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LAX FAMILIAL REPRESENTABILITY AND
LAX GENERIC FACTORIZATIONS

CHARLES WALKER

Abstract. A classical result due to Diers shows that a copresheaf F : A → Set on a
category A is a coproduct of representables precisely when each connected component of
F ’s category of elements has an initial object. Most often, this condition is imposed on
a copresheaf of the form B (X,T−) for a functor T : A → B, in which case this property
says that T admits generic factorizations at X, or equivalently that T is familial at X.
Here we generalize these results to the two-dimensional setting, replacing A with an
arbitrary bicategory A , and Set with Cat. In this two-dimensional setting, simply
asking that a pseudofunctor F : A → Cat be a coproduct of representables is often
too strong of a condition. Instead, we will only ask that F be a lax conical colimit of
representables. This in turn allows for the weaker notion of lax generic factorizations
(and lax familial representability) for pseudofunctors of bicategories T : A → B.
We also compare our lax familial pseudofunctors to Weber’s familial 2-functors, finding
our description is more general (not requiring a terminal object in A ), though essentially
equivalent when a terminal object does exist. Moreover, our description of lax generics
allows for an equivalence between lax generic factorizations and lax familial represent-
ability.
Finally, we characterize our lax familial pseudofunctors as right lax F-adjoints followed
by locally discrete fibrations of bicategories, which in turn yields a simple definition of
parametric right adjoint pseudofunctors.
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1. Introduction
This paper is concerned with the notion of familial representability, a condition first
studied in detail by Diers [7] for 1-categories, and how the theory of familial representability
can be generalized to the two-dimensional setting.

1.1. Familial representability. Given a category A and presheaf F : A → Set
(actually a “copresheaf”, we suppress the “co” for brevity), it is often useful to know
whether this presheaf is a coproduct of representable presheaves; meaning

F ∼=
∑
m∈M
A (Pm,−)

for some set M and function P(−) : M → A. Such presheaves have a straightforward
characterization: a presheaf F is a coproduct of representables precisely when each
connected component of its category of elements, denoted el F , has an initial object.
Expressing this condition in more detail, this means that for any object (D,w) in el F
there exists an object (A, x) and morphism k : (A, x) → (D,w) where (A, x) satisfies
the following property (which defines initial objects in a connected component): for any
diagram in el F as below

(C, z)
g

��
(A, x)

f
//

h
::

(B, y)

there exists a unique morphism h : (A, x) → (C, z), and consequently the above triangle
commutes.

Of particular interest is the case where F is of the form B (X,T−) for a functor
T : A → B between categories A and B. This condition, first studied in detail by Diers
[7], asks that we have an isomorphism B (X,T−) ∼=

∑
m∈MA (Pm,−) and generalizes

T having a left adjoint. Thus such a T is often referred to as a functor having a left
multiadjoint [7], however we will simply refer to such a T as familial. It is also worth
noting that the functors T with this property may be seen as the admissible maps against
the KZ pseudomonad [27] freely adding sums.1

If we specialize the above to this case, we see that asking B (X,T−) be familial amounts
to asking that for any w : X → TD there exists an x : X → TA and k : A→ D such that
w = Tk · x, and x is “generic” meaning that it satisfies the following property: given any
commuting square as on the left below

X
z //

x
��

TB

Tg
��

X
z //

x
��

TB

Tg
��

TA
Tf
// TC TA

Tf
//

Th

<<

TC

1Under this characterization one would suitably replace categories with their opposites, as the
condition given concerns copresheaves.
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there exists a unique h : A → B such that Th · x = z (note that g · h = f can be shown
as a consequence). Such a factorization w = Tk · x is called a generic factorization, and
thus when this is true for all X, we say T admits generic factorizations [28].

There are a number of natural examples of familial functors (or equivalently functors
which admit generic factorizations), with the author’s favorite being composition of spans
in a category E with pullbacks.

1.2. Example. Given a category E with pullbacks, one may form the bicategory of spans
in E, typically denoted Span (E). For any triple of objects X, Y, Z ∈ E the composition
functor

cX,Y,Z : Span (E) (Y, Z)× Span (E) (X, Y )→ Span (E) (X,Z)
is familial since for any three spans (s, t) : X → Z, (a, b) : X → Y and (c, d) : Y → Z
the universal property of the limiting cone defining the composite of spans (c, d) ◦ (a, b) is
a bijection p 7→ (x, h, y) as below

T
t

  

s

~~
p

��

T

h

��

y

��
x

��
t

��

s



X Z P
b

��

a

��

Q
d

��

c

��
M

r

>>

l

``

X Y Z

where (l, r) is the composite (c, d) ◦ (a, b). Written another way, this is a natural bijection
between Span (E) (X,Z) [(s, t) , (c, d) ◦ (a, b)] and∑

h : T→Y
Span (E) (X, Y ) [(s, h) , (a, b)]× Span (E) (Y, Z) [(h, t) , (c, d)]

and thus we directly exhibit each presheaf

Span (E) (X,Z) [(s, t) ,− ◦ −] : Span (E) (Y, Z)× Span (E) (X, Y )→ Set

as a coproduct of representables, and thus exhibit cX,Y,Z as a familial functor. One thing
to notice here is that cX,Y,Z is an example of a familial functor where the domain category
does not have a terminal object; thus definitions of higher analogues of familial functors
should also not require terminal objects.

1.3. The problem with pseudo familial representability. It is the purpose of
this paper to generalize these notions of familial representability to the two-dimensional
setting, replacing the category A with a bicategory A , and replacing Set with Cat.
However, this is not a straightforward generalization, as asking that a pseudofunctor
F : A → Cat be a coproduct of representables is often too strong of a condition. To see
why, consider the case where a pseudofunctor T : A → B is such that each B (X,T−) is
a coproduct of representables, meaning we have an equivalence

B (X,T−) '
∑

m∈MX

A (Pm,−)
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for some set MX and function P(−) : MX → A . Such an equivalence must be defined by
an assignation as below, which would send each 2-cell α as on the left

X

f

%%

g

;;⇓α TA 7→ m, Pm

f

##

g

;;⇓α A

to an α : f ⇒ g as on the right, where f ∼= Tf ·δ and g ∼= Tg·δ for the same generic δ : X →
TPm corresponding to the identity at Pm. This is an unreasonably strong condition: we
should not in general expect two 1-cells to factor through the same generic just because
there is a comparison map between them.2 In general, this should only be expected when
the comparison map is invertible. We will therefore need a weaker notion of familial
representability in two dimensions.

1.4. Lax familial representability. To address the above problem, we weaken the
condition on B (X,T−), now only asking that it be a lax conical colimit of representables.3
We will use the convenient notation

B (X,T−) '
� m∈MX

lax
A (Pm,−)

which is justified as a lax conical colimit can be seen as an instance of a lax coend. We
then define a pseudofunctor of bicategories T : A → B to be lax familial when each
B (X,T−) is a lax conical colimit of representables (in a way which is natural in X in a
suitable sense).

To see why being lax familial is a natural condition on a pseudofunctor T : A → B,
consider the problem of calculating a left Kan extension as below

[A op,Cat] lanT // [Bop,Cat]

A

yA

OO

T
//B

yB

OO

for a given pseudofunctor T (where A and B are small). In general this left extension
should not be expected to have a nice form. However, if T is a pseudofunctor that is lax
familial, so that each B (X,T−) is a lax conical colimit of representables, then this left

2Here “generic” means a morphism δ corresponding to the identity at some Pm, and the “generic”
factorization is obtained from substituting an f : X → TA into the equivalence and applying naturality
with respect to the induced f : Pm → A.

3A lax colimit is a weighted colimit in which the universal property of weighted colimits replaces
pseudo natural transformations with lax natural transformations. A lax conical colimit is such a lax
colimit where the weight J = ∆1 is constant at the terminal category. We recall this notion in more
detail in Subsection 2.11.
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extension will have a simpler description. Said in more detail, such a left extension is
generally computed as a bi-coend (whose construction generally requires formally adding
in isomorphisms, hence the complexity), but in the case where T is lax familial the left
extension may be more easily computed as a lax coend.

An important example of this situation (shown to be lax familial in Example 6.1) is
given by taking T as the canonical inclusion of a small category E with pullbacks into its
bicategory of spans Span (E)

[Eop,Cat] lanT // [Span (E)op,Cat]

E

yE

OO

T
// Span (E)

ySpan(E)

OO

and forming the left extension lanT as above, with right adjoint resT given by restricting
along T . Now, recognizing [Span (E)op,Cat] as the 2-category of fibrations with sums (by
the universal property of spans) [6], and noting that the extension-restriction adjunction
is pseudomonadic (a consequence of T being bijective on objects) [18], the reader will
recognize this left extension as the free functor for the pseudomonad ΣE for fibrations
over E with sums. In this way one can derive the pseudomonad for fibrations with sums
(as the composite resT · lanT ), and understand why this pseudomonad has a simpler
description that one would generally expect for pseudomonads arising in this way. Note
the same can be done for fibrations with products, replacing Span (E) with Span (E)co.

Also note that it will be shown in future work that the above is a special case of a more
general result; for a category4 E and bicategory B, bijective on objects pseudofunctors
E → B correspond with bi-cocontinuous pseudomonads on [Eop,Cat], in which case the
pseudo-algebras of the pseudomonad form the 2-category [Bop,Cat].

Of course, whilst understanding the above situation is the author’s motivation, there
are other motivating examples of lax familial functors. For instance the results of Weber
[30] (and the later shown equivalence with our definition) show that the composite 2-
monads of [29] that describe symmetric and braided analogues of the ω-operads of [1] are
examples of lax familial functors.

1.5. Main results and structure of the paper. The goal of this paper is to
generalize all of the important results true for familial functors to the case of lax familial
functors. The notions given in this paper concerning lax familial representability and
its corresponding notions of genericity are all new. The only exception is to note that
Weber’s definitions of familial (2-)functors [30] and notions of genericity can be seen as
instances of our definitions in the case where we have a terminal object (though this is
not obvious, as Weber’s definitions use fibrations and look considerably different at first
glance).

4More generally, one can use a bicategory here. However, it suffices to use a 1-category in most of the
interesting examples.
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In Section 3 we generalize the basic result that a presheaf is a coproduct of represent-
ables if and only if each connected component of its category of elements has an initial
object, now giving a description of when a Cat-valued presheaf is a lax conical colimit of
represent-ables in Theorem 3.12.

In Section 4 we generalize the result that a functor is familial if and only if it admits
generic factorizations, by defining a notion of lax-generic factorizations and showing
this condition is equivalent to being lax familial in Theorem 4.10. Note that such an
equivalence was not shown by Weber [30].

The main result of Section 5 is Theorem 5.8, which states that (a slightly stricter
version of) our definition of lax familial pseudofunctors is equivalent to Weber’s very
different-looking definition. This is strong evidence that our definitions of familial pseudo-
functors are the correct ones.

In Section 6 we provide a number of natural examples of lax familial pseudofunctors,
further justifying our definitions.

In Section 7 we generalize Diers’ result [7] that a functor is familial if and only if it
factors as a right adjoint followed by a discrete fibration. This generalization is given in
Theorem 7.17, which states that a pseudofunctor is lax familial if and only if it factors
as an appropriate right lax F-adjoint (a special type of lax adjunction), followed by the
two-dimensional version of a discrete fibration [17]. In the author’s opinion this gives
the most natural-looking characterization of lax familial pseudofunctors, as the other
characterizations appear quite technical.

2. Background
In this section we will recall the necessary background knowledge for this paper. We
will first recall the basic theory of familial functors and generic factorizations in the one-
dimensional case [28], and then go on to recall the basics of lax conical colimits [20] and
the Grothendieck construction [21], which will replace the category of elements in the
two-dimensional setting.

2.1. Generic factorizations in one dimension. We will first recall the basic fact
that a presheaf is a coproduct of representables if and only if each connected component
of its category of elements has an initial object. It is worth explaining this result in some
more detail, as later on in the two-dimensional case simple conditions such as asking
each connected component has an initial object will not suffice. Of course these are all
well-known results of Diers [7, 8] (also see [28] for a more recent account).

