nition works for arbitrary actions, the main results of [5] that
we are interested in, always assume that those actions are compatible in a precise sense.
Such a pair of compatible actions pξMN , ξ

N
Mq is equivalent to the datum of a third object L

and two crossed module structures µ : M Ñ L and ν : N Ñ L; by [10], this is true both
in the case of groups and in the general semi-abelian setting. For the sake of simplicity,
from now on we will do the same: we shall always deal with non-abelian tensor products
of pairs of compatible actions, and we shall always assume that those actions are induced
by a pair of coterminal crossed modules. In particular, we formulate all de�nitions and
results in terms of crossed modules. For instance:

6.3. Remark. The tensor product of two L-crossed modules carries a natural L-crossed
module structure. Thus it may be seen as a bifunctor

b : XModLpGrpq �XModLpGrpq Ñ XModLpGrpq.
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0 ,2

��

0

��

0 ,2

��

M

µ

��

�
10 0
10 1L

�
,2

0 ,2 L 0 ,2 L

�
10 10
0 1L

�
��

�
0 1M
0 1L

�
��

0 ,2

��

0

��

M bN
πMbN
M ,2

πMbN
N

��

M

µ

��
�

0 0
1N 1L

�,2
N ν

,2 L N ν
,2 L

Figure 6.1: A pushout of crossed squares

The non-abelian tensor product satis�es a universal property which determines it: let
us recall Proposition 2.15 from [5].

6.4. Proposition. Let pM
µ
ÝÑ L, ξMq and pN

ν
ÝÑ L, ξNq be crossed modules, so that M

and N act on both M and N via L. Then there is a crossed square as on the left

M bN
πM ,2

πN
��

M

µ

��
N ν

,2 L

P
pM ,2

pN
��

M

µ

��
N ν

,2 L

where πMpm b nq � mnm�1, πNpm b nq � mnn�1 and hpm,nq � m b n. This crossed
square is universal in the sense that it satis�es the following two equivalent conditions:

(i) If the square on the right is another crossed square (with the same µ and ν),
then there is a unique morphism of crossed squares

�
φ 1M

1N 1L

�
from the left-hand

to the right-hand crossed square which is the identity on M , N and L and where
φ : M bN Ñ P .

(ii) The diagram of crossed squares in Figure 6.1 is a pushout in XSqrpGrpq.

We can reinterpret this result as a way to construct the non-abelian tensor product
MbN�namely, as the upper-left group in the pushout crossed square of Figure 6.1. This
process does not involve generators and relations and hence completely avoids the use of
set-theoretical tools. In order to generalise this construction to XSqrpAq we need the
description in Section 4 of pushouts of this kind in the category Grpd2pAq � XSqrpAq.
Again, here and in what follows, A is a semi-abelian category that satis�es (SH).
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C
dD ,2

cD
,2

1

��

1

��

DeDlr

1

��

1

��

D

1

��

1

��

1 ,2

1
,2 D1lr

1

��

1

��

B

dR

��

cR

��

1 ,2

1
,2 B1lr

dR

��

cR

��

�
eD 1D
eD 1D

�
lr

�
eR eR
1D 1D

�
,2

C

1

LR

dD ,2

cD
,2 DeDlr

1

LR

D

1

LR

1 ,2

1
,2 D

1

LR

1lr D

eR

LR

1 ,2

1
,2 D

eR

LR

1lr

Figure 6.2: The span induced by a pair of groupoids

Q

dL

��

cL

��

dU ,2

cU
,2M � LeUlr

dM

��

cM

��
N � L

eL

LR

dN ,2

cN
,2 L

eM

LR

eNlr

Figure 6.3: Pushout in RGpAq computed in A

6.5. Construction. In a semi-abelian category with (SH), consider internal L-crossed

modules pM
µ
ÝÑ L, ξMq and pN

ν
ÝÑ L, ξNq and their induced internal groupoid structures

N � ,2 kN ,2 N � L
dN ,2

cN
,2 L eM ,2eNlr M � L

dM
lr

cMlr
M.�lrkMlr

In Grpd2pAq, we construct the span of Figure 6.2; in order to compute its pushout, we
use the fact that the re�ector preserves colimits. This means that we see it as a diagram
in RG2pAq and compute its pushout there, via the pushout in A depicted in Figure 6.3.
In other words, Q � pM � Lq �L pN � Lq is the pushout of eM along eN , and the maps
dU , cU , dL and cL are de�ned via the universal property of the pushout:

dU �
v

1M�L

eM�dN

w
dL �

v
eN�dM
1N�L

w
cU �

v
1M�L

eM�cN

w
cL �

v
eN�cM
1N�L

w
.

Applying the left adjoint to Figure 6.3 we obtain the desired double groupoid in Figure 6.4,
indeed the pushout in Grpd2pAq of the span in Figure 6.2. Note that QMbN is given by

pM � Lq �L pN � Lq

rKdL , KcLs _ rKdU , KcU s
. (E)

By normalising this double groupoid (that is, by computing the kernels of the �domain�
morphisms and of the induced maps), we go back from Grpd2pAq to XSqrpAq obtaining
the internal crossed square in Figure 6.4. Using the equivalence XSqrpAq � Grpd2pAq
we now have that this crossed square is the pushout in XSqrpAq depicted in Figure 6.1.
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M bN � ,2 ,2
_��

��

KdL

,2
,2_��

��

Mlr
_��

��
KdU

����

� ,2 ,2 QMbN

dL

��

cL

��

dU ,2

cU
,2M � LeUlr

dM

��

cM

��
N

LR

� ,2 ,2 N � L

eL

LR

dN ,2

cN
,2 L

eM

LR

eNlr

Figure 6.4: Crossed square involving tensor

6.6. Definition. Given two internal L-crossed modules pM
µ
ÝÑ L, ξMq and pN

ν
ÝÑ L, ξNq

we de�ne their non-abelian tensor product M bN as the top left object in the square

M bN
πMbN
M ,2

πMbN
N

��
λ

�(

M

µ

��
N ν

,2 L

constructed above.

6.7. Proposition. The non-abelian tensor product M b N has an internal L-crossed

module structure, namely pM bN
λ
ÝÑ L, ξq, where the action ξ is de�ned as in 5.6.

