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ON BICOLIMITS OF C∗-CATEGORIES

JAMIE ANTOUN AND CHRISTIAN VOIGT

Abstract. We discuss a number of general constructions concerning additive C∗-
categories, focussing in particular on establishing the existence of bicolimits. As an
illustration of our results we show that balanced tensor products of module categories
over C∗-tensor categories exist without any finiteness assumptions.

1. Introduction

The study of C∗-tensor categories and their module categories has intimate connections
with quantum groups, subfactors, and quantum field theory, see for instance [14], [34],
[11], [31], [5]. It can be viewed as an incarnation of categorified algebra in a framework
adapted to operator algebras. In this context it is useful to be able to perform a number
of constructions with C∗-categories, possibly equipped with further structure, in analogy
to C∗-algebras and their representations.

Basic examples of such constructions arise from tensor products. In the purely alge-
braic setting, one works with the Deligne tensor product of k-linear abelian categories
[12], or more generally, the Kelly tensor product of finitely cocomplete k-linear categories
over a field k, see [24], [15]. Balanced tensor products of module categories appear for
instance in the study of categorical Morita equivalence [27], [16] and in topological field
theory [4]. While many applications are concerned with semisimple module categories
over fusion categories, it is known that balanced tensor products, and more generally bi-
colimits, exist in much greater generality. This follows from abstract results in enriched
category theory, using that the categories under consideration are categories of algebras
over a finitary 2-monad [6], and includes weighted bicolimits. It is not obvious, however,
to what extent this machinery can be adapted to the setting of C∗-categories, since some
of the ingredients used in [6] are no longer available in this case.

Strict colimits of C∗-categories were studied by Dell’Ambrogio [13], who gave a con-
struction based on generators and relations. More recently, an approach towards the
construction of bicolimits of C∗-categories has been taken by Albandik and Meyer, using
the language of C∗-correspondences. In their paper [3] they discuss several concrete exam-
ples of bicolimits in this setting, and prove an abstract existence result under additional
assumptions. Compared to the more general theory of C∗-categories, an advantage of the
bicategory of C∗-correspondences is that all ingredients are very concrete, and that corre-
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spondences are well-adapted for applications to Cuntz-Pimsner algebras and generalised
crossed products [2]. However, from the point of view of higher category theory it is more
natural to work at the level of C∗-categories, which allows one at the same time to bypass
some limitations of the techniques used in [3].

The main aim of this paper is to show that certain 2-categories of additive C∗-categories
are closed under conical bicolimits. Here the term additive means that we require our C∗-
categories to admit certain types of direct sums. For the sake of definiteness we will mainly
focus our attention on the 2-category C∗ Lin of countably additive C∗-categories, that is,
C∗-categories admitting countable direct sums. Compared to the widely used notion of a
finite direct sum, infinite direct sums are less familiar in the context of C∗-categories. In
fact, their behaviour differs significantly from the purely algebraic situation.

It should be noted that C∗-categories are not particularly well-behaved with respect to
abstract categorical concepts in general. For instance, in the absence of strong finiteness
assumptions they rarely admit kernels or cokernels. One peculiarity is that the ∗-structure
allows one to reverse the direction of arrows, so that existence of a certain type of limits is
equivalent to existence of the corresponding type of colimits. As a consequence, a number
of standard concepts need to be modified in order to remain meaningful. When it comes
to infinite direct sums this leads one naturally to work with non-unital C∗-categories, and
multiplier categories appear from the very start.

Our argument for establishing the existence of bicolimits is a variant of the adjoint
functor theorem, albeit in the setting of bicategories instead of ordinary categories. Com-
pared to the considerations in [3], this approach has the advantage of being applicable
in quite general circumstances. One could adapt it to give direct existence proofs for
bicolimits in other types of 2-categories, like the 2-category of finitely cocomplete k-linear
categories over a field k. However, the construction only gives limited information on how
bicolimits look concretely.

As an illustration we discuss the construction of balanced tensor products of module
categories over C∗-tensor categories, without having to impose semisimplicity or rigidity
assumptions, or other finiteness conditions. While not surprising, already this special case
of our general existence result seems not at all obvious from the outset, given the nuances
in the C∗-setting mentioned above.

We remark that in the recent paper [9], Bunke discusses categorical constructions
with non-unital C∗-categories, including limits and colimits. The setup in [9] is however
different from ours, in particular no multiplier categories are considered, and ∗-functors
are not required to be nondegenerate. These differences do indeed play a role, and we warn
the reader that the constructions in the present paper do not agree with the corresponding
ones in [9] in general.

Let us now explain how the paper is organised. In section 2 we have collected vari-
ous definitions and constructions related to C∗-categories. This includes in particular a
careful discussion of direct sums, and of ind-categories of C∗-categories. We also intro-
duce a notion of finitely presentable objects in a C∗-category, and of finitely accessible
C∗-categories. Hilbert modules provide a rich source of examples, and we review the link



ON BICOLIMITS OF C∗-CATEGORIES 1685

between the correspondence bicategory and singly generated C∗-categories. In section 3
we recall the construction of minimal and maximal tensor product of C∗-categories. We
discuss their functoriality and provide a new characterisation of the maximal tensor norm.
The main result of the paper is contained in section 4, where we prove the existence of
bicolimits in the 2-category C∗ Lin of countably additive C∗-categories. Finally, in section
5 we study C∗-tensor categories and their module categories in C∗ Lin. Based on our main
result we show that balanced tensor products always exist in this setting, and give some
explicit examples. For the convenience of the reader we have assembled a few definitions
and facts regarding bicategories in the appendix.

Let us conclude with some remarks on our notation and conventions. Unless explic-
itly stated otherwise we assume all categories to be small. If V is a category we write
V(V,W ) for the set of morphisms between objects V,W ∈ V. The space of adjointable
operators between Hilbert modules E ,F is denoted by L(E ,F), and we write K(E ,F) for
the subspace of compact operators. The closed linear span of a subset X of a Banach
space is denoted by [X]. Depending on the context, the symbol ⊗ denotes the algebraic
tensor product over the complex numbers or various completions thereof. We sometimes
write � for algebraic tensor products. By slight abuse of language, all our C∗-categories
are semicategories by default, that is, they do not necessarily contain identity morphisms.
We will speak of unital categories or 1-categories if we are dealing with categories in the
usual sense.

We would like to thank the anonymous referee for their careful reading of the first
version of this manuscript, which lead to a number of improvements.

2. Preliminaries

In this section we review definitions and results regarding C∗-categories and fix our nota-
tion.

2.1. C∗-categories. We begin with the definition of C∗-categories and their basic prop-
erties. For additional information see for instance [18], [26].

By a ∗-category we shall mean a semicategory V such that all morphism spaces
V(V,W ) for V,W ∈W are complex vector spaces and the composition maps V(X, Y )×
V(Y, Z)→ V(X,Z), (f, g) 7→ g◦f are bilinear, together with an antilinear involutive con-
travariant endofunctor ∗ : V→ V which is the identity on objects, mapping f ∈ V(X, Y )
to f ∗ ∈ V(Y,X).

A C∗-category is a ∗-category V such that all morphism spaces V(V,W ) are complex
Banach spaces, the composition maps V(X, Y )×V(Y, Z), (f, g) 7→ g ◦ f satisfy ‖g ◦ f‖ ≤
‖g‖‖f‖, the C∗-identity

||f ∗ ◦ f || = ||f ||2

holds and f ∗◦f ∈ V(X,X) is positive for all f ∈ V(X, Y ). One may phrase this as saying
that the category V is enriched in the category of complex Banach spaces and contractive
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linear maps with some further structure and properties. By a unital C∗-category we mean
a C∗-category which contains identity morphisms for all its objects.

A basic example of a (large) C∗-category is the category HILB = HILBC of Hilbert
spaces with morphisms all compact linear operators between them. More generally, for
any C∗-algebra A we have the large C∗-category HILBA of right Hilbert A-modules with
compact adjointable operators as morphisms.

A ∗-functor f : V→W between ∗-categories is a functor such that f(f ∗) = f(f)∗ for all
morphisms f . A linear ∗-functor is a ∗-functor such that all associated maps on morphism
spaces are linear. If f : V→W is a linear ∗-functor between C∗-categories then the maps
f : V(V,W ) →W(f(V ), f(W )) are automatically contractive. A natural transformation
τ : f ⇒ g of linear ∗-functors f ,g : V→W between C∗-categories is a uniformly bounded
family of morphisms τ(V ) : f(V ) → g(V ) such that τ(W ) ◦ f(f) = g(f) ◦ τ(V ) for all
morphisms f ∈ V(V,W ). Linear ∗-functors between C∗-categories together with their
natural transformations as morphisms form naturally C∗-categories. A ∗-linear functor
f : V→W between unital C∗-categories is called unital if f(idX) = idf(X) for all X ∈ V.
A natural transformation between unital ∗-linear functors is defined in the same way as
in the non-unital case.

Let X, Y ∈ V be objects in a C∗-category. A left multiplier morphism L : X →
Y is a collection of uniformly bounded linear maps L(Z) : V(Z,X) → V(Z, Y ) such
that L(W )(h ◦ g) = L(Z)(h) ◦ g for all h ∈ V(Z,X) and g ∈ V(W,Z). Similarly, a
right multiplier morphism R : X → Y is a collection of uniformly bounded linear maps
R(Z) : V(Y, Z) → V(X,Z) such that R(Z)(f ◦ h) = f ◦ R(W )(h) for all f ∈ V(W,Z)
and h ∈ V(Y,W ). A multiplier morphism M : X → Y is a pair (L,R) of left and
right multiplier morphisms from X to Y such that g ◦ L(W )(f) = R(Z)(g) ◦ f for all
f ∈ V(W,X) and g ∈ V(Y, Z). Clearly, every morphism f : X → Y in V defines a
multiplier morphism Mf = (Lf , Rf ) : X → Y by setting Lf (h) = f ◦ h,Rf (g) = g ◦ f for
h ∈ V(W,X) and g ∈ V(Y, Z).

If F = (LF , RF ), G = (LG, RG) are multiplier morphisms from X to Y and Y to Z,
respectively, then the composition G ◦ F = (LG ◦ LF , RF ◦ RG) is a multiplier morphism
from X to Z. If F = (LF , RF ) : X → Y is a multiplier morphism then the adjoint
F ∗ : Y → X is the multiplier morphism F ∗ = (LF ∗ , RF ∗) where LF ∗(f) = RF (f ∗)∗ and
RF ∗(f) = LF (f ∗)∗. The identity maps define naturally a multiplier morphism idX : X →
X for X ∈ V.

If we write MV(X, Y ) for the set of all multiplier morphisms from X to Y , then
we obtain a category MV, the multiplier category of V, with the same objects as V
and morphism sets MV(X, Y ). The multiplier category MV is naturally enriched over
Banach spaces such that F = (LF , RF ) ∈ MV(X, Y ) has norm ‖F‖ = sup(‖LF‖, ‖RF‖)
where

‖LF‖ = sup
Z∈V
‖LF (Z)‖, ‖RF‖ = sup

Z∈V
‖RF (Z)‖.

With this structure the category MV becomes a unital C∗-category, compare [22], [33].
Two objects X, Y in a C∗-category V are said to be isomorphic if they are isomorphic in
MV in the usual sense. Note that if V is a unital C∗-category then we have MV = V.
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The multiplier category MHILB has as objects all Hilbert spaces and morphisms the
bounded linear operators between them. Similarly, the unital C∗-category MHILBA for
a C∗-algebra A has the same objects as HILBA but all adjointable linear operators as
morphisms.

Let V be a C∗-category and X, Y ∈ V. The strict topology on MV(X, Y ) is the locally
convex topology defined by saying that gi → g strictly iff gi ◦ f → g ◦ f and h ◦ gi → h ◦ g
in norm for all f ∈ V(W,X), h ∈ V(Y, Z). The space of multiplier morphisms MV(X, Y )
can be viewed as the completion of V(X, Y ) with respect to the strict topology. A linear ∗-
functor f : V→MW is called strict if the associated maps V(X, Y )→MW(f(X), f(Y ))
are all strictly continuous on bounded subsets. This is equivalent to saying that for every
X ∈ V and approximate identity (ei)i∈I in V(X,X) the net f(ei)i∈I converges strictly
in MW(f(X), f(X)). Every strict linear ∗-functor f : V → MW extends uniquely to a
strict linear ∗-functor MV→MW, which we will again denote by f . If V is unital then
every linear ∗-functor f : V→MW is strict.