2.2. Definition. Given a presheaf F : A → Set, recall the classical notion of the category
of elements of F as the category with objects given by pairs (A ∈ A, x ∈ FA) and morphisms
(A, x) 9 (B, y) given by maps f : A→ B such that Ff (x) = y. We denote this category
el F .

The following definition is more complicated than it needs to be, in that the generics
are precisely the initial objects in the connected components. The reason for stating it
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this way is that it more closely matches the definitions needed in two dimensions.

2.3. Definition. Given a presheaf F : A → Set, we say an object (A, x) ∈ el F is
el-generic if for any given objects (B, y), (C, z) and morphisms f and g as below

(C, z)
g

��
(A, x)

f
//

h
::

(B, y)

there exists a unique morphism h : (A, x) → (C, z). It is then automatic that the above
triangle commutes.

Moreover, given two el-generic objects (A, x) and (D,w), an el-generic morphism
(A, x)→ (D,w) is any such morphism in el F .5

2.4. Remark. The reader will note that this is stronger than asking for the existence
of a unique lifting h. In fact, asking that h be the unique morphism (and not just the
unique lifting), is a condition which will turn out often to be too strong in dimension
two. Nevertheless, this is the correct definition for dimension one, when one requires the
indexing6 to be a set.

If h was only required to be the unique lifting, our indexing would only be a groupoid in
general, as any el-generic morphism (A, x) → (D,w) will still be invertible, but perhaps
not unique. This weaker version of el-generic objects arises in the study of stable functors
under the name of “candidate” generics [25], and also appears in the study of qualitative
domains [16, 10]. It is interesting to note that our two-dimensional versions of famillial
representability will restrict to this weaker version in dimension one.

The basic result describing when a presheaf is a coproduct of representables is then
the following.

2.5. Proposition. [Diers [7]] Given a presheaf F : A → Set, the following are equivalent:
1. F : A → Set is a coproduct of representables;

2. each connected component of el F has an initial object;

3. for any (B, y) ∈ el F there exists a generic object (A, x) and morphism f : (A, x)→
(B, y).7

2.6. Remark. Of course (3) above is simply expanding (2) into more detail. This
more detailed version will be more analogous to the characterizations we give in the two-
dimensional case.

We now consider the case of a functor T : A → B, asking when B (X,T−) is a
coproduct of representables.

5It is trivial to check that any such el-generic morphism is both invertible and unique.
6For a presheaf F , the “indexing” MF refers to the category of el-generics and el-generic morphisms

between them.
7Clearly in this situation the generic object is necessarily unique.
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2.7. Definition. We say a functor T : A → B is familial if for every X ∈ B the presheaf
B (X,T−) : A → Set is a coproduct of representables.

Specializing Definition 2.3 to this case, we recover the following definition of a “generic
morphism” (also known as “diagonally universal morphism” in the work of Diers). This
definition is originally due to Diers [7], but we follow the terminology of Weber [28] and
[5].

2.8. Definition. Given a functor T : A → B we say that a morphism x : X → TA for
some X ∈ B and A ∈ A is generic if for any commuting square as on the left below

X
z //

x
��

TB

Tg
��

X
z //

x
��

TB

Tg
��

TA
Tf
// TC TA

Tf
//

Th

<<

TC

there exists a unique h : A → B such that Th · x = z. That f = g · h follows as a
consequence of this property.

Applying Proposition 2.5 to presheaves of the form B (X,T−) for a given functor
T : A → B, we obtain the following characterization of familial functors in terms of these
generic morphisms.

2.9. Proposition. [Diers [7]] Given a functor T : A → B, the following are equivalent:

1. the functor T is familial;

2. for every morphism f : X → TW there exists a generic morphism δ : X → TA and
morphism f : A→ W such that f = Tf · δ.

Following Weber’s terminology, condition (2) is often stated another way.

2.10. Definition. [28] Given a functor T : A → B, if condition (2) above is satisfied,
we say that T admits generic factorizations.

2.11. Lax conical colimits and the Grothendieck construction. Here we give
the required background on lax conical colimits and the Grothendieck construction. In our
convention, we specify the direction of 2-cells in a lax natural transformation α : F ⇒ G
as below

FA
Ff //

αA
��

αf
KS
FB

αB
��

GA
Gf
// GB

for any morphism f : A → B in the domain bicategory, with 2-cells in the opposite
direction defining oplax natural transformations.
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2.12. Definition. [lax conical colimits [20]] Given a category A, a bicategory K , and
pseudofunctor F : A → K , the lax conical colimit of F consists of an object T ∈ K ,
along with for every A ∈ A a map ϕA : FA → T and for every morphism f : A → B in
A a 2-cell

T

FA

ϕA
==

Ff
//

ϕf
ks

FB

ϕB
aa

compatible with the binary and nullary constraints of F [20]. This data, which is also
called a lax cocone, and may be seen as a lax natural transformation

ϕ : ∆1⇒ K (F−, T ) : Aop → Cat,

is required to be universal in that

K (T, S)→ [Aop,Cat] (∆1,K (F−, S))
α 7→ K (F−, α) · ϕ

defines an equivalence (where [Aop,Cat] is the 2-category of pseudofunctors, lax natural
transformations, and modifications). If one reverses the direction of the 2-cell ϕf , and
replaces lax transformations with oplax transformations, one then has the notion of an
oplax colimit. The name conical refers to the fact that the weight of such a colimit is the
terminal presheaf ∆1, so that the data takes the form of cone-shaped diagrams.

2.13. Remark. It is worth noting that the above definition can be used when F : A → K
is only required to be a lax functor. Also, one may note that lax conical colimits can be
seen as an instance of weighted bi-colimits (though we will not use this).

When K = Cat, such a lax colimit can easily be calculated using the Grothendieck
construction. We will proceed to describe this construction below (though we will be
more general by replacing the category A with a bicategory A ).

2.14. Definition. [Grothendieck construction] Given a bicategory A and pseudofunctor
F : A → Cat, the (bi)category of elements of F , denoted by el F or by

� A∈A

lax
FA

is the bicategory with:

Objects An object is a pair of the form (A ∈ A , x ∈ FA);

Morphisms A morphism (A, x) 9 (B, y) is a pair f : A→ B in A and α : Ff (x)→ y
in FB; we say such a morphism (f, α) is opcartesian if α is invertible;
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2-cells A 2-cell (f, α) ⇒ (g, β) : (A, x) 9 (B, y) is a 2-cell ν : f ⇒ g in A rendering
commutative

Ff (x)
(Fν)x //

α

55Fg (x) β // y .

It is also common to refer to the bicategory
� A∈A

lax FA with its canonical projection to A
as the Grothendieck construction of F .

The “lax coend” notation as used above is defined as follows. However, we will not
burden this paper with all the technical details of the definition.

2.15. Definition. Let A be a bicategory and let F : A → Cat and G : A op → Cat be
pseudofunctors. We define the lax-coend

� A∈A

lax
FA×GA

as the vertex of the universal diagram, over each morphism f : A→ B in A ,

FA×GB
Ff×id

++
id×Gf
ss

FA×GA
εA **

σ +3 FB ×GB
εBtt� A∈A

lax FA×GA

subject to the canonical nullary and binary coherence conditions with regards to the pseudo-
functoriality of F and G [19].

2.16. Remark. When A is a category, the notation
� A∈A

lax FA is justified, as the category
of elements can be written as a lax colimit as in Definition 2.12. In the case where A
is a bicategory, el F is an appropriate tri-colimit of F , and the notation is still justified
(though in a more technical sense that we will not burden this paper with; see [4]).

2.17. Remark. To make clear the duality of covariance and contravariance in the above
construction we note the following. For a pseudofunctor F : A → Cat, its lax colimit is
given by the lax coend

� A∈A

lax FA. In the contravariant case of a pseudofunctor G : A op →
Cat, the lax coend

� A∈A

lax GA coincides with the oplax colimit of G, which could also be
written as the oplax coend

� A∈A op

oplax GA. Typically given a contravariant G : A op → Cat,
one takes the oplax colimit of G as its category of elements (so that we may project from
this category of elements into A ).

Finally, we should recall the notion of a fibration and cartesian morphisms.
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2.18. Definition. [21] Let p : F → E be a functor. We say a morphism φ : W → B in
F is p-cartesian if for any ψ : A→ B and r : pA→ pW such that the right diagram below
commutes

W
φ // B pW

pφ // pB

A
ψ

??

r

OO

pA
pψ

==

r

OO

there exists a unique r : A → W such that pr = r and the left diagram above commutes.
If for any morphism f : X → pB in E there exists a p-cartesian morphism φ : f ∗B → B
in F such that p (φ) = f , we then say p is a fibration.

3. Lax generics in bicategories of elements
Generalizing the fact that a presheaf is a coproduct of representables if and only if each
connected component of the category of elements has an initial object, our first main goal is
to understand when a pseudofunctor F : A → Cat a lax conical colimit of representables,
written

F '
� m∈M

lax
A (Pm,−)

for someM ∈ Cat and pseudofunctor P(−) : M→ A , giving a characterization in terms of
the category of elements of F (which is analogous to each connected component having an
initial object in the one dimensional case). However, before we can describe lax el-generic8
objects (the appropriate analogue of these initial objects) and morphisms in bicategories
of elements, we will have to introduce the language needed to describe them. In particular,
we introduce “mixed left liftings” which are similar to left liftings [14], except that the
induced arrow’s direction is reversed. Note that basic properties for left liftings, such as
the pasting lemma, or the lifting through an identity being itself, do not hold in general
for mixed left liftings [23].

3.1. Definition. [mixed left lifting property] Let C be a bicategory. We say a diagram
as on the left below

C
g

��

C
g

��
A

f
//

h

??

B
ν
KS

A
f
//

k

??

B
ψ
KS

exhibits (h, ν) as the mixed left lifting of f through g if for any diagram as on the right
above, there exists a unique 2-cell λ : k ⇒ h such that

8We have the “el” here as this notion of genericity is used in bicategories of elements.
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C
g

��
=

C
g

��
A

f
//

k

??
h ++

B
ψ
KS

λ
KS

A
f
//

h

??

B .
ν
KS

Moreover, we say such a lifting (h, ν) is strong if h is subterminal9 in C (A, C).

3.2. Remark. It is not hard to see that strong mixed liftings are unique up to unique
isomorphism. Indeed, it is this stronger notion that will be used though this section.

The following lemma shows that an arrow h which arises as a strong mixed lifting has
the property that the strong mixed lifting of h through the identity is itself.

3.3. Lemma. Suppose the left diagram below

C
g

��

C
1C
��

A
f
//

h

??

B
ν
KS

A
h
//

h

??

C
id
KS

exhibits (h, ν) as the strong mixed lifting of f through g. Then the right diagram above
exhibits (h, id) as the strong mixed lifting of h through 1C.
Proof. Given any k : A → C and ζ : h⇒ k we have by universality of (h, ν) an induced
λ : k ⇒ h such that

C
g

��
=

C
g

��
A

f
//

h

??
k

00h **

B
ν
KSζ

[cλ

[c

A
f
//

h

??

B ;
ν
KS

that is, since h is subterminal, a unique induced λ : k ⇒ h such that λζ is the identity.
This proves the result.

We now have the necessary background to introduce the notions of lax el-generic object
and el-generic morphism in bicategories of elements.

3.4. Definition. [lax el-generic objects] Let A be a bicategory and F : A → Cat be a
pseudofunctor. We say that an object (A, x) in el F is a lax el-generic object if for any
(B, y), (C, z), (f, α) and (g, β) as below with β invertible

(C, z)
(g,β)
��

(A, x)
(f,α)

//

(h,γ)
::

(B, y)
ν
KS

9A subterminal object I in a category is one where any morphism into it is unique if it exists. When
the category in question has a terminal object, this is equivalent to the unique morphism I → 1 being a
monomorphism; hence the name subterminal.
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1. there exists a strong mixed left lifting (h, γ) : (A, x) → (C, z) exhibited by a 2-cell
ν : f ⇒ gh;

2. if α is invertible above, then both γ and ν are also invertible.