Proof. This follows immediately from Proposition 5.8.

6.8. Proposition. Consider two L-crossed modules pM
µ
ÝÑ L, ξLMq, pN

ν
ÝÑ L, ξLNq, two L

1-

crossed modules pM 1 µ1
ÝÑ L1, ξ1L

1

M 1q, pN 1 ν1
ÝÑ L1, ξ1L

1

N 1 q and two morphisms of internal crossed
modules

pM
µ
ÝÑ L, ξLMq

pf,lq
ÝÝÑ pM 1 µ1

ÝÑ L1, ξ1L
1

M 1q, pN
ν
ÝÑ L, ξLNq

pg,lq
ÝÝÑ pN 1 ν1

ÝÑ L1, ξ1L
1

N 1 q.

Then there exists a unique morphism f b g : M b N Ñ M 1 b N 1 such that
�
fbg f
g l

�
is a

morphism of internal crossed squares.

Proof. Consider Figure 6.5, where φ is determined by the universal property of the
diagram in Figure 6.4: in particular φ is the only morphism which makes

�
φ f�l
g�l l

�
a

morphism of double groupoids. Since the other dotted maps are uniquely induced by
taking kernels, fbg is automatically the unique morphism such that

�
fbg f
g l

�
is a morphism

of internal crossed squares.
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M bN � ,2 ,2
_��

��

fbg

�$

pM bNq �M ,2
,2

_��

��

pfbgq�f

�$

Mlr
_��

��

f

�$
M 1 bN 1 � ,2 ,2

_��

��

pM 1 bN 1q �M 1 ,2
,2

_��

��

M 1lr
_��

��

pM bNq �N

����

� ,2 ,2

pfbgq�g

�$

QMbN

����

,2
,2

φ

�$

M � L

����

lr

f�l

�$
pM 1 bN 1q �N 1

����

� ,2 ,2 QM 1bN 1

����

,2
,2M 1 � L1

����

lr

N

LR

� ,2 ,2

g

�$

N � L

LR

g�l

�$

,2
,2 L

LR

lr

l

�$
N 1

LR

� ,2 ,2 N 1 � L1

LR

,2
,2 L1

LR

lr

Figure 6.5: Functoriality of the tensor product

6.9. Corollary. In the situation of Proposition 6.8,

pM bN
λ
ÝÑ L, ξq

pfbg,lq
ÝÝÝÝÑ pM 1 bN 1 λ1

ÝÑ L1, ξ1q

is a morphism of internal crossed modules. Hence the non-abelian tensor product is a
bifunctor b : XModLpAq �XModLpAq Ñ XModLpAq.

Proof. The �rst result applies Proposition 5.9 to the morphism
�
fbg f
g l

�
. The second

part is the particular case where l � 1L.

The tensor product operation is obviously commutative, up to isomorphism, by con-
struction; but it is not associative�see [13] for an argument in the case of Lie algebras;
see also Section 7.

6.10. Example. Consider the two crossed modules pN
ν
ÝÑ L, ξLNq and p0

0
ÝÑ L, τL0 q. Let

us compute their non-abelian tensor product. The induced internal groupoids are given
in the diagram

N � ,2 kN ,2 N � L
dN ,2

cN
,2 L 1L ,2eNlr L

1L
lr

1Llr
0�lr0lr

The double groupoid in Figure 6.3 hasM�L � L, which is easily seen to imply 0bN � 0.

The tensor product may be viewed (or de�ned) as an initial object in a certain category
of crossed squares.
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M bN � ,2 ,2
_��

��

φ

�$

pM bNq �M
,2
,2

_��

��

φ�1M

�$

Mlr
_��

��

P � ,2 ,2
_��

��

P �M ,2
,2_��

��

Mlr
_��

��

pM bNq �N

����

� ,2 ,2

φ�1N

�$

QMbN

����

,2
,2

φ0

�$

M � L

����

lr

P �N

����

� ,2 ,2 P0

����

,2
,2M � L

����

lr

N

LR

� ,2 ,2 N � L

LR

,2
,2 L

LR

lr

N

LR

� ,2 ,2 N � L

LR

,2
,2 L

LR

lr

Figure 6.6: The universal property of the non-abelian tensor product

6.11. Proposition. Consider an internal crossed square as on the left

P
pM ,2

pN
��

M

µ

��
N ν

,2 L

M bN πMbN
M

�%

πMbN
N

 )

φ

�(
P

pM ,2

pN
��

M

µ

��
N ν

,2 L

Then there exists a unique φ such that the diagram on the right commutes, making
�
φ 1M

1N 1L

�
a morphism of internal crossed squares.

Proof. We �rst shift to the internal double groupoid setting and construct the diagram
in Figure 6.6. Here φ0 is induced by the fact that the double groupoid involving QMbN

is de�ned as a pushout in Grpd2pAq, whereas the maps φ � 1M and φ � 1N are the
maps induced between the kernels and �nally φ is given by the front square in the upper-
left cube being a pullback. The fact that φ is the unique morphism making

�
φ 1M

1N 1L

�
a morphism of crossed squares comes from the fact that φ0 is the unique morphism such
that

�
φ0 1M�L

1N�L 1L

�
is a morphism of double groupoids.

7. Examples of the tensor product

In this section we consider three di�erent types of examples of the tensor product: �rst
we look at the case of two normal subobjects, viewed as crossed modules (7.2); then we
explore the other end of the spectrum: pairs of abelian objects acting trivially upon one
another (7.3); �nally in (7.5) we treat the non-abelian tensor product of Lie algebras.
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∆RS

πS2 ,2

πS1

,2

πR2

��

πR1

��

Slr

s2

��

s1

��
R

LR

r1 ,2

r2
,2 Llr

LR

Figure 7.1: The universal double equivalence relation ∆RS over R and S

We shall work in the context of an algebraically coherent [8] semi-abelian category A.
This means that the natural comparison morphism

v
1X5ιY
1X5ιZ

w
: X5Y � X5Z Ñ X5pY � Zq

is a regular epimorphism, for each choice of X, Y , Z P A�recall the de�nition of 5 given
in (B). All locally algebraically cartesian closed semi-abelian categories [15] are examples,
since then by de�nition, the comparison morphisms

v
1X5ιY
1X5ιZ

w
are isomorphisms. We �nd

groups, Lie algebras, crossed modules, cocommutative Hopf algebras. Next, all Orzech
categories of interest [30] are algebraically coherent.