If V is a ∗-category and W a C∗-category then a linear ∗-functor f : V → MW is
called nondegenerate if

[f(V(Y, Y )) ◦W(f(X), f(Y ))] = W(f(X), f(Y )) = [W(f(X), f(Y )) ◦ f(V(X,X))]

for all X, Y ∈ V. If V is a C∗-category then a nondegenerate linear ∗-functor f : V →
MW is strict and extends uniquely to a unital linear ∗-functor MV → MW. The
composition of nondegenerate linear ∗-functors between C∗-categories is again nondegen-
erate. For later reference let us also note that a linear ∗-functor f : V → W between
C∗-categories is called nondegenerate iff its composition with the canonical embedding
W→MW is.

Given nondegenerate linear ∗-functors f ,g : V → MW, a natural transformation
τ : f ⇒ g is a family of uniformly bounded multiplier morphisms τ(V ) ∈MW(f(V ),g(V ))
satisfying the usual commutativity with respect to morphisms f ∈ V(V,W ). If V is a
C∗-category then we automatically get τ(W ) ◦ f(f) = g(f) ◦ τ(V ) for all f ∈MV(V,W ),
using the unique unital extensions f ,g : MV → MW. A (unitary) natural isomorphism
τ : f ⇒ g between nondegenerate linear ∗-functors is a natural transformation such that
τ(V ) is a (unitary) isomorphism for all V ∈ V. We write f ∼= g if there exists a natural
isomorphism from f to g. In this case there exists also a unitary natural isomorphism
f ⇒ g, see Proposition 2.6 in [13].

Two C∗-categories V,W are called equivalent if there exist nondegenerate linear ∗-
functors f : V → MW and g : W → MV such that their mutual compositions on the
level of multiplier categories are naturally isomorphic to the identities. In this case we
actually have f : V →W,g : W → V. Indeed, note that if f ∈W(f(X), f(Y )) then we
can write f = f(g) ◦ f(h) for g ∈ V, h ∈MV using nondegeneracy, and so f = f(g ◦ h) is
contained in the image of the restriction of f to V. It follows that g maps f into V. We
will write V 'W if V and W are equivalent.

A linear ∗-functor f : V→MW is called faithful if the associated maps f : V(X, Y )→
MW(f(X), f(Y )) are injective for all X, Y ∈ V. By a realisation of a C∗-category V we
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shall mean a nondegenerate faithful linear ∗-functor π : V → MHILB which is injective
on objects. Every C∗-category admits a realisation, compare Proposition 1.14 in [18] and
Theorem 6.12 in [26].

2.2. Direct sums and subobjects. Let us discuss the notion of a direct sum in a
C∗-category.

2.3. Definition. Let V be a C∗-category and let I be a set. If (Vi)i∈I is a family of
objects in V, then a direct sum of (Vi)i∈I is an object

⊕
i∈I Vi ∈ V together with multiplier

morphisms ιj : Vj →
⊕

i∈I Vi for j ∈ I such that

ι∗k ◦ ιl = δkl idVl ,
∑
j∈I

ιj ◦ ι∗j = id,

where the sum in the second expression is required to converge in the strict topology.

We may also express the conditions in Definition 2.3 in terms of ι∗j = πj :
⊕

i∈I Vi → Vj
in MV. If the index set I = {1, . . . , n} is finite we also write

n⊕
i=1

Vi = V1 ⊕ · · · ⊕ Vn

for a direct sum. Note that the multiplier morphisms ιj : Vj →
⊕n

i=1 Vi satisfy ι1 ◦ ι∗1 +
· · ·+ ιn ◦ ι∗n = id in this case, and that we have a canonical identification

MV(
n⊕
i=1

Vi,
n⊕
i=1

Vi) =
n⊕

i,j=1

MV(Vi, Vj).

In particular, if V is a unital C∗-category then finite direct sums are automatically both
products and coproducts in the sense of category theory. By definition, a direct sum
indexed by the empty set is a zero object, that is an object 0 ∈ V such that V(0, V ) =
0 = V(V, 0) for all V ∈ V.

Let I be again arbitrary. If fi : Vi → W is a uniformly bounded family of morphisms
such that

∑
i∈I fi ◦ πi converges strictly then there exists a unique multiplier morphism

f :
⊕

i∈I Vi → W such that f ◦ιi = fi for all i ∈ I. Using this mapping property one checks
that a direct sum of (Vi)i∈I is unique up to isomorphism. Note that a nondegenerate linear
∗-functor f : V→MW preserves all direct sums which exist in V.

The C∗-category HILBA of Hilbert modules over a C∗-algebra A admits arbitrary direct
sums, given by direct sums of Hilbert A-modules in the usual sense. That is, we have⊕

i∈I

Vi = {(vi)i∈I ∈
∏
i∈I

Vi |
∑
i∈I

〈vi, vi〉 converges in A}

for a family (Vi)i∈I of Hilbert A-modules.
If V is a C∗-category one can form a C∗-category V⊕, the finite additive completion

of V, by formally adjoining to V all finite direct sums of objects in V. More explicitly,
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the objects in V⊕ are families (Vi)i∈I of objects Vi ∈ V indexed by some finite set I.
To construct the morphism spaces in V⊕ we use a realisation ι : V → MHILB, and let
V⊕((Vi)i∈I , (Wj)j∈J) be the closed subspace⊕

i∈I,j∈J

ι(V(Vi,Wj)) ⊂ L(
⊕
i∈I

ι(Vi),
⊕
j∈J

ι(Wj))

with the induced algebraic operations. There is an obvious nondegenerate linear ∗-functor
V → V⊕ obtained by viewing objects of V as indexed by a one-element index set. The
finite additive completion is closed under taking finite direct sums. In a similar way one
can define additive completions with respect to arbitrary regular cardinals.

Let V be a C∗-category and V ∈ V. A subobject of V is an object U ∈ V together with
a multiplier morphism ι : U → V such that ι∗◦ι = idU . In this case p = ι◦ι∗ ∈MV(V, V )
is a projection. Conversely, we say that a projection p ∈MV(V, V ) is split if there exists
a subobject U of V with ι : U → V such that p = ι∗ ◦ ι. The C∗-category category V is
called subobject complete if every projection in V is split.

The subobject completion S(V) of a C∗-category V is the category whose objects are
pairs (X, p) where X ∈ V and p ∈MV(X,X) is a projection. Morphisms from (X, p) to
(Y, q) in S(V) are all morphisms h ∈ V(X, Y ) satisfying h ◦ p = h = q ◦ h. Composition
of morphisms and the ∗-structure are inherited from V. It is straightforward to check
that S(V) is a C∗-category in a natural way, and that S(V) is subobject complete. If V
is closed under taking direct sums of some cardinality, then the same is true for S(V).

2.4. Additive C∗-categories. We will be interested in C∗-categories which admit
at least finite direct sums, and mainly focus on C∗-categories which are closed under
countable direct sums and subobject complete. For convenience we shall introduce the
following terminology.

2.5. Definition. A countably additive C∗-category is a subobject complete small C∗-
category which admits all countable direct sums. By a finitely additive C∗-category we
mean a subobject complete unital small C∗-category which admits all finite direct sums.

We write C∗ Lin for the 2-category which has countably additive C∗-categories as
objects, all nondegenerate linear ∗-functors f : V → MW as 1-morphisms from V to
W, together with their natural transformations as 2-morphisms. Similarly, we let C∗ lin
be the 2-category which has finitely additive C∗-categories as objects, unital linear ∗-
functors f : V →W as 1-morphisms, and their natural transformations as 2-morphisms.
In either case, all categories of 1-morphisms are naturally C∗-categories, by considering
the supremum norm on natural transformations and the obvious algebraic operations.

Note that every object V in either of these 2-categories has a zero object 0, and that
V(V,W ) contains at least the zero morphism for any V,W ∈ V. Let us also point out
that there are no nontrivial unital categories in C∗ Lin since the existence of a nonzero
object and infinite direct sums always gives rise to objects with nonunital endomorphism
algebras. By the same token, categories in C∗ lin are not closed under taking infinite direct



1690 JAMIE ANTOUN AND CHRISTIAN VOIGT

sums, with the trivial exception up to equivalence being the zero category, consisting of
a zero object.

A standard example of a category in C∗ lin is the category HilbfA of finitely generated
projective Hilbert A-modules over a unital C∗-algebra A. The objects of HilbfA are Hilbert
modules isomorphic to direct summands in A⊕n for some n ∈ N, and the morphisms
are all adjointable operators between them. Note that adjointable operators between
finitely generated projective Hilbert A-modules are automatically compact. Similarly, a
prototypical example of a category in C∗ Lin is the category HilbA of Hilbert modules
over an arbitrary C∗-algebra A which are isomorphic to direct summands of the standard
Hilbert module HA =

⊕∞
n=1A, with all compact linear operators as morphisms. In

either case we tacitly need to make arrangements to ensure that the categories under
considerations are small by choosing a set of such Hilbert modules which is large enough
to accommodate the constructions we want to consider.

By construction both HilbA and HilbfA are full subcategories of HILBA. If A is σ-unital,
then HilbA consists precisely of all countably generated Hilbert A-modules by Kasparov’s
stabilisation theorem. We note that Kasparov’s stabilisation theorem may fail for Hilbert
modules which are not countably generated. This is related to the (non-) existence of
frames, see [23].

A generator for V ∈ C∗ Lin is an object G ∈ V such that any object V ∈ V is
isomorphic to a direct summand of

⊕∞
n=1 G. We say that V is singly generated if it

admits a generator. Clearly the C∗-category HilbA is singly generated by A, viewed as
Hilbert module over itself.

2.6. Proposition. Let V ∈ C∗ Lin be singly generated. Then V ' HilbA for some
C∗-algebra A.

Proof. Let G be a generator for V and write A = V(G,G). We construct a linear
∗-functor F : V → MHilbA by setting F (V ) = V(G, V ), viewed as Hilbert A-module
with inner product 〈f, g〉 = f ∗ ◦ g and the module structure given by right multiplication.
The functor F is easily seen to be nondegenerate, so that F commutes with direct sums.
Restricted to the full subcategory of V formed by at most countable direct sums of
copies of G, the functor F factorises through HilbA and is fully faithful by construction.
Every object of V is isomorphic to a direct summand of

⊕
n∈NG, which implies that

F : V → HilbA is fully faithful. Since V is closed under subobjects the functor F is
essentially surjective.

Recall that an A-B-correspondence for C∗-algebras A,B is a Hilbert B-module E
together with a nondegenerate ∗-homomorphism φ : A → L(E), compare [10]. As in [3]
we shall say that E is proper if the image of φ : A → L(E) is contained in K(E). By
definition, an A-B-correspondence in HilbB is an A-B-correspondence whose underlying
Hilbert B-module is contained in HilbB.

Every A-B-correspondence E in HilbB defines a nondegenerate linear ∗-functor −⊗AE :
HilbA → MHilbB, sending V ∈ HilbA to the interior tensor product V ⊗A E . If E is a
proper A-B-correspondence in HilbB then −⊗AE defines a nondegenerate linear ∗-functor
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HilbA → HilbB. In particular, every ∗-homomorphism f : A → B between separable C∗-
algebras A and B induces a nondegenerate linear ∗-functor HilbA → HilbB by considering
the Hilbert B-module E = [f(A)B] with the left action of A induced by f . Note that f
is not required to be nondegenerate.

Conversely, we have the following result.

2.7. Proposition. Let A,B be C∗-algebras. Then every nondegenerate linear ∗-functor
f : HilbA → MHilbB is of the form f ∼= −⊗A E for some A-B-correspondence E ∈ HilbB.
Similarly, every nondegenerate linear ∗-functor f : HilbA → HilbB is of the form f ∼= −⊗AE
for a proper A-B-correspondence E ∈ HilbB.

Proof. Let f : HilbA → MHilbB be a nondegenerate linear ∗-functor. The Hilbert B-
module E = f(A) ∈ HilbB is equipped with a nondegenerate left action of A via A ∼=
K(A)→ L(f(A)) = L(E). Let g : HilbA →MHilbB be the nondegenerate linear ∗-functor
given by g(V ) = V ⊗A E . We have a canonical unitary isomorphism σ(A) : g(A) =
A⊗A E → E = f(A). Both f and g are nondegenerate and hence compatible with direct
sums, so that we obtain a canonical unitary isomorphism σ(V ) : g(V )→ f(V ) for V = HA

as well. Since every object of HilbA is isomorphic to a subobject of HA, it follows that σ
extends uniquely to a unitary natural isomorphism f ⇒ g.