3.5. Remark. If we replace the isomorphism β with an identity above, the definition
remains equivalent.

3.6. Definition. [el-generic morphisms] Let A be a bicategory and F : A → Cat be
a pseudofunctor, and suppose that (A, x) is a lax-generic object in el F . We say that a
morphism (`, φ) : (A, x) → (D,w) out of (A, x) in el F is an el-generic morphism if the
diagram below

(D,w)
(1D,id)
��

(A, x)
(`,φ)

//

(`,φ)
::

(D,w)
id
KS

exhibits (`, φ) as the strong mixed left lifting of (`, φ) through (1D, id).

3.7. Remark. It is clear from the second part of Definition 3.4 that for any opcartesian
(`, φ) (meaning φ is invertible) out of a lax el-generic (A, x), the induced mixed lifting
must be (isomorphic to) (`, φ). Thus opcartesian morphisms are always el-generic.

3.8. Remark. It is an easy consequence of the universal property that every 2-cell out of
(`, φ) is a section (in a unique way); and consequently that any 2-cell between el-generic
morphisms is invertible. Moreover, as (`, φ) is subterminal within its hom-category it
follows that any isomorphism between el-generic morphisms is unique. It follows that if
(A, x) and (B, y) are lax el-generic objects, then the category of el-generic morphisms
(A, x)→ (B, y) is equivalent to a discrete category (a set).

3.9. Remark. It is worth noting that for any lax el-generic object (A, x) and strong mixed
lifting as below

(C, z)
(g,β)
��

(A, x)
(f,α)

//

(h,γ)
::

(B, y)
ν
KS

with β invertible, the induced morphism (h, γ) is an el-generic morphism as a consequence
of Lemma 3.3.

The following is a step towards characterizing when an F : A → Cat is a lax conical
colimit of representables, indexed by the following category of el-generic objects and
morphisms. The reader will note the importance of the indexing being a 1-category (and
thus the consideration of representatives of equivalence classes of morphisms in order to
obtain a 1-category), just as it is important in the one-dimensional case that the indexing
is a set.
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3.10. Definition. Let A be a bicategory and let F : A → Cat be a pseudofunctor.
Suppose that el-generic morphisms between lax el-generic objects compose to el-generic
morphisms. Define A F

g as the sub-bicategory of el F consisting of lax el-generic objects
and el-generic morphisms, and define MF as the 1-category consisting of lax el-generic
objects in el F and chosen representatives of isomorphism classes of el-generic morphisms.

Of course, in the above definition we will have an equivalence A F
g 'MF .

3.11. Proposition. Let A be a bicategory and let F : A → Cat be a pseudofunctor.
Suppose that el-generic morphisms between lax el-generic objects compose to el-generic
morphisms. Let P(−) : M→ A be the assignment sending a lax el-generic object (A, x) to
A and a representative el-generic morphism between el-generic objects (s, φ) : (A, x) →
(B, y) to s : A→ B. Then P(−) : M→ A defines a pseudofunctor, and for every T ∈ A
there exists fully faithful functors

ΛT :
� m∈MF

lax
A (Pm, T )→ FT

pseudo-natural in T ∈ A .

Proof. Firstly note that P(−) : M→ A defines a pseudofunctor since it may be written
as the composite MF → A F

g → el F → A . We may then define ΛT on objects by the
assignment (A, x, f) 7→ Ff (x), and on morphisms by the assignment (suppressing the
pseudofunctoriality constraints of F )

(A, x, f : A→ T )

(h,γ,ν)

��

A

h

��

Fh (x)

γ

��

A

h

��

f

��

Ff (x)
(Fν)x
��

ν�� T 7→ FgFh (x)
Fg(γ)
��

(B, y, g : B → T ) B y B

g

@@

Fg (y) .

(3.1)

Observe that we have the following conditions satisfied.
Functoriality. Given another

(B, y, g : B → T )

(k,ζ,µ)

��

B

k

��

Fk (y)

ζ

��

B

k

��

g

��

Fg (y)
(Fµ)y
��

µ�� T 7→ FqFk (y)
Fq(ζ)
��

(C, z, q : A→ T ) C z C

q

@@

Fq (z)
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the commutativity of

Ff (x)
(Fν)x // FgFh (x) Fg(γ) //

(Fµ)Fh(x) ''

Fg (y)
(Fµ)y // FqFk (y) Fq(ζ) // Fq (z)

FqFkFh (x)
FqFk(γ)

77

by naturality of Fµ shows ΛT respects binary composition. It is trivial that identities are
preserved.

Fullness. Given any objects (A, x, f : A→ T ) and (B, y, g : B → T ) and morphism
φ : Ff (x)→ Fg (y), we may construct the universal diagram

(B, y)
(g,id)
��

(A, x)
(f,φ)

//

(h,γ)
88

(B,Fg (y))
ν
KS

using lax el-genericity of (A, x). Now (h, γ) is el-generic by Lemma 3.3, and without
loss of generality we can assume it is a representative el-generic (since it is necessarily
isomorphic to one). Then ΛT (h, γ, ν) = φ.

Faithfulness. Given another triple (k, ψ, ω) such that ΛT (k, ψ, ω) = φ, we have the
diagram

(B, y)
(g,id)
��

(A, x)
(f,φ)

//

(k,ψ)
88

(B,Fg (y))
ω
KS

But as (k, ψ) and (h, γ) are both el-generics, the induced (k, ψ) ⇒ (h, γ) arising from
universality of (h, γ) must be invertible. Also, as they are both representative, they must
be equal. As the identity must then be the induced morphism we conclude k = h, ψ = γ
and ω = ν.

Pseudo-naturality. Given any 1-cell α : T → S in A the squares

(A, x, f : A→ T )
ΛT
��

α·(−) // (A, x, αf : A→ S)
ΛS
��

Ff (x)
Fα·(−)

// F (αf) (x)

commute up to pseudo-functoriality constraints of F , and the family of squares of the
form above satisfy the required naturality, nullary and binary coherence conditions as a
consequence of the corresponding pseudo-functoriality coherence conditions.
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We can now characterize precisely when a pseudofunctor F : A → Cat is a lax conical
colimit of representables.

3.12. Theorem. Let A be a bicategory and F : A → Cat be a pseudofunctor. Then the
following are equivalent:

1. the pseudofunctor F : A → Cat is a lax conical colimit of representables;

2. the following conditions hold:

(a) for every object (B, y) in el F there exists a lax el-generic object (A, x) and
morphism (f, α) : (A, x) 9 (B, y) with α invertible;

(b) el-generic morphisms between lax el-generic objects compose to el-generic mor-
phisms.

Proof. The direction (2)⇒ (1) is clear from Proposition 3.11 as condition (a) means that
for any B ∈ A and y ∈ FB we have a lax el-generic (A, x) and morphism (f, α) : (A, x) 9
(B, y) in el F with α invertible, so that

ΛB (A, x, f : A→ B) = Ff (x) α→ y

which witnesses the essential surjectivity of ΛB at y ∈ FB.
For (1)⇒ (2), suppose we are given a category M and pseudofunctor P(−) : M→ A

(assuming without loss of generality that P(−) strictly preserves identities) such that
F '

� m∈M
lax A (Pm,−), and consequently

el F '
� m∈MF

lax
el A (Pm,−) .

This shows that el F is equivalent to the bicategory with:
Objects An object is a triple of the form (m ∈M, A ∈ A , x : Pm → A);

Morphisms The morphisms (m,A, x) 9 (n,B, y) are triples comprising a morphism
u : m→ n in MF , a morphism f : A→ B in A and a 2-cell

Pm
x //

Pu
��

θ��

A

f
��

Pn y
// B

in A ;

2-cells A 2-cell λ : (u, f, θ) ⇒ (u, g, φ) : (m,A, x) 9 (n,B, y) is a 2-cell λ : f ⇒ g in A
such that

Pm
x //

Pu
��

θ��

A

f
��

=

Pm
x //

Pu
��

φ
{�

A

g

��
f
��λ
ks

Pn y
// B Pn y

// B .
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Existence of lax el-generics. We first show that each(
m ∈MF , Pm ∈ A , id : Pm → Pm

)
in el F is lax el-generic. Consider a diagram

(n,C, z)
(id,g,id)
��

(m,Pm, id)
(u,f,α)

//

(u,h,γ)
88

(n,B, y)
ν
KS

where (u, f, α) and (id, g, id) are respectively

Pm
id //

Pu
��

α��

Pm

f
��

Pn
z //

Pid
��

id��

C

g

��
Pn y

// B Pn y
// B

then we recover a canonical (u, h, γ) as

Pm
id //

Pu
��

id��

Pm

z·Pu
��

Pn z
// C

(3.2)

with the 2-cell ν : f ⇒ gh = gzPu = yPu given as α. Now, for universality, suppose we
have a (u, k, φ) given as

Pm
id //

Pu
��

φ��

Pm

k
��

Pn z
// C

with a 2-cell ψ : f ⇒ gk such that

Pm
id //

Pu

��

α��

Pm

f

��

=

Pm
id //

Pu
��

φ��

Pm

k
��

f

��

Pn
z //

Pid
��

id��

C

g

��

ψ
ks

Pn y
// B Pn y

// B

(3.3)

Then we can take our induced map λ : k ⇒ h as φ : k ⇒ z · Pu. It is trivial that

Pm
id //

Pu
��

φ��

Pm

k
��

=

Pm
id //

Pu
��

id��

Pm

z·Pu
��

k

ttPn z
// C Pn z

// C
λ
ks

(3.4)
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so that λ is a 2-cell (u, k, φ) ⇒ (u, h, γ). Also, from (3.4) it is clear that λ = φ is the
only 2-cell (u, k, φ)⇒ (u, h, γ), meaning (u, h, γ) is subterminal within its hom-category.
Moreover, (3.3) shows ψ pasted with λ = φ is α = ν.

Classification of lax el-generics. We now show that an object(
m ∈MF , A ∈ A , x : Pm → A

)
in el F is lax el-generic if and only if x is an equivalence. It is clear the above argument
generalizes if one replaces (m,Pm, id) with (m,A, x) where x is an equivalence. Conversely,
if (m,A, x) is a lax el-generic object then we may construct the universal diagram

(m,Pm, id)
(1,x,id)
��

(m,A, x)
(1,1,id)

//

(1,x∗,γ)
77

(m,A, x)
ν
KS

noting that ν and γ are both invertible. In fact, this gives an adjoint equivalence. That
ν is a 2-cell says

Pm
x //

id

��

id��

A

id

��

Pm
x //

id
��

γ{�

A

x∗

��
id

��

= Pm

id
��

id
//

id{�

Pm

x

��

ν
ks

Pm x
// A Pm x

// A

which gives one triangle identity. For the other identity, note that 2-cells

ξ : (1, x∗xx∗, γγ)⇒ (1, x∗, γ) ,

meaning 2-cells ξ such that

Pm
x //

id
��

γγ{�

A

x∗xx∗

��

Pm
x //

id
��

γ{�

A

x∗

��
x∗xx∗

ww
ξ
ks

Pm id
// Pm

=

Pm id
// A

(3.5)

are unique, as (1, x∗, γ) is subterminal within its hom-category. But we may take ξ to be

γx∗ : (1, x∗xx∗, γγ)⇒ (1, x∗, γ)

or
x∗ν−1 : (1, x∗xx∗, γγ)⇒ (1, x∗, γ)

which both satisfy (3.5). Thus γx∗ = x∗ν−1 and so γx∗ ·x∗ν = id giving the other triangle
identity.
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Existence of lax el-generic factorizations. Suppose we are given a (n,B, y : Pn → B) in
el F . We have the map (n, Pn, id : Pn → Pn) 9 (n,B, y : Pn → B) given as

Pn
id //

Pid
��

id��

Pn

y

��
Pn y

// B

which is of the required form since the 2-cell involved is invertible.
El-generic morphisms form a category. Before showing that el-generic morphisms form

a category, we will need a characterization of them. Now, specializing the earlier argument
of “existence of expected lax el-generics” to the case when g is the identity (though
generalizing the identity on Pm to an equivalence x : Pm → A) we see that if (m,A, x) is
el-generic (i.e. x is an equivalence)

(n,C, z)
(id,id,id)
��

(m,A, x)
(u,f,α)

//

(u,h,γ)
88

(n,B, y)
ν
KS

the lifting (u, h, γ) above, constructed as in (3.2), has γ invertible. It is also clear that if
(u, f, α) is such that α is invertible, then the lifting (u, h, γ) through (id, id, id) constructed
as in (3.2) is given by (u, f, α).