All algebraically coherent semi-abelian categories satisfy (SH). More precisely, when-
ever M , N C L in an algebraically coherent semi-abelian category, the so-called Three
Subobjects Lemma rM,N,Ls � rM, rN,Lss_rN, rM,Lss implies that rM,N,Ls ¤ rM,N s.
Further convenient properties of algebraically coherent categories will be recalled below.

7.1. The Smith-Pedicchio commutator.We start with something which is not quite
an example, but very close to being one. Pedicchio's categorical approach to the Smith
commutator of equivalence relations (see [31, 33, 1]) involves a double equivalence rela-
tion as in Figure 7.1. Given equivalence relations R and S on an object L, the double
equivalence relation ∆RS is initial amongst all double equivalence relations over R and S.
(In the words of [31], it is the smallest such.) Thus, it satis�es part, but only part, of the
universal property depicted in Figure 6.6: it is initial among equivalence relations rather
than initial among double groupoids.

As explained to us by Cyrille Simeu, it is not hard to see that the corresponding
crossed square (where M and N C L are the respective normalisations of R and S and
all arrows are normal monomorphisms) has an upper left corner which is precisely the so-
called Ursini commutator rM,N sUL ofM and N in the sense of [26]. By the results of [18],
in the present, algebraically coherent context, this commutator coincides with rM,N s. So

rM,N s � ,2 ,2
_��

��

N_��
n

��
M � ,2

m
,2 L

is the initial crossed square of normal monomorphisms over m and n.
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7.2. Normal subobjects. We may now ask ourselves what is the tensor product of
two normal subobjects M , N CL in A. From the above it is not hard to deduce that this
tensor product must have rM,N s as a quotient. Let us give an alternative and slightly
more explicit explanation for this fact.

First of all, we know from Example 5.5 that the intersection of M and N is part of a
crossed square, so we have a canonical map h : MbN ÑM^N . Now in the computation
of the tensor product (the construction in 6.5, with in particular equation (E)), we have
to take (a quotient of) a certain pushout in A, which happens to be the sum over L of
the respective denormalisations R and S of M and N ; the intersection of the kernels KdL

and KdU
of the �rst projections dL and dU in this double re�exive graph (also called the

direction of the square of �rst projections dN �dL � dM �dU) is the underlying object of
the cosmash product R �L S of R and S over L, which (by Lemma 2.9 in [32]) in an
algebraically coherent setting is nothing but the cosmash product M � N of M and N .
The tensor productM bN is a quotient of this object, and h composed with the quotient
map is the canonical map M �N ÑM ^N .

Thus we see that the image of h : M bN ÑM ^N is rM,N s ¤M ^N . In particular,
h is far from being a regular epimorphism in general.

7.3. Abelian objects acting trivially on one another. Recall that Nil2pAq is
the full subcategory of A of the objects A where rA,A,As is trivial [18, 8]: this is the
Birkho� subcategory whose re�ector Nil2 : A Ñ Nil2pAq sends A to A{rA,A,As. When A
is algebraically coherent, rA,A,As � rrA,As, AsC A. We are going to prove:

7.4. Theorem. When A is an algebraically coherent semi-abelian category, for any pair
of abelian objects M and N acting trivially on one another we have M b N � M �2 N ,
where M �2 N is the cosmash product of M and N in the 2-nilpotent core Nil2pAq of A.

Via [25] this allows us to recover the result from [5] that when M and N are groups,
M bN �M bZ N . This also exhibits the bilinear product of [19] as a special case of the
non-abelian tensor product.

Proof of Theorem 7.4. The construction of the tensor product tells us that we should
consider the crossed modulesM Ñ 0 and N Ñ 0, which correspond to the re�exive graphs
M and N on the object 0. Here we use that M and N are abelian as in Example 3.6.
Hence the tensor product is the normalisation of the internal groupoid obtained from the
quotient of the sumM �N by the join of commutators J � rN5M,N5M s_rM5N,M5N s
as in Figure 7.2. Further note that

rM,N s �M �N � pM5Nq ^ pN5Mq ¤M �N.

In fact, M b N � pM � Nq{J , because indeed J factors through both M5N and N5M ,
as we shall see, and so it factors through their intersection M � N as well. Since, as
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M bN � ,2 ,2
_��

��

M5N
J ,2

,2

_��

��

Nlr

N5M
J

�� ��

� ,2 ,2 M�N
J

�� ��

,2
,2
N

�� ��

lr

M

LR

M ,2
,2

LR

0lr

LR

Figure 7.2: Tensor product of abelian objects

Nil2pM �Nq � Nil2pMq �2 Nil2pNq, we have the 3� 3 diagram

rM �N,M �N,M �N s � ,2 ,2
_��

��

rM �N,M �N,M �N s � ,2
_��

��

0_��

��
M �N � ,2 ,2

_��

M �N � ,2

_��

M �N

_��
M �2 N

� ,2 ,2 Nil2pMq �2 Nil2pNq
� ,2M �N,

it now su�ces to prove that J coincides with rM �N,M �N,M �N s in order to show
that M bN �M �2N . So let us compare the two. First of all, by algebraic coherence we
can write rM �N,M �N,M �N s � rrM �N,M �N s,M �N s. We use Proposition 2.9
on the latter commutator. Since the kernel and the splitting in the split short exact
sequence (B) are jointly extremal-epimorphic, we have M �N � pM5Nq _M ; from the
split short exact sequence

0 ,2 N �M � ,2 ,2M5N

v
0

1N

w
�kM,N� ,2N ,2
ηMN

lr 0

we deduce M5N � pN �Mq _N ; whence

rM �N,M �N s � rM5N,M �N s _ rM,M �N s _ rM5N,M,M �N s

� rM5N,M5N s _ rM5N,M s _ rM5N,M5N,M s

� rM5N,M5N s _ rM5N,M s

� rM5N,M5N s _ rrN,M s _N,M s

� rM5N,M5N s _ rrN,M s,M s _ rN,M s _ rrN,M s, N,M s

� rM5N,M5N s _ rN,M s.
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Note that

rrN,M s,M �N s � rrN,M s,M5N _N5M s

� rrN,M s,M5N s _ rrN,M s, N5M s _ rrN,M s,M5N,N5M s

¤ rM5N,M5N s _ rN5M,N5M s _ rM5N,M5N,M �N s

� rM5N,M5N s _ rN5M,N5M s,

so that

rrM �N,M �N s,M �N s

� rrM5N,M5N s _ rN,M s,M �N s

� rrM5N,M5N s,M �N s _ rrN,M s,M �N s _ rrM5N,M5N s, rN,M s,M �N s

¤ rM5N,M5N s _ rN5M,N5M s _ rM5N,M5N,M �N s

� rM5N,M5N s _ rN5M,N5M s.