If f is a nondegenerate linear ∗-functor from HilbA into HilbB, then the A-B correspon-
dence E = f(A) ∈ HilbB is clearly proper.

Proposition 2.7 shows in particular that the bicategory of C∗-algebras and C∗-corres-
pondences [10] fits naturally into the framework of countably additive C∗-categories.
Apart from the fact that we allow more 2-morphisms, a technical difference is that we ob-
tain size restrictions on the correspondences appearing in our setup. This point is however
of little practical relevance.

Note that HilbA determines A only up to Morita equivalence, so that working at the
level of C∗-categories provides a “coordinate free” description of the Morita class of the
C∗-algebra A in the correspondence bicategory. Using Proposition 2.6 and Proposition 2.7
one can of course translate between the correspondence bicategory and singly generated
countably additive C∗-categories.

2.8. Ind-categories of C∗-categories. We discuss how the definition of ind-categories
can be adapted from the purely algebraic setting in order to be compatible with ∗-
structures. This extends the considerations for semisimple unital C∗-categories in [29].

Recall that a partially ordered set I is called κ-directed for some regular cardinal κ if
all subsets of I of cardinality less than κ admit an upper bound. Our constructions below
could be done at this level of generality, but we shall restrict ourselves to directed sets in
the usual sense, which are precisely the κ-directed sets for κ = ℵ0.

Let V be a C∗-category and let I be a directed set. By an inductive system over I in
V, or ind-object, we mean an inductive system X = ((Xi)i∈I , (ιij)i≤j∈I) in the multiplier
category MV such that all connecting morphisms ιij : Xi → Xj are isometries. That is,
the morphisms ιij ∈MV are required to satisfy ιii = id and ιjk ◦ ιij = ιik for all i ≤ j ≤ k.
We will often abbreviate this as X = (Xi)i∈I with the connecting morphisms suppressed.
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Let X = ((Xi)i∈I , (ιik)i≤k∈I) and Y = ((Yj)j∈J , (ηjl)j≤l∈J) be ind-objects in V. We
define

IndV(X, Y ) = lim−→
i

lim−→
j

V(Xi, Yj)

to be the Banach space inductive limit of the inductive system V(Xi, Yj) with respect
to the isometric connecting maps V(Xi, Yj) → V(Xk, Yl) for i ≤ k, j ≤ l given by f 7→
ηjl ◦ f ◦ ι∗ik. This differs from the definition of ind-morphisms in [29], and the appearance
of inductive limits in both variables may appear strange at first sight. We will explain
further below how this relates to the approach in [29].

If Z = ((Zk)k∈K , (κkm)k≤m∈K) is another ind-object then the composition maps

V(Xi, Yj)×V(Yj, Zk)→ V(Xi, Zk)

in V induce a well-defined composition

IndV(X, Y )× IndV(Y, Z)→ IndV(X,Z).

To this end it suffices to observe that elements f ∈ IndV(X, Y ), g ∈ IndV(Y, Z) in
the algebraic inductive limits may be represented by morphisms fij ∈ V(Xi, Yj), gjk ∈
V(Yj, Zk) by choosing i, j, k large enough, and that the class of the composition gjk ◦ fij
does not depend on the choice of j. There is also a canonical ∗-operation on morphism
spaces sending f ∈ V(Xi, Yj) ⊂ IndV(X, Y ) to f ∗ ∈ V(Yj, Xi) ⊂ IndV(Y,X).

2.9. Definition. Let V be a C∗-category. The ind-category IndV of V is the subobject
completion of the C∗-category with objects all ind-objects over V and morphism spaces
IndV(X, Y ) as defined above. We write indV for the full subcategory of IndV consisting
of all subobjects of countable inductive systems in V.

The C∗-category V embeds into IndV by considering objects of V as constant ind-
objects indexed by a one-element set, and the embedding functor V → IndV is fully
faithful on morphisms.

Let us discuss the structure of morphism spaces in the multiplier category of IndV.
Consider objects X = ((Xi)i∈I , (ιik)i≤k∈I) and Y = ((Yj)j∈J , (ηjl)j≤l∈J) in IndV, and let
us define the space of formal multiplier morphisms from X to Y by

lim
�
MV(X, Y ) = {(fij) | sup

i,j
‖fij‖ <∞, η∗jk ◦ fik = fij∀j ≤ k, flj ◦ ιil = fij∀i ≤ l}

⊂
∏

(i,j)∈I×J

MV(Xi, Yj).

We say that f = (fij) ∈ lim�MV(X, Y ) is right strict iff for all i ∈ I, g ∈ V(Xi, Xi) and
ε > 0 there exists j0 ∈ J such that

‖ηjl ◦ fij ◦ g − fil ◦ g‖ < ε
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for all l ≥ j ≥ j0. Note that this is automatically satisfied if Y is a constant inductive
system. Similarly, let us say that f = (fij) ∈ lim�MV(X, Y ) is left strict iff for all
j ∈ J, h ∈ V(Yj, Yj) and ε > 0 there exists i0 ∈ I such that

‖h ◦ fij ◦ ι∗ik − h ◦ fkj‖ < ε

for all k ≥ i ≥ i0. This is automatic if X is constant.
We define

M - lim←−
i

lim−→
j

MV(Xi, Yj) = {(fij)i∈I,j∈j | f left strict and right strict}

as a subspace of lim�MV(X, Y ). If X ∈ V is viewed as a constant ind-object we will
also use the notation

M - lim−→
j

MV(X, Yj) = {(fj)j∈j | f right strict}

for this space and call it the multiplier inductive limit. In a dual fashion, we write
M - lim←−jMV(Yj, X) for the multiplier projective limit, which is obtained by taking point-

wise adjoints in M - lim−→j
MV(X, Yj). Equivalently,

M - lim←−
j

MV(Yj, X) = {(fj)j∈j | f left strict}

as a subspace of the Banach space projective limit lim←−jMV(Yj, X).

2.10. Proposition. Let V be a C∗-category. Then there exists a canonical isometric
linear isomorphism

M IndV(X, Y )→M- lim←−
i

lim−→
j

MV(Xi, Yj)

for all X = (Xi)i∈I , Y = (Yj)j∈J ∈ IndV.

Proof. Note first that if Z = (Zk)k∈K is an ind-object and l ∈ K then the identity in
MV(Zl, Zl) induces a canonical multiplier morphism ιl : Zl → Z in M IndV(Zl, Z). Here
we consider Zl as a constant ind-object.

In order to prove the assertion let us start with the case that X is a constant in-
ductive system and Y = (Yj)j∈J arbitrary. For f ∈ M IndV(X, Y ) we get multiplier
morphisms fj = ι∗j ◦ f ∈ MV(X, Yj) for all j ∈ J . The family (fj)j∈J is contained
in M - lim−→j

MV(X, Yj), and we obtain a contractive linear map φ : M IndV(X, Y ) →
M - lim−→j

MV(X, Yj) in this way. Assume that φ(f) = 0 and let h ∈ V(X,X). Then

ι∗j ◦ f ◦ h = 0, and so ιj ◦ ι∗j ◦ f ◦ h = 0 for all j ∈ J . On the other hand we have
ιj ◦ ι∗j ◦ f ◦ h → f ◦ h since f ◦ h ∈ IndV(X, Y ). Hence f ◦ h = 0, and it follows that
f = 0. This shows that φ is injective. Next assume (fj) ∈ M - lim−→j

MV(X, Yj) and let
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h ∈ V(W,X). Factorising h = g ◦ k with g ∈ V(X,X) we see that for any ε > 0 there
exists j0 ∈ J such that ‖ηjl ◦ fj ◦ h − fl ◦ h‖ < ε for l ≥ j ≥ j0. Hence we obtain a
uniquely determined element f ◦ h ∈ IndV(W,Y ) with limj ιj ◦ fj ◦ h = f ◦ h. If Z ∈ V
we also define k ◦ f for k ∈ lim−→j

V(Yj, Z) = IndV(Y, Z) by k ◦ f = limj k ◦ ιj ◦ fj. This

is well-defined since

‖k ◦ ιj ◦ fj − k ◦ ιl ◦ fl‖ = ‖k ◦ ιj ◦ η∗jl ◦ fl − k ◦ ιl ◦ fl‖
≤ ‖k ◦ ιj ◦ η∗jl − k ◦ ιl‖‖f‖ < ε

for all l ≥ j sufficiently large. Both these constructions extend to morphisms in IndV, and
one checks that f defines a multiplier morphism in M IndV(X, Y ) such that φ(f) = (fj).
Hence im(φ) = M - lim−→j

MV(X, Yj), and the map φ : M IndV(X, Y )→M - lim−→j
MV(X, Yj)

is in fact an isometric isomorphism.
Now consider f ∈ M IndV(X, Y ) for arbitrary X, Y ∈ IndV. We get morphisms

fij = ι∗j ◦ f ◦ ιi ∈ MV(Xi, Yj) for all i ∈ I, j ∈ J , and by our above considera-
tions the family (ι∗j ◦ f ◦ ιi)j∈J defines an element f ◦ ιi in M - lim−→MV(Xi, Y ) for each
i ∈ I. Since (Xi)i∈I is an inductive system these morphisms assemble to an element of
the Banach space projective limit lim←−iM - lim−→j

MV(Xi, Yj), and the resulting linear map

φ : M IndV(X, Y ) → lim←−iM - lim−→j
MV(Xi, Yj) is injective. Moreover the image of φ is

contained in M - lim←−i lim−→j
MV(Xi, Yj), since for f ∈M IndV(X, Y ) and h ∈ V(Yj, Yj) we

have ‖h ◦ ι∗j ◦ f ◦ ιi ◦ η∗ik − h ◦ ι∗j ◦ f ◦ ιk‖ < ε for all k ≥ i ≥ i0 with sufficiently large i0,
using that h ◦ ι∗j ◦ f ∈ IndV(X, Yj).

Assume (fij) ∈ M - lim←−i lim−→j
MV(Xi, Yj). Due to our previous considerations, the i-

th component of this family gives a multiplier morphism fi ∈ M IndV(Xi, Y ) for every
i ∈ I. Moreover, if W ∈ V and g ∈ IndV(W,X) then there exists a unique morphism
f ◦ g ∈ IndV(W,Y ) such that limi fi ◦ ι∗i ◦ g = f ◦ g. This assignment extends to define
a multiplier morphism f ∈ M IndV(X, Y ). We obtain φ(f) = (fij), and the map φ is
surjective and isometric.

Assume that V ∈ C∗ lin is a C∗-category such that all morphism spaces in V are
finite dimensional. Then MV(Xi, Yj) = V(Xi, Yj) for all i, j, and the multiplier category
M IndV agrees with the ind-category defined in this setting in [29]. More precisely,
Lemma 2.1 in [29] shows that in this case multiplier projective and inductive limits reduce
to ordinary Banach space projective and inductive limits, respectively.

2.11. Definition. Let V be a C∗-category. The direct limit of an inductive system
(Xi)i∈I in V is an object lim−→i

Xi in V together with a family of isometries

ιj ∈MV(Xj, lim−→
i

Xi) for j ∈ I

such that ιj ◦ ιij = ιi for all i ≤ j and ιj ◦ ι∗j → id in the strict topology.

Let us emphasize that a direct limit in the sense of Definition 2.11 is typically not a
direct limit in the categorical sense. Since we will not deal with categorical direct limits
this should not lead to confusion.
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If X = lim−→i∈I Xi is a direct limit then V(X,X) is the closed linear span of all mor-

phisms of the form ιj ◦ f ◦ ι∗i for f ∈ V(Xi, Xj) and i, j ∈ I. In general, if (fi) is a family
of multiplier morphisms in MV(Xi, Y ) satisfying fj ◦ ιij = fi for i ≤ j such that (fi ◦ ι∗i )
converges strictly, then there exists a unique multiplier morphism f : lim−→i∈I Xi → Y such
that f ◦ ιi = fi for all i ∈ I. Using this mapping property one checks that a direct limit
lim−→i∈I Xi is unique up to isomorphism. However, not every inductive system in V need
to admit a direct limit in V.

If V is a C∗-category with finite direct sums and (Xi)i∈I a family of objects in V
then we obtain an inductive system (YF )F∈F over the directed set F of finite subsets of I
by considering YF =

⊕
i∈F Xi ∈ V with the canonical inclusions as connecting maps. A

direct limit of the system (YF )F∈F is nothing but a direct sum of the family (Xi)i∈I .
The ind-category IndV of a C∗-category V has the following closure property under

direct limits in the sense of Definition 2.11.