This shows that the el-generic morphisms between lax el-generic objects are diagrams
of the form

Pm
x //

Pu
��

α��

A

f
��

Pn y
// B

with α invertible, and it is clear that these are closed under composition and that identities
are such diagrams.

3.13. Remark. When F : A → Cat is a lax conical colimit of representables, and from
a lax el-generic object (A, x) we construct the universal diagram

(C, z)
(g,β)
��

(A, x)
(f,α)

//

(h,γ)
::

(B, y)
ν
KS

the 2-cell ν is the unique 2-cell (f, α) ⇒ (g, β) · (h, γ). This is since for such an F , el-
generic morphisms compose and any map (g, β) with β invertible is generic. Subterminality
of (g, β) · (h, γ) then gives uniqueness.
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3.14. Remark. When F : A → Cat is a lax conical colimit of representables, written
F '

� m∈MF

lax A (Pm,−), then MF is equivalent to the category of strict10 lax el-generic
objects (A, x) and representative el-generic morphisms in el F . This is a consequence of
the characterization of lax el-generic objects and morphisms given in the above proof of
Theorem 3.12. Moreover, as Theorem 3.12 constructs MF as the the category of lax el-
generic objects and morphisms, we conclude this non-strict choice of MF is also equivalent
(to the category indexing F as a lax conical colimit of representables).

The following lemma will not be used until the last section, but is expressed in terms
of el-generic objects and so we give it here.

3.15. Lemma. Let A be a bicategory and let F : A → Cat be a pseudofunctor. Then
every opcartesian morphism between two lax el-generic objects (h, γ) : (A, x) 9 (C, z) in
el F is an equivalence.
Proof. Given such a (h, γ) we may form a (k, ψ) as on the left below

(A, x)
(h,γ)
��

(C, z)
(k,ψ)
��

(C, z)
(1,id)

//

(k,ψ)
::

(C, z)
ν
KS

(A, x)
(1,id)

//

(h′,γ′)
::

(A, x)
µ
KS

and one can then form a (h′, γ′) as on the right above. As ν and µ have inverses

(h′, γ′) ∼= (h, γ) (k, ψ) (h′, γ′) ∼= (h, γ)

so (h, γ) has pseudo-inverse (k, ψ).

4. Lax generic factorizations and lax familial pseudofunctors
Here we specialize the results of Section 3 to the case when F : A → Cat is of the
form B (X,T−) for a pseudofunctor T : A → B. The following is a generalization of
Diers’ notion of familial functor (given in Definition 2.7) to the case of a pseudofunctor
T : A → B.

4.1. Definition. Let A and B be bicategories and let T : A → B be a pseudofunctor.
We say that T is lax familial if there exists a pseudofunctor M(−) : Bop → Cat and a
pseudofunctor P :

� X∈B

lax MX → A such that

B (X,T−) '
� m∈MX

lax
A
(
PX
m ,−

)
for all X ∈ B, where each PX

(−) : MX → A is obtained from P by composing with the
inclusion MX →

� X∈B

lax MX .
10Strict here means if both α and β are identities, then both ν and γ are identities.
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4.2. Remark. One might wonder why we did not simply define T to be lax familial when
every

B (X,T−) : A → Cat
is a lax conical colimit of representables. The reason is that this condition would only be
sufficient to force P (which may be constructed from this condition) to be a normal lax
functor.

This should not be surprising. In dimension one, simply asking that each B (X,T−)
is a coproduct of representables is enough to define T being familial since the indexings
MX are sets, and thus there are no naturality conditions to consider. However, when
the indexing is a category we must account for these naturality conditions (equivalent to
ensuring that P is a pseudofunctor), and so the definition of a lax familial pseudofunctor
is slightly more complicated.

4.3. Remark. More abstractly, one can define familial functors as the admissible maps
against the cocompletion under coproducts [27], sending a category A to

� I∈Set
lax CAT (I,A),

and define lax familial functors as the admissible maps against the cocompletion under lax
conical colimits, sending a bicategory A to

� I∈Cat
lax BICAT (I,A ). However, there are a

number of technicalities here, as one should consider opposite categories (as we are really
using corepresentables), and the theory of “higher” versions of KZ pseudomonads [12] is
not fully developed.

Before applying Theorem 3.12 to Cat-valued presheaves of the form B (X,T−), we
will need the appropriate notions of genericity with respect to a pseudofunctor T : A →
B. The following definitions are recovered by specializing the definitions of genericity in
the last section, namely Definitions 3.4 and 3.6, to the case when F : A → Cat is of the
form B (X,T−) for a pseudofunctor T : A → B.

4.4. Definition. Let A and B be bicategories and let T : A → B be a pseudofunctor.
Then a 1-cell δ : X → TA is lax-generic if for any diagram and 2-cell α as on the left
below

X
z //

δ
��

TB

Tg
��

=

X
z //

δ
��

γ
KS TB

Tg
��

TA
Tf
//

α
KS

TC TA
Tf
//

Th

<<

TC
Tν
KS

there exists a diagram and 2-cells ν and γ as on the right above11 which is equal to α,
such that:

1. given any 2-cells ω, τ : k ⇒ h such that

X
z //

δ
��

γ
KS

Tω

[c

TB

=

X
z //

δ
��

γ
KS

Tτ

[c

TB

TA

Th

<<

Tk

MM

TA

Th

<<

Tk

MM

11We are suppressing the pseudofunctorality constraint Tg · Th ∼= Tgh.
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we have ω = τ ;

2. given any other diagram
X

z //

δ
��

φ
KS TB

Tg
��

TA
Tf
//

Tk

<<

TC
Tψ
KS

equal to α, there exists a (necessarily unique) 2-cell ψ : k ⇒ h such that

X
z //

δ
��

φ
KS TB

=

X
z //

δ
��

γ
KS

Tψ

[c

TB

TA

Tk

<<

TA

Th

<<

Tk

MM

and
B

g

��
=

B

g

��
A

f
//

k

??h --

C
ψ
KS

ψ
KS

A
f
//

h

??

C ;
ν
KS

3. if α is invertible, then both γ and ν are invertible.

We call a factorization

X
z //

δ
��

TB

Tg
��

=

X
z //

δ
��

γ
KS TB

Tg
��

TA
Tf
//

α
KS

TC TA
Tf
//

Th

<<

TC
Tν
KS

the universal factorization of α if both (1) and (2) are satisfied above.
Earlier in Definition 3.6 we defined a 1-cell to be generic when it satisfied a certain

strong mixed lifting property. Translating this definition into the context of a pseudofunctor
T : A → B results in the below definition.

4.5. Definition. Let A and B be bicategories and let T : A → B be a pseudofunctor.
Let δ : X → TA be a generic 1-cell. Then a pair (h, γ) of the form

TA

Th

��

X

δ
88

z &&
γ{�

TB

is a generic cell if:
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1. given any 2-cells ω, τ : k ⇒ h such that

TA

Th

��

Tk

{{

TA

Th

��

Tk

{{

X

δ
88

z &&
γ{� Tω

ks = X

δ
88

z &&
γ{� Tτ

ks

TB TB

we have ω = τ ;

2. given any other diagram
TA

Tk

��

X

δ
88

z &&
φ
{�

TB

and λ : h⇒ k such that

TA

Th

��

TA

Tk

��

Th

{{

X

δ
88

z &&
γ{� = X

δ
88

z &&
φ
{�

Tλ
ks

TB TB

there exists a (necessarily unique) λ∗ : k ⇒ h such that

TA

Tk

��

TA

Th

��

Tk

{{

X

δ
88

z &&
φ
{� = X

δ
88

z &&
γ{� Tλ∗

ks

TB TB

and λ∗λ = idh.
From this definition, the following is clear.

4.6. Corollary. For any universal factorization

X
z //

δ
��

TB

Tg
��

=

X
z //

δ
��

γ
KS TB

Tg
��

TA
Tf
//

α
KS

TC TA
Tf
//

Th

<<

TC
Tν
KS

it follows that (h, γ) is a generic 2-cell.
Before proving the main theorem of this section, it is worth defining the spectrum

of a pseudofunctor. This is to be the two-dimensional analogue of Diers’ definition of
spectrum of a functor [8, Definition 3].

It turns out that for a lax familial functor, the reindexing P necessarily has domain
given by the Grothendieck construction of the spectrum, hence why the spectrum appears
in this section and in the proof of Theorem 4.10.
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4.7. Definition. Let A and B be bicategories and let T : A → B be a pseudofunctor
such that B (X,T−) is a lax conical colimit of representables for every X ∈ B.12 For
each X ∈ B, define MX as the category with objects given by lax-generic morphisms out
of X and morphisms given by representative generic cells between them. We define the
spectrum of T to be the pseudofunctor

SpecT : Bop → Cat

sending an object X ∈ B to MX and a morphism f : Y → X in B to the functor
Mf : MX → MY which takes a generic morphism δ : X → TA to δ′ : Y → TP where
δ · f ∼= Tu · δ′ is a chosen generic factorization of δ · f , and takes a generic 2-cell
γ : Th · δ ⇒ σ as on the left below to the generic 2-cell γ : Th · δ′ ⇒ σ′ as on the right
below

TP
Tu //

∼=
TA

Th

��

TP
Tu //

Th

��

TA

Th

��

Y
f //

δ′
99

σ′ %%

X

δ
88

σ &&

γ{�
∼=

= Y

δ′
99

σ′ %%
γ
{�

TQ
Tv
// TB TQ

Tv
//

Tν
{�

TB

constructed as the universal factorization of the left pasting above.

4.8. Remark. When A has a terminal object the spectrum has an especially simple form,
namely as the functor B (−, T1) : Bop → Cat.

Later on we will need to use the the Grothendieck construction of the spectrum, which
has the following relatively simple description.

4.9. Lemma. Let A and B be bicategories and let T : A → B be a pseudofunctor such
that B (X,T−) is a lax conical colimit of representables for every X ∈ B. Then the
bicategory of elements of the spectrum SpecT : Bop → Cat is the bicategory

el M(−) ∼=
� X∈B

lax
MX

consisting of:

Objects An object is a pair of the form (X ∈ B, δ : X → TA) where δ is a generic out
of X;

Morphisms A morphism (X ∈ B, δ : X → TA) 9 (Y ∈ B, σ : Y → TB) is a morphism
f : X → Y in B and a representative generic cell (h, γ) as below

X
δ //

f
�� γ{�

TA

Th
��

Y σ
// TB

12It makes sense to define the spectrum with just this assumption. However, in most cases of interest
T will satisfy the stronger condition of being lax familial.
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2-cells A 2-cell (f, h, γ)⇒ (g, k, φ) : (X, δ) 9 (Y, σ) is a 2-cell ν : f ⇒ g in B such that

X δ //

f
��

g
��

TA

Th
��

γ{� =

X δ //

g
��

φ
{�

TA

Th
��

Tk
��

Y σ
//

ν
ks

TB Y σ
// TB
Tν
ks

for some (necessarily unique) ν : h⇒ k.

