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HOMOTOPIES IN GROTHENDIECK FIBRATIONS

JOSEPH HELFER

Abstract. We define a natural 2-categorical structure on the base category of a large
class of Grothendieck fibrations. Given any model category C, we apply this construction
to a fibration whose fibers are the homotopy categories of the slice categories C/A, and
we show that in the case C = Top, our construction applied to this fibration recovers
the usual 2-category of spaces.
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Part I

Introduction
The goal of this paper is to exhibit a naturally occurring 2-categorical structure on the base
category of any Grothendieck fibration satisfying certain assumptions. In the motivating
case of interest, the base category in question is the category of topological spaces, and
our construction recovers the usual 2-category of topological spaces, continuous maps,
and (homotopy classes of) homotopies.

The notion of Grothendieck fibration (as well as the essentially equivalent notion of
pseudo-functor) was first introduced [Gro95, SGA71] in order to formulate the notion of
descent (and later [Gir71], stack). Later, Lawvere introduced fibrations into categorical
logic with his theory of hyperdoctrines [Law06]. It is the latter, logical use of hyperdoc-
trines which is most relevant to the present work. Specifically, in an accompanying paper
[Hel19], we introduce “homotopical” semantics for first-order logic, and the 2-categorical
structure introduced here is used to prove a “homotopy-invariance” theorem for these
semantics.

We recall that a Grothendieck fibration (see §1) is a functor C
C

↓
B

satisfying certain

conditions which allows us to define, for each morphism f : A → B in B, a functor
f ∗ : CB → CA between the corresponding “fibers” of C. We will be considering certain
fibrations which (following [Mak95]) we call ∧=-fibrations. Among the conditions for
C to be a ∧=-fibration are that the category B have finite products and that, for each
B ∈ Ob B, the fiber CB×B has an “equality object” EqB, satisfying a certain universal
property (the name “equality object” comes from the logical view of fibrations, in which
the objects of the fiber CB are viewed as predicates on the set B).

The 2-categorical structure in a ∧=-fibration arises as follows. Given two morphisms
f, g : A → B in B, we define a C-homotopy to be a morphism >A → 〈f, g〉∗ EqB in CA,
where 〈f, g〉 is the induced morphism A→ B ×B in B, and >A is the terminal object of
CA. The 2-cells of the 2-categorical structure on B are given by the C-homotopies. After
this, the definitions of the remaining elements of the 2-categorical structure more or less
suggest themselves.

The most natural source of Grothendieck fibrations are the “codomain” or “family”

fibrations F(C)
C→

↓
C

, in which C→ is the category of morphisms in C, and F(C) is the

functor sending each morphism to its codomain. This is a fibration whenever C has finite
limits, and is in fact a ∧=-fibration. In these cases, the “equality objects” EqB are just
the diagonal morphisms ∆: B → B×B, and the resulting 2-categorical structure is trivial
(i.e., the only 2-cells are identities).

The cases of interest are slight variations on the codomain fibrations. Here, we start
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with the category C of topological spaces (or Kan complexes, or more generally the
category of fibrant objects of any Quillen model category), form the codomain fibration
F(C), and then take the homotopy category of each fiber of F(C). The result, HoF(C)
is still a ∧=-fibration; but now, the equality objects EqB are the “path-space fibrations”
BI → B × B, and the HoF(C)-homotopies are the (homotopy classes of) homotopies,
in the usual sense.

Let us say something about which aspects of our results are already known and which
are (as far as we know) new. The notion of equality in a fibration was introduced in
[Law70]. The basic ingredients which go into the definition of our 2-category are well-
known (see [Jac99, Lemma 3.4.5]) – for example, the definition of the “vertical” composi-
tion simply amounts to the proof that this notion of equality is transitive. However, the
fact that these ingredients can be used to define a 2-category has not, to our knowledge,
been observed, though we should mention that [Jac99, p. 214] effectively constructs the
“homotopy category” of our 2-category in the case of fibrations whose fibers are pre-
orders (whence it follows that the Hom-categories of the associated 2-category are also
pre-orders.).

The idea that equality is related to homotopy is central to Homotopy Type Theory
(see [AW09, KLL12, War08]), which was the direct inspiration for this work (and for
[Hel19]). In particular, [War08] observes that what we call Ff(C) (see Definition 11.6)
is a ∧-fibration, and that the path objects in it satisfy a “weak” version of the universal
property of equality objects, though our “fibration of homotopy categories” HoF(C) (see
§11), in which the path objects have the stronger universal property, is not considered
(see the introduction to Part III for more on this).

At the time of first writing, the fibration HoF(C) was, to our knowledge, new, but
we since learned from Chaitanya Subramaniam that it has also been constructed by P.
Cagne in [Cag18], where it is also shown to be equivalent to the fibration described in
§11.9.

The paper is organized as follows:
Part II: We introduce the notion of homotopies in fibrations, and use it to construct a

2-categorical structure on the base of a ∧=-fibration. We prove some additional properties
about this 2-categorical structure, namely its compatibility with the finite products on
the base, and with the pseudo-functor associated to the fibration.

Part III: We give examples of ∧=-fibrations. In particular, we associate to any model
category C a fibration whose fibers are the homotopy categories of the slice categories of
C.

Part IV: We relate the 2-categorical structure on a model category arising from
Parts II and III to the standard 2-categorical structure on such a category.

Acknowledgments: We thank M. Makkai for reading and giving helpful comments
on an early version of this paper, and Arpon Raksit for many helpful discussions.

We also thank the anonymous referee for many insightful recommendations and sub-
stantial improvements to the paper.
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1. Preliminaries on fibrations

We will now fix our notation and terminology regarding Grothendieck fibrations. This
will be fairly cursory, and we will not give much in the way of motivation or proofs. For
the latter things, we refer the reader to [Mak93, Jac99].

1.1. Categories. We will use standard and hopefully familiar notation regarding cate-
gories. For basic notions of category theory, we refer to [ML98].

We note that we will always write 1A, or just 1, for the identity morphism in a category,
and we will avoid using the notation idA, since that notation is reserved for “identity C-
homotopies” (see Definition 2.7).

When we say that some claim follows “from a diagram chase” in a given diagram, we
mean that two particular morphisms, each represented by a composite of arrows in the
diagram, are equal, and the proof is by a sequence of equalities, each coming from the
commutativity of some sub-diagram. The commutativity of the sub-diagrams will always
be evident – often it follows from the definition of one of the morphisms involved – and
will usually be left to the reader.

We will be dealing with 2-categories. Given a 2-category C and objects A,B ∈ Ob C,
we denote by HomC(A,B) the corresponding Hom category. Each 2-category has an
underlying category, obtained by disregarding the 2-cells. Conversely, given a category
C, we can talk about a 2-category structure on C, meaning a 2-category with underlying
category C – this will be our preoccupation in Part II.

1.2. Fibrations. A prefibration C
C

↓
B

is just a functor C: C→ B. C is the total category

of C and B is its base category (and C is a prefibration over its base category B).

For the rest of §1.2, fix a prefibration C
C

↓
B

.

Given an object B in B, the fiber of C over B, denoted CB, is the subcategory of C
consisting of objects P with C(P ) = B and morphisms p : P → Q with C(p) = 1B. An
object in the fiber over B is said to lie over B or to be an object over B. Similarly, a
morphism p in C with C(p) = f is said to lie over f or to be a morphism over f , and is
also said to be a lift of f . We might also say p lies over an object B if p lies over 1B. Note
that the property of, say, p in C lying over f in B, depends on C, so we should really say
something like “p C-lies-over f”. However, the prefibration C will always be clear from
context in this and similar expressions.

When displaying diagrams in the total category C of a prefibration, we will usually
display underneath it a diagram in the base category B so that each displayed object and
morphism of C is positioned (approximately) above the object or morphism of B over
which it lies. For example, in the diagram in §1.5, P , Q, P ∧ Q, and the morphisms
connecting them lie over B, and the horizontal morphisms lie over f .

Given a morphism f : A → B in B and objects P,Q over A,B in C, we denote by
HomC

f (P,Q), or just Homf (P,Q), the set of morphisms P → Q lying over f . Note that
for an object A in B and objects P , Q over A, Hom1A(P,Q) is the same as HomCA(P,Q).
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Recall that a morphism q : Q → R in C lying over g : B → C in B is cartesian if for
each morphism f : A → B in B and each P ∈ Ob CA, the map (g ◦ –) : Homf (P,Q) →
Homgf (P,R) induced by composition with q is a bijection. We will sometimes emphasize
that a morphism in a diagram is cartesian by marking it like so c .

One (obvious) property of cartesian morphisms which we will frequently use is the
following “cancellation property”: if r : Q → R is a cartesian morphism in C, and
p, q : P → Q lie over the same morphism in B, then rp = rq implies p = q. Indeed,
many of the propositions below state that two given morphisms are equal, and what will
often be proven is that they are equal after composing with a certain cartesian morphism.

C is said to be a (Grothendieck) fibration if for each morphism f : A → B in B and
each object P over B, there is a cartesian lift of f with codomain P .

1.3. Cleavages. Let C
C

↓
B

be a fibration. Recall that a cleavage of C is a choice, for each

morphism f : A → B in B and each P ∈ Ob CB, of a cartesian lift of f with codomain
P . Assuming the axiom of choice, any fibration admits a cleavage.

We will use the following notational convention. Whenever we are dealing with a cloven
fibration, we will, unless stated otherwise, denote the cartesian lifts in it by f ↑Q : f ∗Q→
Q, or simply ↑ : f ∗Q → Q. Also, given a morphism p : P → Q over a composite A

f−→
B

g−→ C, we will denote by p the unique morphism P → g∗Q over f such that ↑ p = p,
i.e., such that

g∗Q

P Q

A B C

↑
c

p

p

f g

commutes (the notation hides the dependency on f , but this will always be clear from
context).

In case we are considering a fibration and have not chosen a cleavage, we may still use
the above notation, but in this case it will be merely suggestive. For example, if we are
considering a cartesian lift of f with codomain Q, we may like to call it f ↑Q or ↑, and
call its domain f ∗Q.

Recall that given a cleavage of C, there is a associated to each morphism f : A → B
in B a functor f ∗ : CB → CA, the pullback functor along f , taking P ∈ Ob CB to f ∗P
and taking p : P → Q in CB to p · f ↑P :

f ∗P P

f ∗Q Q.

A B

f↑P

f∗p=p·f↑P p

f↑Q
c

f
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Note that whenever a morphism p : P → Q is cartesian, so is each induced morphism
p : P → f ∗Q. In particular, given a composite h = gf : A → C and an object Q lying
over C, the morphism ↑ : h∗Q→ f ∗Q is always cartesian.

Also note that the equation qp = qp holds whenever it makes sense. We will often use
these facts without explicit mention.

1.4. Finite product categories. By a finite product category (or f.p. category), we mean a
category in which there exists a terminal object, and for each pair of objects A,B, there
exists a product diagram A← P → B.

A functor between f.p. categories is an f.p. functor if it takes terminal objects to
terminal objects and product diagrams to product diagrams.

When considering an f.p. category B, we will often assume that B admits a choice of
product diagram over each pair of objects, and will fix such a choice, as well as a choice of
terminal object. Whenever we have fixed such choices, we will – unless stated otherwise
– denote the chosen product of A and B by A × B, the chosen product projections by
A

π1←− A×B π2−→ B, and the chosen terminal object by 1C (or just 1).
However, when the category under consideration is a fiber CA of some fibration C, we

will instead denote the chosen products by P ∧Q and the chosen terminal object by >A.
In either case, we denote by 〈f, g〉 the morphism X → Y ×Z (or X → Y ∧Z) induced

by f : X → Y and g : X → Z, and by !X the unique morphism from X to the terminal
object. We write f × g for 〈fπ1, gπ2〉, and ∆X for 〈1X , 1X〉.

We assume the × and ∧ are left-associative so, e.g., A× B × C = (A× B)× C. We
write 〈f, g, h〉 for 〈〈f, g〉 , h〉, ∆3

B for 〈〈1B, 1B〉 , 1B〉, as well as π1, π2, π3 : A×B × C → A
for π1π1, π2π1, π2, and similarly with 〈f, g, h, k〉 and so on.

In case we have not chosen distinguished binary products and terminal object, we may
still use the above notation, but in this case it will be merely suggestive (this is similar
to the convention in §1.3). For example, if we wish to consider a product diagram over
objects A and B, we may like to call its vertex A×B and its projections π1 and π2.

1.5. ∧-fibrations. A fibration C
C

↓
B

is a ∧-fibration if it satisfies the following three

conditions:

(i) Each fiber CA is an f.p. category.

(ii) Given a cartesian morphism f ↑>A : f ∗>B → >B in C over a morphism f : A → B
in B, where >B is terminal in CB, f ∗>B is terminal in CA.
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(iii) Given a commutative diagram

f ∗(P ∧Q) P ∧Q

f ∗Q Q

f ∗P P

A B

c

c

c

f

in which P ← P ∧ Q → Q is a product diagram in CB and the horizontal arrows
are cartesian over f , we have that f ∗P ← f ∗(P ∧ Q) → f ∗Q is a product diagram
in CA.

We will sometimes refer to the last two properties as “stability” of products and
terminal objects (under pullbacks). Given a cleavage of C, the conjunction of (ii) and
(iii) is equivalent to the condition that each pullback functor f ∗ is an f.p. functor.

A ∧-cleavage of C is a cleavage together with a choice of binary products and terminal
object in each fiber.

Whenever we have fixed a ∧-cleavage of C, we will use the following notation.
Given a morphism f : A→ B in B and a product Q

π1←− Q ∧R π2−→ R in the fiber CB,
and given morphisms q : P → Q and r : P → R over f , we denote by 〈〈q, r〉〉 the unique
morphism over f satisfying π1 〈〈q, r〉〉 = q and π2 〈〈q, r〉〉 = r (we leave it to the reader to
see that there is a unique such morphism).

Note that if A = B and f = 1A, then 〈〈q, r〉〉 = 〈q, r〉. If P is itself a product, we
also write q ∧∧ r for 〈〈qπ1, rπ2〉〉. Note that if q and r lie over an identity morphism then
q ∧∧ r = q ∧ r.

Note that we have the following familiar equations (whenever they make sense):

〈〈p, q〉〉 r = 〈〈pr, qr〉〉 (s ∧∧ t) 〈〈p, q〉〉 = 〈〈sp, tq〉〉 (s ∧∧ t)(p ∧∧ q) = sp ∧∧ tq

For a morphism g : B → C in B and an object Q ∈ Ob CB we denote by !!g (or just
!!) the unique morphism Q → >C over g. Note that if B = C and g = 1B, then !!g =!Q
and that, given a morphism p : P → Q over f : A→ B, we have !!gp =!!gf : P → >C .

As usual (see §§1.3 and 1.4), we may still use these notations even if we have not
chosen a ∧-cleavage, but in this case they will be merely suggestive.

1.6. Cocartesian morphisms. We recall the notion of a cocartesian morphism, dual to

that of cartesian, i.e., a morphism in the total category of a prefibration C
C

↓
B

is cocartesian

if it is cartesian in the prefibration Cop
Cop

↓
Bop

.
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For each statement involving cartesian morphisms, there is of course a dual statement
for cocartesian morphisms.

If C is a fibration, then a morphism p : P → Q in C over f : A→ B in B is cocartesian
if and only if it is weakly cocartesian, meaning that (– ◦ p) : HomCB(Q,R)→ Homf (P,R)
is a bijection for every R ∈ Ob CB.

For the rest of §1, let C
C

↓
B

be a fibration.

Suppose we have a cocartesian morphism p : P → Q in C over g : C → D in B, and a
morphism k : B → D. We say that p is stable along k if the following condition holds.

P ′ Q′

P Q

A B

C D

p′

s
c

t
c

p
c

f

h

kg

Given any commutative square in C lying over a square in B, as shown above, if the
square in B is a pullback square, and s and t are cartesian, then p′ is cocartesian (note
that in this situation, p′ is uniquely determined by p, s, and t since t is cartesian). This
is also known as the Beck-Chevalley condition.

A morphism π2 : X × Y → Y in any category D is a product projection if there is a
morphism π1 : X × Y → X in D for which X

π1←− X × Y π2−→ Y is a product diagram. A
morphism ∆X : X → X × X is a diagonal morphism if there exists a product diagram
X

π1←− X×X π2−→ X with π1∆X = π2∆X = 1X . A morphism 1X ×∆Y : X×Y → X×Y ×Y
is a generalized diagonal morphism if there exists a pullback diagram

X × Y X × Y × Y

Y Y × Y

π′2

1X ×∆Y

π2

∆Y

with ∆Y a diagonal morphism and π2 a product projection. Note that it follows that
π′2 is a product projection as well. Note also that in an f.p. category, given the diagonal
morphism ∆Y and the product projection π2, such a pullback diagram always exists.

Suppose C is a ∧-fibration, and let q : Q→ Q′ in C over f : A→ B in B be cocartesian.
We say that q satisfies Frobenius reciprocity if the following condition holds. Given any
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commutative diagram

Q Q′

Q ∧ f ∗P Q′ ∧ P

f ∗P P

A B

q
c

q∧∧f↑p

f↑p
c

f

with Q ← Q ∧ f ∗P → f ∗P and Q′ ← Q′ ∧ P → P product diagrams, if f ↑p is cartesian
over f , then q ∧∧ f ↑p is cocartesian.

1.7. ∧=-fibrations. C is a ∧=-fibration if it satisfies the following three conditions.

(i) C is a ∧-fibration.

(ii) For every generalized diagonal morphism 1A×∆B : A× B → A× B × B in B and
every terminal object >A×B of CA×B, there is a cocartesian lift of 1A×∆B with
domain >A×B.

(iii) Every cocartesian lift as in (ii) satisfies Frobenius reciprocity and is stable with
respect to all product projections π2 : C × A×B ×B → A×B ×B.