Conversely, rN5M,N5M s � rrN,M s _M,N5M s is

rrN,M s, N5M s _ rM,N5M s _ rrN,M s,M,N5M s,

whose terms are all contained in rM �N,M �N,M �N s, because

rM,N5M s � rM, rN,M s _M s � rM, rN,M ss _ rM,M s _ rM, rN,M s,M s

and M is abelian.

7.5. Lie algebras. The aim of this subsection is to show that the non-abelian tensor
product of Lie algebras de�ned in [13] coincides with the general de�nition of non-abelian
tensor product when A � LieR, for any given commutative ring R. In order to do that
we need to recall some de�nitions and results from [13, 7].

From now on we will assume that M and N are two Lie algebras with crossed module
structures on a common Lie algebra L, since in [10] it is shown that this is the same as
having two compatible actions of Lie algebras.

7.6. Definition. [13] Given two R-Lie algebras M and N acting on each other, their
non-abelian tensor product M bLie N is the Lie algebra generated by the symbols m b n
with m PM and n P N , subject to the relations

� pλmq b n � λpmb nq � mb pλnq,

� pm�m1q b n � mb n�m1 b n and mb pn� n1q � mb n�mb n1,

� rm,m1s b n � mb pm
1
nq �m1 b pmnq and mb rn, n1s � pn

1
mq b n� pnmq b n1,

� rmb n,m1 b n1s � �pnmq b pm
1
n1q,

for all λ P R, m, m1 PM and n, n1 P N .
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7.7. Definition. [13] Given two R-Lie algebras M and N acting on each other, and a
third Lie algebra P , we say that a bilinear function h : M �N Ñ P is a Lie pairing if

1. hprm,m1s, nq � hpm,m
1
nq � hpm1,mnq,

2. hpm, rn, n1sq � hpn
1
m,nq � hpnm,n1q,

3. hpnm,m
1
n1q � �rhpm,nq, hpm1, n1qs,

for all m, m1 P M and n, n1 P N . The Lie pairing h is said to be universal if for any
other Lie pairing h1 : M � N Ñ P 1 there exists a unique Lie homomorphism φ : P Ñ P 1

such that φ�h � h1.

7.8. Proposition. [Proposition 1 in [13]] Given two R-Lie algebras M and N acting on
each other, h : M �N ÑM bLie N : pm,nq ÞÑ mb n is a universal Lie pairing.

Hence the non-abelian tensor product M bLie N of two Lie algebras acting on each
other is characterised (up to isomorphism) as the codomain of their universal Lie pairing.

7.9. Definition. [12, 7] A crossed square in LieR is a commutative square of Lie algebras

P
pM ,2

pN
��

M

µ

��
N ν

,2 L

endowed with Lie actions of L on P , M and N (and hence Lie actions of M on N and P
via µ, and of N on M and P via ν) and a function h : M �N Ñ P such that

(X.0) h is bilinear and satis�es

hprm,m1s, nq � mhpm1, nq � m1

hpm,nq, hpm, rn, n1sq � nhpm,n1q � n1hpm,nq;

(X.1) pM and pN are L-equivariant, and

pM
µ
ÝÑ L, ξMq, pN

ν
ÝÑ L, ξNq, pP

µ�pM�ν�pNÝÝÝÝÝÝÝÑ L, ξP q

are crossed modules;

(X.2) pMphpm,nqq � �nm and pNphpm,nqq �
mn;

(X.3) hppMppq, nq � �np and hpm, pNppqq �
mp;

(X.4) lhpm,nq � hplm,nq � hpm, lnq;

for all l P L, m, m1 PM , n, n1 P N and p P P .

7.10. Lemma. [Theorem 30 in [7]] Lie crossed squares, as just de�ned, coincide with
internal crossed squares in the category LieR.
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7.11. Lemma. [23] For a pair of crossed modules pM
µ
ÝÑ L, ξMq and pN

ν
ÝÑ L, ξNq, the

square

M bLie N
ρM ,2

ρN
��

M

µ

��
N ν

,2 L

in LieR, with ρM and ρN de�ned via ρMpmb nq � �nm, ρNpmb nq � mn endowed with

� the actions ξM and ξN ,

� the action of L on M bLie N given by lpmb nq� plmq b n�mb plnq,

� the map h : M �N ÑM bN de�ned in Proposition 7.8,

is a crossed square (in the sense of De�nition 7.9).

7.12. Proposition.When A � LieR, the non-abelian tensor product MbN as in De�n-
ition 6.6 coincides with the tensor product of Lie algebras M bLie N from De�nition 7.6.

Proof. The �rst step is to construct a Lie pairing from M �N to M bN . We consider
Figure 6.4 and denote with jM and jN the diagonal inclusions of M and N in QMbN . We
are going to de�ne a function h from M �N to QMbN , and show that it factors through
M bN as h : M �N ÑM bN . Then we prove that it is a Lie pairing.

Since we are in LieR we can de�ne h directly on the elements by imposing hpm,nq�
rjMpmq, jNpnqs. To prove that it factors through M bN it su�ces that dU �h � 0 � dL�h,
the rest being trivial since M b N is the pullback of the kernels KdU

and KdL
. This is

done through the equalities

dUhpm,nq � dUprjMpmq, jNpnqq � rdUjMpmq, dUjNpnqs � rdUjMpmq, 0s � 0

and

dLhpm,nq � dLprjMpmq, jNpnqsq � rdLjMpmq, dLjNpnqs � r0, dLjNpnqs � 0.