Moreover, the cartesian morphisms are precisely those (f, h, γ) such that γ is invertible.
Proof. We know, using the formula of Definition 2.14 (adjusted to the contravariant
case), that

� X∈B

lax M(−) is the bicategory with objects pairs (X ∈ B,m ∈MX), morphisms
(X ∈ B,m ∈MX) 9 (Y ∈ B, n ∈MY ) given by a 1-cell f : X → Y and morphism
α : m→ Ff (n) in MX , and 2-cells ν : (f, α)⇒ (g, β) those 2-cells ν : f ⇒ g such that

m

β

44
α // Ff (n)

(Fν)n // Fg (n)

commutes. The objects are clearly as desired. Thus a morphism (X ∈ B, δ : X → TA) 9
(Y ∈ B, σ : Y → TB) consists of an f : X → Y and an α : δ →Mf (σ) in MX . Hence a
morphism is a pair (f, (s, ξ)) as below

X
δ //

f

��

σf "" ξ
{�

TA

Tszz
TH

Tf

$$
Y σ

//
∼=

TB

where (s, ξ) is a representative generic cell, and Tf ·σf is the chosen generic factorization
of σ · f . Using that generic cells (s, ξ) remain generic when composed with opcartesian
cells

(
f,∼=

)
(because opcartesian cells are themselves generic), the above diagram is itself

a generic cell, isomorphic to a unique representative generic cell

X δ //

f
�� γ{�

TA

Th
��

Y σ
// TB

Conversely, one may form the representative generic factorization of γ

X δ //

σf

��

TA

Th

��
Ts

{{

ξ
ks

TH
Tf

// TB
Tζ
ks
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to recover (s, ξ) (note that ζ is invertible as genericity of (s, ξ) is preserved by
(
f, id

)
and

γ is generic). That the assignment (s, ξ) 7→ (h, γ) defines a bijection is a consequence
of the fact that any 2-cells factors through a unique representative generic 2-cell (once a
choice of a generic 1-cell factoring each general 1-cell has been made).

It is also worth noting that the opcartesian morphisms, corresponding to the case
where (s, ξ) is an equivalence (meaning s is an equivalence and ξ is invertible), are those
squares where γ is invertible.

Finally, a 2-cell ν : (f, s, ξ)⇒ (g, u, θ) consists of a 2-cell ν : f ⇒ g such that

δ

(u,θ)

88
(s,ξ) // σf

(Mν)σ // σg (4.1)

commutes, where (Mν)σ is given by the representative generic factorization, denoted by
the pair (m,ϕ), as in the diagram below

TH Tf

��
∼=

TT Tf

��
Tm

��

X

f
''

g

77ν��

σf 22

σg --

Y
σ //

∼=
TB = X ϕ��

σf 22

σg --

Tλ�� TB

TS Tg

CC

TS Tg

CC

Hence given such a ν we have

X
δ //

σg

��

TA

Th

��

Tu

~~

X
δ //

σg

��

σf
##

TA

Th

��

Ts
{{

θ
{�

Tτ
{�

= ϕ{� TH
Tf
##

Tm
{{

ξ
{�

Tλ
{�

Tζ
{�

TS
Tg

// TB TS
Tg

// TB

for some (necessarily unique) τ : h ⇒ g · u. Moreover, given a diagram as above we can
take the representative generic factorization to recover (4.1).

We can now apply Theorem 3.12 to the case where F : A → Cat is of the form
B (X,T−) for a pseudofunctor T : A → B to prove the following theorem.

4.10. Theorem. Let A and B be bicategories and let T : A → B be a pseudofunctor.
Then the following are equivalent:

1. the pseudofunctor T : A → B is lax familial;

2. the following conditions hold:

(a) for every object X ∈ A and 1-cell y : X → TC in B, there exists a lax-generic
morphism δ : X → TA and 1-cell f : A→ C such that Tf · δ ∼= y;
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(b) for any triple of lax-generic morphisms δ, σ and ω, and pair of generic cells
(h, θ) and (k, φ) as below

X

δ
��

f //

θ ;C
Y

σ

��

g //

φ ;C
Z

ω
��

TA
Th
// TB

Tk
// TC

(4.2)

the above pasting (kh, φf · θ) is a generic cell.13

Proof. (1) ⇒ (2) : Supposing that T is lax familial, it follows that each B (X,T−) is
a lax conical colimit of representables. By Theorem 3.12, we have (2)(a), as well as 2(b)
when f and g are both the identity at X. To get the full version of (2)(b) we use that

P :
� X∈B

lax
MX → A

is a pseudofunctor, where we have assumed without loss of generality that each MX is
the category of generic morphisms out of X and representative cells, using Remark 3.14.
Indeed,

� X∈B

lax MX is the bicategory with objects pairs (X, δ : X → TA) and morphisms
(X, δ : X → TA) 9 (Y, σ : Y → TB) given by triples (f, h, θ) as below

X

δ
��

f //

θ ;C
Y

σ

��
TA

Th
// TB

such that (h, θ) is a generic cell. As the lax functoriality constraints of P are given by
factoring diagrams such as (4.2) though a generic, the invertibility of these lax constraints
of P forces (2)(b).

(2)⇒ (1) : Applying Theorem 3.12 to the conditions 2(a) and 2(b) (only needing the
case when f and g are identities at X), it follows that we may write

B (X,T−) '
� m∈MX

lax
A
(
PX
m ,−

)
where MX is the category of generic morphisms out of X and representative generic cells
between them. From this, we recover the spectrum SpecT : Bop → Cat taking each X
to MX . Also, we again have the canonical normal lax functor

P :
� X∈B

lax
MX → A

defined as in the previous implication (1)⇒ (2). Using the full version of (2)(b), meaning
we are no longer just using the case when f and g are identities at X, forces this to be a
pseudofunctor (not just a normal lax functor) as required.

13Suppressing pseudofunctoriality constraints of T .
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Under the conditions of this theorem, we also have a notion of generic factorizations
on 2-cells, in a sense we now describe.

4.11. Remark. Suppose T is lax familial, δ and σ are generic objects, and consider a
2-cell α : Tf · δ ⇒ Tg · σ. Then α has a lax generic factorization

TA Tf

!!
⇓α

TA Tf

!!
Th

��

X

δ 44

σ ))

TC = X

δ 44

σ ))

⇓γ ⇓Tν TC

TB Tg

>>

TB Tg

>>

Also note that any map k : X → TC can be factored as Tk · ξ for some generic ξ and
morphism k, and so when T is surjective on objects we have a generic factorization of
every 1-cell and 2-cell in the bicategory B.

5. Comparing to Weber’s familial 2-functors
The purpose of this section is to compare our definition of a lax familial 2-functor
T : A → B between 2-categories (meaning Definition 4.1 specialized to 2-categories and
2-functors), with Weber’s definition of familial 2-functor (which requires that A has a
terminal object). It turns out that these two definitions are essentially equivalent. Note
also that Weber’s definition assumes some “strictness conditions” (such as identity 2-cells
factoring into identity 2-cells) which are natural conditions on 2-functors, but arguably
less natural in the case of pseudofunctors.

In one dimension, a functor T : A → B (where A has a terminal object) is said
to be a parametric right adjoint (or a local right adjoint) when the canonical functor
T1 : A ∼= A/1 → B/T1 is a right adjoint [22]. The following is what Weber refers to as
the “naive” 2-categorical analogue of parametric right adjoint [30].

5.1. Definition. Suppose A and B are 2-categories, and that A has a terminal object.
We say a 2-functor T : A → B is a naive parametric right adjoint if every canonical
functor (on the 2-slices) T1 : A ∼= A /1→ B/T1 is a right 2-adjoint.

We now recall the notion of generic morphism corresponding to this “naive” 2-categorical
analogue of parametric right adjoints [30].

5.2. Definition. Suppose A and B are 2-categories. Given a 2-functor T : A → B we
say a morphism x : X → TA is naive-generic if:

1. for any commuting square as on the left below

X
z //

x
��

TB

Tg
��

X
z //

x
��

TB

Tg
��

TA
Tf
// TC TA

Tf
//

Th

<<

TC

there exists a unique h : A→ B such that Th · x = z and f = gh;
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2. for two commuting diagrams

X
z1 //

x
��

TB

Tg
��

X
z2 //

x
��

TB

Tg
��

TA
Tf
//

Th1

<<

TC TA
Tf
//

Th2

<<

TC

the 2-cells θ : z1 ⇒ z2 such that Tg·θ = id bijectively correspond to 2-cells θ : h1 ⇒ h2
such that T

(
θ
)
· x = θ and g · θ = id.

From this one can prove the following expected result [30].

5.3. Proposition. [30] Suppose A and B are 2-categories, and that A has a terminal
object. Then a 2-functor T : A → B is a naive parametric right adjoint if and only if
every f : X → TA factors as Tf · x for a naive-generic morphism x.

Weber’s actual definition of familial 2-functors (which we will soon recall) requires
certain maps in a 2-category to be fibrations [30]. Thus we will need to recall the definition
of fibration in a 2-category B. Note that when B is finitely complete there are other
equivalent characterizations of fibrations [21].

5.4. Definition. We say a morphism p : E → B in a 2-category B is a fibration if:

1. for every X ∈ B, the functor B (X, p) : B (X,E)→ B (X,B) is a fibration;

2. for every f : X → Y in B, the functor B (f, E) : B (Y,E) → B (X,E) preserves
cartesian morphisms.

If we have a choice of cartesian lifts which strictly respects composition and identities we
say the fibration splits.

We now have the required background to define familial 2-functors in the sense of
Weber.

5.5. Definition. Suppose A and B are 2-categories and that A has a terminal object.
We say a 2-functor T : A → B is Weber-familial if

1. T is a naive parametric right adjoint;

2. for every A ∈ A , and unique tA : A → 1 in A , the morphism TtA : TA → T1 is a
split fibration in B.

The following is Weber’s analogue of lax-generic morphisms.
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5.6. Definition. Suppose A and B are 2-categories, and that A has a terminal object.
Given a 2-functor T : A → B for which each TtA : TA→ T1 is a split fibration, we say
a morphism x : X → TA is Weber-lax-generic if for any 2-cell α as on the left below,

X
z //

x
��

TB

Tg
��

=

X
z //

x
��

γ
KS TB

Tg
��

TA
Tf
//

α
KS

TC TA
Tf
//

Th

<<

TC
Tν
KS

there exists a unique factorization (h, γ, ν) as above such that (h, γ) is chosen14 TtB : TB →
T1 cartesian.15

The following lemma shows that for Weber-familial 2-functors T , the lax-generics
of both our sense and Weber’s coincide, and our generic 2-cells can equivalently be
characterized as certain cartesian morphisms.

5.7. Lemma. Suppose A and B are 2-categories and that A has a terminal object. Let
T : A → B be a Weber-familial 2-functor. Define M as the category with objects given
by chosen naive-generics δ : X → TA,16 and morphisms given by pairs (h, γ)

TA

Th

��

X

δ
88

σ &&
γ{�

TB

(5.1)

where γ is chosen TtB : TB → T1 cartesian. Then:
1. for every X ∈ B we have isomorphisms

B (X,T−) ∼=
� m∈M

lax
A (Pm,−) ;

2. a map δ : X → TA in B is naive-generic if and only if it is strict17 lax-generic;

3. a 2-cell in B as below
TA

Th

��

X

δ
88

z &&
γ{�

TB

14Recall part of the data of a split fibration is a choice of coherent cartesian lifts.
15This definition of lax-generics has the downside that it assumes some of the conditions for a 2-

functor being familial for it to make sense (namely that each TtA : TA → T1 is a split fibration), thus
not allowing for a theorem describing an equivalence between a 2-functor being familial and admitting
lax-generic factorizations.

16Here “chosen” means that it is to be identified with another naive-generic σ : X → TB if there exists
a pair (h, γ) as in (5.1) with h invertible and γ an identity; thus it is a choice of a representative of an
equivalence class of naive-generics.

17By strict we mean identity 2-cells universally factor into identity 2-cells.
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is generic if and only if it is TtB : TB → T1 cartesian.