A ∧=-cleavage of C is ∧-cleavage together with a choice of binary products and
terminal object in B, and a choice, for each B ∈ Ob B, of a cocartesian lift of ∆B : B →
B × B with domain >B. For B ∈ Ob B, we will denote the codomain of this chosen lift
by EqB, and the lift itself by ρB : >B → EqB. (ρ stands for “reflexivity”.)

Note that by the stability demanded in (iii) and by the definition of generalized di-
agonal morphism, it is enough in (ii) to demand cocartesian lifts of (non-generalized)
diagonal morphisms.

Also note that all the conditions in the definition of a ∧=-fibration are “isomorphism
invariant”. Hence, in (ii), for example, it suffices to check the condition for some termi-
nal object >A×B in CA×B, and for some pullback 1A×∆B of some diagonal morphism
∆B : B → B × B along some product projection π2 : A×B ×B → B ×B. In particu-
lar, if we have chosen a ∧=-cleavage of C, it suffices to check that above conditions for
the specified structure in the ∧=-cleavage. This “isomorphism invariance” is not exactly
trivial, but is straightforward to (formulate precisely and) check, and we leave it to the
reader.

As a final remark on the definition, we note that each instance of Frobenius reci-
procity produces a new cocartesian morphism; hence, a ∧=-fibration necessarily has
many cocartesian morphisms not explicitly required in the definition. One might won-
der if these other cocartesian morphisms automatically satisfy Frobenius reciprocity and
stability along product projections as well. They do (this, too, we leave to the reader).
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Part II

2-categorical structure in fibrations
The goal of Part II is to define a 2-category structure on the base category of any (cleav-

able) ∧=-fibration C
C

↓
B

. The 2-cells between two morphisms f, g : A→ B will be “homo-

topies” between f and g. From the logical point of view, these are “proofs according to
C” that two morphisms f, g : A→ B are equal.

According to this point of view, we think of the objects of B as denoting sets, and the
objects in the fiber over the object A as denoting predicates on A, the morphisms between
them being implications. The terminal object >A is then the trivial predicate “true”, and
the equality object EqB over B × B is the equality predicate “b = b′”. Moreover, given
a morphism f : A→ B, we think of the pullback f ∗ as performing “substitution”, i.e. f ∗

takes the predicate P (b) to P (f(a)). Hence, a “proof that f and g are equal” – i.e. that
the predicate “f(a) = g(a)” is always true – should be an implication >A → 〈f, g〉∗ EqB,
or equivalently, a morphisms >A → EqB over 〈f, g〉.

The idea that this (or any) notion of “equality” should have something to do with
homotopies – which it does (see Part IV) – is familiar from homotopy theory; it often
happens that each point of a space represents some (say, geometric) object, and that each
path between two points gives rise to an identification between the corresponding objects.
Thus one considers spaces rather than sets of objects, and “path-connectedness” rather
than equality. This idea is expressed most explicitly in Homotopy Type Theory which, as
we mentioned in the introduction, is the inspiration for this work. In [Hel19], we make
the logical connection to the present work more explicit.

Having defined homotopies in this manner, it remains to define the 2-categorical struc-
ture; i.e., the composition operations. Here, the logical point of view is again helpful. For
example, defining the composition of homotopies f → g and g → h amounts to producing
a proof of f(a) = h(a) from f(a) = g(a) and g(a) = h(a). However, this kind of thinking
only goes so far; for example, proving associativity of this composition amounts to show-
ing that “two different proofs are equal”, which does not have a formal counterpart in the
rules of predicate logic.1

Next, we will present an elegant alternative description, suggested by the anonymous
referee, of the 2-categorical structure on B, in which this structure is induced by embed-
ding B into a larger 2-category – namely the 2-category Cat(C) of internal categories in
C.

Finally, we will prove two more properties of the 2-category B which are crucial to our

1However, it does have a counterpart in Martin-Löf type theory, and in fact, the constructions in this
section are closely related to establishing a groupoid structure on identity types, as carried out, e.g., in
[HS98, p.7, Proposition 4.1]. The precise relationship is somewhat subtle, since the “type theory” (i.e.,
notion of fibration) we use here is very minimal (for example, it has no function types), and it would be
interesting to work it out in detail.
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application in [Hel19]. The first is that the finite products in B are also finite products
in the 2-categorical sense.

The second is that the pseudo-functor Bop → Cat associated to the cleavage of C

extends to a pseudo-functor of 2-categories, or equivalently – and it is actually this second
statement that we prove2 – that the fibration C can be extended to a 1-discrete 2-fibration
(see Definition 6.1). The significance of this is roughly as follows. Given two parallel
morphisms f, g : A → B, we have the two pullback functors f ∗, g∗ : CB → CA. If f
and g are homotopic, we would expect these functors to be naturally isomorphic. The
pseudo-functoriality says that this is so, and moreover that this association of natural
isomorphisms to homotopies takes composition of homotopies to composition of natural
transformations.

The extension of C to a 1-discrete 2-fibration with 2-categorical products in the base
also allows us to prove a universal property of the 2-categorical structure, suggested by
the referee, which characterizes it up to isomorphism.

Part II is organized as follows. In §2, we define the notion of C-homotopy, and then
define the “vertical” composition and show that it defines a category. In §3, we show
that this category is in fact a groupoid – i.e., that all the morphisms are invertible. In
§4, we define the “horizontal” composition, and show that, together with the “vertical”
composition, this forms a 2-category. In §5, we give the alternative presentation of the
2-categorical structure in terms of internal categories. In §6, we carry out the extension of
the fibration to a 1-discrete 2-fibration, and in §7, we show that the 2-category has finite
products. Finally, in §8, we present the universal property characterizing the 2-categorical
structure.

2. Homotopies in fibrations

We now introduce the notion of homotopies in fibrations, and define the “vertical” com-

position operation. Throughout §2, let C
C

↓
B

be a ∧=-cloven ∧=-fibration.

The definition of homotopy was sketched above. As we also mentioned there, given
three morphisms f, g, h : A → B, the definition of the composition of homotopies f → g
and g → h can be viewed logically as a proof of transitivity f(a) = g(a) ∧ g(a) = h(a)⇒
f(a) = h(a). This, in turn can be reduced to the general statement b1 = b2 ∧ b2 = b3 ⇒
b1 = b3 for b1, b2, b3 ∈ B. This is how we will proceed, noting that, in terms of the fibration,
the predicates bi = bj are represented by the pullback of EqB along 〈πi, πj〉 : B3 → B×B.

2.1. Definition. Given two morphisms f, g : A → B in B, a C-homotopy from f to g
is a morphism >A → EqB over 〈f, g〉 : A→ B ×B.

To denote a C-homotopy α from f to g, we use the notation f
α−→ g or A B.α

f

g

2In an earlier version of this paper, we worked directly with pseudo-functors, but we changed to the
cleaner approach using 1-discrete 2-fibrations upon a suggestion from the anonymous referee.
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2.2. Definition. Given B ∈ Ob C and natural numbers 1 ≤ i, j ≤ n, we write EqijB ∈
Ob CB

n
for the pullback 〈πi, πj〉∗ EqB of EqB ∈ Ob CB×B along 〈πi, πj〉 : Bn → B × B.

The notation hides the dependency on n, but it will always be clear from context.

2.3. Definition. For B ∈ Ob B, we define ρijB to be the unique morphism >B → EqijB
over ∆n

B : B → Bn making the diagram

EqijB

>B EqB

B Bn B ×B

↑
c

ρB

ρijB

∆n
B 〈πi,πj〉

commute, i.e., ρijB = ρB. Again, the dependence of ρijB on n is concealed in the notation,
but it will always be clear from context.

2.4. Proposition. For every B ∈ Ob B, the morphism 〈〈ρ12
B , ρ

23
B 〉〉 : >B → Eq12

B ∧Eq23
B

over ∆3
B is cocartesian.

Proof. We will show that 〈〈ρ12
B , ρ

23
B 〉〉 is the composite of two cocartesian morphisms and

hence cocartesian. The first will just be ρB : >B → EqB over ∆B : B → B × B. The
second will be a morphism EqB → Eq12

B ∧Eq23
B over 1B ×∆B : B × B → B × B × B

(where, abusing notation, we write 1B ×∆B for 〈π1, π2, π2〉), which we will now construct.
Let us denote by ρ̃23

B the unique morphism >B×B → Eq23
B over 1B ×∆B making the

diagram

>B×B Eq23
B

>B EqB

ρ̃23
B

!!π2 c ↑c
ρB
c

lying over

B ×B B ×B ×B

B B ×B

1B ×∆B

π2

y
〈π2,π3〉

∆B

commute. By the stability of ρB along the product projection 〈π2, π3〉, ρ̃23
B is cocartesian.

Now, consider the following commutative diagram.

>B×B Eq23
B

EqB Eq12
B ∧Eq23

B

EqB Eq12
B

B ×B B ×B ×B

ρ̃23
B
c

〈〈1EqB
,ρ̃23
B !〉〉

! π2

1EqB
c

1 π1

1B ×∆B
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Since the left and right sides are product diagrams, 1EqB is cartesian, and ρ̃23
B is cocartesian,

it follows by Frobenius reciprocity that
〈〈

1EqB , ρ̃
23
B !
〉〉

is cocartesian.
It remains to show that 〈〈ρ12

B , ρ
23
B 〉〉 is equal to the composite

〈〈
1EqBρB, ρ̃

23
B !ρB

〉〉
of ρB

and
〈〈

1EqB , ρ̃
23
B !
〉〉

. That 1EqBρB is equal to ρ12
B follows from the fact that ρ12

B = ρB, and
that ρ̃23

B !ρB is equal to ρ23
B follows from a diagram chase in the following diagram.

>B EqB >B×B Eq23
B

>B EqB

ρ23
B

ρB

1

!

ρ̃23
B

!!π1 ↑c

ρB

2.5. Definition. For an object B in B, we define trB : Eq12
B ∧Eq23

B → Eq13
B to be the

(by Proposition 2.4 unique) morphism in CB
3

making the following diagram commute.
(“tr” stands for “transitivity”)

Eq12
B ∧Eq23

B

>B Eq13
B

B B3

trB

ρ13
B

〈〈ρ12
B ,ρ

23
B 〉〉

c

∆3
B

2.6. Definition. Given morphisms f, g, h : A → B in B and C-homotopies f
α−→ g

β−→
h (i.e., morphisms α, β : >A → EqB over 〈f, g〉 and 〈g, h〉 respectively), we define the
vertical composite β ◦− α to be the C-homotopy from f to h given by the morphism
↑ · trB ·

〈〈
α, β

〉〉
: >A → EqB over 〈f, h〉, as shown below.

Eq12
B ∧Eq23

B

>A Eq13
B EqB

A B3 B ×B

trB
〈〈α,β〉〉

↑

〈f,g,h〉 〈π1,π3〉
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In other words, β ◦− α is the unique morphism over 〈f, h〉 such that the following diagram
commutes.

Eq12
B ∧Eq23

B

>A Eq13
B

A B3

trB
〈〈α,β〉〉

β◦−α

〈f,g,h〉

2.7. Definition. Given a morphism f : A→ B in B, we define the identity C-homotopy
at f , denoted idf , to be the morphism ρB·!!f : >A → EqB over 〈f, f〉, as shown below.

>A >B EqB

A B B ×B

!!f ρB

f ∆B

2.8. Definition. Given an object B ∈ Ob B and natural numbers 1 ≤ i, j, k ≤ n, we
define trijkB : EqijB ∧EqjkB → EqikB to be the unique morphism in CB

n
making the following

diagram commute.

EqijB ∧EqjkB Eq12
B ∧Eq23

B

EqikB Eq13
B

Bn Bn

trijkB

↑∧∧↑

trB

↑
c

〈πi,πj ,πk〉

2.9. Lemma. Given morphisms f1, . . . , fn : A → B in B and C-homotopies fi
α−→ fj

β−→
fk, the following diagram commutes.

EqijB ∧EqjkB

>A EqikB

A Bn

trijkB

β◦−α

〈〈α,β〉〉

〈f1,...,fn〉
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Proof. This follows from a diagram chase in the following diagram.

>A EqijB ∧EqjkB Eq12
B ∧Eq23

B

>A EqikB Eq13
B

A Bn B3

〈〈α,β〉〉

〈〈α,β〉〉

trijkB

↑∧∧↑
trB

β◦−α

β◦−α

↑
c

〈f1,...,fn〉 〈πi,πj ,πk〉

2.10. Lemma. For any B ∈ Ob B and any 1 ≤ i, j, k ≤ n, the following diagram com-
mutes.

EqijB ∧EqjkB

>B EqikB

B Bn

trijkB

ρikB

〈〈ρijB ,ρjkB 〉〉

∆n
B

Proof. This is proven in the same way as Lemma 2.9.

2.11. Lemma. For every B ∈ Ob B, the morphism〈〈
ρ12
B , ρ

23
B , ρ

34
B

〉〉
: >B → Eq12

B ∧Eq23
B ∧Eq34

B

over ∆4
B : B → B4 is cocartesian.

Proof. This claim is obviously analogous to Proposition 2.4 and the proof is essentially
the same.

We write 〈〈ρ12
B , ρ

23
B , ρ

34
B 〉〉 as the composite of two cocartesian morphisms

>B Eq12
B ∧Eq23

B Eq12
B ∧Eq23

B ∧Eq34
B

B B3 B4.

〈〈ρ12
B ,ρ

23
B 〉〉

∆3
B 〈π1,π2,π3,π3〉

The first morphism is cocartesian by Proposition 2.4. The second morphism is defined
in the same way as the second morphism in the proof of Proposition 2.4, treating the
codomain as a product of Eq12

B ∧Eq23
B and Eq34

B . We leave the details to the reader.
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2.12. Theorem. Each hom-set HomB(A,B) is the object set of a category with mor-
phisms the C-homotopies and composition given by vertical composition of C-homotopies.
We denote this category by HomB(A,B). Also, the identity morphisms of HomB(A,B)
are the identity C-homotopies.

Proof. We first show that vertical composition is associative.

Let f, g, h, k : A → B be morphisms in B and let f
α−→ g

β−→ h
γ−→ k be C-homotopies.

To show that γ ◦− (β ◦− α) = (γ ◦− β) ◦− α, it suffices to show that the the two composites
>A → Eq14

B in the diagram

>A

(
Eq12

B ∧Eq23
B

)
∧ Eq34

B Eq12
B ∧

(
Eq23

B ∧Eq34
B

)
Eq13

B ∧Eq34
B Eq12

B ∧Eqg4B

Eq14
B

〈〈α,β〉,γ〉

assoc
∼

tr123
B ∧ 1

Eq34
B

1
Eq12
B
∧ tr234

B

tr134
B tr124

B

(1)

are equal since by Lemma 2.9, they are equal to γ ◦− (β ◦− α) and (γ ◦− β) ◦− α, respectively.
In fact, we will see that the two composites (Eq12

B ∧Eq23
B ) ∧ Eq34

B → Eq14
B are equal. To

see this, it suffices to see that their composites with the (by Lemma 2.11) cocartesian
morphism 〈〈〈〈

ρ12
B , ρ

23
B

〉〉
, ρ34

B

〉〉
: >B → (Eq12

B ∧Eq23
B ) ∧ Eq34

B

are equal, and by Lemma 2.10, these are both equal to ρ14
B .

Next, we must show that for each f : A→ B, the C-homotopy idf is an identity with
respect to composition of C-homotopies. We will only show that it is an identity on one
of the two sides, since the proof for the other side is the same.

Given another morphism g : A → B and a C-homotopy f
α−→ g, we must show that

α ◦− idf = α. Now, α ◦− idf is by definition the composite

>A
〈〈idf ,α〉〉
−−−−−→ Eq12

B ∧Eq23
B

trB−−→ Eq13
B

↑−→ EqB .

Note that idf and α both factor through α : >A → EqB, namely as

>A EqB >B Eq12
B

A B ×B B B3

α !!π1 ρ12
B

〈f,g〉 π1 ∆3
B

and
>A EqB Eq23

B

A B ×B B3

α 1EqB

〈f,g〉 〈π1,π1,π2〉

respectively. Hence, it suffices to see that the composite

EqB
〈〈ρ12

B !!,1EqB〉〉−−−−−−−−→ Eq12
B ∧Eq23

B

trB−−→ Eq13
B

↑−→ EqB (2)
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is equal to the identity.
This follows from a diagram chase in the following diagram.

>B EqB Eq12
B ∧Eq23

B

>B Eq13
B EqB

B B ×B B3 B ×B

ρB
c

〈〈ρ12
B ,ρ

23
B 〉〉

〈〈ρ12
B !!,1EqB〉〉

trB

ρ13
B

ρB

↑

∆B 〈π1,π1,π2〉 〈π1,π3〉

3. Invertibility of homotopies

Continuing with a ∧=-cloven ∧=-fibration C
C

↓
B

, we next show that each hom-category

HomB(A,B) is in fact a groupoid.

3.1. Definition. For an object B ∈ B, we define symB : EqB → EqB to be the unique
morphism over 〈π2, π1〉 : B ×B → B ×B making the following diagram commute.

EqB

>B EqB

B B ×B B ×B

symB

ρB

ρB
c

∆B 〈π2,π1〉

3.2. Definition. Given morphisms f, g : A → B and a C-homotopy f
α−→ g, we define

its inverse, α−1 to be the C-homotopy from g to f given by the morphism symB ·α, as
shown below.

>A EqB EqB

A B ×B B ×B

α symB

〈f,g〉 〈π2,π1〉

3.3. Theorem. Given morphisms f, g : A → B in B, every C-homotopy f
α−→ g is

invertible with respect to vertical composition of C-homotopies, with inverse α−1.

Proof. We will only show that α−1 is an inverse on one side of α, since the proof is
identical for the other side.
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We must show that the composite ↑ ·trB ·
〈〈
α, α−1

〉〉
(shown below) is equal to idf .