Thus we obtain h : M � N Ñ M b N . Let us prove that it is a Lie pairing. For 1. we
have the chain of equalities

hprm,m1s, nq � rjMprm,m
1sq, jNpnqs � rrjMpmq, jMpm

1qs, jNpnqs

� �rrjMpm
1q, jNpnqs, jMpmqs � rrjNpnq, jMpmqs, jMpm

1qs

� rjMpmq, rjMpm
1q, jNpnqss � rjMpm

1q, rjMpmq, jNpnqss

� rjMpmq, jNp
m1

nqs � rjMpm
1q, jNp

mnqs � hpm,m
1

nq � hpm1,mnq

and a similar one shows 2.; for 3. we have

hpnm,m
1

n1q � rjMp
nmq, jNp

m1

n1qs � rrjNpnq, jMpmqs, rjMpm
1q, jNpn

1qss

� �rrjMpmq, jNpnqs, rjMpm
1q, jNpn

1qss � �rhpm,nq, hpm1, n1qs.
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By Proposition 7.8 we may take a universal Lie pairing h̃. This provides us with a
unique morphism ψ such that the triangle

M �N
h

z�
h̃

�$
M bN

φ
,2M bLie N.

ψlr
(F)

commutes. We next show that there is a unique φ such that φ�h � h̃. This then implies
that φ and ψ are each other's inverse, so that M bN �M bLie N .

We use Lemma 7.11 which tells us that the non-abelian tensor product M bLie N
induces a crossed square of Lie algebras

M bLie N ,2

��

M

��
N ,2 L

in the sense of De�nition 7.9. By Lemma 7.10 we know that De�nition 5.4 in LieR
coincides with De�nition 7.9 and hence we can use the universal property of M b N�
Proposition 6.11�which gives us the needed unique morphism φ : M b N Ñ M bLie N
such that (F) commutes.

Hence from now on we may write ρM and ρN as πMbN
M and πMbN

N , respectively.

8. Internal crossed squares through the non-abelian tensor product

The aim of this section is to generalise the explicit description of crossed squares of groups
(given in De�nition 5.1) and Lie algebras (given in De�nition 7.9) to the semi-abelian case,
without passing through the double groupoid formalism. In order to do so, we use the
construction of the non-abelian tensor product, �rst in the categories Grp and LieR, and
then in a general A (which is semi-abelian with (SH)). We call the object we obtain a weak
crossed square, and we prove that weak crossed squares are the same as crossed squares in
Grp or LieR. We then show that in the semi-abelian context, each double groupoid gives
rise to a weak crossed square. The converse is still an open question: the aim would be to
�nd suitable conditions on the surrounding category under which we have an equivalence.
Under such conditions we have an explicit description of what is a crossed square.

The idea behind this internalisation is given by a bijection introduced in [5] (see their
De�nition 2.2 and following): the authors say that, given a pair of compatible group
actions, to each crossed pairing h : M � N Ñ P corresponds a group homomorphism
h� : M bN Ñ P de�ned by h�pmb nq � hpm,nq. From now on we will write h for both
these maps, since there is no risk of confusion.

Using this hint as the basis of our reasoning we give the following de�nition.
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8.1. Definition. Let A be a semi-abelian category that satis�es (SH). An (internal) weak
crossed square in A is given by a commutative square

P

λ

�%

pM ,2

pN
��

M

µ

��
N ν

,2 L

in A, together with internal actions

ξLM : L5M ÑM ξLN : L5N Ñ N ξLP : L5P Ñ P

and a morphism h : M bN Ñ P such that the following axioms hold:

(W.1) the maps pM and pN are equivariant with respect to the L-actions: the squares

L5P
ξLP ,2

1L5pM
��

P

pM

��
L5M

ξLM

,2M

L5P
ξLP ,2

1L5pN
��

P

pN

��
L5N

ξLN

,2 N

commute; furthermore, pM
µ
ÝÑ L, ξLMq, pN

ν
ÝÑ L, ξLNq and pP

λ
ÝÑ L, ξLP q are L-crossed

modules;

(W.2) the diagram

M bN
πMbN
M

!*

πMbN
N

u}
h
��

N P pM
,2

pN
lr M

commutes;

(W.3) the diagram

P bN
pMb1N ,2

πPbNP #+

M bN

h
��

M b P
1MbpNlr

πMbP
Ps{

P

commutes;

(W.4) the map h is equivariant with respect to the action ξLMbN : L5pM bNq Ñ M bN
(induced as in Remark 5.6); that is, the square

L5pM bNq

1L5h
��

ξLMbN ,2M bN

h
��

L5P
ξLP

,2 P

commutes.
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A morphism of weak crossed squares

P
pM ,2

pN

��

M

µ

��

P 1
p1
M 1 ,2

p1
N 1

��

M 1

µ1

��

�
p f
g l

�
,2

N ν
,2 L N 1

ν1
,2 L1

is given by a quadruple of morphisms

p : P Ñ P 1 f : M ÑM 1 g : N Ñ N 1 l : LÑ L1

such that the obvious cube commutes and the h-maps are respected; that is, the square

M bN
fbg ,2

h
��

M 1 bN 1

h1

��
P p

,2 P 1

commutes as well.

8.2. Remark. From the three L-actions ξLM , ξLN and ξLP we construct the actions ξMP , ξNP ,
ξMN and ξNM through the diagrams

M5P

ξMP �'

µ51P ,2 L5P

ξLPx�
P

N5P

ξNP �'

ν51P ,2 L5P

ξLPx�
P

M5N

ξMN �'

µ51N ,2 L5N

ξLNw�
N

N5M

ξNM �'

ν51M ,2 L5M

ξLMw�
M

Condition (W.1) implies that also pP
pMÝÝÑM, ξMP q and pP

pNÝÑ N, ξNP q are crossed modules.
This is an application of the following lemma.