Proof. (1) : It suffices to check that the functors
� m∈M

lax
A (Pm,W )→ B (X,TW )

are isomorphisms. That this assignment is bijective on objects is a consequence of the
well-known one-dimensional case (for instance, see [26, Prop. 7]). That the assignment
on morphisms

TPm

Th

��

Pm

h

��

f

""

TPm

Th

��

Tf

##
X

δm′ ""

δm
<<

⇓α W⇓β 7→ X

δm′ ""

δm
<<

⇓α TW⇓Tβ

TPm′ Pm′

g

<<

TPm′
Tg

;;

is bijective follows from the fact each naive-generic is Weber-lax generic [30, Lemma 5.8].
Naturality is also an easy consequence of this fact.

(2) : If δ is naive-generic, and thus isomorphic to a representative naive-generic, then
δ is lax-generic by (1). If δ is strict lax-generic, then from a θ : z1 ⇒ z2 we have a universal
factorization

X
x //

x
��

θ
KS
TA

Th2
��

X
x //

x
��

id
KS TA

Th2
��

TA
Th1
// TB

=

TA
Th1
//

T1

<<

TB
Tθ
KS

where we have used that Tg · θ is an identity to see the top right triangle above can be
taken as an identity. In this way, we recover the bijection required of a naive-generic.

(3) : Consider a 2-cell
TA

Th

��

X

δ 88

z &&
γ{�

TB

If this 2-cell is generic, then we have a factorization

X z //

δ
��

γ
KS
TA

T id
��

X z //

δ
��

φ
KS TA

T id
��

TA
Th
// TB

=

TA
Th
//

Tk

<<

TB
Tλ
KS

(5.2)
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where φ is chosen cartesian. By genericity of γ, we have an λ∗ : k ⇒ h such that

TA

Tk

��

TA

Th

��

Tk

{{

X

δ 88

z &&
φ
{� = X

δ 88

z &&
γ{� Tλ∗

ks

TB TB

(5.3)

and λ∗λ = idh. Substituting (5.2) into (5.3) and using that δ is Weber-lax-generic gives
λλ∗ = idk. Conversely, if this 2-cell is cartesian we then have a factorization

X
z //

δ
��

γ
KS
TA

T id
��

X z //

δ
��

φ
KS TA

T id
��

TA
Th
// TB

=

TA
Th
//

Tk

<<

TB
Tλ
KS

where (k, φ) is a generic 2-cell (which must also be cartesian by the above argument). Since
φ and γ are cartesian, and thus isomorphic to chosen cartesian morphisms, it follows that
the comparison λ is invertible.

Finally, we give the main result of this section, showing that for 2-functors T : A → B
our notion of a lax familial 2-functor is essentially equivalent to Weber’s definition.

5.8. Theorem. Suppose A and B are 2-categories and that A has a terminal object.
Then for a 2-functor T : A → B the following are equivalent:

1. T is Weber-familial;

2. T is strictly18 lax familial.

Proof. (1)⇒ (2) : Supposing T : A → B is Weber-familial, we have that each B (X,T−)
is a lax conical colimit of representables by Lemma 5.7 part (1). Also, as the generic 2-cells
may be identified with the cartesian 2-cells, we know since the fibration TtB : TB → T1
respects precomposition (meaning it satisfies part 2 of Definition 5.4) we have the following
property: for any generic 2-cell out of an X ∈ B as on the left below

TA

Th

��

TA

Th

��

X

δ 88

z &&
γ{� Y

k // X

δ 88

z &&
γ{�

TB TB

(5.4)

and map k : Y → X in B, the right diagram is a generic 2-cell. It is this property (along
with closure of generic cells under composition) which gives (2)(b) of Theorem 4.10.

18By strict we mean isomorphic to a lax conical colimit of representables in place of equivalent, and
that the reindexings PX

(−) are 2-functors instead of pseudofunctors.
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(2)⇒ (1) : Suppose T : A → B is strictly lax familial. Then T is a naive parametric
right adjoint since T has strict lax generic factorizations, and lax-generic implies naive
generic (shown in part (2) of Lemma 5.7).

It remains to check that each TtA : TA → T1 is a split fibration. To see this, note
that for each X ∈ B the functor B (X,TA)→ B (X,T1) may be written as the functor

� m∈M

lax
A (Pm, A)→

� m∈M

lax
A (Pm, 1) ∼= M

defined by the assignment

m

λ

��

Pm

Pλ

��

f

!!

m

λ

��

A⇓β 7→

m′ Pm′

g

==

m′ .

It is straightforward to verify that for each (m′, g : P ′m → A) and λ : m → m′ we recover
a cartesian lift as on the left below

m

λ

��

Pm

Pλ

��

g·Pλ

!!

m

λ

��

A⇓id 7→

m′ Pm′

g

==

m′

and it is clear the canonical choice of cartesian lifts given above splits. The cartesian
morphisms are diagrams as above (if the identity 2-cell is replaced by an isomorphism it is
still cartesian), and these correspond to generic cells in B (X,TA). That for each k : Y →
X the functor B (k, TA) : B (X,TA) → B (Y, TA) preserves cartesian morphisms then
follows from condition (2)(b) of Theorem 4.10.

6. Examples of familial pseudofunctors
We will first consider some simple examples of lax familial pseudofunctors which concern
pseudofunctors T : A → B where A is a 1-category. Our first and simplest examples of
such pseudofunctors T : A → B concern the canonical embeddings into bicategories of
spans and polynomials.

The reader will also recall that in this setting where A is a 1-category, el F ∼=
el B (X,T−) is a 1-category for each X ∈ B, and so the mixed lifting properties become
the usual lifting properties. Indeed, it is clear that Definition 4.5 becomes trivial in this
case, so that every pair (h, γ) out of a lax-generic δ is a generic cell.
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6.1. Example. The bicategory of spans Span (E) in a category E with pullbacks was
introduced by Bénabou [2], and admits a canonical embedding T : E → Span (E) sending
a morphism f in E to the span (1, f). It is interesting to note that this pseudofunctor is
lax familial. To see this, first observe that a span X 9 TA is generic if it is isomorphic
to a span of the form

TA
s

yy
id
&&

X TA

This is since if a span (s, t) is generic we can then factor the diagram on the left below

X
(s,1) //

(s,t)
��

TM

Tt
��

=

X
(s,1) //

(s,t)
��

γ
KS TM

Tt
��

TA
T id
//

id
KS

TA TA
T id
//

Tu

;;

TA
Tν
KS

as on the right above, where ν is necessarily an identity (because the domain of T is a 1-
category) and γ invertible. Hence tu = id and ut is invertible, showing that t is invertible.
Conversely, to see such a span (s, 1) is generic, note that any diagram as on the left below

X
(u,v) //

(s,1)
��

TM

Tq
��

=

X
(u,v) //

(s,1)
��

γ
KS TM

Tq
��

TA
Tp
//

α
KS

TB TA
Tp
//

Tvθ

;;

TB
T id
KS

universally factors as on the right above, where α and γ are the respective morphisms of
spans

TA
s

yy
p

&&
θ

��

TA
s

yy
vθ
&&

θ

��

α : X TB γ : X TM

•
qv

88
u

ff

•
v

77
u

ff

As all cells between generic morphisms are generic, it follows that the category MX of
generics out of X is the slice E/X, and so for any X ∈ E we may take P(−) as the functor
dom : E/X → E, giving

Span (E) (X,T−) ∼=
� m∈E/X

lax
E (Pm,−)

Dual to the above, we see that T : E → Span (E)co admits “oplax-generic factorizations”
(meaning the same as lax-generic factorizations except the direction of the 2-cells are
reversed in Definition 4.4); indeed we may write

Span (E)co (X,T−) ∼=
� m∈E/X

oplax
E (Pm,−)
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Moreover, the pseudofunctor T : E → Spaniso (E) admits both lax and oplax generic
factorizations, as we may write

Spaniso (E) (X,T−) ∼=
� m∈(E/X)iso

lax
E (Pm,−) ∼=

� m∈(E/X)iso

oplax
E (Pm,−)

where (E/X)iso contains the objects of E/X and only those morphisms which are invertible.
The reader will also note that we do not have Spaniso (E) (X,T−) ' ∑

ob E/X E (Pm,−)
as for each T ∈ E , the right above is a discrete category, but isomorphisms of spans are
not unique (and so the canonical functor Spaniso (E) (X,T−)→ ∑

ob E/X E (Pm,−) is not
fully faithful).

The case of spans is also interesting as it gives a simple example in which generic
factorizations are not unique in the sense that one might initially expect. That is to say,
given two generic factorizations

X

δ &&

f // TA X

δ &&

f // TA

TP Tf

88
α
KS

TP
Tg

88
β
KS

(meaning isomorphisms α and β as above), there is not necessarily a coherent comparison
2-cell f ⇒ g.

6.2. Example. Consider a span

2
σ

��

!

��
1 2

where σ is the swap map. Here we have the two distinct generic factorizations

1
(!,1) %%

(!,σ) // T2 1
(!,1) %%

(!,σ) // T2

T2 T1

88
σ
KS

T2 Tσ

88
id
KS

In the following examples we will omit the verification that the generic morphisms and
cells are classified correctly, as these calculations involving polynomial functors are quite
technical.

6.3. Example. For a locally cartesian closed category E, one may form the bicategory of
polynomials in E, denoted Poly (E), whose objects are those of E, morphisms are triples
(s, p, t) : X → Y as below

E
s

yy

p // B
t

$$
X Y
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called polynomials, and a (general) 2-cell of polynomials is a diagram as below

E
s

~~

p // B
t

  
g

��

X S

f
��

pe

>>

e

OO

pb Y

M q
//

u

``

N

v

>>

where the indicated square is a pullback19 [9, 31]. If e is invertible (so that the 2-cell is
just a pullback) the 2-cell is said to be cartesian [9, 31].

Similar to the case of spans, we see that the canonical pseudofunctor T : E → Poly (E)
sending a morphism f to (1, 1, f) is lax familial. Indeed, one can verify that a polynomial
X 9 TA is generic precisely when it is isomorphic to the form

TM
s

xx

p // TA
id
&&

X TA

and it is trivial that any general 2-cell of polynomials as below

TA

Tt

��

X

(s,p,id) 88

(u,q,v) &&

γ��

TB

is generic (as the domain of T is a 1-category). Consequently, denoting by ΠE the
pseudomonad freely adding products to a fibration [24], we may take P(−) as the functor
pr : ΠE (E/X)→ E where ΠE (E/X) is the category with objects given by spans

X T
foo g // U

out of X, and morphisms of spans from (f, g) 9 (f ′, g′) given by a pair β : U → U ′ and
α : W → T (where W is the chosen pullback of β and g′) rendering commutative the
diagram

T
f

{{

g
)) U
β��X W

α

OO

��

55

pb
U ′

T ′
f ′

cc

g′

55

19Actually a 2-cell is an equivalence class of such diagrams; or such a diagram where the pullback is
chosen.
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As a consequence we have the formula

Poly (E) (X,T−) ∼=
� m∈ΠE(E/X)

lax
E (Pm,−)

for all X ∈ Poly (E).

6.4. Remark. From Example 6.3, we see that the usual inclusion Span (E)→ Poly (E)
can be seen as coming from the unit components uE/X : E/X → ΠE (E/X) of the pseudo-
monad ΠE for fibrations with products [24]. Indeed, the family of functors

Span (E) (X, Y )→ Poly (E) (X, Y )

may be written as the functors
� m∈E/X

lax
E (Pm, Y )→

� m∈ΠE(E/X)

lax
E (Pm, Y )

resulting from this reindexing.
We now give a more complicated example, where A is not a 1-category. In this

situation the mixed lifting properties are necessary (unlike the earlier examples where
usual liftings would suffice), and so it is no longer the case that every (h, γ) out of a
generic morphism is a generic 2-cell.