>A Eq12
B ∧Eq23

B

Eq13
B EqB

A B3 B ×B

〈〈α,α−1〉〉

trB

↑

〈f,g,f〉 〈π1,π3〉

Note that both α and α−1 factor through α : >A → EqB, namely as

>A EqB Eq12
B

A B ×B B3

α 1EqB

〈f,g〉 〈π1,π2,π1〉
and

>A EqB Eq23
B

A B ×B B3

α symB

〈f,g〉 〈π1,π2,π1〉

respectively. Hence, using that ↑ idπ1 !!〈f,g〉 = idπ1 !!〈f,g〉 = idf , it suffices to show that the
square in the following diagram commutes.

>A EqB Eq12
B ∧Eq23

B

>B×B Eq13
B EqB

A B ×B B3 B ×B

α

!!〈f,g〉

〈〈1,symB〉〉

! trB

idπ1 ↑

〈f,g〉 〈π1,π2,π1〉 〈π1,π3〉

This follows from a diagram chase in the following diagram.

>B EqB Eq12
B ∧Eq23

B

>B >B×B Eq13
B

B B ×B B3

ρB
c

〈〈ρ12
B ,ρ

23
B 〉〉

〈〈1,symB〉〉
! trB

!!∆B

ρ13
B

idπ1

∆B 〈π1,π2,π1〉

4. The 2-categorical structure

We continue with a fixed ∧=-cloven ∧=-fibration C.
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4.1. Definition. Given morphisms h, k : B → C in C and a C-homtopy h
β−→ k, we

denote by β̌ the unique morphism EqB → EqC over h× k making the following diagram
commute.

EqB

>B EqC

B B ×B C × C

β̌
c

β

ρB

∆B h×k

4.2. Definition. Given C-homotopies

A B C,α β

f

g

h

k

we define the horizontal composite of α and β, which we denote by β ◦− α, to be the
C-homotopy from hf to kg given by the composite

>A
α−→ EqB

β̌−→ EqC .

4.3. Proposition. Horizontal composition is associative. That is, given morphisms of
B and C-homotopies

A B C Dα β γ

f

g

h

k

l

m

we have (γ ◦− β) ◦− α = γ ◦− (β ◦− α).

Proof. We need to show that (�γ ◦− β)α = γ̌β̌α. Hence, it suffices to show that�γ ◦− β =
γ̌β̌. This follows from a diagram chase in the following diagram.

EqB

EqC

>B EqD

B B ×B C × C D ×D

β̌

~γ ◦−β

γ̌

ρB
c

β

γ ◦−β

∆B h×k l×m
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4.4. Proposition. For any objects A,B,C ∈ B, horizontal composition extends the com-
position map HomB(A,B) × HomB(B,C) → HomB(A,C) to a bifunctor HomB(A,B) ×
HomB(B,C)→ HomB(A,C).

This means that for morphisms A
f−→ B

k−→ C in B, we have idk ◦− idf = idkf , and that
given further morphisms and C-homotopies

A B C
α γ

f

h

g

β

k

m

l

δ

we have (δ ◦− γ) ◦− (β ◦− α) = (δ ◦− β) ◦− (γ ◦− α).

Proof. The first claim follows from the commutativity of

EqB

>B EqC

>A >C

A B C C × C.

B ×B

}idk
ρB

!!k

idk

!!f
!!kf

idf

idkf

idk ◦− idf

ρC

f k

∆B

∆C

k×k

For the second claim, we must show that the following two composites are equal.

>A
〈〈α,β〉〉
−−−−→ Eq12

B ∧Eq23
B

trB−−→ Eq13
B

↑−→ EqB
~δ◦−γ−−→ EqC

>A
〈〈γ ◦−α,δ ◦−β〉〉
−−−−−−−−→ Eq12

C ∧Eq23
C

trC−−→ Eq13
C

↑−→ EqC

We first note that γ ◦− α and δ ◦− β can be factored respectively as

>A
α−→ Eq12

B

γ̌·↑−→ Eq12
C and >A

β−→ Eq23
B

δ̌·↑−→ Eq23
C .
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Hence, it suffices to see that the following diagram commutes.

Eq12
B ∧Eq23

B Eq12
C ∧Eq23

C

Eq13
B Eq13

C

EqB EqC

B3 C3

B ×B C × C

trB

γ̌·↑ ∧∧ δ̌·↑

trC

↑ ↑

}δ◦−γ

k×l×m

〈π1,π3〉

〈π1,π3〉

k×m

This follows from a diagram chase in the following diagram.

>B Eq12
B ∧Eq12

B Eq12
C ∧Eq23

C

Eq13
B Eq13

C

EqB EqC

〈〈ρ12
B ,ρ

23
B 〉〉

c

ρB

ρ13
B

〈〈γ,δ〉〉

trB

γ̌·↑ ∧∧ δ̌·↑

trC

↑ ↑

~δ ◦−γ

4.5. Theorem. B can be extended to a 2-category, in which the hom-categories are the
categories HomB(A,B), and in which the composition of 2-cells is given by horizontal
composition of C-homotopies.

Proof. This is precisely the content of Propositions 4.3 and 4.4, together with the fol-
lowing fact: given morphisms in B and a C-homotopy as in

A B, B Bα
1A

f

g

1B

we have α ◦− id1A = α = id1B ◦−α. To see this last fact, note that id1A and id1B are just

ρA and ρB, respectively. It follows that }id1B = 1EqB . Hence

α ◦− id1A = α̌ · ρA = α and id1B ◦−α = }id1B · α = 1EqB ·α = α.
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5. Internal categories

In this section, we give an alternative presentation of the 2-categorical structure on B
which was suggested by the referee.

Recall that for A,B ∈ Ob B the morphisms in the category HomB(A,B) were defined
as all morphisms >A → EqB in C. Now, in general, when a hom-set in a category carries
some algebraic structure, it is often an indication that the codomain object itself carries
this structure (in the “internal”, categorical sense). In this case, this suggests that EqB is
the object of arrows of an internal category in C. This is indeed the case, and pursuing this
leads to the following characterization of the 2-categorical structure on B (Theorem 5.4):
there is a fully-faithful functor from B to Cat(C), the category of internal categories
in C, and the 2-categorical structure on B is the one induced via this functor from the
natural 2-categorical structure on Cat(C). Below, we carry out this construction.

We note that Theorem 3.3 on the invertibility of homotopies can also be stated in
this language – namely, as saying that the internal categories considered here are in fact
“internal groupoids”.

The notion of internal category, and the associated notions such as internal functor,
as well as the 2-categorical structure on Cat(C), are defined, and their properties proved,
in the usual manner: by simplemindedly imitating the usual definitions, replacing “Set”
by “object of C” (see, e.g, [ML98, p. 267]).

5.1. Let us fix a few more notational conventions. Given a pair of morphisms A
f−→ B

g←−
C in a category C, we may use the notation A ×B C for a pullback (suppressing, as is
common, the dependence on f and g), and in this case, we denote by π1 : A ×B C → A
and π2 : A ×B C → C the associated projections, and given morphisms p : D → A and
q : D → C with fp = qg, we denote by 〈p, q〉 : D → A×B C the induced morphism.

5.2. Definition. Let C be a category. An internal category C in C consists of (i) a

reflexive graph object in C – i.e., objects and morphisms C1

s

⇒
t
C0

ι−→ C1 such that

sι = tι = 1C0 – together with (ii) a choice C2 = C1 ×C0 C1 of pullback of the morphisms

C1
t−→ C0

s←− C1, and (iii) a morphism C2
m−→ C1. These are moreover required to satisfy

the usual unitality and associativity conditions (namely m 〈ιs, 1C1〉 = 1C1 = m 〈1C1 , ιt〉
and m 〈m 〈π1, π2〉 , π3〉 = m 〈π1,m 〈π2, π3〉〉 : C3 → C1, respectively). The latter involves
the choice of a triple pullback C3 = C1 ×C0 C1 ×C0 C1 (i.e., a limit of the diagram

C1
t−→ C0

s←− C1
t−→ C0

s←− C1), but is of course independent of this choice.
Given internal categories C and D, an internal functor F : C → D consists of mor-

phisms Fi : Ci → Di (i = 1, 2) making the resulting squares involving s, t, ι,m commute
(the last of these involves the induced morphism F2 = 〈F1π1, F1π2〉 : C2 → D2) – i.e.,
preserving domain, codomain, identities, and composition.

Given two internal functors F,G : C → D, an internal natural transformation α : F →
G is a morphism α0 : C0 → D1 with sα0 = F and tα0 = G satisfying the usual naturality
condition m 〈F1, α0t〉 = m 〈α0s,G1〉 : C1 → D1.
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Internal categories of C and internal functors form a category Cat(C). In fact, Cat(C)
is naturally a 2-category in the following way, generalizing the usual 2-category of cate-
gories (see, e.g., [Bor94, Proposition 8.1.4]).

The 2-cells are given by the internal natural transformations. Given internal functors
F,G,H : C → D and internal natural transformations α : F → G and β : G → H, the

vertical composite of α and β is given by the composite morphism C0
〈α0,β0〉−−−−→ D2

m−→ D1.
Next, given internal functors and internal natural transformations as in

C D E,α β

F

G

H

K

the horizontal composite of α and β is given by the composite C0
α0−→ D1

〈H1,β0t〉−−−−−→ E2
m−→ E1

(or equivalently m 〈β0s,K1〉α0).
The verification that this indeed defines a 2-category is a (somewhat lengthy but)

straightforward exercise that we leave to the reader.

5.3. Definition. Let us now fix a ∧=-cloven ∧=-fibration C
C

↓
B

until the end of §5.

We define, for each object B ∈ Ob B, a category object B̈ in C as follows. The un-

derlying reflexive graph is EqB

!!π1

⇒
!!π2

>B
ρB−→ EqB. For the pullback B̈2 = EqB ×>B EqB,

we take Eq12
B ∧Eq23

B with projections EqB
↑π1←−− Eq12

B ∧Eq23
B

↑π2−−→ EqB (to see that this

is indeed a pullback, note that given EqB
p←− P

q−→ EqB with !!π1p =!!π2q, the in-
duced morphism P → Eq12

B ∧Eq23
B is just 〈〈p, q〉〉). We define the composition morphism

m : Eq12
B ∧Eq23

B → EqB to be ↑ trB.
The unitality property now follows from (2) in the proof of Theorem 2.12.
Similarly, for the associativity property, we can take as a triple pullback C1×C0×C1×C0

×C1 the object Eq12
B ∧Eq23

B ∧Eq34
B with projections ↑ π1, ↑ π2, ↑ π3, and the associativ-

ity property can then be seen to follow from the commutativity of (1) in the proof of
Theorem 2.12.

Next, for each morphism f : B → C in B, we define an internal functor f̈ : B̈ → C̈ by
taking f̈0 to be !!f : >B → >C and f̈1 to be |idf : EqB → EqC . Preservation of domain and

codomain is immediate, and preservation of identities follows from the definition of |idf .
For the preservation of composites, we consider the following diagram, in which we
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would like to see that the rightmost parallelogram (in C) commutes.

>B EqB Eq12
B ∧Eq23

B EqB

>C EqC Eq12
C ∧Eq23

C EqC

B B2 B3 B2

C C2 C3 C2

ρB

!!f

〈〈ρ12
B !!π2 ,1〉〉

|1f

↑trB

|1f↑∧∧|1f↑
|1f

ρC 〈〈ρ12
C !!π2 ,1〉〉 ↑trC

∆B

f

∆B×1B

f×f

〈π1,π2〉

f×f×f f×f

∆C ∆C×1C 〈π1,π2〉

Since the first two parallelograms commute and the composite of the first two morphisms
in the first row is cocartesian, it suffices to see that the outside of the diagram commutes,
but this is so since the composites of the second and third horizontal morphisms in the
first two rows are identity morphisms.

Next, given a C-homotopy α : >B → EqC from f to g, we wish to define an internal
natural transformation α̈ : f̈ → g̈. For this, we need a morphism α̈0 : >B = B̈0 → C̈1 =
EqC , and we just take α itself. It is immediate that sα̈0 = f̈0 and tα̈0 = g̈0.

For the naturality condition, we need to verify the equality ↑ trC

〈〈
|idf , α!!π2

〉〉
=↑

trC

〈〈
α!!π1 ,
|idg

〉〉
: EqB → EqC . But after precomposing with the cocartesian morphism

ρB : >B → EqB, both sides are equal to α by the part of Theorem 2.12 concerning identity
C-homotopies.

5.4. Theorem. The assignments B 7→ B̈, f 7→ f̈ , and α 7→ α̈ define a 2-functor
B → Cat(C) which is “2-fully-faithful” (i.e., it induces isomorphisms HomB(B,C) →
HomCat(C)(B̈, C̈)).

In other words, the 2-category structure from Theorem 4.5 admits the following al-
ternative characterization (up to isomorphism): it is obtained by considering B as a full
subcategory of Cat(C) via the fully faithful functor given by B 7→ B̈ and f 7→ f̈ , and then
passing to the full sub-2-category of (the 2-category) Cat(C) on the objects and morphisms
of B.

Proof. That this defines a (1-)functor follows from the fact that }id1B = 1EqB , as shown

in the proof of Theorem 4.5, and the fact that q1g · q1f = |1gf , which follows immediately
from the definitions.

That this functor is faithful follows from the obvious fact that !!f =!!g implies f = g.
To see that it is full, we need to show that any internal functor F = (F0, F1) : B̈ → C̈ is

equal to f̈ for some f . Clearly, we must have F0 =!!f : >B → >C where f is the morphism

over which F0 lies. To see that F1 = q1f , we note first that F1 must lie over f×f , and then
the asserted equality follows from the cocartesianness of ρB and the fact that F preserves
identities.
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That the assignment α 7→ α̈ defines a bijection from the set of C-homotopies f → g
to the set of internal natural transformations f̈ → g̈ is clear since α̈0 = α.

It now remains to see that the operation α 7→ α̈ preserves horizontal and vertical
composition.

Given C-homotopies α : >A → EqB from f to g and β : >B → EqC from h to k, we
have

β ◦− α = β̌ · α and (β̈ ◦ α̈)0 =↑ trB

〈〈
q1h, β!!π2

〉〉
α.

To see that these are equal, it suffices to show that ↑ trB

〈〈
q1h, β!!π2

〉〉
= qβ : EqB → EqC ,

which we can check after precomposing with the cocartesian ρB : >B → EqB. Hence, it

remains to prove ↑ trB

〈〈
q1h, β!!π2

〉〉
ρB = β. But we have

LHS =↑ trB

〈〈
q1hρB, β!!π2ρB

〉〉
=↑ trB

〈〈
1h, β

〉〉
= β.

Next, given C-homotopies α : >A → EqB from f to g and β : >B → EqC from g to h,
we have

β ◦− α =↑ trB
〈〈
α, β

〉〉
,

which, after unfolding the definitions, is seen to be precisely the vertical composite of α̈
and β̈.

6. 1-discrete 2-fibrations

In this section, we will prove that not only the base of a ∧=-cloven fibration C
C

↓
B

, but also

the total category, can be given a natural 2-categorical structure, so that C becomes a
1-discrete 2-fibration (Definition 6.1) or 1D2F. Let us briefly comment on the significance
of this notion.

We recall that a fibration is called discrete if each fiber is a discrete category (every
morphism is an identity morphism). As we mentioned in the introduction, the notion of
fibration was introduced simultaneously with the essentially equivalent notion of pseudo-
functor, the idea behind which is that a fibration C over B can be described instead by
some kind of functor Bop → Cat taking each object A ∈ Ob B to its fiber CA. Under
this correspondence, the discrete fibrations correspond exactly to functors Bop → Cat
factoring through Set ↪→ Cat, and the operation taking a pseudo-functor to its associated
fibration (the “Grothendieck construction”) recovers in this case the well-known category
of elements of a presheaf.

In passing from the notion of discrete fibration to that of fibration, one replaces the
category Set with the 2-category Cat, and thus increases the “categorical dimension” by
one. From this point of view, it is therefore most natural to consider morphisms B→ Cat
not only from a 1-category Bop, but from a general 2-category. Applying the appropriate
generalization of the Grothendieck construction, we should then obtain a special kind of
2-functor with codomain B whose “fibers” are all 1-categories. This is the notion of 1D2F.
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Extending the fibration C to a 1D2F is thus tantamount to extending the associated
pseudo-functor Bop → Cat to the 2-categorical structure on B. Concretely, this means
that, not only should each morphism in B induce a pullback functor between the appro-
priate fibers, but also each 2-cell in B should induce a natural transformation between
the associated pullback functors.

Thus, for each C-homotopy f
α−→ g between a pair of morphisms in f, g : A → B in

B and each P ∈ Ob CB, we need to produce a certain morphism f ∗P → g∗P . From the
logical point of view, this amounts to producing a proof of P (f(a)) ⇒ P (g(a)) for each
predicate P (b), given a proof of f(a) = g(a). This, in turn, can be reduced to proving
(b1 = b2 ∧ P (b1))⇒ P (b2), which in terms of the fibration means producing a morphism
π∗1P ∧ EqB → π∗2P in CB×B, and this is precisely how we will proceed.

Finally, we note that, just as one does not need the general notion of fibration to define
that of a discrete fibration, one can directly define 1-discrete 2-fibrations without defining
2-fibrations in general, and this is what we do. Similarly, constructing 1D2Fs is simpler
than the general task of constructing 2-functors. In Lemma 6.2, we explain exactly what
one needs in order to extend a fibration to a 1-discrete 2-fibration (given a 2-category
structure on the base).

6.1. Definition. A pre-2-fibration is simply a 2-functor C
C

↓
B

. We use similar terminology

for pre-2-fibrations as we do for prefibrations: B is the base 2-category; C is the total
2-category; a 0-, 1-, or 2-cell in C lies over its image in B; and so on. The fiber CA of
C over A ∈ Ob B is the sub-2-category consisting of 0-cells, 1-cells, and 2-cells lying over
A, 1A, and 11A , respectively. The underlying prefibration of a pre-2-fibration is just the
induced functor on the underlying 1-categories.