8.3. Lemma. Let A be a semi-abelian category with (SH). Consider a triangle

P
p ,2

λ �$

M

µz�
L
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with internal crossed module structures pM
µ
ÝÑ L, ξLMq and pP

λ
ÝÑ L, ξLP q, and the induced

action ξMP � ξLP �pµ51P q. If p is equivariant with respect to the L-actions, i.e., the square

L5P
ξLP ,2

1L5p
��

P

p

��
L5M

ξLM

,2M

commutes, then also pP
p
ÝÑM, ξMP q is an internal crossed module.

Proof. We need to show the commutativity of the squares

P 5P
χP ,2

p51P
��

P

M5P
ξMP

,2 P

M5P
ξMP ,2

1M 5p
��

P

p

��
M5M χM

,2M.

For the left one we have the chain of equalities

ξMP �pp51P q � ξLP �pµ51P q�pp51P q � ξLP �pλ51P q � χP ,

and we have

p�ξMP � p�ξLP �pµ51P q � ξLM �p1L5pq�pµ51P q � ξLM �pµ51Mq�p1L5pq � χM �p1L5pq

for the right one.

8.4. Proposition. If A � Grp, then weak crossed squares are the same as internal
crossed squares, that is the group version of De�nition 8.1 is equivalent to De�nition 5.1.

Proof. As explained in [5], given a crossed pairing h : M �N Ñ P (see Remark 5.3), we
can decompose it as

M �N

h �$

�b� ,2M bN

h�z�
P

where the horizontal map, which sends pm,nq to m b n, is called the universal crossed
pairing, whereas h� is a morphism of groups. Vice versa, we can associate a crossed
pairing h��p�b�q to every morphism of groups h� : MbN Ñ P . This means that giving
a crossed pairing amounts to giving a morphism out of the non-abelian tensor product.
For the sake of simplicity, we are going to denote both of them as h.

Notice that (W.1) is precisely the internal reformulation of (X.1), which makes them
equivalent. Let us prove that (X.2) ô (W.2). The only non-trivial step is given by the
explicit description

πMbN
M pmb nq � mnm�1, πMbN

N pmb nq � mnn�1
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for the projection maps: for further details see Proposition 2.3.b in [5]. Using these
equations together with pMphpm b nqq � pMphpm,nqq and pNphpm b nqq � pNphpm,nqq
we obtain the desired equivalence.

Similarly, in order to show (X.3) ô (W.3), we use the equations#
πPbNP ppb nq � pnp�1,

πMbP
P pmb pq � mpp�1,

#
hppMppq b nq � hppMppq, nq,

hpmb pNppqq � hpm, pNppqq.

We have already explained that, whenever (X.4) holds, (X.0) is equivalent to the require-
ment that h : M � N Ñ P is a crossed pairing, and that this is in turn equivalent to
having a morphism h : M bN Ñ P .

Finally, to show that (X.4) ô (W.4), we �rst take the action ξLMbN as de�ned in
Remark 5.6: in the particular case of groups it can be described through the equation

lpmb nq � plmq b plnq.

(For more details about this action see Proposition 2.3.a in [5]). Then the equations

lhpmb nq � lhpm,nq, hplmb lnq � hplm, lnq

prove our claim.

8.5. Remark. Consider a crossed square of groups as in De�nition 5.1: according to Pro-
position 6.11 we have a unique morphism φ : MbN Ñ P such that

�
φ 1M

1N 1L

�
is a morphism

of crossed squares. In particular this map φ is the same as the map h : M bN Ñ P in-
duced by the crossed pairing h : M �N Ñ P . To see this, it su�ces to show that

�
h 1M

1N 1L

�
is again a morphism of crossed squares: following the description of morphisms given in
De�nition 8.1, this amounts to proving that hmakes the outer cube in Figure 6.6 commute
as well as the diagram

M bN M bN

h
��

M bN
h

,2 P.

The latter is trivial, and the former is given by condition (W.2).

Using the same reasoning as in the last remark we can deduce that, if there is a
way to show the equivalence between the notion of weak crossed square and the one of
internal crossed square, then the morphism h : M b N Ñ P has to be the one given by
Proposition 6.11.

8.6. Proposition. In A � LieR, weak crossed squares are the same as internal crossed
squares, so that the Lie algebra version of De�nition 8.1 coincides with De�nition 7.9.
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Proof. Let us compare condition (X.0)�(X.4) as in De�nition 7.9 with condition (W.1)�
(W.4) as in De�nition 8.1.

As follows from Proposition 7.8, having a function h : M � N Ñ P such that (X.0)
holds (that is a Lie pairing) is the same as having a morphism h� : M b N Ñ P (from
now on denoted again with h).

Notice that (W.1) is precisely the internal reformulation of (X.1), and hence they are
clearly equivalent. The equivalence (X.2) ô (W.2) is given by the equivalence between
the systems#

πMbN
M pmb nq � pMphpmb nqq,

πMbN
N pmb nq � pNphpmb nqq,

#
�nm � pMphpm,nqq,
mn � pNphpm,nqq,

which in turn is obtained via the explicit description of the maps πMbN
M and πMbN

M in
the Lie algebra case. Similarly, in order to show (X.3) ô (W.3), we use the equivalence
between the systems#

πPbNP ppb nq � hpppN b 1Nqppb nqq,

πMbP
P pmb pq � hpp1M b pMqpmb pqq,

#
hppMppq, nq � �np,

hpm, pNppqq �
mp.

Finally, to show that (X.4) ô (W.4), we �rst consider the action ξLMbN as de�ned in
Remark 5.6: in the particular case of Lie algebras it can be described through the equation

lpmb nq � plmq b n�mb plnq.

Then we use the equivalent equalities

hplpmb nqq � lphpmb nqq

ô hplmb n�mb lnq � lphpmb nqq

ô hplmb nq � hpmb lnq � lphpmb nqq

ô hplm,nq � hpm, lnq � lphpm,nqq

to �nish the proof.

We return to the context of a semi-abelian category A that satis�es (SH).

8.7. Proposition. An internal crossed square is automatically a weak crossed square,
that is De�nition 5.4 implies De�nition 8.1.