2.12. Proposition. Let V be a C∗-category. Then every inductive system (Xi)i∈I of
objects in V admits a direct limit in IndV. Every countable inductive system of objects
in V admits a direct limit in indV.

Proof. An inductive system (Xi)i∈I in V can be viewed as an object X = (Xi)i∈I ∈
IndV, and we claim that X together with the canonical multiplier morphisms ιj : Xj → X
is a direct limit of the inductive system (Xi)i∈I of constant ind-objects in IndV. In fact,
we have ιj ◦ ιij = ιi for i ≤ j and ιj ◦ ι∗j → id in the strict topology by the definition
of the morphism spaces in IndV. The assertion for the countable ind-category indV is
obtained in the same way.

We will be mainly interested in countably additive C∗-categories. If V ∈ C∗ Lin then
every countable inductive system in V, viewed as an object of IndV, is isomorphic to
an inductive system of the form (Vn)n∈N with Vn =

⊕n
j=1Xj for some family (Xj)j∈N of

objects of V, with the obvious inclusion and projection morphisms as connecting maps. It
follows that every category V ∈ C∗ Lin is automatically closed under countable direct lim-
its, and every countable direct limit in V is isomorphic to some direct sum. In particular,
the canonical nondegenerate linear ∗-functor V→ indV into the countable ind-category
is an equivalence for V ∈ C∗ Lin. The main advantage of considering countable direct
limits instead of countable direct sums in this context is that certain constructions can
be described in a more invariant fashion this way, compare [29].

2.13. Finitely accessible C∗-categories. The theory of accessible and locally pre-
sentable categories is concerned with categories built using inductive limits from a set of
presentable objects [1]. This does not apply directly to C∗-categories, but an analogous
setup can be devised as follows.

Let V ∈ C∗ Lin be a countably additive C∗-category. We shall say that an object
P ∈ V is finitely presentable if V(P, P ) is unital. In this case we have

lim−→
i

V(P, Vi) ∼= V(P, lim−→
i

Vi)
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for all countable inductive systems (Vi)i∈I , where the inductive limit on the left hand side
is taken in the Banach space sense. In fact, from the proof of Proposition 2.12 we obtain

V(P, lim−→
i

Vi) ∼= MV(P, lim−→
i

Vi) = M IndV(P, (Vi)i∈I) = IndV(P, (Vi)i∈I),

using that V(P, P ) = IndV(P, P ) is unital.
We let P (V) be the full subcategory of V consisting of all finitely presentable objects.

The C∗-category P (V) is closed under finite direct sums and subobjects. Note that
any nondegenerate linear ∗-functor f : V → W restricts to a unital linear ∗-functor
P (V)→ P (W).

2.14. Definition. We say that a countably additive C∗-category V is finitely accessible
if there exists a set P ⊂ V of finitely presentable objects such that every object in V is
isomorphic to a subobject of a direct limit of some countable inductive system with objects
from P.

Finitely accessible C∗-categories can equivalently be described as ind-categories of
finitely additive C∗-categories as follows.

2.15. Proposition. Let V ∈ C∗ Lin be a finitely accessible C∗-category and let P (V) be
the full subcategory of all finitely presentable objects in V. Then V ' indP (V).

Proof. The canonical inclusion functor P (V) → V induces a nondegenerate linear ∗-
functor i : indP (V) → V since V is closed under countable direct sums. From the
definition of finite accessibility if follows that i is essentially surjective. Moreover, i is
fully faithful on P (V) by construction, and it is also fully faithful on all countable direct
sums of objects from P (V) in indP (V). According to the remarks after Proposition 2.12,
every object of indP (V) is isomorphic to a subobject of such a direct sum. Hence the
claim follows.

Note in particular that the category HilbA of countably generated Hilbert modules over
a unital C∗-algebra A is finitely accessible, and that P (HilbA) identifies with the category
HilbfA of finitely generated projective Hilbert A-modules.

In general, finitely presentable objects in countably additive C∗-categories may be
scarce. Even a basic example like the category HilbA for A = C0(R) contains no nonzero
finitely presentable objects. For such categories it is not obvious how to give intrinsic
meaning to accessibility, and it seems best not to try to approximate them from smaller
subcategories.

Note also that while every object in the multiplier category MV of a C∗-category
V ∈ C∗ Lin is finitely presentable with respect to MV, multiplier categories of nonzero
C∗-categories are not closed under countable direct sums, so that such categories are not
finitely accessible in the sense of Definition 2.14.
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2.16. Direct products of C∗-categories. Let I be an index set and let (Vi)i∈I be
a family of C∗-categories. The direct product

∏
i∈I Vi is the category whose objects are

families (Xi)i∈I of objects Xi ∈ Vi, with morphisms(∏
i∈I

Vi

)
((Xi), (Yi)) =

⊕
i∈I

Vi(Xi, Yi).

Here the direct sum on the right hand side is taken in the c0-sense, that is, it is the
completion of the purely algebraic direct sum of the spaces Vi(Xi, Yi) with respect to the
supremum norm ‖(fi)‖ = supi∈I ‖fi‖. Equipped with the supremum norm and entrywise
operations on morphisms this becomes a C∗-category. The appearance of a direct sum
instead of a direct product in the above formula may be surprising at first sight, but this
choice is crucial for the validity of some of the arguments below. For instance, it ensures
that the linear ∗-functors ti : Vi →MV appearing in the proof of Theorem 4.3 in section
4 are nondegenerate.

We obtain canonical full and essentially surjective nondegenerate linear ∗-functors
πj :

∏
i∈I Vi → Vj for all j ∈ I. On the level of multipliers these functors induce

canonical isomorphisms

M

(∏
i∈I

Vi

)
((Xi), (Yi)) ∼=

∏
i∈I

MVi(Xi, Yi)

for all objects (Xi), (Yi) ∈
∏

i∈I Vi, with the product on the right hand side taken in the
l∞-sense. That is, the right hand side consists of all uniformly bounded families (fi)i∈I of
multiplier morphisms fi ∈MVi(Xi, Yi).

It follows in particular that
∏

i∈I Vi is subobject complete iff all Vi are subobject
complete. If all categories Vi are contained in C∗ Lin then

∏
i∈I Vi is again contained in

C∗ Lin, with direct sums formed entrywise.
Note that even if all Vi are unital C∗-categories then

∏
i∈I Vi is not unital unless I

is finite. According to the above discussion, the multiplier category of
∏

i∈I Vi coincides
with the direct product as defined in [13].

The following result can be interpreted as saying that direct products are biproducts
in the 2-category C∗ Lin.

2.17. Proposition. Let I be an index set and let (Vi)i∈I be a family of C∗-categories in
C∗ Lin. For every U ∈ C∗ Lin, postcomposition with the linear ∗-functors πj induces an
equivalence of C∗-categories

C∗ Lin(U,
∏
i∈I

Vi) 'M

(∏
i∈I

C∗ Lin(U,Vi)

)
,

pseudonatural in U.
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Proof. We point out that both products appearing in this assertion are to be understood
in the sense of C∗-categories as defined above.

Let us write F : C∗ Lin(U,
∏

i∈I Vi)→ M
∏

i∈I C
∗ Lin(U,Vi) for the linear ∗-functor

given by F (f) = (πi ◦ f)i∈I on objects and F (σ) = (πi ∗ σ)i∈I on morphisms. If hi : U→
MVi are nondegenerate linear ∗-functors for i ∈ I then h : U → M

∏
i∈I Vi defined by

h(U) = (hi(U))i∈I on objects and h(f) = (hi(f))i∈I on morphisms is a nondegenerate
linear ∗-functor with F (h) = (hi)i∈I . Hence F is essentially surjective. If (σi)i∈I is
a bounded family of natural transformations σi : πi ◦ h ⇒ πi ◦ k for nondegenerate
linear ∗-functors h,k : U→M

∏
i∈I Vi, then assembling them pointwise yields a natural

transformation σ : h ⇒ k such that F (σ) = (σi)i∈I . This means that F is full. Finally,
note that F (σ) = 0 for σ : h⇒ k implies (πi ∗ σ)(U) = 0 for U ∈ U and all i ∈ I, which
means that σ is zero. Hence F is faithful.

We note that the assertion of Proposition 2.17 fails if one does not allow multipliers
in the definition of 1-morphisms in C∗ Lin.

3. Tensor products

In this section we review the construction of minimal and maximal tensor products of C∗-
categories, compare [26], [13], and explain how to extend this to additive C∗-categories.

3.1. Tensor products of C∗-categories. If V1,V2 are C∗-categories then their
algebraic tensor product V1 � V2 is the ∗-category with objects all pairs (V1, V2) for
V1 ∈ V1, V2 ∈ V2 and morphism spaces

(V1 � V2)((V1, V2), (W1,W2)) = V1(V1,W1)�V2(V2,W2),

where � denotes the algebraic tensor product. We will also write V1 � V2 = (V1, V2) to
denote the objects in V1 � V2.

The minimal tensor product V1 �min V2 of V1,V2 has the same objects as V1 � V2,
and the morphism spaces obtained by considering realisations ι1 : V1 → MHILB, ι2 :
V2 →MHILB, and the associated embeddings

(V1 � V2)((V1, V2), (W1,W2)) = V1(V1,W1)�V2(V2,W2)

⊂ L(ι1(V1), ι1(W1))⊗min L(ι1(V2), ι2(W2))

⊂ L(ι1(V1)⊗ ι2(V2), ι1(W1)⊗ ι2(W2))

for (V1, V2), (W1,W2) ∈ V1 � V2. More precisely, the morphism space in the minimal
tensor product is

(V1 �min V2)((V1, V2), (W1,W2)) = [(V1 � V2)((V1, V2), (W1,W2))]

⊂ L(ι1(V1)⊗ ι2(V2), ι1(W1)⊗ ι2(W2)),

that is, the closure of the morphism space in the algebraic tensor product via this embed-
ding. This is independent of the choice of ι1 and ι2. Using associativity of the minimal
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tensor product of C∗-algebras one checks that the minimal tensor product �min is associa-
tive in a natural way. We will also write V1 �min V2 = (V1, V2) for objects in V1 �min V2.

The maximal tensor product V1 �maxV2 of V1,V2 has again the same objects as V1 �
V2, and morphism spaces obtained by taking the maximal completion of the morphism
spaces in V1 �V2 as follows. Firstly, note that for any finite family of objects X1, . . . , Xn

in a C∗-category X we obtain a canonical C∗-algebra structure on

n⊕
i,j=1

X(Xi, Xj) = X⊕
( n⊕

i=1

Xi,

n⊕
i=1

Xi

)
,

by considering the finite direct sum X1⊕· · ·⊕Xn in the finite additive completion X⊕ of X.
Moreover, for m ≤ n the obvious inclusion

⊕m
i,j=1 W(Xi, Xj)→

⊕n
i,j=1 W(Xi, Xj) yields

a hereditary subalgebra. Now given a pair of objects (V1, V2), (W1,W2) ∈ V1 � V2 let us
choose finite families of objects (Vi)i∈I ∈ V⊕1 , (Wj)j∈J ∈ V⊕2 containing V1, V2 and W1,W2,
respectively. We may then define the morphism space (V1 �max V2)((V1, V2), (W1,W2))
as the direct summand corresponding to (V1, V2), (W1,W2) in

V⊕1

(⊕
i∈I

Vi,
⊕
i∈I

Vi

)
⊗max V

⊕
2

(⊕
j∈J

Wj,
⊕
j∈J

Wj

)
.

Since the maximal tensor product of C∗-algebras is compatible with inclusions of hered-
itary subalgebras, compare chapter 3 in [8], this does not depend on the choice of the
finite families (Vi)i∈I , (Wj)j∈J , and yields a unique C∗-category structure. In particular,
for V1 = W1, V2 = W2 we obtain

(V1 �max V2)((V1, V2), (V1, V2)) = V1(V1, V1)⊗max V2(V2, V2),

and we have a canonical inclusion

(V1 �max V2)((V1, V2), (W1,W2)) ⊂ V1(V1 ⊕W1, V1 ⊕W1)⊗max V2(V2 ⊕W2, V2 ⊕W2)

for all objects (V1, V2), (W1,W2).
The morphism space (V1 �max V2)((V1, V2), (W1,W2)) can be equivalently described

as the completion of (V1 � V2)((V1, V2), (W1,W2)) with respect to

‖f‖max = sup
π:V1�V2→MHILB

‖π(f)‖,

where π runs over all nondegenerate linear ∗-functors from V1 � V2 into MHILB. For
unital C∗-categories this is precisely the definition given in [13]. In the same way as before
we will also write V1 �max V2 = (V1, V2) for objects in V1 �max V2. Using associativity of
the maximal tensor product of C∗-algebras one checks that the maximal tensor product
�max is associative in a natural way.