The pre-2-fibration C is a 1-discrete 2-fibration3 (or 1D2F) if (i) the underlying pre-
fibration is a fibration, and (ii) for every 2-cell α : f → g in B and every 1-cell p over
f , there is a unique 2-cell over α with domain p, as depicted below (this says that the
functor HomC(P,Q)→ HomB(A,B) is a discrete op-fibration).

P Q

A B

p

f

g

α

Note that the fibers of a 1D2F are 1-categories and that, if B is a 1-category, then
a 1D2F over B (seen as a 2-category with only identity 2-cells) is the same thing as a
fibration over B.

3These have also considered by M. Lambert in [Lam19, Definition 2.2.15], where they are called
“discrete 2-fibrations”, and were also known to our anonymous referee, who called them “locally discrete
fibrations”. We learned the concept from M. Makkai.
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6.2. Lemma. Let C
C

↓
B

be a fibration, with B a 2-category. Then any extension D
D

↓
B

of C

to a 1D2F is determined up to isomorphism by the function F whose domain is the set of
pairs (α, p) consisting of a 2-cell α : f → g in B and a lift p of f in C, and which assigns
to (α, p) the codomain of the unique lift of α in D with domain p.

That is, given another extension D′
D′

↓
B

with the same associated function F , there

is a unique isomorphism of 2-categories D → D′ extending 1C and commuting with the
2-functors D, D′.

Moreover, an arbitrary function F assigning to each pair (α, p) as above some lift
of the codomain of α comes from a 1D2F if and only if it satisfies the following three
conditions:

(i) If α : f → g and β : h→ k are horizontally composable 2-cells in B with composite
γ, then for any lifts p, q of f , h, we have F (qp, γ) = F (q, β) · F (p, α).

(ii) If α : f → g and β : g → h are vertically composable 2-cells in B with composite γ,
then for any lift p of f , we have F (F (p, α), β) = F (p, γ).

(iii) If α : f → f is an identity 2-cell in B, then for any lift p of f , we have F (α, p) = p.

Proof. Suppose we are given two extensions D, D′ with the same function F , and we
want to show they are isomorphic. Note that a 2-functor D→ D′ extending the identity
is determined by where it sends 2-cells. If such a 2-functor is to commmute with D, D′,
it must send a 2-cell p→ q in D lying over α : f → g to the unique 2-cell in D′ lying over
α with domain p.

Let us see that the above prescription actually defines a 2-functor. By definition, this
prescription preserves the domain of 2-cells, and it also preserves codomains, since D and
D′ have the same function F . Next, for 2-cells α and β in D with (horizontal or vertical)
composite γ, we must see that the image of γ in D′ is the composite of the images of α
and β. However, these must both be the unique 2-cell of D′ with the appropriate domain
and codomain which lies over the image of γ in B.

For the “moreover” claim, it is clear that the function F coming from a 1D2F satisfies
the conditions (i)-(iii). Conversely, given any F satisfying (i)-(iii), we can take the 2-cells
of D to be the set of pairs (α, p) comprising the domain of F , where the domain and
codomain of (α, p) are p and F (α, p), respectively, and we can take the extension D to
send (α, p) to α.

The requirement that D be a 2-functor forces the definition of composition in D; for
example, given 2-cells (α, p) and (β, q) of D with q = F (α, p), their composite is forced
to be the 2-cell (γ, p) where γ is the composite of α and β. That this composite has the
appropriate codomain is ensured by the condition (ii).

Finally, this prescription defines a 2-category, since for each equation which is required
in the definition of a 2-category, the two sides are automatically equal, as there is a
unique 2-cell with the appropriate domain and lying over the appropriate 2-cell in B.
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For example, if (α, p), (β, q), and (γ, r) are vertically composable 2-cells, then in the
associativity equation, both sides must be equal to the unique 2-cell with domain p lying
over the composite of α, β, γ.

The existence of identity 2-cells is guaranteed by the condition (iii).

6.3. Definition. For the rest of §6, fix a ∧=-cloven ∧=-fibration C
C

↓
B

, where B is

considered to have the 2-categorical structure given by Theorem 4.5.
Given an object B ∈ Ob B and an object P ∈ Ob CB, we define subBP : π∗1P ∧ EqB →

π∗2P to be the unique morphism over B ×B making the diagram

π∗1P ∧ EqB

P π∗2P

B B ×B

subPB
〈〈1P ,ρB !〉〉

c

1P

∆B

commute, where
〈〈

1P , ρB!
〉〉

is cocartesian by Frobenius Reciprocity.

6.4. Definition. Given morphisms f, g : A → B in B and a C-homotopy f
α−→ g, as

well as lifts p : P → Q of f and q : P → Q of g, we say that p and q are α-related
if q is the unique morphism over g such that the following diagram commutes (namely
q =↑ · subQB · 〈〈p̄, α!〉〉).

π∗1Q ∧ EqB

P π∗2Q

A B ×B

subQB

q

〈〈p,α!〉〉

〈f,g〉

(3)

6.5. Proposition. Given morphisms and C-homotopies as in

P Q R

A B C,

p

q

r

s

α β

f

g

h

k

if p and q are α-related, and r and s are β-related, then rp and sq are (β ◦− α)-related.
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Proof. Assume the hypothesis. By the definition of β ◦− α and of “(β ◦− α)-related”, we
need to show that the outside of the following diagram commutes.

π∗1Q ∧ EqB π∗1R ∧ EqC

P π∗2Q π∗2R

A B ×B C × C

r↑∧∧β̌

subQ subR
〈〈p,α!〉〉

q s↑

〈f,g〉 h×k

Now, the triangle commutes by the assumption that p and q are α-related. That the
square commutes follows from a diagram chase in

π∗1Q ∧ EqB π∗1R ∧ EqC

Q π∗2Q π∗2R

B B ×B C × C

r↑∧∧β̌

subQ subR

〈〈1Q,ρB !〉〉
c

1Q

s

〈〈r,β〉〉

s↑

∆B h×k

using the definitions of subQ and β̌, and the fact that r and s are β-related.

6.6. Definition. Given objects B ∈ Ob B and P ∈ Ob CB and natural numbers 1 ≤
i, j ≤ n we define subP,ijB to be the unique morphism EqijB ∧π∗i P → π∗jP in CB

n
making

the following diagram commute (namely, subP,ijB = ↑ · subPB ·(↑ ∧∧↑)).

π∗i P ∧ EqijB π∗1P ∧ EqB

π∗jP π∗2P

Bn B ×B

↑∧∧↑

subP,ijB
subPB

↑
c

〈πi,πj〉

6.7. Lemma. Given objects B ∈ Ob B and P ∈ Ob CB and natural numbers 1 ≤ i, j ≤ n,
the following diagram commutes.

π∗i P ∧ EqijB

P π∗jP

B Bn

subP,ijB

〈〈1P ,ρijB !〉〉

1P

∆n
B
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Proof. This follows from a diagram chase in the following diagram.

P π∗i P ∧ EqijB π∗1P ∧ EqB

P π∗jP π∗2P

A Bn B ×B

〈〈1,ρijB !〉〉

〈〈1,ρB !〉〉

subP,ijB

↑∧∧↑
subPB

1

1

↑
c

〈f1,...,fn〉 〈πi,πj〉

6.8. Lemma. With p, q, and α as in Definition 6.4, if p and q are α-related, then the
following diagram commutes.

π∗iQ ∧ EqijB

P π∗jQ

A Bn

subQ,ijB

q

〈〈p,α!〉〉

〈f1,...,fn〉

Proof. This follows from a diagram chase in the following diagram.

π∗iQ ∧ EqijB π∗1Q ∧ EqB

P π∗jQ Q

A Bn B ×B

subQ,ijB

↑∧∧↑

subQB

q

〈〈p,α!〉〉

↑
c

〈f1,...,fn〉 〈πi,πj〉

6.9. Proposition. Given morphisms and C-homotopies as in

P Q

A B,

p

r

q

α

f

h

g

β

if p and q are α-related and q and r are β-related, then p and r are β ◦− α-related.
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Proof. Assume the hypothesis. By the definition of β ◦− α, we need to show that the
outside of the following diagram commutes.

π∗1Q ∧ (Eq12
B ∧Eq23

B )

π∗1Q ∧ Eq13
B π∗1Q ∧ EqB

P π∗3Q π∗2Q

A B3 B2

1∧ trB

↑∧∧↑

sub13
Q subQ

〈〈p,〈〈α!,β!〉〉〉〉

r

r ↑

〈f,g,h〉 〈π1,π3〉

The square and the triangle on the bottom commute, so it remains to see that the tri-
angle on the left commutes, which is the same as the outside of the following diagram
commuting.

(π∗1Q ∧ Eq12
B ) ∧ Eq23

B π∗1Q ∧ (Eq12
B ∧Eq23

B )

π∗2Q ∧ Eq23
B π∗1Q ∧ Eq13

B

P π∗2Q

sub12
B ∧ 1

assoc
∼

1∧ trB

sub23
Q

sub13
Q

〈〈〈〈p,α!〉〉,β!〉〉

r

〈〈q,β!〉〉

Here, the two triangles commute by Lemma 6.8, hence it remains to see that the trapezoid
commutes.

Now, an application of Frobenius reciprocity to the (by Proposition 2.4) cocartesian
morphism 〈〈ρ12

B , ρ
23
B 〉〉 shows that

〈〈
1Q, 〈〈ρ12

B , ρ
23
B 〉〉
〉〉

: Q → π∗1Q ∧ (Eq12
B ∧Eq23

B ) is cocarte-
sian. Hence, it suffices to see that the above trapezoid commutes after precomposing with
this cocartesian morphism. But by Lemma 6.7 and the definition of trB, both resulting
composites are 1Q : Q→ π∗2Q.

6.10. Proposition. Every morphism p in C over a morphism f in B is idf -related to
itself.
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Proof. This follows from a diagram chase in

π∗1Q ∧ EqB

P Q π∗2P

A B B ×B

subQB

p

〈〈p,idf !〉〉

p

〈〈1Q,ρB !〉〉
1Q

f ∆B

6.11. Theorem. There is up to isomorphism a unique extension of the fibration C: C→
B to a 1D2F, where B is considered with its 2-category structure, such that, for given 1-
cells p, q in C lying over f , g in B and a 2-cell α : f → g, there exists a lift p → q of α
if and only if p and q are α-related.

Proof. This follows immediately from Propositions 6.5, 6.9, and 6.10, using Lemma 6.2.

6.12. Corollary. C-homotopic morphisms induce isomorphic pullback functors.

Proof. We will only indicate the proof. The claim follows from an application of the
(inverse of the) “Grothendieck construction” referred to above. In general, given any
cloven 1D2F, each 2-cell α : f → g induces a natural transformation f ∗ → g∗, which is an
isomorphism if α is. And by Theorem 3.3, every C-homotopy is an isomorphism 2-cell.

7. 2-categorical products

In this section, we will show that the 2-categorical structure on the base category of a
∧=-fibration has finite products in the 2-categorical sense. We will begin by recalling
what this means.

The main effort in this section will be devoted to showing that, given objects A,B in
the base of a ∧=-fibration C, a certain morphism EqA×B → π∗1 EqA ∧π∗2 EqB in CA×B is
an isomorphism. That these objects are isomorphic at all (which, logically speaking, says
〈a1, b1〉 = 〈a2, b2〉 ⇔ a1 = a2∧b1 = b2) is already proven in [Law06, p. 10] (see also [Jac99,
Exercise 3.4.7]).

7.1. Definition. Let C be a 2-category.
Given a pair of objects A,B ∈ Ob C, a product diagram based on A and B consists of

an object C ∈ Ob C and a pair of morphisms A
f←− C

g−→ B having the following universal
property: for any object D, the functor 〈f ◦ –, g ◦ –〉 : HomC(D,C) → HomC(D,A) ×
HomC(D,B), induced by composition with f and g, is an isomorphism of categories.

An object A ∈ Ob C is a terminal object if, for each object X ∈ Ob C, the category
HomC(X,A) has a single object and a single morphism.

C has finite products if it has a terminal object and there is a product diagram based
on each pair of objects.
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We note that there are other (weaker) notions of 2-categorical products, but this is
the only one we use. Note also that a product diagram in a 2-category is also a product
diagram in the underlying category, and similarly for the terminal object.

7.2. Theorem. For any ∧=-cloven ∧=-fibration C
C

↓
B

, the 2-categorical structure on B

given in Theorem 4.5 has finite products.

Proof. Let A,B ∈ Ob B. We already know that, for any C ∈ Ob B, composition
with π1 : A × B → A and π2 : A × B → B induces a bijection HomB(C,A × B) →
HomB(C,A)× HomB(C,B). What we still need to show is that, given morphisms

C

A B,

f

g h

k

composing horizontally with idπ1 and idπ2 induces a bijection

HomB(C,A×B)(〈f, h〉 , 〈g, k〉)→ HomB(C,A)(f, g)× HomB(C,B)(h, k).

Now, given a C-homotopy >C
α−→ EqA×B from 〈f, h〉 to 〈g, k〉, its image under the above

morphism is given by composing with }idπ1 : EqA×B → EqA and }idπ2 : EqA×B → EqB.
Hence, it suffices to see that

EqA×B π∗1 EqA ∧π∗2 EqB

(A×B)× (A×B) (A× A)× (B ×B)

〈〈
~idπ1 ,
~idπ2

〉〉

〈π1×π1,π2×π2〉
(4)

is cartesian, since this would give us bijections

Hom〈〈f,h〉,〈g,k〉〉(>C ,EqA×B) Hom〈〈f,g〉,〈h,k〉〉(>C , π∗1 EqA ∧π∗2 EqB)

Hom〈〈f,g〉,〈h,k〉〉(>C , π∗1 EqA)× Hom〈〈f,g〉,〈h,k〉〉(>C , π∗2 EqB)

Hom〈f,g〉(>C ,EqA)× Hom〈h,k〉(>C ,EqB).

〈〈
~idπ1 ,
~idπ2

〉〉
◦–

∼

〈~idπ1◦–,~idπ2◦–〉

〈π1◦–,π2◦–〉∼

(↑◦–)×(↑◦–)∼

Since the morphism (4) lies over an isomorphism, it is an isomorphism if and only if
it is cartesian, and also if and only if it is cocartesian. Let us see that it is cocartesian.
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Now in general, given composable morphisms p and q, if p and q·p are both cocartesian,
then so is q. Hence, it suffices to see that the composite

>A×B EqA×B π∗1 EqA ∧π∗2 EqB

A×B (A×B)× (A×B) (A× A)× (B ×B)

ρA×B
c

〈〈idπ1 ,idπ2〉〉

〈〈
~idπ1 ,
~idπ2

〉〉

∆B 〈π1×π1,π2×π2〉

is cocartesian. We will show this by a similar argument to that used in Proposition 2.4.
Namely, we will show that each morphism in the following factorization of

〈〈
idπ1 , idπ2

〉〉
is cocartesian.

>A×B π∗1 EqA π∗1 EqA ∧π∗2 EqB

A×B (A× A)×B (A× A)× (B ×B)

idπ1
〈〈↑,idπ2 !〉〉

∆A× 1B 1A×A×∆B

(5)

The first of the morphisms in (5) is cocartesian by the stability of ρA along the product
projection π1 : (A× A)×B → A× A:

>A×B π∗1 EqA

>A EqA

!!π1 c

idπ1

↑c
ρA
c

A×B (A× A)×B

A A× A.

∆A×1B

π1

y
π1

∆A

Similarly, we have that idπ2 : >(A×A)×B → π∗2 EqB over 1A×A×∆B is cocartesian, from
which it follows by Frobenius reciprocity that the second morphism of (5) is cocartesian.

We have shown that B has 2-categorical binary products. It remains to check that the
terminal object 1B is a 2-categorical terminal object, i.e., that for any C ∈ Ob B, there
is a unique C-homotopy !C →!C . This is the case since Eq1B

is terminal in C1B×1B (to
see this, note that !!∆1B

: >1B
→ >1B×1B

is (an isomorphism and hence) cocartesian).

8. Universal property

In this section, we show that, up to isomorphism, the extension of a ∧=-cloven ∧=-
fibration to a 1D2F given by Theorem 6.11 does not depend on the chosen ∧=-cleavage.

Intuitively, this is rather clear: given any two ∧=-cleavages, one obtains canonical
isomorphisms between the chosen objects of each ∧=-cleavage, and one could then try
and check that under these isomorphisms, all of the constructions involved in the definition
of the 1D2F-structure correspond.

However, as was pointed out to me by Arpon Raksit, a more satisfying solution to this
problem would be to find a “universal property” that, given C, characterizes the resulting
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1D2F up to isomorphism. Such a universal property was suggested by the anonymous
referee, and we carry out the details below.

The main point here is that a ∧=-fibration C is bound up with its induced 2-categorical
structure in the following way: given any 1D2F structure on C, one can canonically
associate to each of its 2-cells a C-homotopy. Following the referee’s suggestion, we call the
original 1D2F univalent if this assignment induces an isomorphism of 1D2Fs (importantly,
this property can be stated without reference to a fixed cleavage – see Definition 8.2). Then
the 1D2F structure on C from Theorem 6.11 is the (up to isomorphism) unique univalent
1D2F structure on C (see Theorem 8.11 below).

In fact (still following the referee), we show something stronger (Theorem 8.12): that
the canonical morphism from a ∧=-1D2F C to the 1D2F structure coming from Theo-
rem 6.11 is universal among morphisms to univalent 1D2Fs. We note that this is similar
to the universal property of the “extensional collapse” of a posetal fibration defined in
[Jac99, p. 214] and [MR12, Section 5], in which the notion of equality in the base category
is forced to agree with that given by the fibration.

This leads to a second universal property of the 1D2F structure on a ∧=-fibration
(Corollary 8.13) which does not make any reference to univalent ∧=-1D2Fs.