Proof. Consider a normalisation of an internal double groupoid as in Figure 8.1. Let us
start by �xing the basic ingredients. We de�ne the maps pM � cT �kdT , pN � cW �kdW and
λ� c�k. The actions ξLM and ξLN are already given, whereas ξLP and ξLMbN are constructed
as in (D) and h : M b N Ñ P is given by Proposition 6.11. Now we are ready to show
the properties of these objects.

For (W.1), we already know by hypothesis that pM
µ
ÝÑ L, ξLMq and pN

ν
ÝÑ L, ξLNq are

crossed modules. The fact that also pP
λ
ÝÑ L, ξLP q is so, is given by Proposition 5.8. It
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P � ,2
kdT ,2

k

�$

_��

kdW

��

P �M
dT ,2

cT
,2_��

kdL

��

MeTlr
_��

kdR

��
P �N

dW

��

cW

��

� ,2
kdU

,2 QP

dL

��

cL

��

dU ,2

cU
,2

d

�$

c

�$

M � LeUlr

dR

��

cR

��
N

eW

LR

� ,2
kdD

,2 N � L

eL

LR

dD ,2

cD
,2 L

eR

LR

eDlr

e

Zd

Figure 8.1: An internal double groupoid and its normalisation

remains to be shown that pM : P Ñ M is equivariant with respect to these actions; then
for pN the reasoning is entirely similar. Consider the diagram

P

pM

��

_��

l

��

k

�$

� ,2
kd̂ ,2 xQP

l�1L

��

d̂ ,2 L
ê

lr

Kd

φ

��

� ,2 kd ,2 QP

dU

��

d ,2 L
e

lr

M � ,2
kdR

,2M � L
dR ,2 L
eR

lr

where the two top squares are the ones de�ning the action ξLP , whereas the dotted map
is induced by the fact that M is the kernel of dR. In order to show that ppM , 1Lq is a
morphism of split extensions from the top row to the bottom one (and hence an equivariant
map), it su�ces that pM � φ�l, since each square commutes: this is done using the chain of
equalities kdR�φ�l � dU �kd�l � dU �k � kdR�pM and the fact that kdR is a monomorphism.

Condition (W.2) is already given by de�nition of the map h. In order to show (W.3)
it su�ces that

M b P
πMbP
M ,2

πMbP
P

��

M

µ

��

P
pM ,2

pN

��

M

µ

��

�
πMbP
P 1M
pN 1L

�
,2�

h�p1MbpN q 1M
pN 1L

� ,2
P

λ
,2 L N ν

,2 L

are both morphisms of crossed squares, so that the claim follows from Proposition 6.11:
the universal property ofMbP (and similarly for PbN). The map πMbP

P clearly satis�es
the universal property depicted in Proposition 6.11 and therefore it induces the morphism
of crossed squares on the top. The second one is obtained as the composition�

h�p1MbpN q 1M
pN 1L

�
�
�
h 1M

1P 1L

�
�
�

1MbpN 1M
pN 1L

�
.
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L5pM bNq � ,2 ,2

ξLMbN

��

1L5h

�$

L� pM bNq ,2

��

1L�h

�$

Llr

L5P � ,2 ,2

ξLP

��

L� P ,2

��

Llr

M bN_��

��

� ,2 ,2

h

�$

{QMbN

��

,2

pφ

�$

Llr

P_��

��

� ,2 ,2 xQP

��

,2 Llr

AMbN
� ,2 ,2

φ

�$

QMbN

φ

�$

,2 Llr

AP
� ,2 ,2 QP

,2 Llr

Figure 8.2: Checking condition (W.4)

The �rst one is a morphism of crossed squares by de�nition of 1bpN , whereas the second
one is so by de�nition of h (and by Remark 8.5).

It remains to be shown that (W.4) holds and to do so, consider Figure 8.2. We want
to prove that the top square in the left face commutes. Notice that by de�nition of φ
and φ we already know that the squares on the bottom face commute, and similarly, by
de�nition of h the bottom square on the left face commutes. The two lower cubes then
commute by construction of {QMbN , xQP and φ̂ (see Lemma 2.6 in [9]). This means that
ph, 1Lq is a morphism between the lifted points and therefore h is equivariant.

8.8. When is a weak crossed square a crossed square? It remains an open
question whether the converse of Proposition 8.7 holds; a stronger condition on the base
category A might be necessary for this to be the case.

We have a partially positive answer in the situation where h happens to be a regular
epimorphism: such a weak crossed square is always a crossed square, as soon as in the
induced diagram of Figure 8.3, the kernel of h is normal in QMbN .

Note, however, that examples of crossed squares exist where the induced h is not a
regular epimorphism�see for instance Subsection 7.2. For this reason, what follows here
can only ever be a partial answer to the question.

As it turns out, a double groupoid as in Figure 8.1 gives rise to a regular epimorphic h
(whose kernel is necessarily normal in QMbN) if and only if the morphisms eL and eU
are jointly extremal-epimorphic. Indeed, the latter condition holds if and only if the
morphism h̃ in Figure 8.3 is a regular epimorphism. We may then use the idea contained
in the following remark.
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M bN � ,2 ,2
_��

��

h

��$

pM bNq �M
,2
,2

_��

��

h�1M

��$

Mlr
_��

��

P � ,2 ,2
_��

��

P �M ,2
,2_��

α

��

Mlr
_��

��

pM bNq �N

����

� ,2 ,2

h�1N

��$

QMbN

����

,2
,2

h̃

�$

M � L

����

lr

P �N

����

� ,2
β

,2 Q1

����

,2
,2M � L

����

lr

N

LR

� ,2 ,2 N � L

LR

,2
,2 L

LR

lr

N

LR

� ,2 ,2 N � L

LR

,2
,2 L

LR

lr

Figure 8.3: The crossed square induced by a regular epic h

8.9. Remark. Suppose for the moment that the front face in Figure 8.3 is already an
internal crossed square. Then both squares in the diagram

M bN ,2

h
_��

pM bNq �M

h�1M_��

,2 QMbN

h̃_��
P ,2 P �M α

,2 Q1

(G)

are pullbacks (by item 1. of Lemma 4.2.4 in [1]) and hence the outer rectangle is so.
By item 2. of Lemma 4.2.4 in [1], this implies that Kh � Kh̃, but since h̃ is a regular
epimorphism if and only if so is h (by applying the Short 5-Lemma twice), it is the cokernel
of its kernel: this means that Q1 can be described as the cokernel of the inclusion of Kh

into QMbN . Furthermore, this inclusion is normal.