Let V1,V2,W be C∗-categories. By a bilinear ∗-functor from V1 ×V2 to MW we
mean a ∗-functor b : V1 ×V2 →MW such that the maps

b : V1(V1,W1)×V2(V2,W2)→MW(b(V1,W1),b(V2,W2))
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are bilinear for all Vi,Wi ∈ Vi. Such a functor b corresponds uniquely to a linear ∗-functor
V1 � V2 →MW, determined by the second arrow in the canonical factorisation

V1(V1,W1)×V2(V2,W2)→ V1(V1,W1)�V2(V2,W2)→MW(b(V1,W1),b(V2,W2))

induced by b. This functor will be denoted Lb, and referred to as the linearisation of
b. We shall say that a bilinear ∗-functor b : V1 × V2 → MW is nondegenerate iff its
linearisation Lb : V1 � V2 →MW is.

Observe that the definition of minimal and maximal tensor products yields canonical
nondegenerate bilinear ∗-functors �min : V1×V2 →M(V1�minV2) and �max : V1×V2 →
M(V1 �max V2). By the construction of the maximal tensor product, any nondegenerate
bilinear ∗-functor b : V1 × V2 → MW prolongs uniquely to a nondegenerate linear
∗-functor V1 �max V2 → MW. By slight abuse of notation, this functor will again be
denoted by Lb, and also referred to as the linearisation of b.

3.2. Lemma. Let V1,V2,W ∈ C∗ Lin be countably additive C∗-categories. Moreover
assume that b : V1 × V2 → MW is a nondegenerate bilinear ∗-functor and let V1 ∈
V1, V2 ∈ V2.

a) There exists a uniquely determined nondegenerate linear ∗-functor b(V1,−) : V2 →
MW such that b(V1,−)(Y ) = b(V1, Y ) for all Y ∈ V2, and

b(f, g ◦ h) = b(V1, g) ◦ b(f, h) = b(f, g) ◦ b(V1, h)

for all f ∈ V1(V1, V1), g, h ∈ V2(Y, Y ).

b) There exists a uniquely determined nondegenerate linear ∗-functor b(−, V2) : V1 →
MW such that b(−, V2)(X) = b(X, V2) for all X ∈ V1, and

b(g ◦ h, f) = b(g, V2) ◦ b(h, f) = b(g, f) ◦ b(h, V2)

for all f ∈ V1(V2, V2), g, h ∈ V1(X,X).

Proof. We shall only consider a), the case of b) being analogous. Note that we write
b(V1, h) = b(V1,−)(h) for morphisms h in V2.

For each Y ∈ V2 the linearisation of b induces a unital ∗-homomorphism

Lb : M(V1(V1, V1)⊗max V2(Y, Y ))→MW(b(V1, Y ),b(V1, Y )),

and we define

b(V1,−) : V2(Y, Y )→MW(b(V1, Y ),b(V1, Y )) by b(V1, g) = Lb(idV1 �g).

We immediately get

b(f, g ◦ h) = b(V1, g) ◦ b(f, h) = b(f, g) ◦ b(V1, h)

for all f ∈ V1(V1, V1), g, h ∈ V2(Y, Y ). To construct the action of b(V1,−) on morphisms
g ∈ V2(X,Z) consider the same construction for Y = X ⊕ Z and identify V2(X,Z) as
a corner in V2(Y, Y ). One checks that this yields a well-defined nondegenerate linear
∗-functor b(V1,−) as claimed. Uniqueness of b(V1,−) on objects is clear, and uniqueness
on morphisms follows from nondegeneracy of b and the defining formulas.
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Lemma 3.2 implies in particular that a nondegenerate bilinear ∗-functor preserves
direct sums in both variables in the obvious sense.

Let us state the basic functoriality properties of minimal and maximal tensor products.
Assume that V1,V2,W1,W2 are C∗-categories and let f : V1 →W1,g : V2 →W2 be
linear ∗-functors. From the definition of the algebraic tensor product � it is obvious
that we obtain an induced linear ∗-functor f � g : V1 � V2 → W1 � W2 such that
(f � g)(V1, V2) = (f(V1),g(V2)) on objects, and acting by (f � g)(f � g) = f(f)� g(g) on
morphism spaces. This extends canonically to linear ∗-functors f �max g : V1 �max W2 →
W1 �max W2 and f �min g : V1 �min W2 →W1 �min W2, respectively.

3.3. Tensor products of additive C∗-categories. For finitely additive or count-
ably additive C∗-categories the above constructions have to be adapted in order to admit
direct sums and subobjects.

Let V1,V2 be (finitely/countably) additive C∗-categories. We define V1 �min V2 to
be the subobject completion of V1 �min V2, and refer to it again as the minimal tensor
product of V1 and V2. Similarly, the maximal tensor product V1�maxV2 is the subobject
completion of V1 �max V2. For objects V1 ∈ V1, V2 ∈ V2 we will write V1 �min V2 and
V1 �max V2, respectively, for V1 �min V2 and V1 �max V2 viewed as objects in the subobject
completions.

The following argument shows that �min and �max both preserve the class of finitely
(countably) additive C∗-categories, respectively.

3.4. Proposition. Let V1,V2 be finitely (countably) additive C∗-categories. Then the
minimal and maximal tensor products V1�minV2,V1�maxV2 are again finitely (countably)
additive.

Proof. Consider the case of the maximal tensor product V1 �max V2 for countably addi-
tive categories V1,V2 ∈ C∗ Lin. Since V1 �max V2 is subobject complete by construction
it suffices to check that this category admits countable direct sums.

If (Xn)n∈N is a family of objects in V1 and (Yn)n∈N a family of objects in V2 then
(
⊕

m∈NXm)�max(
⊕

n∈N Yn) is a direct sum of the family (Xm�maxYn)m,n∈N in V1�maxV2.
Now if (Zn)n∈N is an arbitrary countable family of objects in V1 �max V2 then for every
n ∈ N we find Xn ∈ V1, Yn ∈ V2 such that Zn is a subobject of Xn �max Yn. Then we
can realise the direct sum

⊕
n∈N Zn as subobject of (

⊕
n∈NXn) �max (

⊕
n∈N Yn).

The proof for minimal tensor products is analogous, and in the case of finitely additive
categories it suffices to consider only finite direct sums instead.

Let V1,V2,W ∈ C∗ Lin and let b, c : V1 ×V2 → MW be nondegenerate bilinear ∗-
functors. By a natural transformation φ : b⇒ c we shall mean a natural transformation
of the underlying ∗-functors such that φ(V1, V2) ∈ M(b(V1, V2), c(V1, V2)) is uniformly
bounded for all (V1, V2) ∈ V1×V2. The collection of all nondegenerate bilinear ∗-functors
from V1 ×V2 to MW together with their natural transformations forms a C∗-category
which we will denote by C∗ Bilin(V1,V2;W).
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By construction, we have canonical nondegenerate bilinear ∗-functors �min : V1 ×
V2 → V1 �min V2 and �max : V1 × V2 → V1 �max V2. On the level of objects these
functors map (V1, V2) to V1 �min V2 and V1 �max V2, respectively.

3.5. Proposition. Let V1,V2,W ∈ C∗ Lin. Then precomposition with the canonical
bilinear ∗-functor �max : V1 ×V2 → V1 �max V2 induces an equivalence

C∗ Bilin(V1,V2;W) ' C∗ Lin(V1 �max V2,W)

of C∗-categories, pseudonatural in W.

Proof. Consider the functor F : C∗ Lin(V1 �max V2,W) → C∗ Bilin(V1,V2;W) given
by F (f) = f ◦�max, F (σ) = σ ∗�max. It is easy to check that F is a linear ∗-functor, and
by definition of V1 �max V2 this functor is essentially surjective.

Assume that σ : f ⇒ g in C∗ Lin(V1 �max V2,W) satisfies F (σ) = 0. Then σ(V1 �max

V2) : f(V1 �max V2) → g(V1 �max V2) vanishes for all V1 ∈ V1, V2 ∈ V2, and hence
also on all subobjects of such tensor products by naturality. We conclude σ = 0, which
means that F is faithful. Conversely, let σ : f ◦�max ⇒ g ◦�max in C∗ Bilin(V1,V2;W)
be given. Then σ can be viewed as natural transformation between the corresponding
linear ∗-functors defined on V1 �max V2, and extends canonically from V1 �max V2 to its
subobject completion. It follows that F is full.

Let us next record the functoriality properties of tensor products in the additive setting.
Let V1,V2,W1,W2 ∈ C∗ Lin and let f : V1 →MW1,g : V2 →MW2 be nondegenerate
linear ∗-functors. Then we obtain induced nondegenerate linear ∗-functors f �max g :
V1 �max W2 →M(W1 �max W2) and f �min g : V1 �min W2 →M(W1 �min W2) which
map (V1, V2) to (f(V1),g(V2)) and act by sending f�g to f(f)�g(g) on morphism spaces.

3.6. Theorem. Both the maximal and the minimal tensor product determine symmetric
monoidal structures on the 2-category C∗ Lin.

Proof. For the axioms of symmetric monoidal bicategories see [19], [25], [32]. Since
the arguments for minimal and maximal tensor products are analogous we shall restrict
attention to �max.

If V1,V2,V3 are in C∗ Lin then we have obvious associativity equivalences (V1 �max

V2)�maxV3 → V1�max (V2�maxV3) sending (V1�maxV2)�maxV3 to V1�max (V2�maxV3)
for objects Vi ∈ Vi. The unit object in C∗ Lin is 1 = Hilb = HilbC, and on the level of
objects the left and right unitor equivalences l : Hilb �max V → V, r : V → V �max Hilb
map C�max V to V and V to V �max C, respectively. It is straightforward to check that
this data satisfies the axioms of a monoidal bicategory.

The symmetry equivalence σ : V1 �max V2 → V2 �max V1 for V1,V2 ∈ C∗ Lin is given
by σ(V1 �max V2) = V2 �max V1 on the level of objects. Despite the fact that the axioms
for a symmetric monoidal bicategory are rather unwieldy, in the case at hand they boil
down to elementary properties of the maximal tensor product of C∗-algebras.
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Maximal and minimal tensor products of countably additive C∗-categories are com-
patible with exterior tensor products of Hilbert modules in the following sense.

3.7. Proposition. Let A,B be C∗-algebras. Then there are canonical equivalences

HilbA �min HilbB ' HilbA⊗minB, HilbA �max HilbB ' HilbA⊗maxB

of C∗-categories.

Proof. The proof for minimal and maximal tensor products is similar, so let us only
consider the case of maximal tensor products.

The maximal exterior tensor product E ⊗max F of E ∈ HilbA,F ∈ HilbB is the comple-
tion of E � F with respect to the A⊗max B-valued inner product given by

〈ξ ⊗ η, ζ ⊗ κ〉 = 〈ξ, ζ〉 ⊗ 〈η, κ〉.

This defines a canonical fully faithful linear ∗-functor HilbA�maxHilbB → HilbA⊗maxB. Since
every Hilbert module in HilbA⊗maxB is isomorphic to a direct summand of the standard
Hilbert module HA⊗maxB it follows that this embedding is essentially surjective.

An analogue of Proposition 3.7 holds in the finitely additive setting as well, that is,
we have equivalences

HilbfA �min Hilb
f
B ' HilbfA⊗minB

, HilbfA �max Hilb
f
B ' HilbfA⊗maxB

for the tensor products of categories of finitely generated projective Hilbert modules over
unital C∗-algebras A,B.

3.8. Tensor products of finitely accessible C∗-categories. In this section we
discuss the special case of tensor products of finitely accessible C∗-categories, and also
relate C∗-tensor products to the Deligne tensor product in the purely algebraic setting.
For the definition and properties of the latter we refer to [12] and [24].

3.9. Proposition. If V1,V2 are finitely accessible C∗-categories then V1 �max V2 is
finitely accessible and

P (V1 �max V2) ' P (V1) �max P (V2).

Similarly, if V1,V2 are finitely additive C∗-categories then

ind(V1 �max V2) ' ind(V1) �max ind(V2).