Below, we will be dealing with ∧=-fibrations which aren’t cloven, but we will, following
our usual convention (as in §§1.3, 1.4, 1.5) still use the same notation as if we had a
cleavage. For example, given B ∈ Ob B, once we have chosen products B × B,B3 ∈
Ob B, a terminal object >B ∈ Ob CB, a cocartesian morphism ρB : >B → EqB over ∆B,
pullbacks Eq12

B ,Eq23
B ,Eq13

B ∈ Ob B3, and a product Eq12
B ∧Eq23

B , we will write trB for the
morphism Eq12

B ∧Eq23
B → Eq13

B given by the construction in Definition 2.5 with respect to
these choices.

We will often need to fix several such choices, and for brevity, we may simply write
“fix a choice of >A, B×B, . . .” rather than “fix a terminal object >A ∈ Ob CA, a product
B

π1←− B ×B π2−→ B, . . . ”.

8.1. Definition. A 1D2F C
C

↓
B

is a ∧=-1D2F if (i) its underlying fibration is a ∧=-

fibration, (ii) each 2-cell in B (and hence in C) is invertible, and (iii) the products in B
are products in the 2-categorical sense.

Note that each ∧ =-fibration is a ∧ =-1D2F when considered with the trivial 2-
categorical structure and that, by Theorems 3.3 and 7.2, the extension of a ∧=-cloven
∧=-fibration to a 1D2F given by Theorem 6.11 is a ∧=-1D2F.

Given ∧=-1D2Fs C
C

↓
B

and C
C′

↓
B′

, a morphism of ∧=-1D2Fs from C to C′ is a

pair (Φ, ϕ) of 2-functors Φ: C → C′ and ϕ : B → B′ such that (i) C′Φ = ϕC, (ii) ϕ
preserves products, and (iii) Φ preserves cartesian morphisms, cocartesian lifts of diagonal
morphisms, and fiberwise products.
∧=-1D2Fs and morphisms thereof form a category in an obvious manner.
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8.2. Definition. Let C be a ∧=-1D2F. Given morphisms f, g, h : A → B, a 2-cell

g
β−→ h in B, a choice of terminal objects >A ∈ Ob CA and >B ∈ Ob CB, a product

B
π1←− B × B

π2−→ B, and an equality object ρB : >B → EqB, as well as a morphism
p : >A → EqB lying over 〈f, g〉, we define β!p : >A → EqB to be the unique morphism for
which there exists a 2-cell p→ β!p lying over 〈1f , β〉:

>A EqB

A B ×B.

p

β!p

〈f,g〉

〈f,h〉

〈1f ,β〉

The most important case is when f = g and p = idf , and in this case we write {β} for
β! idf .

C is univalent if for each pair f, g : A→ B of morphisms in B, and for any (and hence
every) choice of >A, B ×B,>B,EqB, the operation β 7→ {β} establishes a bijection

HomHomB(A,B)
(f, g)

∼−→ HomC
〈f,g〉(>A,EqB). (6)

Let C
C

↓
B

be a ∧=-1D2F until further notice.

8.3. Proposition. If C is the 1D2F induced by Theorem 6.11 from a ∧=-cleavage of
the underlying ∧=-fibration |C|, then C is univalent.

Proof. The ∧=-cleavage of |C| provides us, for each A,B ∈ Ob C, with the choices
necessary to carry out the construction α 7→ {α} from Definition 8.2, which in this case
gives us, for each 2-cell α : f → g, a C-homotopy >A → EqB from f to g. But α is by
the definition of the 2-categorical structure on B also a C-homotopy, hence the map (6)
is in this case a map

Hom〈f,g〉(>A,EqB)→ Hom〈f,g〉(>A,EqB).

To see that this is a bijection, let us show that it is in fact the identity.
Inspecting the definition of the above map, and of the 2-categorical structure on C,

we see that this amounts to showing that for each C-homotopy α : >A → EqB from f to
g, the two morphisms idf , α : >A → EqB are 〈idf , α〉-related, i.e., that the triangle in the
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following diagram commutes.

π∗1 EqB ∧EqB×B Eq12
B ∧Eq23

B ∧Eq34
B

>A π∗2 EqB Eq14
B

A (B ×B)2 B4

sub
EqB
B×B

∼

〈〈
~idπ1π2,↑π1,~idπ2π2

〉〉
〈〈idf ,〈idf ,α〉〉〉

α ↑
∼

〈〈f,f〉,〈f,g〉〉 〈π1π2,π1π1,π2π1,π2π2〉
∼

Here, the dashed morphism is the unique one making the rectangle commute. That the
topmost horizontal arrow is an isomorphism follows from the fact that the morphism (4)
from Theorem 7.2 is an isomorphism, as was established there. Hence, it suffices to see
that the outside of the above diagram, displayed below, commutes.

Eq12
B ∧Eq23

B ∧Eq34
B

>A Eq14
B

A B4.

〈〈idf ,idf ,α〉〉

α

〈f,f,f,g〉

(7)

Let us now identify the dashed morphism. The outside of the commutative diagram

π∗1 EqB ∧EqB×B Eq12
B ∧Eq23

B ∧Eq34
B

>B EqB π∗2 EqB Eq14
B

B B ×B (B ×B)2 B4

sub
EqB
B×B

∼

〈〈
~idπ1π2,↑π1,~idπ2π2

〉〉

ρB
c

〈〈1EqB
,ρB×B !〉〉

c
1EqB ↑

∼

∆ ∆B×B 〈π1π2,π1π1,π2π1,π2π2〉
∼

gives a diagram

Eq12
B ∧Eq23

B ∧Eq34
B

>B Eq14
B

A B4.

c

ρ14
B

∆4
B

in which the displayed morphism is cocartesian. Hence, we see that the dashed morphism
is precisely the morphism shown in (1) in the proof of Theorem 2.12. It follows that the
triangle (7) commutes if and only if α is equal to α ◦− idf ◦− idf , which of course it is.
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8.4. Lemma. Given objects and morphisms in B and C and a 2-cell α as shown below,
with ↑ cartesian, if there is a 2-cell ↑ p→↑ q over h ◦ α, then there is a 2-cell p→ q over
α.

P

g∗Q Q

A B C

↑p

↑qp

q

↑
c

f

g

α
h

The dual statement for cocartesian morphisms also holds.
Similarly, given a product R

π1←− R ∧ S π2−→ S in CB and morphisms p, q : P → R ∧ S
over f and g, if there are 2-cells π1p→ π1q and π2p→ π2q over α, then there is a 2-cell
p→ q over α.

Proof. Let us prove the first claim. The other two are proved similarly.
There is a (unique) 2-cell β : p → q′ over α with domain p. Composing this with ↑

gives a 2-cell ↑ p →↑ q′ over h ◦ α. Since there is a unique lift of h ◦ α with domain ↑ p,
it follows that ↑ q′ =↑ q, and hence q′ = q since ↑ is cartesian.

8.5. Lemma. Let A,B ∈ Ob C and fix a choice of >A, >B, B×B, B3, EqB, Eq12
B , Eq23

B ,
Eq12

B ∧Eq23
B .

Given morphisms f, g, h, k : A → B and morphisms p, q : >A → EqB lying over 〈f, g〉
and 〈g, h〉, respectively, as well as a 2-cell β : h→ k, we have β!(q ◦− p) = (β!q) ◦− p.

Proof. We must show that there is a 2-cell q ◦− p→ (β!q) ◦− p over 〈1f , β〉.
Since there are 2-cells p → p and q → β!q over 〈π1, π2〉 ◦ 〈1f , 1g, β〉 and 〈π2, π3〉 ◦

〈1f , 1g, β〉, respectively, we have by (the first and last claims in) Lemma 8.4 a 2-cell
〈〈p, q〉〉 →

〈〈
p, β!q

〉〉
over 〈1f , 1g, β〉.

>A Eq12
B ∧Eq23

B EqB

A B3 B ×B

〈〈p,q〉〉

〈〈p,β!q〉〉

↑trB

〈f,g,h〉

〈f,g,k〉

〈1f ,1g ,β〉
〈π1,π3〉

Composing this with ↑ trB : Eq12
B ∧Eq23

B → EqB then gives the desired 2-cell q ◦− p →
(β!q) ◦− p over 〈1f , β〉.
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8.6. Proposition. Let A,B ∈ Ob B and fix choices as in Lemma 8.5. Given morphisms

f, g, h : A→ B in B and 2-cells f
α−→ g

β−→ h, we have {β · α} = {β} ◦− {α}.

Proof. We have

{β ·α} =def (β ·α)! idf = β!(α! idf ) = β!(idg ◦−(α! idf )) = (β! idg) ◦− (α! idf ) =def {β} ◦− {α},

where the second equality is immediate from the definitions, the third equality comes
from idg being a unit for ◦− , and the fourth equality is by Lemma 8.5.

8.7. Proposition. Let A,B,C ∈ Ob B and fix a choice of >A, >B, >C, B×B, C ×C,
EqB, EqC. Given morphisms and 2-cells

A B Cα β

f

g

h

k

in B, we have {β ◦ α} = {β} ◦− {α}.

Proof. We need to show that there is a 2-cell idhf → {β} ◦− {α} lying over 〈1hf , β ◦ α〉.
Since there is 2-cell idh → {β} lying over 〈1h, β〉 = (1h×β)◦∆B, we have by Lemma 8.4

a 2-cell q1h →}{β} lying over 1h×β : h× h→ h× k.

EqC

>B EqB

B B ×B C × C

ρB
c

idh

{β} qidh

}{β}

∆B

h×h

h×k

1h×β

Composing this with the 2-cell idf → {α} lying over 〈1f , α〉 then gives the desired 2-cell.

8.8. Proposition. Let A,B ∈ Ob B and fix a choice of >A, >B, B × B, EqB. Then
{1f} = idf for any morphism f : A→ B.

Proof. Immediate from the definitions.

8.9. Proposition. Let A,B ∈ Ob B and P ∈ Ob CA and Q ∈ Ob CB, and fix a choice

of >B, B × B, EqB, π∗1Q, π∗2Q, π∗1Q ∧ EqB. Given a 2-cell A B

f

g

α in B and lifts

p, q : P → Q of f and g, there exists a lift p → q of α if and only if the triangle (3)
from Definition 6.4, with α replaced by {α}, commutes – i.e., if and only if p and q are
{α}-related.
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Proof. Given that there is a unique lift of α with domain p and a unique morphism to
which p is {α}-related, it suffices to show that if p and q are {α}-related, then there is a
lift p→ q of α.

Since there are 2-cells idf → {α} and p → p over 〈1f , α〉, we have by Lemma 8.4 a
2-cell 〈〈p, 1f !〉〉 → 〈〈p, {α}!〉〉 over 〈1f , α〉.

P π∗1Q ∧ EqB EqB

A B ×B B

〈〈p,idf !〉〉

〈〈p,{α}!〉〉

↑subQB

〈f,f〉

〈f,g〉

〈1f ,α〉 π2

Composing this with ↑ subQB : π∗1Q ∧ EqB → Q gives the desired lift p→ q of α.

8.10. Proposition. Given ∧=-1D2Fs C and C′, with C′ univalent, any morphism
|C| → C′ of ∧=-1D2Fs, where |C| is the underlying ∧=-fibration of C, extends uniquely
to a morphism C→ C′.

Proof. Let (Φ, ϕ) : |C| → C′ be a morphism of ∧=-1D2Fs that we wish to extend.
Now fix a ∧=-cleavage of |C|. In particular, this fixes all the data needed in Defini-

tion 8.2 and the above Propositions.
Let us now introduce the following notation. Given a pair of objects A,B ∈ Ob B,

we write ϕA × ϕB for ϕ(A × B), and similarly with all the other choices made in the
∧=-cleavage of |C|. For example we write EqϕB for Φ EqB and ρϕB for ΦρB, and so on.

Note that the objects ϕ(A)×ϕ(B), EqϕB, and so on, do not constitute a ∧=-cleavage
of (the underlying ∧=-fibration of) C′, as we have not made the necessary choices for all
the objects and morphisms in C′, but rather only for those in the image of (Φ, ϕ) – and
moreover, our choices can “conflict”, in the sense that if ϕ(A) = ϕ(B), we needn’t have
(for example) >ϕA = >ϕB.

However, the notation is still “correct” in the sense that, for example, ϕ(B)×ϕ(B) is
indeed a product of ϕ(B) with itself, and EqϕB is indeed an equality object for ϕB.

Also, note that there is a potential ambiguity of the following kind. When we write

idϕf : >ϕA → EqϕB, do we mean the composite >ϕA
!!ϕf−−→ >ϕB

ρϕB−−→ EqϕB, or the image
under Φ of idf : >A → EqB? The point, of course, is that the two possibilities always
agree, as must be checked separately in each case which arises below (and which we leave
to the reader).

Now, suppose we are given an extension C→ C′ of (Φ, ϕ) (which we also denote by
(Φ, ϕ)).

We then have for any 2-cell α in B that Φ{α} = {ϕα}. Since C′ is univalent, this
uniquely determines the 2-cell ϕα. This shows uniqueness of the extension ϕ.
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Next, given a 2-cell P Q

p

q

β in C over A B

f

g

α in B, we have by Propo-

sition 8.9 that p and q are {α} related, i.e., that subQB · 〈〈p, {α}!P 〉〉 = q. It then follows
that subΦQ

ϕB ·
〈〈

Φp, {ϕα}!ΦP
〉〉

= Φq – i.e., that Φp and Φq are {ϕα}-related. Thus, by
Proposition 8.9 again there is an (of course, unique) lift Φp → Φq of ϕα, and this must
be Φβ. This shows uniqueness of the extension Φ.

It remains to see that the above prescriptions really define a morphism of ∧=-1D2Fs.
It is clear from the above description that C′Φ = ϕC, and since we are already assuming
that (Φ, ϕ) is a morphism of ∧=-1D2Fs when restricted to |C|, it only remains to see
that ϕ and Φ are 2-functors, i.e. that they preserve horizontal and vertical composition
and identity 2-cells.

In each case, this is a matter of inspection, the point being that the constructions
in C from Propositions 8.6, 8.7, and 8.8 are taken by the ∧=-morphism (Φ, ϕ) to the
corresponding constructions in C′.

For example, given morphisms f, g, h : A → B and 2-cells f
α−→ g

β−→ h, we have by

Proposition 8.6 that {β · α} = {β} ◦− {α} = ↑ · trB ·
〈〈
{β}, {α}

〉〉
, the image of which

under Φ is precisely ↑ · trϕB ·
〈〈
{ϕβ}, {ϕα}

〉〉
= {ϕβ} ◦− {ϕα}, which by Proposition 8.6

again is {ϕβ · ϕα}. On the other hand, we have that Φ{β · σ} = {ϕ(β · α)}. Hence, by
univalence, ϕβ · ϕα = ϕ(β · α) as desired.

8.11. Theorem. Given a ∧=-cloven ∧=-fibration |C|, the inclusion |C| ↪→ C into the
(by Proposition 8.3 univalent) ∧=-1D2F of Theorem 6.11 is universal among morphisms
to univalent 1D2Fs, i.e., any other such morphism |C| → D factors uniquely through C.

In particular, C is, up to isomorphism, the unique extension of |C| to a univalent
1D2F.

Proof. Immediate from Proposition 8.10.

8.12. Theorem.

(i) The forgetful functor from the category of univalent ∧=-1D2Fs to the category of
∧=-fibrations is an equivalence.

(ii) The category of univalent ∧=-1D2Fs is a reflexive subcategory of the category of
∧=-1D2Fs (i.e., the inclusion has a left adjoint).

(iii) The forgetful functor from the category of ∧=-1D2Fs to the category of ∧=-fibrations
has a left adjoint with object function given by (choosing a ∧=-cleavage for each ∧=-
fibration and applying) Theorem 6.11.

Proof. That the forgetful functor in (i) is fully faithful follows from Proposition 8.10,
and that it is surjective on objects follows from Proposition 8.3, which also shows that
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there is a right inverse sending each ∧=-fibration to the ∧=-1D2F of Theorem 6.11 (with
respect to some ∧=-cleavage).

To show that the univalent ∧=-1D2Fs form a reflexive subcategory, we need to find,

for each ∧=-1D2F C
C

↓
B

, a morphism into this subcategory which is universal among such

morphisms. Choose a ∧=-cleavage on the underlying ∧=-fibration |C| of C, and let C′

be the 1D2F with underlying ∧=-fibration |C| given by Theorem 6.11. It follows from
Propositions 8.6, 8.7, and 8.8 that the construction α 7→ {α} extends 1|B| to a morphism
of 2-categories from B to the base category of C′, and by Proposition 8.9, this extends
uniquely to a morphism r : C→ C′ of ∧=-1D2Fs extending 1|C|.

We claim that this r is universal. Indeed, given any other univalent ∧=-1D2F D, we
have a commutative triangle

Hom(C′, D) Hom(C, D)

Hom(|C| , D)

r◦–

of hom sets in the category of ∧=-1D2Fs, where the two diagonal (restriction) maps are
bijections by Proposition 8.10, and hence the horizontal map is also a bijection, as desired.

Claim (iii) now follows from (i) and (ii) since the forgetful functor in question is
the composite of the right-adjoint from (ii) (whose left-adjoint is the inclusion) and the
equivalence from (i) (whose inverse is given on objects by Theorem 6.11).

8.13. Corollary. Let |C| be a ∧=-cloven ∧=-fibration, and C the ∧=-1D2F of Theo-
rem 6.11.

Let us say that a co-extension of |C| is a pair (D, f) with D a ∧=-1D2F and f : |D| →
|C| a morphism from the underlying ∧=-fibration of D.

Then (C, 1|C|) is a universal co-extension of C, i.e., given any other co-extension
(D, f), there is a unique morphism g : D→ C with f = 1|C| · |g|, where |g| : |D| → |C|
is the restriction of g.