6.5. Example. The canonical pseudofunctor T : Span (E)co → Poly (E), given by

E
t

  

s

~~

E
s

~~

t // Y
1

  
1

��

X Y 7→ X M

1
��

v

>>

f

OO

pb Y

M

v

>>

u

`` f

OO

M v
//

u

``

Y
1

??

is such that T op is lax familial. Here a polynomial TA 9 X is opgeneric (meaning the
opposite morphism in Poly (E)op is lax generic with respect to T op) if it is isomorphic to
the form

TA
id
xx

id // TA
f

%%
TA X

and a pair ((s, t) , γ) out of a opgeneric as below

X

T (s,t)=(s,t,1)

��

TA

(1,1,f) 88

(v,u,g) &&
γ{�

TB
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is generic when γ : (s, t, f) ⇒ (v, u, g) is a cartesian 2-cell of polynomials. We note also
that cartesian morphisms of polynomials are closed under vertical composition as well as
precomposition by another polynomial.

Given a general morphism of polynomials φ : (s, t, f) ⇒ (v, u, g) as given by the
diagram

I
s
yy

t //M
f

%%
h

��

TA P
e
OO

u′
99

h′ �� pb
X

J
v

ee

u
// N

g

99

the opgeneric factorization of φ is given by

M (1,1,f)
  

TA

(s,t,f)

$$

(v,u,g)

;;φ�� X = TA

T (s,t) 55

T (v,u) ))

Tν�� γ�� X

N (1,1,g)

>>T (h,1)

OO

where ν is the reversed morphism of spans on the left below

I
t

%%
s
yy

M
h

yy

1 //

h

��

M
f

%%
h

��

TA M N X

P
u′

99

vh′

ee e

OO

N
1

ee

1
// N

g

99

and γ is the cartesian morphism of polynomials on the right above. It follows that for any
X ∈ E we may take P(−) as the functor

E/X dom // E ι // Span (E)coop

where ι sends each morphism h : A→ B to (h, 1A) ∈ Span (E)coop, and get

Poly (E)op (X,T−) ∼=
� m∈E/X

lax
Span (E)coop (Pm,−) .

We now give a natural example which does not come from a pseudofunctor of bicat-
egories T : A → B. Indeed, the following may be seen as the main motivating example
for this paper.

6.6. Example. Following Carboni and Johnstone [5], we consider the pseudofunctor
Fam : CAT → CAT sending a category C to the category Fam (C) with objects given
by families of objects of C denoted (Ai ∈ C : i ∈ I), and morphisms (Ai ∈ C : i ∈ I) 9
(Bj ∈ C : j ∈ J) given by a reindexing ϕ : I → J with comparison maps Ai → Bϕ(i) for
each i ∈ I.
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A trivial case of such a family is when C is any set I, and (i : i ∈ I) is such a family of
objects (set-elements) of I indexed by the set I. Noting this, one can show the el-generic
objects of el Fam are those elements of the form (I, (i : i ∈ I)) for a set I. And it is
clear that for any general element (C, (Bj : j ∈ J)) of el Fam that we have the “generic
factorization” (that is an opcartesian map from a generic)

(J, (j : j ∈ J))
(B(−),id) // (C, (Bj : j ∈ J))

Also, a general morphism out of an el-generic object

(I, (i : i ∈ I))
(H(−),(ϕ,γ))

// (C, (Bj : j ∈ J))

consists of a functor H(−) : I → C, a function ϕ : I → J , and morphisms γi : Hi → Bϕ(i)
indexed over i ∈ I. Such a morphism is generic precisely when every γi is invertible.

It is then clear that the category of generic objects and generic morphisms between
them (note H(−) is uniquely determined by ϕ in this case) is isomorphic to Set. It follows
that the Fam construction is given by20

Fam (C) =
� X∈Set

lax
CX , C ∈ CAT

It is worth noting that restricting to the category of finite sets Setfin, yields the
finite families construction Famf , and restricting further the category of finite sets and
bijections P yields the free symmetric (strict) monoidal category construction.

The above shows that Fam is a lax conical colimit of representables. However, it is
also interesting that Fam is lax familial in the sense of Definition 4.1.

6.7. Example. The pseudofunctor Fam : CAT→ CAT is lax familial. Here the generic
morphisms are those functors of the form

δF : C → Fam (el F ) : X 7→ ((X, x) ∈ el F : x ∈ FX)

for a presheaf F : C → Set (Weber refers to these as “functors endowing C with elements”
[30, Definition 5.10]). A cell out of such a generic morphism

Fam (el F )

Fam(H)

��

C
δ 66

γ{�

z ((
Fam (B)

20Whilst this example involves large categories, the indexing Set is locally small, and our results still
apply. We do not wish to burden this paper with a discussion of size conditions.
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is generic when the comparison maps (not necessarily the reindexing maps) comprising
each γX for X ∈ C are required invertible. It follows that the lax familial representatibly
of Fam is shown by the formula

CAT (C,Fam (−)) ∼=
� F : C→Set

lax
CAT (el F,−)

for each C ∈ CAT.

7. The spectrum factorization of a lax familial pseudofunctor
In the simpler dimension-one case, Diers [7] showed that familial functors (as defined in
Definition 2.7) have the following simple characterization:

7.1. Theorem. [Diers] Let T : A → B be a functor of categories. Then the following are
equivalent:

1. the functor T is familial;

2. there exists a factorization
A T //

G %%

B

M V

99

such that:

(a) V is a discrete fibration;
(b) G has a left adjoint.

When A has a terminal object, it is not hard to see thatM' B/T1. This gives the
following simple consequence:

7.2. Corollary. Let T : A → B be a functor of categories, and assume A has a terminal
object. Then T is familial (is a parametric right adjoint) if and only if the canonical
projection

T1 : A/1→ B/T1

has a left adjoint.
It is the purpose of this section to find an analogue of these results in the dimension

two case. However, as we will see, this is much more complicated than simply asking for a
left bi-adjoint. Instead we will require certain types of “lax” adjunctions (or adjunctions
up to adjunction).
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7.3. Lax F-adjunctions. In the setting of an adjunction of functors F a G : A → M
we have natural hom-set isomorphisms A (Fm, A) ∼= M (m,GA). More generally, one
can talk about bi-adjunctions of pseudofunctors F a G : A → M where we only ask
for natural hom-category equivalences A (Fm, A) 'M (m,GA) [11]. However, even this
notion is often too strong.

Central to the theory of lax familial pseudofunctors is the theory of lax adjunctions
[3], where one only asks that we have adjoint pairs

Lm,A : A (Fm, A)→M (m,GA) , Rm,A : M (m,GA)→ A (Fm, A)

pseudonatural (or even lax natural) in A ∈ A and m ∈M .
The following type of lax adjunctions, called lax F-adjunctions, appear when studying

familial pseudofunctors.21 These are the lax adjunctions which naturally restrict to
biadjunctions on a class of “tight” maps. A simple example of tight maps are the pseudo-
commuting triangles (pseudo slice) of the lax slice category of a pseudofunctor. Before
defining lax F-adjunctions, we must first define F-bicategories and see how they assemble
into a tricategory F-Bicat. It is not hard to verify this data forms a tricategory given
that bicategories, pseudofunctors, pseudo-natural transformations and modifications do
[13].

7.4. Definition. The following notions below:

• an F-bicategory is a bicategory A equipped with an identity on objects, injective on
1-cells, locally fully faithful functor AT → A . The 1-cells of AT are called the tight
1-cells of A and are required to be closed under invertible 2-cells;

• an F-pseudofunctor (A ,AT ) 9 (B,BT ) is a pseudofunctor F : A → B which
restricts to a pseudofunctor FT : AT → BT ;

• a lax F-natural transformation α : F ⇒ G : (A ,AT ) → (B,BT ) is a lax natural
transformation α : F ⇒ G such that both:

1. for all X ∈ A , αX : FX → GX is tight;
2. for all f : X → Y tight, αf : Gf · αX ⇒ αY · Ff is invertible.

define the tricategory F-Bicat of F-bicategories, F-pseudofunctors, lax F-natural transform-
ations, and modifications.

The above allows for a particularly simple definition of lax F-adjunctions.
21Here the F denotes the category whose objects are fully faithful functors and morphisms are pseudo-

commuting squares. Moreover, these concepts arise from considering F-enriched (bi)categories; though
we will not use this enrichment perspective [15].
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7.5. Definition. [Lax F-adjunction] A lax F-adjunction of F-pseudofunctors

(A ,AT )
F //
⊥ (B,BT )
G

oo

is a biadjunction [11] in the tricategory F-Bicat.

7.6. Remark. It is worth noting that this definition immediately tells us that lax F-
adjunctions enjoy nice properties such as uniqueness of adjoints up to equivalence.

Whilst the above definition is conceptually informative, for our purposes it will be
more useful to define these adjunctions in terms of universal arrows. This is due to the
connection between the universal arrow definition and notions of genericity.

7.7. Remark. From now on we will regard the right adjoint G as a F-pseudofunctor
G : (A ,AT )→ (M ,MT ) to more closely match the notation we will use use later on.

The characterization of lax F-adjunctions by universal arrows is slightly technical, so
we will break it into parts.

7.8. Definition. [Universal pair] Given an pseudofunctor G : A → M , object Fm in
M , and a diagram

m
f //

ηm ##

GA

GFm
Gf

::
γf
KS

we say the pair
(
f, γf

)
is universal if for any g : Fm → A and 2-cell β as below

m
f //

ηm ""

GA m
f //

ηm ""

GA

=
GFm

Gg

;;
β
KS

GFm

Gf
;;

γf
KS

Gg

KK

Gβ̃

[c

there exists a unique β̃ : g ⇒ f such that the above equality holds.
The following defines what one should think of as the “universal arrows” of a lax

F-adjunction.

7.9. Definition. [F-universal arrows] Given an F-pseudofunctor G : (A ,AT )→ (M ,MT ),
we say a morphism ηm : m → GFm (where Fm is some object of M ) is universal if for
any 1-cell f : m→ GA there exists a f : Fm → A and a 2-cell

m
f //

ηm ##

GA

GFm
Gf

::
γf
KS

such that the pair
(
f, γf

)
is universal. We say that ηm is F-universal if in addition22

22The reader will of course notice that such a ηm is unique up to equivalence.
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(i) the 1-cell ηm is tight;

(ii) for every tight 1-cell f : m→ GA in M , the 2-cell γf is invertible and f : Fm → A
is tight;

(iii) the diagram
m

ηm //

ηm ##

GFm

GFm
G1Fm

::
id
KS

exhibits (1Fm , id) as a universal pair;

(iv) for any universal pair
(
f, γf

)
, the G-whiskering by a tight g : A→ B

m
f //

ηm ##

GA
Gg // GB

GFm
Gf

::
γf
KS

Ggf

<<

∼=

exhibits
(
gf,Gg · γf

)
as a universal pair.

The following proposition makes precise the characterization of a lax F-adjunction in
terms of universal arrows.

7.10. Proposition. Given an F-pseudofunctor G : (A ,AT ) → (M ,MT ), G has a left
lax F-adjoint as in Definition 7.5 if and only if both:

1. for every object m in M , there exists a F-universal 1-cell ηm : m→ GA;

2. for all 1-cells µ and ν as below, ηkν · ηnµ equipped with the 2-cell

m
ηm //

µ

��
γηnµ
{�

GFm

G(ηnµ)
��

G(ηkν·ηnµ)

zz

n
ηn //

ν
�� γηkν

{�

GFn

G(ηkν)
��

∼=

k ηk
// GFk

is universal.

We will not give all the technical details of the proof, but the following remark should
convince the reader of this characterization.
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7.11. Remark. It comes for free that for all A ∈ A , the universal pair

GA
1GA //

ηGA %%

GA

GFGA
Gid

99
γ1GA
KS

has the 2-cell component γ1GA invertible (as identity 1-cells are necessarily tight). This is
one of the triangle identities. The other triangle identity which asks for the composite of
Fηm and εFm constructed as below

m
ηm //

ηm
�� γηGFmηm

{�

GFm

GFηm
��

GFm
ηGFm //

γ1GFm
{�

1GFm ..