Both statements hold for minimal tensor products as well.
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Proof. The arguments are analogous for maximal and minimal tensor products, so we
shall only consider maximal tensor products and abbreviate � = �max.

Assume first that V1,V2 are finitely accessible C∗-categories. The tensor product
object V1 � V2 of finitely presented objects Vi ∈ P (Vi) is clearly finitely presented in
V1 �V2. Since every object of V1 �V2 can be written as a subobject of some countable
direct limit of such objects it follows that the category V1 �V2 is finitely accessible.

The above argument shows that we have a canonical fully faithful embedding P (V1)�
P (V2)→ P (V1 �V2). In order to show that this embedding is essentially surjective let
V ∈ V1,W ∈ V2 and write V ∼= lim−→i∈N Vi,W

∼= lim−→j∈NWj as countable direct limits of

finitely presentable objects, and denote by ιVi , ι
W
j , π

V
i , π

W
j the associated isometries and

their adjoints. If p ∈ (V1 � V2)(V �W,V �W ) is a projection and ε > 0 then there
exist m,n ∈ N such that ‖Pmn ◦ p ◦ Pmn − p‖ < ε, where Pmn = (ιVm ◦ πVm) � (ιWn ◦ πWn ).
Choosing ε small enough and using functional calculus we obtain a projection q ∈ (V1 �
V2)(Vm �Wn, Vm �Wn) such that ‖p− (ιVm � ιWn ) ◦ q ◦ (πVm � πWn )‖ < 1. The projections
p and q are unitarily equivalent in M(V1 �V2)(V �W,V �W ), which means that the
subobjects corresponding to them are isomorphic. It follows that every finitely presented
object in V1 �V2 arises as a subobject of the tensor product V1 �V2 of finitely presented
objects Vi ∈ P (Vi).

Now assume that V1,V2 are finitely additive C∗-categories. The obvious linear ∗-
functor ind(V1 � V2) → ind(V1) � ind(V2) is fully faithful and essentially surjective,
hence an equivalence.

Assume that V1,V2 are finitely additive C∗-categories such that all morphism spaces
are finite dimensional. Then the categories V1,V2 are semisimple and in particular C-
linear abelian. In this case there are no completions involved in the definition of the
minimal or maximal tensor products, and the category V1 �max V2

∼= V1 �min V2 is again
C-linear abelian. We record the following observation.

3.10. Proposition. Let V1,V2 be finitely additive C∗-categories with finite dimensional
morphism spaces. Then we have a canonical equivalence

V1 �max V2 ' V1 �V2,

where V1 �V2 denotes the Deligne tensor product of the C-linear abelian categories un-
derlying V1,V2.

Proof. The canonical bilinear ∗-functor V1 ×V2 → V1 �max V2 is right exact in each
variable, and therefore induces a linear functor γ : V1 �V2 → V1 �max V2. If (Xi)i∈I are
representatives of the isomorphism classes of simple objects in V1 and (Yj)j∈J the same
for V2, then both V1 �V2 and V1 �max V2 are semisimple with isomorphism classes of
simple objects given by (Xi � Yj)i∈I,j∈J and (Xi �max Yj)i∈I,j∈J , respectively. It follows
that γ is an equivalence of categories.
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Given arbitrary V,W ∈ C∗ lin the C∗-category C∗ lin(V,W) of unital linear ∗-
functors from V to W and their natural transformations has finite direct sums, obtained
by taking pointwise direct sums in W. The category C∗ lin(V,W) is also closed under
subobjects, again taken pointwise. It follows that C∗ lin(V,W) is contained in C∗ lin.

The following result shows that this construction yields an internal Hom in C∗ lin,
compare [13].

3.11. Proposition. Let U,V,W ∈ C∗ lin be finitely additive C∗-categories. Then there
exists an equivalence

C∗ lin(U�max V,W) ' C∗ lin(U, C∗ lin(V,W))

of C∗-categories, pseudonatural in all variables.

Proof. Assume that f : U �max V → W is a unital linear ∗-functor. Then for every
U ∈ U the restriction f(U�max−) defines a unital linear ∗-functor V→W, and we define
F : C∗ lin(U�maxV,W)→ C∗ lin(U, C∗ lin(V,W)) by F (f)(U) = f(U�max−) on objects
and F (f)(f) = f(f�max−) on morphisms. Then F (f) is a linear ∗-functor, and if σ : f ⇒ g
is a natural transformation we obtain a natural transformation F (σ) : F (f) ⇒ F (g) by
setting F (σ)(U)(V ) = σ(U �max V ). In this way F becomes a linear ∗-functor, and it is
routine to verify that it is an equivalence and pseudonatural in all variables.

We remark that Proposition 3.11 does not generalise to the 2-category C∗ Lin of count-
ably additive C∗-categories in any obvious way.

4. Bicolimits of additive C∗-categories

The main aim of this section is to show that the 2-category C∗ Lin of countably additive
C∗-categories is closed under conical bicolimits. We shall restrict ourselves to the unitary
setting, which means that we will assume that all natural transformations appearing in
homomorphisms and transformations are unitary. For simplicity we will also consider only
bicolimits indexed by 1-categories, noting that the discussion below extends to arbitrary
indexing 2-categories with minor modifications. We refer the reader to [17] for background
information on the notion of a bicolimit.

Fix a small unital category I, which we shall always assume to have at least one object.
We define an I-diagram ι : I → C∗ Lin to be given by C∗-categories ι(i) = Vi ∈ C∗ Lin
for all objects i ∈ I, nondegenerate linear ∗-functors ι(i → j) = ιi,j(i → j) : Vi → MVj

for all morphisms i → j in I, and unitary natural isomorphisms ιi,j,k : ι(j → k) ◦ ι(i →
j)⇒ ι(i→ k) for all pairs of composable morphisms i→ j, j → k in I, as well as unitary
natural isomorphisms ιi : 1ι(i) ⇒ ι(1i), such that the diagrams

ι(k → l) ◦ ι(j → k) ◦ ι(i→ j) ι(j → l) ◦ ι(i→ j)

ι(k → l) ◦ ι(i→ k) ι(i→ l)

idι(k→l) ∗ιi,j,k

ιj,k,l∗idι(i→j)

ιi,j,l

ιi,k,l
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and

ι(i→ j) ◦ 1ι(i) 1ι(j) ◦ ι(i→ j)

ι(i→ j)

ι(i→ j) ◦ ι(1i) ι(1j) ◦ ι(i→ j)

idι(i→j) ∗ιi

id id

ιj∗idι(i→j)

ιi,i,j ιi,j,j

commute. In the sequel we will sometimes use the notation (Vi)i∈I for such an I-diagram,
suppressing the connecting functors and natural isomorphism data. Note that an I-
diagram defines a homomorphism ι : I → C∗ Lin, where I is viewed as a 2-category with
only identity 2-morphisms. This homomorphism has the extra property that all natural
isomorphisms appearing in the definition are unitary.

By definition, a transformation f : ι → η of I-diagrams ι, η : I → C∗ Lin consists of
nondegenerate linear ∗-functors fi : ι(i)→ Mη(i) for i ∈ I together with unitary natural
isomorphisms fi,j(i→ j) : η(i→ j) ◦ fi ⇒ fj ◦ ι(i→ j) for all morphisms i→ j in I such
that the diagrams

η(i→ j → k) ◦ fi

η(j → k) ◦ η(i→ j) ◦ fi fk ◦ ι(i→ j → k)

η(j → k) ◦ fj ◦ ι(i→ j) fk ◦ ι(j → k) ◦ ι(i→ j)

η(j → k) ◦ fj ◦ ι(i→ j)

fi,k(i→j→k)ηi,j,k∗idfi

idη(j→k) ∗fi,j(i→j)

id

idfk
∗ιi,j,k

fj,k(j→k)∗idι(i→j)

and

fi

1η(i) ◦ fi fi ◦ 1ι(i)

η(1i) ◦ fi fi ◦ ι(1i)

idid

ηi∗idfi
idfi
∗ιi

fi,i(1i)

commute. We will sometimes just write f = (fi)i∈I : (Vi)i∈I → (Wi)i∈I for a transforma-
tion, suppressing the natural isomorphisms from the notation.

A modification Γ : f ⇒ g between two transformations f ,g : ι → η consists of a
uniformly bounded family of natural transformations Γi : fi ⇒ gi for i ∈ I such that
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η(i→ j) ◦ fi η(i→ j) ◦ gi

fj ◦ ι(i→ j) gj ◦ ι(i→ j)

idη(i→j) ∗Γi

fi,j(i→j) gi,j(i→j)

Γj∗idι(i→j)

is commutative for every morphism i → j in I. It is called unitary if all Γi are uni-
tary natural isomorphisms. We note that the category [I, C∗ Lin]((Vi)i∈I , (Wi)i∈I) of all
transformations (Vi)i∈I → (Wi)i∈I and their modifications is naturally a C∗-category.

For W ∈ C∗ Lin we obtain the constant I-diagram ∆(W) by setting ∆(W)(i) = W
and ∆(W)(i → j) = 1W for all i → j in I. Writing [I, C∗ Lin] for the 2-category of all
I-diagrams in C∗ Lin, this defines a strict homomorphism ∆ : C∗ Lin→ [I, C∗ Lin].

4.1. Definition. Let (Vi)i∈I be an I-diagram and let f = (fi)i∈I : (Vi)i∈I → ∆(X)
be a transformation. We say that f is cofibrant if fi(X) = fj(Y ) for any i, j ∈ I and
X ∈ Vi, Y ∈ Vj implies i = j and X = Y .

Given an arbitrary transformation f = (fi)i∈I : (Vi)i∈I → ∆(X) let us construct a cat-
egory CF (X) ∈ C∗ Lin and a cofibrant transformation CF (f) = (CF (f)i)i∈I : (Vi)i∈I →
∆(CF (X)) as follows.

Firstly, form the disjoint union Λ =
⋃
i∈I Ob(Vi) of all object sets of the categories

Vi, and let CF (X) be the countably additive C∗-category with objects all pairs (λ,X)
with λ ∈ Λ and X ∈ Ob(X), morphism sets

CF (X)((λ,X), (ρ, Y )) = X(X, Y ),

and the structures on morphisms such that the obvious forgetful map φX : CF (X)→ X,
given by φX(λ,X) = X on objects and acting as the identity on morphisms is a fully
faithful linear ∗-functor. By construction, the functor φX is then an equivalence of C∗-
categories.

Next define nondegenerate linear ∗-functors CF (f)i : Vi → MCF (X) by setting
CF (f)i(V ) = (V, fi(V )) for V ∈ Vi and

CF (f)i(f) = f ∈MCF (X)((V, fi(V )), (W, fi(W ))) = MX(fi(V ), fi(W ))

for f ∈ Vi(V,W ), and unitary natural isomorphisms CF (f)i,j(i→ j) : CF (f)i ⇒ CF (f)j◦
ι(i→ j) for every morphism i→ j in I by

CF (f)i,j(i→ j) = fi,j(i→ j).

This data yields a transformation CF (f), since the extra variable just carries the source
and target objects. We have ∆(φX) ◦ CF (f) = f by construction, and note that φX is
pseudo-natural in X.

If W is a countably additive C∗-category we write [I, C∗ Lin]cof ((Vi)i∈I ,∆(W)) for the
full subcategory of [I, C∗ Lin]((Vi)i∈I ,∆(W)) consisting of all cofibrant transformations
from (Vi)i∈I to the constant diagram ∆(W).
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4.2. Lemma. Let (Vi)i∈I be an I-diagram of countably additive C∗-categories. Then
postcomposition with ∆(φX) induces an equivalence of C∗-categories

[I, C∗ Lin]cof ((Vi)i∈I ,∆(CF (X)))→ [I, C∗ Lin]((Vi)i∈I ,∆(X)),

pseudonatural in X.

Proof. For fixed X ∈ C∗ Lin we obtain a well-defined functor ∆(φX) ◦ − from

[I, C∗ Lin]cof ((Vi)i∈I ,∆(CF (X))) to [I, C∗ Lin]((Vi)i∈I ,∆(X)).

Since φX is an equivalence this functor is fully faithful, and our above arguments show
that it is essentially surjective. Pseudonaturality is clear from the construction.

By the cardinality of a C∗-category V ∈ C∗ Lin we shall mean the cardinality of the
union of all morphism spaces in V. With these preparations in place we can now formulate
and prove the following result.