Proof. This is just a restatement of the adjunction from Theorem 8.12 (iii).

Part III

Examples of ∧=-fibrations
In Part III, we give some examples of ∧=-fibrations, to which the results of Part II can
be applied.

The main examples of fibrations are the “codomain fibrations” F(C)
C→

↓
C

(see Defini-

tion 9.1), and variations thereof. F(C) is a ∧=-fibration precisely when C has finite limits,
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so this gives a large class of examples. However, in this case the resulting 2-categorical
structures is trivial (see §9.2).

The main examples of interest to us (of which the above example is, in fact, a special
case) come from a Quillen model category C (see Definition 10.1). From C, we form a
variation of F(C), namely by constructing a fibration HoF(C) over C whose fiber over
A is the homotopy category (see Proposition 10.7) of C/A (i.e., of F(C)A).

In [War08], it is already observed that the category of fibrations in a model category
gives rise to a Grothendieck fibration (our Ff(C) – see Definition 11.6) and that – under
certain conditions – the path objects (see Definition 10.4) satisfy a “weak” analogue of
the defining property of equality objects, which is relevant to dependent type theory
– roughly, they satisfy the “existence” but not the “uniqueness” part of the universal
property. The reason for this “weakness” is (again roughly speaking) that the universal
property is really a “homotopical one” – it involves a homotopy-equivalence rather than a
bijection on Hom-sets. Hence, one might hope to achieve the stronger universal property
by passing to the quotient by the homotopy relation – which is precisely what we do.

Of course, the name “homotopies” for the 2-cells defined in Part II is motivated by
these examples – indeed, two morphisms in Ccf are homotopic with respect to the asso-
ciated fibration if and only if they are homotopic in the sense of the model structure on
C. In Part IV, we will spell this out in detail.

We should mention an important caveat. Though HoF(C) is always a ∧-fibration,
and always has equality objects, it seems that in order for the equality objects to satisfy
Frobenius reciprocity and stability along product projections, we need to restrict to the
fibrant objects of C. In an earlier version of this paper, we had also required that C be
right-proper – i.e., that weak equivalence are closed under pullbacks along fibrations –
but the anonymous referee pointed out that this is unnecessary since we are restricting
to the fibrant objects (see Proposition 13.3).

Part III is organized as follows. In §9, we recall the definition of the codomain fibration
F(C). In §10, we recall the definition of and some basic facts about model categories. In
§11, we define the fibration HoF(C), in §12, we show that it is a ∧-fibration, and in §13,
we show that its restriction to Cf is a ∧=-fibration.

9. Codomain fibrations

We recall the simplest examples of fibrations, namely the “codomain” or “family” fibration

F(C)
C→

↓
C

, for any category C with pullbacks. The name “family fibration” comes from

the fact that a morphism X → A (i.e., an object in C→ over A) can also be thought of
as a family of sets indexed by A.

These will serve as a fairly uninteresting example of ∧=-fibrations, but more impor-
tantly will serve as the basis for the more interesting examples below.

For the rest of §9, let C be a category.
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9.1. Definition. The arrow category C→ of C has objects triples (X,A, x), with A,X ∈
Ob C and x : X → A a morphism of C, and the morphisms (X,A, x)→ (Y,B, y) are pairs
(p : X → Y, f : A→ B) such that yp = fx. We denote by F(C) : C→ → C the “codomain
functor”, which takes (X,A, x) to A and (p, f) to f .

For an object A ∈ Ob C, the slice category C/A of C over A is the fiber F(C)A over

A of the prefibration F(C)
C→

↓
C

(i.e., the subcategory of C→ with objects (X,A, x) and

morphisms (p, 1A)).
We will sometimes write (X, x) instead of (X,A, x) and p instead of (p, 1A).
It is easy to see that a morphism in C→ is cartesian if and only if it (seen as a

square in C) is a pullback square. It follows that F(C) is a fibration if and only if it
has pullbacks, and is in fact in this case a ∧-fibration (the only non-trivial thing being
stability of fiberwise products – this amounts to a certain face of a commutative cube
being a pullback square, which follows from certain other faces being pullback squares).

It is also easy to see that a morphism (p, f) : (X,A, x)→ (Y,B, y) in C→ is cocartesian
if and only if p : X → Y is an isomorphism. Hence every morphism f in B has a
cocartesian lift (1P , f) with domain any given P .

It follows that if C has, in addition to pullbacks, a terminal object (and is hence an
f.p. category), then F(C) is a ∧=-fibration (see [Jac99, pp. 81,193]). The stability of
the cocartesian lifts and Frobenius reciprocity both amount to a certain edge of a certain
commutative cube being an isomorphism, which follows from certain other edges being
isomorphisms and certain faces being pullback squares.

9.2. We now observe that all the F(C)-homotopies are identity F(C)-homotopies and
hence, the 2-categorical structure induced on C by Theorem 4.5 is trivial.

Indeed, given any equality object ρB = (p,∆B) : (B′, B, b) = >B → EqB = (Y,B ×
B, y), we have that b and p are isomorphisms and hence that y : Y → B×B is a diagonal
morphism. It follows that for f, g : A → B, there can be at most one F(C)-homotopy
(q, 〈f, g〉) : (A′, A, a)→ (Y,B ×B, y), and that it exists if only if f = g.

10. Model categories

We now review some elements of the theory of model categories. These were introduced
in [Qui67] as an abstract framework for homotopy theory. This will be fairly brief, and
we refer to [MP12, Hov99] for more background.

10.1. Definition. Given morphisms i : A→ B and p : X → Y in a category C, we say
that i satisfies the left lifting property with respect to p, and p satisfies the right lifting
property with respect to i if for every commutative solid diagram

A X

B Y,

i p
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there exists a dashed morphism making the whole diagram commute.
A weak factorization system in a category C consists of two sets L,R of morphisms

of C such that (i) any morphism f of C admits a factorization f = pi with i ∈ L and
p ∈ R, and (ii) a morphism of C is in L (resp. in R) if and only if it satisfies the left
(resp. right) lifting property with respect to every morphism in R (resp. in L).

A model structure on a category C consists of three sets C,F, W of morphisms of
C, called the cofibrations, fibrations,4 and weak equivalences of the model structure, such
that (i) both (C∩ W,F) and (C,F∩ W) are weak factorization systems, and (ii) given
a commutative diagram

C

A B,

gf

h

in which two of the morphisms are weak equivalences, the third is as well.
We refer to property (ii) as the “two-of-three axiom”.
A model category is a category C having finite limits and colimits, together with a

model structure.
We note that this is what Quillen originally called a closed model category [Qui67]

but is now normally just called a model category. The above is a slight reformulation
of the definition from [Qui67], and can be found, e.g., in [Joy08, p. 427]. We note that
sometimes (for example in [Hov99]), it is demanded that C be (not just finitely) complete
and cocomplete, and that the cofibration-fibration factorizations are given by specified
functors C→ → C·→·→·.

We will make the usual abuse of notation of identifying a model category with its
underlying category.

10.2. Let us fix some notational conventions concerning categories with finite coproducts.
For a category C having specified finite coproducts, we will use the notation 0C to

denote the chosen initial object of C, and ¡A : 0C → A to denote the unique morphism from
0C to A. Given A,B ∈ Ob C, we will denote the chosen coproduct of A and B by A+B
and, for morphisms f : A → C and g : B → C, we will denote by [f, g] : A + B → C the
map induced by f and g. We denote by∇A the codiagonal morphism [1A, 1A] : A+A→ A.

As usual (see §§1.3, 1.4 and 1.5), we may still use this notation even if finite coproducts
are only assumed to exist but have not been specified, but in this case it will be merely
suggestive.

10.3. Definition. An object A in a model category C is fibrant if the unique morphism
!A : A → 1C to some (and hence – since the fibrations include isomorphisms and are
closed under composition – any) terminal object is a fibration, and is cofibrant if the
unique morphism ¡A : 0C → A from some (and hence any) initial object is a cofibration.

We denote by Cc (resp. Cf and Ccf) the full subcategory on the fibrant (resp. cofibrant
and cofibrant-fibrant) objects.

4Of course, this means we are now considering two different notions called “fibration” – Grothendieck
fibrations, and fibrations in a model category. However, this shouldn’t cause any confusion.
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A morphism f : A → B in C is called a trivial fibration if it is both a fibration
and a weak equivalence, and a trivial cofibration if it is both a cofibration and a weak
equivalence.

By using the factorization axiom on the morphisms ¡A : 0C → A and !A : A→ 1C, we
can always find a trivial fibration q : QA→ A with QA cofibrant and a trivial cofibration
r : A→ RA with RA fibrant. These are called cofibrant and fibrant replacements for A.

10.4. Definition. Given an object A in a model category C, a cylinder object for A is

a factorization A + A
[∂1,∂2]−−−→ A × I σ−→ A of a codiagonal map ∇ : A + A → A, in which

[∂1, ∂2] is a cofibration and σ is a weak equivalence.
Note that by the factorization axiom, every A ∈ Ob C has a cylinder object, and we

can even assume that σ is a trivial fibration.
We follow [Qui67] in using the suggestive notation A× I, but this does not mean that

the object A× I is really a product.

Similarly, a path object for A is a factorization A
s−→ AI

〈d1,d2〉−−−−→ A × A of a diagonal
map A→ A× A with s a weak equivalence and 〈d1, d2〉 a fibration.

Again, there exists a path object for every object, in which s is a cofibration, and
again, the notation AI is merely suggestive.

Given two morphisms f, g : A→ B in C, a left-homotopy from f to g is a factorization
of the induced map [f, g] : A+ A→ B through some cylinder object [∂1, ∂2] : A + A →
A × I, and we say that f and g are left-homotopic, and write f

`∼ g, if there exists a
left-homotopy between them. Similarly, a right-homotopy from f to g is a factorization
of 〈f, g〉 : A→ B × B through some path object 〈d1, d2〉 : BI → B × B, and we say that
f and g are right-homotopic, and write f

r∼ g, if there exists a right-homotopy between
them.

By Proposition 10.5 (ii) below and its dual, if A is cofibrant and B is fibrant, then the

relations
`∼ and

r∼ on Hom(A,B) agree and are an equivalence relation. In this case, we

write ∼ for the relation
`∼ =

r∼, and π(A,B) for the quotient HomC(A,B)/ ∼.

10.5. Proposition. Let C be a model category, A,B,C ∈ Ob C, and let f, g : A → B
and h : B → C be morphisms in C. Each statement below also comes with a dual statement
(in which the direction of morphisms are reversed, the words “fibration” and “cofibration”
are interchanged, and so on).
Claim:

(i) If A is cofibrant, then
`∼ is an equivalence relation on Hom(A,B).

(ii) If B is fibrant and A× I is a cylinder object for A, then f
r∼ g implies that there is

a left-homotopy A× I → B from f to g. (In particular, if B is fibrant, then f
r∼ g

implies f
`∼ g.)

Proof. See [Hov99, p. 9, Proposition 1.2.5].
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10.6. Definition. Given categories C and D and a set W ⊂ Ar C of morphisms in C,
we say that a functor F : C → D is a localization of C at W (and by abuse of notation,
also that D is the localization of C at W ) if (i) F takes morphisms in W to isomorphisms
and (ii) given any functor F : C→ D′ satisfying (i), there is a unique5 functor G : D→ D′

with GF = F ′.
We now recall the definition and main properties of the homotopy category of a model

category.

10.7. Proposition. Given a model category C, there exists an essentially unique cate-
gory Ho(C) with Ob Ho(C) = Ob C and functor γ : C → Ho(C) which is the identity
on objects and which is a localization of C at the weak equivalences.

“Essentially unique” means: given another such γ′ : C → Ho′(C), there is a unique
functor F : Ho(C) → Ho′(C) such that Fγ = γ′, and moreover F is an isomorphism
which is the identity on objects.

Moreover, Ho(C) has the following properties:

(i) For a morphism f in C, γf is an isomorphism if and only if f is a weak equivalence.

(ii) If f, g : A→ B are morphisms in C, with A cofibrant and B fibrant, then γf = γg
if and only if f ∼ g; i.e., γ induces a bijection π(A,B)→ HomHo(C)(A,B).

(iii) Denoting by Ho(C∗), for ∗ ∈ {c, f cf}, the full subcategory of Ho(C) on the objects
in Ob C∗ ⊆ Ob C = Ob Ho(C), we have that the restriction γ : C∗ → Ho(C∗) is a
localization of C∗ at the weak equivalences, and that the inclusion Ho(C∗) ↪→ Ho(C)
is an equivalence (and hence also that the inclusions Ho(Ccf) ↪→ Ho(Cc),Ho(Cf)
are equivalences).

Proof. The essential uniqueness is immediate from the definition of localization. It is
easy to see that a localization is always a bijection on objects, and being the identity on
objects can of course be arranged.

As for existence, it is well-known that a localization at any set of morphisms always
exists (though it can lead from a category that is locally small not to one that is not; in
this case, this is precluded by (ii) and (iii)).

One direction of (i) is trivial. For the other direction, see [Hov99, p. 11, Proposi-
tion 1.2.8]. For (ii) and (iii), see [Qui67, I p. 1.13].

11. The fibration HoF(C)

In this section, we define the prefibration HoF(C)
Ho(C)

↓
C

by introducing a model structure

on C→, originally due to A. Roig (in a more general setting, see [Roi94]) and passing to
its homotopy category.

5There is a natural, weaker notion of localization, in which this uniqueness is guaranteed only up to
isomorphism.
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We note that in an earlier version of this paper, we had sought in vain for such a model
structure, and were forced instead to take a much more circuitous route to the definition
of HoF(C). This model structure was brought to our attention by P. Cagne, and was
also known to the anonymous referee.

In §11.9, we will describe a possible alternative construction of HoF(C).
For the rest of §11, let C be a model category.

11.1. Definition. We define a model structure on C→ (which has all finite limits and
colimits since C does) as follows. A morphism (p, f) : (X,A, x)→ (Y,B, y) in C→ is

� a fibration if “the” induced map X → A×B Y is a fibration i.e., if (p, f) factors as
(↑, f)(p′, 1A), with ↑ cartesian and p′ a fibration.

� a cofibration if p is a cofibration.

� a weak equivalence if f is an isomorphism and p is a weak equivalence.

The verification that this is a model structure is straightforward, though somewhat
lengthy, and in any case it follows from the more general theorems of [Roi94, Sta12]
on model structures in bifibrations.

Whenever we refer to C→ as a model category, we mean with respect to this model
structure.

11.2. Proposition. A morphism (f, 1A) : (X,A, x) → (Y,A, x) in C→ is a fibration,
cofibration, or weak equivalence if and only if f is. These make C/A into a model category.
Moreover, an object in C/A is fibrant or cofibrant if and only if it is as an object of C→.
Explicitly, (X, x) is fibrant if and only if x is a fibration and is cofibrant if and only if X
is cofibrant.

Whenever we refer to C/A as a model category, we mean with respect to this model
structure.

Proof. The proof of the first claim is by inspection. That this defines a model structure
on C/A is well-known (see, e.g., [Hov99, p. 5]) and easy to verify. The proofs of the last
two claims are also by inspection.

11.3. Proposition. If two morphisms (p, f), (q, g) : (X,A, x)→ (Y,B, y) in C→ are left-
homotopic, then f = g. Moreover, (p, f), (q, f) : (X,A, x) → (Y,B, y) are left-homotopic
if and only if there exists a homotopy X×I → Y from p to q making the following diagram
commute.

X × I

X Y

A B

σ h

x y

f
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In particular, in the case that (X,A, x) is cofibrant and (Y,A, y) is fibrant, the set

Hom
Ho(C→)
f ((X,A, x), (Y,B, y)) is the quotient of HomC→

f ((X,A, x), (Y,B, y)) by the above
relation.

Proof. Let us set P = (X,A, x) and Q = (Y,B, y).
We know that the coproducts P + P in C→ are exactly the objects of the form

(X +X,A+A, x+x). Next, it follows from the definitions that P +P
[∂′1,∂

′
2]

−−−→ P × I σ′−→ P
is a cylinder object if and only if P × I is of the form (X × I, A′, e−1xσ) with σ′ = (σ, e)

and [∂′1, ∂
′
2] = ([∂1, ∂2],∇Ae

−1), for some cylinder object X + X
[∂1,∂2]−−−→ X × I σ−→ X and

some isomorphism e : A′
∼−→ A.

Given P × I of this form, a left-homotopy P × I → Q from (p, f) to (g, q) is then a
morphism (h, h′) : (X × I, A′, e−1xσ)→ (Y,B, y) such that the triangles

X × I

X +X Y

h

[p,q]

[∂1,∂2]

A′

A+ A Q

h′e−1∇A

[f,g]

commute (in particular, h′ = fe = ge). This proves both claims.

11.4. Proposition. Two morphisms (p, 1A), (q, 1A) : (X,A, x) → (Y,A, y) in C→ are
left-homotopic in C→ if and only if they are in C/A.

Proof. We show that p and q are homotopic in C/A if and only if they satisfy the
condition described in Proposition 11.3. The argument is similar to the one there, but
simpler: one first verifies that the cylinder objects in C/A on (X, x) are exactly of the
form

(X +X, [x, x])
[∂1,∂2]−−−→ (X × I, xσ)

σ−→ (X, x)

with X + X
[∂1,∂2]−−−→ X × I → σ−→ X a cylinder object in C, and the claim follows by

inspecting the definition of left-homotopy.

11.5. Definition. Given two prefibrations D
D

↓
B

and D′
D′

↓
B

over a category B, a morphism

of prefibrations F : D→ D′ is a functor F : D→ D′ for which

D D′

B

F

commutes. Note that by restriction, F induces functors DA → D′
A for each A ∈ Ob B.

If D and D′ are fibrations, then F is a morphism of fibrations if it takes cartesian
morphisms to cartesian morphisms.