Conversely, when h is a regular epimorphism and the kernel of h is normal in QMbN ,
we can construct the object Q1 and the dotted arrows in Figure 8.3 so that the double
re�exive graph in the front face is an internal double groupoid:

8.10. Theorem. In a semi-abelian category that satis�es (SH), a weak crossed square
where h is a regular epimorphism is also an internal crossed square�that is, De�nition 8.1
implies De�nition 5.4 in that case�as soon as in the induced diagram of Figure 8.3, the
kernel of h is normal in QMbN .
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Proof. By using the idea in the previous remark we de�ne Q1 as the cokernel of γ�kh,
where γ is the composition depicted in the �rst row of (G). In particular we obtain that

M bN
γ ,2

h
_��

QMbN

h̃_��
P

γ1
,2 Q1

(H)

is a pushout. Since Q1 is the cokernel of γ�kh, from dU �γ � 0 � dL�γ we �nd unique
morphisms d1U : Q1 Ñ M � L, d1L : Q1 Ñ N � L such that d1U �h̃ � dU and d1L�h̃ � dL.
Similarly, by using the universal property of the pushout (H) we obtain unique morphisms
c1U : Q1 Ñ M � L, c1L : Q1 Ñ N � L such that c1U �h̃ � cU and c1L�h̃ � cL. Then we de�ne
e1U � h̃�eU and e1L � h̃�eL. With these data we already have that pQ1,M � L, d1U , c

1
U , e

1
Uq

and pQ1, N�L, d1L, c
1
L, e

1
Lq are re�exive graphs. Since they are quotients of groupoids, they

are groupoids as well. In particular, the square of groupoids involving them is a double
groupoid: this can be shown by proving the commutativity of each of the nine squares by
using the fact that h̃ is a regular epimorphism.

We still need to construct morphisms α : P �M Ñ Q1 and β : P � N Ñ Q1 making
Figure 8.3 commute, and show that α � kd1L and β � kd1U . We are going to construct α
only, since a symmetric strategy works for β. Let us �rst of all notice that the square

M � pM bNq

v
eU�k

L
M

γ

w
,2

1�h
��

QMbN

h̃
��

M � P v
e1U�k

L
M

γ1

w ,2 Q1

(I)

is commutative by de�nition of e1U and the commutativity of (H). Also the triangle

M � pM bNq

v
eU�k

L
M

γ

w
#+

σ
ξM
MbN ,2 pM bNq �M

kdLs{
QMbN

(J)

commutes, since

M

kLM
��

eT ,2 pM bNq �M

kdL
��

M � L eU
,2 QMbN

and

M bN

γ
 )

kdT ,2 pM bNq �M

kdLs{
QMbN
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do. Now we can use the de�nition of the semidirect product P �M as a coequaliser to
obtain the dotted arrow α in the commutative diagram of solid arrows

M5pM bNq

1M 5h

_��

kM,MbN ,2

iMbN�ξ
M
MbN

,2M � pM bNq

1M�h

_��

σ
ξM
MbN ,2

v
eU�k

L
M

γ

w
#+

pM bNq �M

h�1M

��

kdLs{
QMbN

h̃

��

M5P
kM,P ,2

iP �ξ
M
P

,2M � P
σ
ξM
P ,2

v
e1U�k

L
M

γ1

w
#+

P �M.

α

s{
Q1

In particular we need to show that
v
e1U�k

L
M

γ1

w
coequalises kM,P and iP �ξ

M
P : this is done by

precomposing with the regular epimorphism 1M5h and by using the commutativity of (I)
and (J). In a similar way we build β : P �N Ñ Q1. Let us now show that every square
in Figure 8.3 involving α and β commutes. Indeed, we already know that the square

pM bNq �M
kdL ,2

h�1
��

QMbN

h̃
��

P �M α
,2 Q1

commutes by construction and similarly for the one involving β; the square

P

γ1

 )

kMP ,2

kNP
��

P �M

α

��
P �N

β
,2 Q1

commutes by construction of α and β; �nally we need to show that the two right-pointing
squares and the left-pointing square in

P �M

α

��

dMP ,2

cMP

,2MeMP
lr

kLM

��
Q1

d1U ,2

c1U

,2M � Le1U
lr

commute. For the left-pointing one we have the chain of equalities

α�eMP � α�σξMP
�iM �

v
e1U�k

L
M

γ1

w
�iM � e1U �k

L
M ,
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whereas for the right-pointing ones we need to compose with the regular epimorphism σξMP
to obtain

d1U �α�σξMP �
v
d1U�e

1
U
�kLM

d1U�γ
1

w
�
v
kLM
0

w
� kLM

v
1M
0

w
� kLM �dMP �σξMP ,

c1U �α�σξMP �
v
c1U�e

1
U�k

L
M

c1U�γ
1

w
�
v kLM
kLM�pM

w
� kLM �

v
1M
pM

w
� kLM �cMP �σξMP .

Finally we can repeat this argument for the corresponding squares involving β.
It remains to be shown that α � kd1L (and similarly that β � kd1U ): to do this, we

�rst show that d1L is the cokernel of α and then that α is a normal monomorphism, which
implies the claim. The �rst step is easily done by checking the universal property of the
cokernel through the diagram

pM bNq �M
kdL ,2

h�1M
��

QMbN
dL ,2

h̃
��

N � L

P �M α
,2 Q1

d1L

,2 N � L

and the universal property of the cokernel dL.
If the kernel of h is normal in QMbN , then (H)�which is precisely the outer rectangle

in (G)�is a pullback by [1, Lemma 4.2.4]. For the same reason, also the left hand side
square in (G) is a pullback. Since h�1M is a regular epimorphism, Proposition 4.1.4 in [1]
now implies that the right hand side square in (G) is a pullback. Since A is protomodular,
pullbacks re�ect monomorphisms; since kdL is a monomorphism, so is α. Furthermore, α
is normal as a direct image of the normal monomorphism kdL , which implies our claim
that α is the kernel of d1L.
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