4.3. Theorem. Let I be a small category and let (Vi)i∈I be an I-diagram in C∗ Lin.
Then there exists a bicolimit lim−→i∈I Vi ∈ C∗ Lin, that is, there exists a transformation

T : (Vi)i∈I → ∆(lim−→i∈I Vi) such that precomposition with T induces an equivalence of
C∗-categories

C∗ Lin(lim−→
i∈I

Vi,W) ' [I, C∗ Lin]((Vi)i∈I ,∆(W))

for every W ∈ C∗ Lin, pseudonatural in W.

Proof. Due to Lemma 4.2 it suffices to construct lim−→i∈I Vi ∈ C∗ Lin and a transformation

T : (Vi)i∈I → ∆(lim−→i∈I Vi) such that precomposition with T induces an equivalence of
C∗-categories

C∗ Lin(lim−→
i∈I

Vi,W) ' [I, C∗ Lin]cof ((Vi)i∈I ,∆(W))

for every W ∈ C∗ Lin of the form W = CF (X) for some X ∈ C∗ Lin. In order to do this
consider the set

CW = [I, C∗ Lin]cof ((Vi)i∈I ,∆(W))

of all cofibrant transformations between the I-diagrams (Vi)i∈I and ∆(W). Note that
CW is nonempty since there exists a cofibrant transformation 0 : (Vi)i∈I → ∆(W), given
by functors 0i : Vi →W mapping every V ∈ Vi to some zero object in W, together with
uniquely determined natural isomorphisms 0i,j(i→ j) : 0i ⇒ 0j ◦ ι(i→ j) for i→ j in I.

Let κ be a strong limit cardinal greater than the sum of the cardinalities of all categories
Vi in the given family. We denote by C∗ Linκ the full sub 2-category of C∗ Lin given
by a chosen set of C∗-categories which contains all countably additive C∗-categories of
cardinality less than κ up to isomorphism and define

V =
∏

W∈C∗ Linκ

∏
σ∈CW

W,
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taking the direct products as defined in section 2. Then V is a countably additive C∗-
category, and we obtain a canonical transformation t : (Vi)i∈I → ∆(V) by stipulating that
the composition of t with projection onto the component of V associated with σ ∈ CW

equals σ. The transformation t consists of nondegenerate linear ∗-functors ti : Vi →MV
and unitary natural isomorphisms ti,j(i→ j) : ti ⇒ tj ◦ ι(i→ j), obtained via Proposition
2.17, satisfying the required coherence conditions. All component transformations σ ∈ CW

are cofibrant by assumption, and therefore the transformation t is again cofibrant.
Let 〈t〉 ⊂ MV be the C∗-category generated by the union of the images of all the

functors ti and the unitary natural isomorphisms ti,j(i → j). The objects of 〈t〉 are all
objects of the form ti(V ) for some i ∈ I and V ∈ Vi, and the morphism spaces are
generated by the images of all morphism spaces Vi(V,W ) for V,W ∈ Vi under ti, as
well as the multiplier morphisms ti,j(i → j)(V ) for V ∈ Vi and their adjoints. That is,
the morphism space 〈t〉(X, Y ) is the norm closure of the linear span of all morphisms
fr ◦ · · · ◦ f1 ∈ MV(X, Y ) consisting of composable strings of multiplier morphisms of
the form fk = tik,jk(ik → jk)(Vk), fk = tik,jk(ik → jk)

∗(Vk), or fk = tik(gk) for some
gk ∈ Vik(Vk,Wk), with at least one morphism of the latter type. Using that κ is a
strong limit cardinal one verifies that 〈t〉 is a C∗-category of cardinality less than κ.
By construction, the morphisms ti,j(i → j)(V ) for V ∈ Vi are naturally contained in
M〈t〉(ti(V ), tj ◦ ι(i→ j)(V )). Corestriction of ti : Vi →MV determines a nondegenerate
linear ∗-functor Vi → 〈t〉, which we will again denote by ti.

Let lim−→i∈I Vi = ind(〈t〉⊕) be the ind-completion of the finite additive completion of 〈t〉,
which can be viewed as the completion of 〈t〉 under countable direct sums and subobjects.
One checks that the category lim−→i∈I Vi ∈ C∗ Lin has again cardinality less than κ.

The functors tj induce nondegenerate linear ∗-functors Tj : Vj → lim−→i∈I Vi for all

j ∈ I. Moreover the unitary natural transformations ti,j(i → j) induce unitary natural
transformations Ti,j(i→ j) : Ti ⇒ Tj ◦ ι(i→ j), assembling to a cofibrant transformation
T : (Vi)i∈I → ∆(lim−→i∈I Vi).

Let us next show that precomposition with T induces an equivalence of C∗-categories

FW : C∗ Lin(lim−→
i∈I

Vi,W)→ [I, C∗ Lin]cof ((Vi)i∈I ,∆(W))

for every W ∈ C∗ Lin of cardinality less than κ. For this it suffices to consider W ∈
C∗ Linκ.

Assume that σ : (Vi)i∈I → ∆(W) is a transformation. By the construction of V,
projection onto the component corresponding to σ in V induces a nondegenerate linear
∗-functor Σ : lim−→i∈I Vi →W, such that ∆(Σ) ◦ T = σ. It follows that FW is essentially
surjective on objects.

Next assume that f ,g : lim−→i∈I Vi → MW are nondegenerate linear ∗-functors, and

let φ : f ⇒ g be a natural transformation such that FW(φ) = ∆(φ) ∗ T = 0. Then
φ(Tj(Vj)) : f(Tj(Vj)) → g(Tj(Vj)) vanishes for all j ∈ I and Vj ∈ Vj. Every object of
lim−→i∈I Vi is a subobject of a countable direct sum of such objects Tj(Vj). Since both

f ,g are nondegenerate linear ∗-functors it follows from naturality that φ(V ) = 0 for all
V ∈ lim−→i∈I Vi. Hence FW is faithful.
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Now assume that Γ : FW(f) ⇒ FW(g) is a modification. We claim that we can
assemble the multiplier morphisms Γi(Vi) : f(Ti(Vi)) → g(Ti(Vi)) for Vi ∈ Vi to a nat-
ural transformation Φ : f ⇒ g such that FW(Φ) = Γ. Since the union of the objects
in Vi for i ∈ I gets mapped injectively into V under the functors Ti, the morphisms
Γi(Vi) assemble uniquely to define a uniformly bounded family of multiplier morphisms
Φ(Ti(Vi)) = Γi(Vi) for Vi ∈ Vi, and this extends canonically to direct sums and their sub-
objects. Using the fact that Γ is a modification one checks that the resulting uniformly
bounded family of multiplier morphisms Φ(V ) : f(V ) → g(V ) for V ∈ lim−→i

Vi defines a
natural transformation Φ : f ⇒ g as required. It follows that FW is full.

Suppose that we replace κ in the above constructions by some strong limit cardinal λ ≥
κ. Direct inspection shows the resulting object lim−→

λ

i∈I Vi in C∗ Lin has again cardinality
strictly less than κ, observing that this cardinality is determined entirely in terms of the
I-diagram (Vi)i∈I . Therefore lim−→

λ

i∈I Vi is isomorphic to an object of C∗ Linκ, and our
above considerations imply that it must be equivalent to lim−→i∈I Vi.

Finally, let W ∈ C∗ Lin be an arbitrary countably additive C∗-category. Then W is
isomorphic to an object of C∗ Linλ for a sufficiently large strong limit cardinal λ ≥ κ. By
the above reasoning we see that FW induces an equivalence

C∗ Lin(lim−→
i∈I

Vi,W) ' [I, C∗ Lin]cof ((Vi)i∈I ,∆(W))

as desired.

As a special case of Theorem 4.3 we see that C∗ Lin admits all bicoproducts, bi-
coequalisers and bipushouts.

Bicoproducts can be described concretely as follows. Let I be an index set and let
(Vi)i∈I be a family of countably additive C∗-categories. The direct sum

⊕
i∈I Vi is the

full subcategory of
∏

i∈I Vi whose objects are families (Xi)i∈I of objects Xi ∈ Vi, with at
most countably many Xi being nonzero. This is again a countably additive C∗-category.

We obtain canonical fully faithful linear ∗-functors ιj : Vj →
⊕

i∈I Vi for all j ∈ I,
mapping V ∈ Vj to the family whose only nonzero object is V , based at j ∈ I.

4.4. Proposition. Let I be an index set and (Vi)i∈I a family of C∗-categories in C∗ Lin.
For every W ∈ C∗ Lin, precomposition with the family of linear ∗-functors ιj induces an
equivalence of C∗-categories

C∗ Lin(
⊕
i∈I

Vi,W) 'M
∏
i∈I

C∗ Lin(Vi,W) = [I, C∗ Lin]((Vi)i∈I ,∆(W)),

pseudonatural in W.

Proof. The assignment F : C∗ Lin(
⊕

i∈I Vi,W) → M
∏

i∈I C
∗ Lin(Vi,W) given by

F (f) = (f ◦ ιi)i∈I on objects and F (σ) = (σ ∗ ιi)i∈I on morphisms yields a well-defined
unital linear ∗-functor.

If (hi)i∈I is a family of nondegenerate linear ∗-functors hi : Vi → MW we obtain a
nondegenerate linear ∗-functor h :

⊕
i∈I Vi → MW by setting h((Vi)i∈I) =

⊕
i∈I hi(Vi)
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on objects and h((fi)i∈I) =
⊕

i∈I hi(fi) on morphisms. Here we use that W has countable
direct sums and that (Vi)i∈I ∈

⊕
i∈I Vi has at most countably many nonzero entries. We

have F (h) ∼= (hi)i∈I by construction, and it follows that F is essentially surjective.
If (σi)i∈I is a uniformly bounded family of natural transformations σi : h ◦ ιi ⇒ k ◦ ιi

then σ((Vi)i∈I) =
∏

i∈I σi(Vi) defines a natural transformation σ : h ⇒ k such that
F (σ) = (σi)i∈I . It follows that F is full. Finally, note that F (σ) = 0 for σ : h⇒ k means
σ(ιi(Vi)) = 0 for all i ∈ I and Vi ∈ Vi, and therefore σ(V ) = 0 for all V ∈

⊕
i∈I Vi by

naturality. Hence F is faithful.

Let us briefly explain the connection between Theorem 4.3 and the results obtained in
[3]. We shall not aim for greatest generality here in order not to obscure the argument.

Let us consider a diagram ι : I → C∗ Lin such that the index 1-category I is countable,
we have ι(i) = Vi = HilbAi for separable C∗-algebras Ai for all i ∈ I, and all nondegenerate
linear ∗-functors ι(i → j) : Vi → MVj for i → j in I are given by proper Ai-Aj-
correspondences in HilbAj . Then we can view ι as a diagram both in C∗ Lin and in the
(proper) correspondence bicategory. Let O be the C∗-algebra constructed for this diagram
in [3].

4.5. Proposition. Under the above hypotheses we have an equivalence

lim−→
i∈I

Vi ' HilbO

of C∗-categories.

Proof. Under our assumptions, an inspection of the constructions in [3] shows that O
is separable, and that the defining Ai-O-correspondences are countably generated and
proper. On the other hand, since I is countable it follows from the constructions in the
proof of Theorem 4.3 that lim−→i∈I Vi has separable morphism spaces and is singly generated.
If we write lim−→i∈I Vi ' HilbA for a generator A, then the C∗-algebras A and O satisfy
the same universal property in the bicategory of separable C∗-algebras and countably
generated correspondences. As such they have to be equivalent, which yields the claim.

In other words, Proposition 4.5 shows that the C∗-algebra O provides a concrete model
for the bicolimit of the diagram ι : I → C∗ Lin. Together with the results in [3], this yields
a rich supply of concrete examples of bicolimits of linear C∗-categories.

Let us finish this section by noting that the 2-category C∗ lin of finitely additive C∗-
categories admits bicolimits as well. Since the proof of this assertion is largely parallel to
the proof of Theorem 4.3 we shall only state the result as follows.

4.6. Theorem. Let I be a small category and let (Vi)i∈I be an I-diagram in C∗ lin.
Then there exists a bicolimit lim−→i∈I Vi ∈ C∗ lin, that is, there exists a transformation

T : (Vi)i∈I → ∆(lim−→i∈I Vi) such that precomposition with T induces an equivalence of
C∗-categories

C∗ lin(lim−→
i∈I

Vi,W) ' [I, C∗ lin]((Vi)i∈I ,∆(W))

for every W ∈ C∗ lin, pseudonatural in W.
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5. Balanced tensor products

In this section we discuss balanced tensor products of module categories over C∗-tensor
categories.