If D and D′ are ∧-fibrations, then F is a morphism of ∧-fibrations if, in addition, the
induced functors DA → D′

A are all f.p. functors.
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11.6. Definition. For ∗ ∈ {c, f, cf}, we define the pre-fibration F∗(C)
(C→)∗

↓
C

to be the

restriction to (C→)∗ of the functor F(C) : C→ → C. Note that by Proposition 11.2, the
fiber F∗(C)A of F∗(C) over A is precisely the category (C/A)∗.

11.7. Definition. Since the functor F(C) : C→ → C clearly preserves weak equivalences

it induces a functor Ho(C→) → C, which we denote by HoF(C)
Ho(C→)

↓
C

. Similarly, for

∗ ∈ {c, f, cf}, we have a prefibration HoF∗(C)
Ho(C→)∗

↓
C

induced from F∗(C).

The functor γ : C→ → Ho(C→) induces a morphism of prefibrations γ : F(C) →
HoF(C), and we similarly have morphisms γ : F∗(C)→ HoF∗(C).

11.8. Proposition. The functors C/A = F(C)A
γ−→ HoF(C)A induced from γ : F(C)→

HoF(C) factor through γ : C/A → Ho(C/A) and induce isomorphisms Ho(C/A) →
HoF(C)A.

Similarly, the restrictions F∗(C)A → HoF∗(C)A induce isomorphisms Ho(C/A)∗ →
HoF∗(C)A for ∗ ∈ {c, f, cf}.

Proof. That the functor C/A → HoF(C)A factors through Ho(C/A) means that it
takes weak equivalences to isomorphisms, which follows from Proposition 11.2. The same
goes for (C/A)∗.

Next, we claim that the induced functor Ho(C/A)cf → HoFcf(C)A is an equivalence.
It is the identity on objects, so it remains to see that it is fully faithful. Fix P,Q ∈
Ob(C/A)cf and consider the diagram

HomC/A(P,Q) HomHoF(C)A(P,Q)

HomC→(P,Q) HomHo(C→)(P,Q).

γ

γ

where we would like to show that the top map induces a bijection from HomHo(C/A)(P,Q).
Let us first see that the top map is surjective. We will refer, for brevity, to the set in the
top-left of the diagram by (TL), the set in the bottom-right by (BR), and so on.

By the definition of HoF(C), (TR) consists of those elements of (BR) which are
sent to 1A under the functor Ho(C→) → C induced from F(C) : C→ → C. Since P
is cofibrant Q is fibrant, it follows from Proposition 10.7 (ii) that the bottom map γ is
surjective, so that (TR) consists of the images of those elements of (BL) sent by F(C) to
1A – i.e., the image of (TL). This shows surjectivity.

By Proposition 11.2, P and Q are cofibrant and fibrant also in C→, hence by Propo-
sition 10.7 (ii) again, the bottom map (and hence the top map) identifies two morphisms
if and only if they are left-homotopic in C→. But by Proposition 11.4, this is the same
as being left-homotopic in C/A. Hence, by Proposition 10.7 (ii) once again, the top map
induces a bijection HomHo(C/A)(P,Q)→(TR).
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We now have a commutative diagram of categories and functors

Ho(C/A)cf HoFcf(C)A

Ho(C/A) HoF(C)A,

γ

γ

and we want to show the bottom arrow is an equivalence. We just showed that the top
arrow is an equivalence, and the left arrow is an equivalence by Proposition 10.7 (iii), so
it remains to see that the right arrow is an equivalence. Since it is an inclusion of a full
subcategory, we only need to see it is essentially surjective. But for every P ∈ Ob(C/A),
there is a weak equivalence in C/A (which is by Proposition 11.2 also a weak equivalence
in C→) between P and an object in (C/A)cf , the image of which under γ gives the desired
isomorphism.

The same argument if we replace (C/A) and HoF(C)A and (C/A)∗ by HoF∗(C)A

for ∗ ∈ {c, f}.

11.9. We now sketch a possible alternative approach to the construction of the fibration
HoF(C) which more directly implements the idea “pass to the homotopy category of
each fiber of F(C)”, and which has been implemented by P. Cagne in [Cag18].

In [Hov99, p.26], it is shown that the passage from a model category to its homotopy
category is described by a pseudo-functor Ho : Mod→ Cat from the 2-category Mod of
model categories and “Quillen adjunctions” to the 2-category of categories. Given a model

category C, the pseudo-functor F̂(C) : Cop → Cat associated to any cleavage of F(C)
factors through the forgetful 2-functor Mod ↪→ Cat, since the left-adjoint

∑
f to each

pullback functor f ∗ is a “left Quillen functor”. According to [Cag18, Proposition 4.3.3],

the fibration HoF(C) is then the one associated to the composition Ho ◦ F̂(C) of the

factored pseudo-functor F̂(C) : Cop →Mod with the pseudo-functor Ho : Mod→ Cat.

12. HoFf(C) is a ∧-fibration

We will now show that HoF(C) is a ∧-fibration. For this purpose, it will be more
convenient to work with the equivalent fibration HoFf(C), since Ff(C) is itself a ∧-
fibration and, as we will show, the morphism γ : Ff(C) → HoFf(C) is a morphism of
∧-fibrations, which gives us a very explicit description of the ∧-fibration structure of
HoFf(C).

12.1. We recall that the fibrations in any model category are stable under pullbacks: if

A B

C D

p′
y

p
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is a pullback square in and p is a fibration, so is p′. In fact, the elements of R in any
weak factorization system (L,R) are stable under pullbacks (and dually, the elements of
L are stable under pushouts).

In particular, if A
π1←− A × B π2−→ B is a product diagram and A (resp. B) is fibrant,

then π2 (resp. π1) is a fibration.

12.2. Proposition. For any model category C, the category Cf is an f.p. category, and
the inclusion Cf ↪→ C is an f.p. functor.

Proof. Since Cf is a full subcategory of C, it suffices to see that a finite product of
fibrant objects is fibrant. That terminal objects are always fibrant is immediate, and that
the binary product of fibrant objects is fibrant follows from §12.1.

12.3. Proposition. For any model category C, the prefibration Ff(C)
(C→)f

↓
C

is a ∧-

fibration, and the inclusion Ff(C) ↪→ F(C) is a morphism of ∧-fibrations.

Proof. We first prove the claim with “∧-” removed. Since (C→)f is a full subcategory
of C→, it suffices to see that any cartesian morphism in C→ with codomain in (C→)f has
its domain in (C→)f . But this follows from §12.1 since the cartesian morphisms in C→

are precisely the pullback squares.
That the fibers of Ff(C) have finite products which are preserved by the inclusion

Ff(C)A ↪→ F(C)A follows from Proposition 12.2. That the finite products in Ff(C) are
stable under pullbacks is immediate from the corresponding property in F(C).

12.4. Proposition. (cf. [Hov99, Example 1.3.11]) For any model category C, the cat-
egory Ho(Cf) (hence also Ho(C)) is an f.p. category, and γ : Cf → Ho(Cf) is an f.p.
functor.

Proof. Let 1 be terminal in Cf . We need to see that for each A ∈ Ob Cf , there is a
unique morphism A → 1 in Ho(Cf). It suffices to see this for cofibrant A, since every
object in Ho(Cf) is isomorphic to such an A. But in this case, by Proposition 10.7 (ii).
the morphisms A → 1 in Ho(Cf) are just homotopy classes of morphisms A → 1 in C,
of which there is of course just one.

Next, let B
π1←− B × C

π2−→ C be a product in Cf . We need to see that for each
A ∈ Ob Cf , composition with π1 and π2 induces a bijection HomHo(Cf)(A,B × C) →
HomHo(Cf)(A,B) × HomHo(Cf)(A,C). Again, it suffices to consider A cofibrant, so that
we need to show that

〈π1 ◦ –, π2 ◦ –〉 : π(A,B × C)→ π(A,B)× π(A,C)

is a bijection. That it is surjective is immediate, since

〈π1 ◦ –, π2 ◦ –〉 : HomCf
(A,B × C)→ HomCf

(A,B)× HomCf
(A,C)

is already surjective pointwise, and not just on homotopy classes.
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To see that it is injective, we need to check that given homotopic maps f1, f2 : A→ B
and homotopic maps g1, g2 : A→ C, the induced maps 〈f1, g1〉 , 〈f2, g2〉 : A→ B × C are
homotopic. By Proposition 10.5 (ii) we can choose left-homotopies hf : A×I → B from f1

to f2 and hg : A×I → C from g1 to g2 with a common cylinder object A+A
[∂1,∂2]−−−→ A×I.

We then have an induced left-homotopy 〈hf , hg〉 : A × I → B × C. To show that this
is a left-homotopy between 〈f1, g1〉 and 〈f2, g2〉, we need to show that 〈hf , hg〉 [∂1, ∂2] =
[〈f1, g1〉 , 〈f2, g2〉]. But

LHS = [〈hf , hg〉 ∂1, 〈hf , hg〉 ∂2] = [〈hf∂1, hg∂1〉 , 〈hf∂2, hg∂2〉] = RHS.

12.5. Proposition. For any model category C, HoFf(C) is a ∧-fibration and γ : Ff(C)→
HoFf(C) is a morphism of ∧-fibrations.

Proof. That the fibers of HoFf(C) are f.p. categories, and that functors Ff(C)A →
HoFf(C)A induced by γ are f.p. functors, follows from Propositions 12.4 and 11.8.

Let p : Q → R in (C→)f be a cartesian morphism over g : B → C in C. We need
to see that the image γp in Ho(C→)f is still cartesian; i.e., that for f : A → B in C
and P ∈ Ob HoFf(C)A, the map (γp) ◦ –: Homf (P,Q) → Homgf (P,R) is a bijection.
We argue as in Proposition 12.4. First, we can assume that P is cofibrant, and hence,
by Proposition 11.3, we must show that (p ◦ –) : Homf (P,Q) → Homgf (P,R) induces a
bijection on left-homotopy classes. Surjectivity is clear, and injectivity follows by a similar
– but simpler – argument to the one in Proposition 12.4.

It remains to see that the products in the fibers of HoFf(C) are stable under pullbacks.
Let f : A→ B be a morphism in C and P,Q ∈ Ob HoFf(C)B. It suffices to see that for
some product P ∧Q, and some pullbacks f ∗P , f ∗Q, and f ∗(P ∧Q) as in

f ∗(P ∧Q) P ∧Q

f ∗Q Q

f ∗P P

A B,

f∗π1

f∗π2

↑
c

π2

c
↑

↑
c

π1

f

f ∗P
f∗π1←−− P ∧Q f∗π2−−→ f ∗Q is also a product diagram. Now, by Proposition 12.4 and what

we have just shown, we can obtain such a product P ∧Q and such cartesian morphisms
by first choosing a product diagram and cartesian morphisms in (C→)f , and then taking

their images in Ho(C→)f . But now the diagram f ∗P
f∗π1←−− P ∧ Q f∗π2−−→ f ∗Q in Ff(C)A

is a product diagram since Ff(C) (by Proposition 12.3) is a ∧-fibration. Hence, using
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Proposition 12.4 again, f ∗P
f∗π1←−− P ∧ Q f∗π2−−→ f ∗Q is a product diagram in HoFf(C)A

as desired.
The proof that terminal objects in HoFf(C)B are stable under pullback is similar,

but simpler.

13. HoFf(Cf) is a ∧=-fibration

We now want to show that HoFf(C) is a ∧=-fibration. We will show that the necessary
cocartesian lifts always exist; in fact, as with the fibration F(C), we will show that any
f : A → B in C has a cocartesian lift with domain any P ∈ Ob HoFf(C)A. However,
in order to show that these satisfy Frobenius reciprocity and that they are stable along
product projections, it seems that we need to restrict to the fibrant objects of C.

For the rest of §13, let C be a model category.

13.1. Proposition. Given a morphism (f̂ , f) : (X,A, x) → (Y,B, y) in (C→)f , the im-
age γ(f̂ , f) in Ho(C→)f of (f̂ , f) is cocartesian if and only if f̂ is a weak equivalence.

Proof. It suffices to prove this for Ho(C→) (rather than Ho(C→)f); since the inclusion
HoFf(C)→ HoF(C) is an equivalence on total categories and on each fiber, it follows
that it preserves cocartesian morphisms, and also that HoF(C) is a fibration (since
HoFf(C) is).

We now factor (f̂ , f) as (X,A, x)
(1X ,f)−−−→ (X,B, fx)

(f̂ ,1B)−−−→ (Y,B, y). Let us next see
that γ(1X , f) is cocartesian.

We can assume X is cofibrant by passing to a cofibrant replacement y : X ′ → X.
Indeed, we then have a commutative square

(X ′, A, xy) (X ′, B, fxy)

(X,A, x) (X,B, fx)

γ(1X′ ,f)

γ(y,1A) γ(y,1B)

γ(1X ,f)

in Ho(C→) with the vertical arrows isomorphisms, and hence that γ(1X , f) is cocartesian
if and only if γ(1X′ , f) is.

We need to check that for each (Z,B, z) ∈ Ob C/B (which we can assume fibrant), the

map (– ◦ γ(1X , f)) : Hom
Ho(C→)
1B

((X,B, fx), (Z,B, z)) → Hom
Ho(C→)
f (X,A, x), (Z,B, z))

is a bijection.
That the corresponding map (– ◦ (1X , f)), with HomHo(C→) replaced by HomC→ , is

a bijection is obvious, and since (X,A, x) is cofibrant and (Z,B, z) is fibrant, it only
remains to see that this bijection preserves the relation ∼. This follows from the explicit

description of
`∼ in C→ from Proposition 11.3.

Since γ(1X , f) is cocartesian, γ(f̂ , 1B) is cocartesian if and only if the composite γ(f̂ , f)
is, so it remains to see that f̂ is a weak equivalence if and only if γ(f̂ , 1B) is cocartesian
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– i.e., (since it lies over an isomorphism) if and only if γ(f̂ , 1B) is an isomorphism. But
this holds by Proposition 10.7 (i) and the definition of weak equivalence in C→.

13.2. Proposition. For each f : A → B in C and each P ∈ Ob HoFf(C)A, there is a
cocartesian lift of f in Ho(C→)f with domain P .

Proof. Suppose P = (X,A, x), and factor fx : X → B in C as a trivial cofibration
f̂ : X → X ′ followed by a fibration x′ : X ′ → B. Then (X ′, B, x′) ∈ Ob(C→)f , and by
Proposition 13.1, the image of (f̂ , f) : (X,A, x)→ (X ′, B, x′) in Ho(C→)f is cocartesian.

13.3. Proposition. Given a pullback square

A B

C D

p′
y

p

g

in C in which B and D are fibrant, g is a fibration and p is a weak equivalence, p′ is also
a weak equivalence.

Proof. See [Hir03, Proposition 13.1.2]

13.4. Proposition. Given a morphism g : C → D in Cf , the cocartesian morphisms in
Ho(C→)f lying over g are stable along every fibration k : B → D.

Proof. It suffices, for each P ∈ Ob HoFf(C)C , to see that some cocartesian lift of g
with domain P is stable along every k.

By Proposition 13.1, we can take as our cocartesian morphism the image γp : P → Q
of some morphism p = (ĝ, g) : P → Q in (C→)f with ĝ a weak equivalence. Again, to see
that γp is stable along the fibration k, it suffices to see that for each pullback square

A B

C D

f

h

y
k

g

in C, there exist some cartesian morphisms ↑ : h∗P → P over h and ↑ : k∗Q → Q over
k, such that the unique morphism p′ over f making the following diagram commute is
cocartesian.

h∗P k∗Q

P Q

p′

↑ ↑

p

Now, by Proposition 12.5, we can take our cartesian lifts h∗P → P and k∗Q → Q
to be the image under γ of cartesian lifts of h and k in (C→)f – where we recall that
“cartesian” in (C→)f means “pullback square”.
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We thus have a commutative cube

· ·

· ·

A B

C D

f̂

ĝ k̂

f

g

h

k

in C in which the right, left, and bottom faces (and hence – by three application of the
“2-of-3” rule – also the top face) are pullback squares, and ĝ is a weak equivalence. We
want to show that f̂ is a weak equivalence (since this would imply, by Proposition 13.1,
that p′ is cocartesian). But by §12.1, k̂ is a fibration, and the domain and codomain of ĝ
are fibrant (since they admit fibrations to the fibrant objects C and D), and hence f̂ is a
weak equivalence by Proposition 13.3.

13.5. Proposition. Given a morphism f : A→ B in Cf , the cocartesian morphisms in
Ho(C→)f lying over f satisfy Frobenius reciprocity.

Proof. The argument is similar to the one in Proposition 13.4.
Let f : A→ B be a morphism in C. It suffices to check that for eachQ ∈ Ob HoFf(C)A

and each P ∈ Ob HoFf(C)B, there is some cocartesian lift q : Q → Q′ of f , some
cartesian lift ↑ : f ∗P → P and some product diagrams Q

π1←− Q ∧ f ∗P π2−→ f ∗P and
Q′

π1←− Q′ ∧ P π2−→ P for which the induced morphism q∧∧ ↑ – i.e., the unique morphism
over f making the following diagram commute – is cocartesian.

Q Q′

Q ∧ f ∗P Q′ ∧ P

f ∗P P

A B

q
c

q∧∧↑

π1

π2

π1

π2

↑
c

f

Now, as in Proposition 13.4, we choose the cartesian morphism ↑ : f ∗P → P to be
the image of a cartesian lift of f in (C→)f , and the cocartesian lift q to be the image a
morphism (f̂ , f) : Q→ Q′ in (C→f ) with f̂ a weak equivalence. Similarly, we choose (using
Proposition 12.4) the product diagrams to be the images of product diagrams in (C/A)f

and (C/B)f – which, we recall, are pullback diagrams in C.
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We then, as in Proposition 13.4, end up with a cube in C in which the same three
faces are pullbacks and the same edge is a weak equivalence, and we have to show that
the same edge is a weak equivalence. And of course, we do this using the same argument
we used in Proposition 13.4.