GFGFm

GεFm
��

GFm

to be isomorphic to the identity, is equivalent to (iii) in the presence of (iv). Pseudofunctor-
iality of F is clear from (2) and (iii).

The reader will also recognize that Lm,A and Rm,A are pseudonatural in A ∈ A and
m ∈ M respectively; and also pseudonatural in m ∈ MT and A ∈ AT respectively.
Indeed, Lm,A : A (Fm, A)→M (m,GA) is defined by applying G and composing with ηm,
and Rm,A : M (m,GA) → A (Fm, A) is defined by applying F and composing with εA.
Also, it is not hard to see that η and ε become lax F-natural transformations given the
universal arrow viewpoint. Finally, it is worth noting that each γ is invertible if and only
if the unit η is pseudonatural.

The following property of lax F-adjunctions, that the operations (̃−) respect isomor-
phisms, will be useful later in this section.

7.12. Lemma. Given a pseudofunctor G : A →M with a left lax F-adjoint (F, η, γ), the
operation β 7→ β̃ respects isomorphisms on tight maps.
Proof. Suppose we have an equality as below where g : Fm → A is tight

m
f //

ηm ""

GA m
f //

ηm ""

GA

=
GFm

Gg

;;
β
KS

GFm

Gf
;;

γf
KS

Gg

KK

Gb

[c

and suppose further that β has an inverse, so that we have the equality

m
ηm //

f

88

ηm !!

GFm
Gg // GA m

ηm //

ηm !!

GFm
Gg // GA

β−1KS

=
GFm

Gf

<<

γf
KS

GFm

Gg
<<

id
KS

Gf

KK

Ga

[c
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where we have used axioms (iii) and (iv) to realize the pair consisting of the identity 2-cell
(given on the right above) and g as universal. It is then straightforward to verify a is
inverse to b.

7.13. Remark. It is not hard to see that in the presence of axiom (iv), the above lemma
is equivalent to (iii).

7.14. Factoring through the spectrum. We now have the necessary background
on lax adjunctions, and can move towards understanding how a lax familial pseudofunctor
factors through the spectrum. This will only require the following simple lemma.

7.15. Lemma. Suppose V : M → B is a locally discrete fibration of bicategories. Then
given any 2-cell α : f ⇒ g : X → V m as on the right below

f ∗m
fc

))
α̂

��

X
f

))
id

��

α�� m 7→ α�� V m

g∗m
gc

55

X
g

55

with cartesian lifts fc and gc of f and g, there exists a unique pair (α̂, α) as on the left
above which is sent to α by V . Moreover, if α is invertible then both α̂ and α are.

Proof. Suppose without loss of generality that V is the projection
� B∈B

lax FB → B for a
pseudofunctor F : Bop → Cat. Then we may construct a diagram as on the left below

(X, a)
(f,∼=)

**
(1,λ)

��

X
f

**
id

��

α�� (Y,m) 7→ α�� V (Y,m)

(X, b)
(g,∼=)

44

X
g

44

where λ is the unique map such that

a
∼= // Ff (m)

(Fα)m// Fg (m) = a
λ // b

∼= // Fg (m)

holds. It is clear this is the only choice of λ, and that if α is invertible then so is λ.

7.16. Remark. There should be an analogue of the above without assuming V to be locally
discrete, so that V is the projection

� B∈B

lax FB → B for a trifunctor F : Bop → Bicat.
However, this is beyond the scope of this paper.

We can now prove the main result of this section, which provides a conceptually nice
description of lax familial pseudofunctors. Recall also that the tight maps of a bicategory
are something we must specify, and not part of the data of the original bicategory.
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7.17. Theorem. [Spectrum factorization] Let T : A → B be a pseudofunctor of bicateg-
ories. Then the following are equivalent:

1. the pseudofunctor T is lax familial;

2. there exists a factorization
A T //

G %%

B

M
V

99

such that:

(a) V is a locally discrete fibration of bicategories;
(b) G has a left lax F-adjoint (where all 1-cells in A are tight and the V -cartesian

1-cells of M are tight).

Proof. (2)⇒ (1) : We first note that for any f : X → TA in B, we have a cartesian lift
fc : m→ GA in M . We thus have an assignment

m

ηm
��

fc // GA X

δm
��

f // TA

7→

GFm

Gfc

>>

γfc
KS

TFm

Tfc

>>

V γfc
KS

and as γ is invertible on cartesian maps, this is a factorization of f . We thus need only
check that each δm is lax-generic, and that generic 2-cells compose.

Consider now a 2-cell α as on the right below

n

ηn

��

α̂ //m
fc // GA

Gk

��

X

δn

��

f // TA

Tk

��

7→

GFn Gh
//

α
KS

GC TFn Th
//

α
KS

TC

and its unique preimage as on the left above given by Lemma 7.15. This α in turn has a
factorization as on the left below

n

ηn

��

α̂ //m
fc // GA

Gk

��

X

ηn

��

f // TA

Tk

��

γfcα̂
KS

7→
V γfcα̂
KS

GFn Gh
//

Gfcα̂

88

GC
Gξ
KS

TFn Th
//

Tfcα̂

99

TC
Tξ
KS

since universality of (fcα̂, γfcα̂) is preserved by Gk, thus giving a factorization of α as on
the right above. Note that if α, and hence α̂ and α are invertible, then γfcα̂ is invertible
(as it is on all cartesian 1-cells), and ξ is invertible by Lemma 7.12.
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Given another factorization as on the right below, we can lift σ by Lemma 7.15

n

ηn

��

σ̂ //m
fc // GA

Gk

��

X

ηn

��

f // TA

Tk

��

σ
KS

7→
σ
KS

GFn Gh
//

Gg

88

GC
Gϕ
KS

TFn Th
//

Tg

99

TC

Tϕ
KS

giving the left above. Noting that σ̂ = α̂ and that the left pasting above is α by uniqueness,
we can then factor σ through γfcα̂ recovering a comparison map ψ : g ⇒ fcα̂ satisfying
the required conditions. The subterminality of each V γfcα̂ stems from the uniqueness of
factorizations through γfcα̂.

Finally, to see that generic cells compose, observe that a cell as on the right below

n

γ̂

��

ηn // GFn

Gh

��

TFn

Th

��

γ�� 7→ X

z **

δn
55

γ��

m zc
// GC TC

is generic precisely when its lift as on the left above, given by Lemma 7.15, exhibits (h, γ)
as a universal pair. Also observe that every generic is of the form δn, since given any
generic δ and cartesian lift δc we have an isomorphism

m

ηm
��

δc // GA X

δm
��

δ // TA

7→

GFm

Gδc

>>

γδc
KS

TFm

Tδc

>>

V γδc
KS

and we know that
(
δc, V γδc

)
is an equivalence by Lemma 3.15. It follows that two generic

cells as on the right below

n
γ̂ ��

ηn // GFn

Gh

��

X
δn //

f

��

TFn

Th

��

•
fc ��

γ�� γ��

m ηm
//

φ̂ ��

GFm

Gk

��

7→ Y
δm //

g

��

TFm

Tk

��

•
gc
��

φ�� φ��

w ηw
// GFw Z

δw
// TFw

compose to a generic, as the composite on the left above is universal.
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(1)⇒ (2) : Supposing that T : A → B is lax familial, we may construct the spectrum
M(−) : Bop → Cat as in Lemma 4.9 and factor T as

A G //
� X∈B

lax
M(−)

V //B

where G sends each A ∈ A to TA ∈ B with the generic morphism δA : TA→ TA being
part of the generic factorization

TA
δA // TA

TeA // TA

of the identity. We choose all morphisms of A to be tight, and the cartesian morphisms
against the projection V to be tight. A 1-cell h : A→ B in A is sent to Th with the pair(
h,∼=

)
comprising the left side

TA
δA //

Th ��
∼=

TA
TeA //

Th�� ∼=
TA

Th��
TB

δB
// TB

TeB
// TB

of the generic factorization above. A given 2-cell λ : h ⇒ k is sent to Tλ : Th ⇒ Tk,
which satisfies

TA

Tk

��

Th

��

δA // TA

Th

��

∼=

TA

Tk

��

δA //

∼=

TA

Tk

��
Th

		
Tλ
ks =

Tλ

ks

TB
δB
// TB TB

δB
// TB

for some (necessarily unique) λ : h ⇒ k. To see this, note that the left diagram has a
generic factorization

TA

Tk

��

Th

��

δA // TA

Th

��

∼=

TA

Tk

��

δA // TA

Tm

��
Th

		
Tλ
ks =

ξ
{�

Tλ

ks

TB
δB
// TB TB

δB
// TB

and thus the left diagram below has the generic factorization

TA

Tk

��

Th

��

δA //

∼=

TA
TeA //

Th

��
T∼=

TA

Th

��

TA

Tk

��

δA // TA

Tm

��
Th

		

TeA //

T∼=

TA

Th

��
Tλ
ks =

ξ
{�

Tλ

ks

TB
δB
// TB

TeB
// TB TB

δB
// TB

TeB
// TB
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But this is also the generic factorization of the diagram

TA
δA //

Tk

��

∼=

TA
TeA //

Tk

��
T∼=

TA

Tk

��
Th

��
Tλ
ks

TB
δB
// TB

TeB
// TB

which has already been factored. By uniqueness of representative generic factorizations
we have (m, ξ) =

(
k,∼=

)
as required.

Now, we have the pseudofunctor P :
� X∈B

lax M(−) → A , and will sketch why P is a left
lax F-adjoint to G. To do this, we take our universal 1-cell η(X,δ) : (X, δ)→ GF (X, δ) at
an object (X, δ : X → LA) to be the pair (uA, γ) as below.

X
δ //

δ

��

TA

T1A

!!

TuA

��
γ{�

Tν
{�

TA
δA

// TA
TeA

// TA

Moreover, for a given 1-cell (f, h, α) : (X, δ)→ GC as on the left below, we have

X

f

��

δ // TA

Th

��

α{� T(echuA)

ww

X δ //

δ
��

f

''

TA

TuA��γ{�

Tξ
ks = TA

δA
//

T (eCh)
��

TeCα
ks TA

T(eCh)��
∼=

TC
δc

// TC TC
δC

// TC

where ξ is the unique map induced from the fact that the RHS whiskered by TeC is
TeC · α. This defines the universal 2-cell

(X, δ) (f,h,α) //

η(X,δ) ##

GC

GA
Gech

<<
Tec·α
KS

where we have a bijection β 7→ β̃ as below

(X, δ) (f,h,α) //

η(X,δ) ##

GC (X, δ) (f,h,α) //

η(X,δ) ##

GC

=
TeC ·α
KS

GA
G`

<<
β
KS

GA

GeCh

<<

G`

LL

Gβ̃

[c
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or equivalently, a bijection

X
f //

δ

��

TC

T id

��

X
f //

δ

��

TC

T id

��

=
TeC ·α
KS

TA
T`

//

β
KS

TC TA
T`

//

Tech

>>

TC

T β̃
KS

as genericity of (h, α) is respected by composition with TeC . The verification that this
bijection satisfies the required axioms (with the tight maps being defined as above) is left
for the reader.

Finally, the following provides what is perhaps a more natural definition of parametric
right adjoint (local right adjoint) pseudofunctors, obtained by applying the above theorem
in the setting where A has a terminal object. In more detail, this is obtained by noting the
reduced form of the spectrum in the presence of a terminal object, namely SpecT (X) =
B (X,T1) , and applying the spectrum factorization.

7.18. Corollary. [Parametric right adjoints] Suppose A is a bicategory with a terminal
object. Then a pseudofunctor T : A → B is lax familial if and only if the canonical
projection on the oplax slice,23 where the underlying pseudo slice defines the tight maps,24

T1 : A � 1→ B � T1

has a left lax F-adjoint.

7.19. Remark. There are of course four variants of the above, concerning the case when
T/T op/T co/T coop is familial.
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