13.6. Definition. If D ⊆ C is any full subcategory and ∗ is one of c, f, or cf (the case
of interest being D = Cf ⊆ C and ∗ = f), we define the fibration HoF∗(D) to be the
restriction of HoF∗(C) to D – i.e., the total category of HoF∗(D) is the subcategory of
Ho(C→)∗ consisting of those objects and morphisms lying over D.

In general, the restriction of any ∧-fibration to a full subcategory is still a ∧-fibration;
in particular, HoFf(Cf) is a ∧-fibration.

13.7. Theorem. The ∧-fibration HoFf(Cf) is a ∧=-fibration.

Proof. By Proposition 13.2, every morphism in Cf admits a cocartesian lift and by
Proposition 13.5, these satisfy Frobenius reciprocity.

Since Cf has only fibrant objects, every product projection in Cf is a fibration. Hence,
by Proposition 13.4, the cocartesian morphisms are stable along all product projections.

Part IV

The homotopy 2-category
By the results of Parts II and III, we now have a 2-categorical structure on Cf , and in
particular on Ccf , for any model category C. There is another, more familiar (especially
in the case C = Top) 2-categorical structure that one can put on Ccf , and in Part IV, we
compare the two.

In the case of the category C = Top of topological spaces, the 2-categorical structure
on Ccf is roughly as follows: 0-cells are spaces, 1-cells are continuous maps, and 2-cells
are homotopy-classes (with “fixed endpoints”) of homotopies – the reason one needs to
take homotopy-classes of homotopies is so that the composition is strictly associative, as
is familiar from the definition of the fundamental group.

In the case of a general model category C, the 2-categorical structure Ccf was more
or less completely described already in [Qui67, I pp. 2.1-2.8]. The idea, of course, is that
the above description of the 2-categorical structure on Top uses only notions that are
already available in a general model category. One subtlety is that there are now the two
notions of left and right homotopy, and in fact in loc. cit. this is exploited in a clever way
to obtain a very clean notion of “homotopy of homotopies” (see §14).

In an earlier version of this paper, we explicitly defined the 2-categorical structure on
Top, and showed that it was the same as ours. Below, we will instead show (Theorem 15.8)
that our 2-categorical structure – i.e., the 2-cells, and the notion of horizontal and vertical
composition – agree with those from [Qui67]. That this structure agrees with the expected
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one on Top is then a straightforward exercise involving judicious choices of appropriate
path or cylinder objects.

It was also pointed out to me by the anonymous referee that the 2-categorical struc-
ture on Ccf exhibits a nice universal property, namely it a localization in an obvious
2-categorical sense: any functor from (the 1-category) Ccf to a 2-category D taking every
weak equivalence to an equivalence in D extends uniquely to the 2-categorical structure
on Ccf , though we will not prove this.

14. Homotopies between homotopies

We now introduce the notion of homotopy of homotopies from [Qui67, §I-2].
There are in fact three such notions: left homotopy of left homotopies, right homotopy

of right homotopies, and correspondence between left homotopies and right homotopies,
always defined for homotopies between morphisms A→ B with A cofibrant and B fibrant.

These turn out all to agree, in the sense that two left (or right) homotopies are left
(or right) homotopic if and only they correspond to a common right (or left) homotopy
(see Proposition 14.4).

We will need an additional notion, that of strong left homotopy of right-homotopies
(see Definition 14.1) as this is the one that naturally occurs in our 2-category. It is also
equivalent to the other notions, but apparently only when dealing with path objects BI

for which σ : B → BI is a cofibration. In general, it is only equivalent to a variation of
the notion of right homotopy, which we call strong right homotopy (see Proposition 14.2).

We will have occasion below to deal with two path objects on the same object B of a

model category. We will use the usual notationBI for the first, andB
s′−→ BI′

〈d′1,d′2〉−−−−→ B×B
for the second.

For the rest of §14, let C be a model category.

14.1. Definition. Let f, g : A→ B be morphisms in C with A cofibrant and B fibrant,
and let k : A→ BI and k′ : A→ BI′ be right-homotopies from f to g. A right homotopy
from k to k′ is a commutative diagram

A BJ

BI ×B×B BI′ B

K

〈k,k′〉 t
〈e1,e2〉

〈s,s′〉

(8)

with 〈e1, e2〉 a fibration and t a weak equivalence, where BI ×B×B BI′ is a pullback along
the maps 〈d1, d2〉 : BI → B × B and 〈d′1, d′2〉 : BI′ → B × B. Note that, despite the
notation (which we borrow from [Qui67]), BJ is not a path object for B.

If BI = BI′ are the same path object, then a strong right homotopy from k to k′ is a
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commutative diagram as follows, with 〈e1, e2〉 a fibration and t a weak equivalence.

A BJ

BI ×B×B BI BI

K

〈k,k′〉 t
〈e1,e2〉

〈1BI ,1BI 〉

(9)

Still assuming BI = BI′ , a strong left homotopy from k to k′ is a left homotopy
H : A× I → B from k to k′ for which the following diagram commutes.

A× I BI

A B ×B

H

σ 〈d1,d2〉

〈f,g〉

We say that k and k′ are right homotopic if there is a right homotopy between them,
and similarly with strongly right homotopic and strongly left homotopic.

There are dual notions of left homotopy between left homotopies, and so on.

14.2. Proposition. With A,B, k, k′ as in Definition 14.1, and assuming BI = BI′, k
and k′ are strongly left homotopic if and only if they are strongly right homotopic, and in
this case, they are right homotopic.

Moreover, if s : B → BI is a cofibration and k and k′ are right-homotopic, then they
are strongly right homotopic.

Proof. For the first equivalence, note that the strong left- and right-homotopies from k
to k′ are just certain left- and right-homotopies between k, k′ : (A, 〈f, g〉)→ (BI , 〈d1, d2〉)
in the slice category C/(B×B) (for right-homotopies this is clear, and for left-homotopies
it follows Propositions 11.3 and 11.4). Hence the claim is a special case of the Proposi-
tion 10.5 (ii) (and its dual) since (A, 〈f, g〉) is cofibrant and (BI , 〈d1, d2〉) is fibrant.

To get a right-homotopy from a strong right-homotopy, compose t and 〈1BI , 1BI 〉 in the
diagram (9) with the weak equivalence s : B → BI to get a diagram as in (8). Conversely,
if s : B → BI is a cofibration, then it is a trivial cofibration, and so given a diagram as in
(8), we can find a diagonal filler in the square

B BJ

BI BI ×B×B BI

t

s 〈e1,e2〉

〈1B ,1B〉

(which is a weak equivalence since s and t are) and thus obtain a diagram as in (9).
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14.3. Definition. Given morphisms f, g : A→ B in C with A cofibrant and B fibrant,
a left-homotopy h : A× I → B from f to g, and a right-homotopy k : A→ BI from f to
g, a correspondence between h and k is a morphism H : A× I → BI satisfying:

H∂1 = k H∂2 = sg

d1H = h d2H = gσ.

We say that h and k correspond if there exists a correspondence between them.

14.4. Proposition. Given objects A ∈ Ob Cc and B ∈ Ob Cf and morphisms f, g : A→
B, the following claims hold, as well as their duals. Together, they say that “left (or
right) homotopic” is an equivalence relation on left (or right) homotopies, and that cor-
respondence establishes a bijection between left-homotopy classes of left-homotopies and
right-homotopy classes of right-homotopies.

(i) Right-homotopy is an equivalence relation on right-homotopies from f to g.

(ii) Given a right-homotopy k : A→ BI from f to g and a cylinder object A× I, there
is some left-homotopy h : A× I → B corresponding to k.

(iii) Two right-homotopies k : A→ BI and k′ : A→ BI′ are right-homotopic if and only
if there is some left-homotopy h : A× I → B to which they both correspond.

Proof. See [Qui67, II pp. 2.1-2.5].

14.5. Proposition. Given A ∈ Ob Cc, B ∈ Ob Cf , and a morphism f : BI → BI′ of
path objects making the diagram

B BI

BI′ B ×B

s

s′ 〈d1,d2〉
f

〈d′1,d′2〉

commute, any right-homotopy k : A→ BI is right-homotopic to the right-homotopy fk : A→
BI′.

Proof. If H : A× I → BI is a correspondence between k and some h : A× I → B, then
fH : A × I → BI′ is a correspondence between fk and h, and so the claim follows from
Proposition 14.4 (iii).

14.6. Definition. Let f, g, h : A→ B be morphisms in C with B fibrant, and let k : A→
BI and k′ : A→ BI′ be right-homotopies from f to g and from g to h, respectively. Given
any pullback BI ×B BI′ (taken with respect to d2 : BI → B and d1 : BI′ → B), we have
an associated path object

B
〈s,s′〉−−−→ BI ×B BI′ 〈d1π1,d′2π2〉

−−−−−−−→ B ×B,

(see [Qui67, §I-1, Lemma 3]) and the induced morphism 〈k, k′〉 : A → BI ×B BI′ is said
to be a composite of k and k′.
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15. HoFf(Cf)-homotopies

Henceforth, let C be a model category.
We now carry out the comparison of the 2-categorical structure on Ccf given by The-

orems 13.7 and 4.5 with the one from [Qui67].

15.1. Strictly speaking, the 2-categorical structure in Theorem 4.5 is associated to a
particular ∧=-cleavage of HoFf(Cf) (see §8). Let us fix certain choices in this cleavage
– most importantly, of equality objects – which will be convenient.

First, for the fiberwise terminal objects, we take the identity morphisms (A, 1A) ∈
HoFf(Cf)

A for A ∈ Ob Cf .
By Proposition 12.5, we have that γ : Ff(C) → HoFf(C) is a morphism of ∧-

fibrations, and so we can (and do) take our cartesian lifts and fiberwise products to
be the images under γ of the corresponding things in Ff(C).

For the equality object EqB, we have to choose a cocartesian lift of ∆B : B → B × B
for B ∈ Ob Cf . Choosing a factorization B

s−→ BI 〈d1,d2〉−−−−→ B ×B of ∆B : B → B ×B as a
trivial cofibration (we will need later on that it is a cofibration) followed by a fibration,
we have by Proposition 13.1 that the image of (s,∆B) : (B,B, 1B)→ (BI , B×B, 〈d1, d2〉)
in Ho(C→)f is cocartesian, and we take this as our chosen equality object.

We fix such a cleavage of HoFf(Cf) for the rest of §15.

15.2. Proposition. Given morphisms f, g : A→ B in Cf with A cofibrant, the HoFf(Cf)-
homotopies from f to g are precisely given by the images under γ of the morphisms
(k, 〈f, g〉) : (A,A, 1A)→ (BI , B×B, 〈d1, d2〉), where k : A→ BI is a right-homotopy from
f to g, and BI is the chosen path object from §15.1.

Moreover two such homotopies k, k′ : A → BI map to the same HoFf(Cf)-homotopy
if and only if they are strongly left-homotopic (or equivalently, by Proposition 14.2 and
since B

s−→ BI is a cofibration, if and only if they are right-homotopic).

Proof. The first statement follows directly from the definitions and Proposition 10.7 (ii).
The second statement follows from the definitions and Propositions 10.7 (ii) and 11.3.

15.3. Definition. Let f, g : A→ B be morphisms in Cf with A cofibrant.
A homotopy from f to g is either a right homotopy or a left homotopy.
We say that two homotopies h and h′ are in the same homotopy class if h and h′ are

both left (or both right) homotopies and they are left (or right) homotopic, or if one is
a left and one a right homotopy, and they correspond. By Proposition 14.4, this is an
equivalence relation on the (“large”) set of homotopies from f to g.

Given a HoFf(Cf)-homotopy α : >A → EqB from f to g, we say that a homotopy h
from f to g represents α if h is in the same homotopy class as a right-homotopy k from
f to g whose image under γ is α.
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15.4. Proposition. With f, g as in Definition 15.3, each homotopy from f to g repre-
sents a unique HoFf(Cf)-homotopy, and two homotopies represent the same HoFf(Cf)-
homotopy if and only if they are in the same homotopy class.

Proof. For right-homotopies, this is precisely the content of Proposition 15.2, and for
left-homotopies, it follows from Proposition 14.4.

15.5. Proposition. Given morphisms f, g, h : A → B in Cf with A cofibrant, and
HoFf(Cf)-homotopies α : f → g and β : g → h represented by right-homotopies k and k′

respectively, the composite β ◦− α is represented by a composite of k and k′.

Proof. As the definition of β ◦− α involves the object Eq12
B ∧Eq23

B , let us first identify the
latter in the present context.

Let us temporarily write |P | for the domain X of an object P = (X,A, x) ∈ Ob(C→) =
Ob Ho(C→). Recalling that EqB = (BI , B×B, 〈d1, d2〉), and that both the pullbacks and
the fiberwise products in Ff(C) (and hence in HoFf(C)) are given by pullback squares
in C, we have the diagram ∣∣Eq12

B ∧Eq23
B

∣∣
∣∣Eq12

B

∣∣ ∣∣Eq23
B

∣∣
BI B3 BI

B ×B B ×B

B

〈d1,d2〉

〈π1,π2〉 〈π2,π3〉

〈d1,d2〉

π2 π1

of pullback squares in C, which shows that Eq12
B ∧Eq23

B is given by (BI ×B BI , B3, ξ) for
some pullbackBI×BBI along d2 : BI → B and d1 : BI → B, where ξ = 〈d1π1, d2π1, d2π2〉 =
〈d1π1, d1π2, d2π2〉.

Next, we have a morphism

(1, 〈π1, π3〉) : (BI ×B BI , B3, ξ)→ (BI ×B BI , B ×B, 〈d1π1, d2π2〉)

in (C→)f , the image of which in Ho(C→)f is cocartesian by Proposition 13.1. Let us write

ẼqB for the codomain of this morphism.
We then have the following commutative diagram in Ho(C→)f :

Eq12
B ∧Eq23

B ẼqB

>B Eq13
B EqB

B B3 B ×B

trB

γ(1,〈π1,π3〉)
c

p
〈〈ρ12

B ,ρ
23
B 〉〉

c
ρ13
B

ρB
c

↑

∆3
B 〈π1,π3〉
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where p is the unique morphism making the diagram commute. Since the morphisms
>B → EqB and >B → ẼqB in the diagram are cocartesian, it follows that p is an
isomorphism.

Next, we can find a lift p̂ of p−1 to F(C)B×B as a filler in the following diagram (in
C) since we are assuming that s is a cofibration.

B BI ×B BI

BI B ×B

s

〈s,s〉

〈d1π1,d2π2〉

〈d1,d2〉

p̂

Now consider the commutative diagram

Eq12
B ∧Eq23

B ẼqB

>A Eq13
B EqB

A B3 B ×B.

trB

γ(1,〈π1,π3〉)
c

p−1
〈〈α,β〉〉

β◦−α

↑

〈f,g,h〉 〈π1,π3〉

The outside of this diagram lifts to a diagram in C→

BI ×B BI BI ×B BI

A BI

A B3 B ×B.

1

〈k,k′〉

k′′

p̂

〈f,g,h〉 〈π1,π3〉

commutative up to homotopy, where k′′ is a lift of β ◦− α, which exists by Proposi-
tion 10.7 (ii) (note that for the sake of readability we are conflating objects in C→ with
their domains).

Since the diagram commutes up to homotopy the morphisms 〈k, k′〉 and p̂k′′ represent
the same HoFf(Cf)-homotopy. But k′′ and hence, by Proposition 14.5, p̂k′′ represents
β ◦− α, and 〈k, k′〉 is by definition a composite of k and k′. This proves the claim.

15.6. Proposition. Given objects and morphisms

A B C D
f f ′

g′

g

in Ccf and a HoFf(Cf)-homotopy α : f ′ → g′ represented by a right-homotopy k : B → CI

and by a left-homotopy h : B× I → C, the HoFf(Cf)-homotopies α ◦− idf and idg ◦−α are
represented, respectively, by kf : A→ CI and gh : B × I → D.
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Proof. The HoFf(Cf)-homotopy α ◦− idf is given by the composite

>A
!!f−→ >B

α−→ EqC ,

and it is immediate that this is represented by kf : A→ CI .
Next, idg ◦−α is given by the composite

>B
α−→ EqC

|idg−→ EqD,

We can find a lift 〈r, g × g〉 of |idg to C→ as a filler in the following diagram (in C) since
we are assuming that s is a cofibration.

C DI

CI D ×D

s

sg

〈d1,d2〉

〈gd1,gd2〉

r

Hence, idg ◦−α is represented by rk. Taking some correspondence H : B×I → CI between

h and k, the composite B × I H−→ CI r−→ DI then gives a correspondence between gh and
rk.

15.7. Definition. We define the Quillen 2-categorical structure on Ccf as follows.
Given morphisms f, g : A → B in Ccf , the 2-cells f → g are the homotopy classes of

(left or right) homotopies.

Given morphisms f, g, h : A → B and 2-cells f
α−→ g

β−→ h represented by right-
homotopies k : A→ BI and k′ : A→ BI′ , the vertical composite of α and β is defined to
be the homotopy represented by any composite of k and k′.

Given objects and morphisms

A B C D
f f ′

g′

g

in Ccf and a 2-cell α : f ′ → g′ represented by a right-homotopy k : B → CI and by a left-
homotopy h : B × I → C, the horizontal composites of α with f and g are represented,
respectively, by kf : A→ CI and gh : B×I → D (this uniquely determines the horizontal
composites of arbitrary pairs of 2-cells).

That these operations are well-defined is proven in [Qui67, §I-2], and that they define
a 2-category mostly follows from what is proven there as well.

But in any case, both the well-definedness and the fact that they satisfy the 2-category
axioms follows from Propositions 15.4, 15.5, and 15.6.

15.8. Theorem. The 2-categorical structure on Ccf given by Theorems 13.7 and 4.5 is
isomorphic to the Quillen 2-categorical structure.

Proof. Propositions 15.4, 15.5, and 15.6 provide the desired isomorphism.
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