Let us first specify our setup.

5.1. Definition. A countably additive C∗-tensor category is a C∗-category A ∈ C∗ Lin
together with

• a nondegenerate bilinear ∗-functor ⊗ : A×A→MA,

• an object 1 ∈ A,

• a unitary natural isomorphism

α : ⊗ ◦ (⊗× id)⇒ ⊗ ◦ (id×⊗)

written
αX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z)

for all X, Y, Z ∈ A, and called associator,

• unitary natural isomorphisms ρ : −⊗ 1⇒ id and λ : 1⊗− ⇒ id, called left and right
unitors, written ρX : X ⊗ 1→ X and λX : 1⊗X → X for X ∈ A, respectively.

These data are supposed to satisfy the following conditions.

• (Associativity constraints) For all objects W,X, Y, Z ∈ A the diagram

(W ⊗X)⊗ (Y ⊗ Z)

((W ⊗X)⊗ Y )⊗ Z W ⊗ (X ⊗ (Y ⊗ Z))

(W ⊗ (X ⊗ Y ))⊗ Z W ⊗ ((X ⊗ Y )⊗ Z)

αW,X,Y⊗ZαW⊗X,Y,Z

αW,X,Y ⊗id

αW,X⊗Y,Z

id⊗αX,Y,Z

is commutative.

• (Unit constraints) λ1 = ρ1 and for all objects X, Y ∈ A the diagram

(X ⊗ 1)⊗ Y X ⊗ (1⊗ Y )

X ⊗ Y

αX,1,Y

ρX⊗id id⊗λY

is commutative.
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Definition 5.1 means that countably additive C∗-tensor categories are monoids in the
monoidal 2-category C∗ Lin of countably additive C∗-categories with the maximal tensor
product, compare Theorem 3.6. We will also consider C∗ lin, leading to the following
variant of Definition 5.1.

5.2. Definition. A finitely additive C∗-tensor category is a category A ∈ C∗ lin together
with

• a unital bilinear ∗-functor ⊗ : A×A→ A,

• an object 1 ∈ A,

• a unitary natural isomorphism α : ⊗ ◦ (⊗× id)⇒ ⊗ ◦ (id×⊗)

• unitary natural isomorphisms ρ : −⊗ 1⇒ id and λ : 1⊗− ⇒ id,

satisfying the same associativity and unit constraints as in the countably additive case.

Definition 5.2 agrees with the notion of a C∗-tensor category used in [28] except that
we do not require unit objects to be simple.

5.3. Example. Let us list some examples of finitely additive C∗-tensor categories.

a) If G is a compact (quantum) group then the representation category Rep(G) of G is
a finitely additive C∗-tensor category. The objects of Rep(G) are finite dimensional
unitary G-representations, and morphisms are all G-equivariant linear operators. The
tensor structure is given by the tensor product of G-representations, which for classical
groups is the usual diagonal action on the tensor product of the underlying Hilbert
spaces. Note that all morphism spaces in Rep(G) are finite dimensional, and that
the tensor unit is given by the trivial representation on C. In particular Rep(G) is
semisimple with simple tensor unit.
More generally one obtains rigid C∗-tensor categories from bimodule categories of finite
index subfactors, or from Hilbert C∗-bimodules in the sense of [21]. In particular, the
category of M-bimodules generated by a finite index subfactor N ⊂M is a semisimple
finitely additive C∗-tensor category with simple tensor unit.

b) Let A be a unital C∗-algebra and consider the category AHilb
f
A of finite right Hilbert

A-bimodules. By definition, the objects of AHilb
f
A are finitely generated projective right

Hilbert A-modules E ∈ HilbfA equipped with a unital ∗-representation A→ L(E) = K(E).
Morphisms in AHilb

f
A are adjointable operators which commute with the left actions.

The tensor structure on AHilb
f
A is given by the balanced tensor product of Hilbert mod-

ules, and the tensor unit is A ∈ HilbfA viewed as a bimodule with the left multiplication
action. The resulting finitely additive C∗-tensor category is not semisimple in general.
Morphism spaces in AHilb

f
A are typically infinite dimensional, and the tensor unit is

not simple.
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c) Let V ∈ C∗ lin be a finitely additive C∗-category. Then the category C∗ lin(V,V) of all
unital linear ∗-functors V→ V is a finitely additive C∗-tensor category with the tensor
structure induced by composition of functors. In fact, up to equivalence the category

AHilb
f
A described in the previous example is the special case of this construction for

V = HilbfA.

Using ind-completion one can pass from finitely additive C∗-tensor categories to count-
ably additive C∗-tensor categories as follows.

5.4. Lemma. Let A be a finitely additive C∗-tensor category. Then indA is naturally a
countably additive C∗-tensor category such that the canonical inclusion functor A→ indA
is compatible with tensor products.

Proof. The tensor structure for A can be viewed as a unital linear ∗-functor ⊗ : A�max

A → A. It extends canonically to a nondegenerate linear ∗-functor ind(A �max A) →
indA on the level of ind-categories. Combining this with the equivalence indA �max

indA ' ind(A �max A) from Proposition 3.9 gives a nondegenerate linear ∗-functor
indA�max indA→ indA, which we denote again by ⊗. The tensor unit 1 ∈ A ⊂ indA
and the extensions of α, λ, ρ to the ind-categories provide the data of a countably additive
C∗-tensor category structure on indA, and one checks that the associativity and unit
constraints continue to hold.

Applying Lemma 5.4 to the examples in 5.3 yields basic examples of countably ad-
ditive C∗-tensor categories. The ind-categories of representation categories of compact
quantum groups and bimodule categories of subfactors feature naturally in the study of
approximation properties [29].

5.5. Example. Let us describe some examples of countably additive C∗-tensor categories
which are not obtained as ind-categories of finitely additive C∗-tensor categories.

a) Let X be a locally compact Hausdorff space and let A = C0(X). The category of
symmetric right Hilbert A-bimodules has as objects Hilbert modules E ∈ HilbA, viewed
as symmetric A-bimodules via a · ξ = ξa for a ∈ A, ξ ∈ E, and morphisms as in HilbA.
The interior tensor product of Hilbert modules turns this into a countably additive C∗-
tensor category with unit object A. If X is noncompact this category will typically fail
to be finitely presented.

b) Let X be a locally compact Hausdorff space, let A0 = C0(X), and let A = A1 be a
continuous trace algebra with spectrum X. For n > 1 let

An = A⊗C0(X)n = A⊗C0(X) A⊗C0(X) · · · ⊗C0(X) A

be the n-fold (maximal) C0(X)-tensor product, compare [7]. Then

A =
∞⊕
n=0

HilbAn ,
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with the direct sum as defined before Proposition 4.4, is a C∗-tensor category with the
tensor product given by E ⊗C0(X) F ∈ HilbAm+n for E ∈ HilbAm ,F ∈ HilbAn. This is
well-defined and associative up to isomorphism. The tensor unit is C0(X) viewed as
Hilbert module over itself.

c) Let A be a countably additive C∗-tensor category and consider

KA =
∞⊕

i,j=1

A

as a C∗-tensor category with the categorical version of matrix multiplication. That is,
denoting Aij ⊂ KA the copy of A corresponding to the indices i, j ∈ N, the tensor
product functor KA × KA → KA maps Aij × Akl to zero if j 6= k, and by the given
tensor structure A×A→ M(A) to MAil ⊂ M(KA) if j = k. The unit object of KA

has the tensor unit 1 ∈ A on the diagonal, and the zero objects else. Moreover, the
associativity and unit constraints of A induces associativity and unit constraints for
KA in a natural way. We shall refer to KA as the infinite matrix C∗-tensor category
over A. If A is not finitely presented then neither is KA.

Let us next discuss module categories, module functors and their natural transforma-
tions, compare [30]. Since the definitions are parallel for finitely and countably additive
C∗-categories, we will only state the countably additive case.

5.6. Definition. Let A be a countably additive C∗-tensor category. A left A-module
category is a C∗-category V ∈ C∗ Lin together with

• a nondegenerate bilinear ∗-functor ⊗ : A×V→MV

• a unitary natural isomorphism

α : ⊗ ◦ (⊗× id)⇒ ⊗ ◦ (id×⊗)

written
αX,Y,V : (X ⊗ Y )⊗ V → X ⊗ (Y ⊗ V )

for all X, Y ∈ A, V ∈ V, and called associator.

• a unitary natural isomorphism λ : 1⊗− ⇒ id, called unitor, and written λV : 1⊗V → V
for V ∈ V.

These data are supposed to satisfy the following conditions.

• (Associativity constraints) For all objects W,X, Y,∈ A, V ∈ V the diagram
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(W ⊗X)⊗ (Y ⊗ V )

((W ⊗X)⊗ Y )⊗ V W ⊗ (X ⊗ (Y ⊗ V ))

(W ⊗ (X ⊗ Y ))⊗ V W ⊗ ((X ⊗ Y )⊗ V )

αW,X,Y⊗VαW⊗X,Y,V

αW,X,Y ⊗id

αW,X⊗Y,V

id⊗αX,Y,V

is commutative.

• (Unit constraints) For all objects X ∈ A, V ∈ V the diagram

(X ⊗ 1)⊗ V X ⊗ (1⊗ V )

X ⊗ V

αX,1,V

ρX⊗id id⊗λV

is commutative.

A module functor between A-module categories V,W is a nondegenerate linear ∗-
functor f : V→MW together with a unitary natural isomorphism γ : f ◦⊗ ⇒ ⊗◦(id×f),
written γX,V : f(X ⊗ V )→ X ⊗ f(V ), such that the diagrams

(X ⊗ Y )⊗ f(V )

f((X ⊗X)⊗ V ) X ⊗ (Y ⊗ f(V ))

f(X ⊗ (Y ⊗ V )) X ⊗ f(Y ⊗ V )

αX,Y,f(V )γX⊗Y,V

f(αX,Y,V )

γX,Y⊗V

id⊗γY,V

and

f(1⊗ V ) 1⊗ f(V )

f(V )

γ1,V

f(λV ) λf(V )

are commutative.
An A-module natural transformation between A-module functors f ,g : V → MW,

with corresponding γ : f ◦ ⊗ ⇒ ⊗ ◦ (id×f), η : g ◦ ⊗ ⇒ ⊗ ◦ (id×g), is a natural
transformation φ : f ⇒ g of the underlying nondegenerate linear ∗-functors such that
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f(X ⊗ V ) X ⊗ f(V )

g(X ⊗ V ) X ⊗ g(V )

γX,V

φX⊗V id⊗φV
ηX,V

is commutative for all X ∈ A and V ∈ V.
In a similar way one defines right A-module categories, their module functors, and

module natural transformations. More generally, if A,B are countably additive C∗-tensor
categories then one may define A-B-bimodule categories, bimodule functors and bimodule
natural transformations, compare for instance [16], [20] in the algebraic situation. Since
bimodule categories are not strictly needed for our purposes we shall not write down these
definitions.

5.7. Example. Let us give some examples of module categories and bimodule categories.

a) Every countably additive C∗-tensor category is a left and right module category over
itself via the tensor structure, and in fact a bimodule category.

b) Let A be a unital C∗-algebra and let AHilb
f
A be the finitely additive C∗-tensor category

from Example 5.3 b). If B is a unital C∗-algebra then the category AHilb
f
B of finitely

generated projective right Hilbert B-modules E equipped with a unital ∗-representation
A → L(E) and A-linear compact operators is a finitely additive left module category
over AHilb

f
A with the action given by interior tensor product.

c) Let A be a countably additive C∗-tensor category, and let KA the countably additive
C∗-tensor category from Example 5.5 c). Applying the categorical version of matrix
multiplication we obtain a KA-A-bimodule category

HA =
∞⊕
n=1

A,

viewing the objects of HA as column vectors of objects from A. Dually, by taking row
vectors instead we obtain a A-KA-bimodule category H∨A =

⊕∞
n=1 A with the same

underlying C∗-category.

Let us now discuss balanced bilinear functors and balanced tensor products. As above,
we only state the case of countably additive C∗-categories, since the finitely additive case
is analogous.

5.8. Definition. Let A be a countably additive C∗-tensor category. Moreover let V be a
right A-module category, W a left A-module category, and X ∈ C∗ Lin. An A-balanced
functor f : V ×W → MX is a nondegenerate bilinear ∗-functor together with a unitary
natural isomorphism β : f ◦ (⊗× idW) ⇒ f ◦ (idV×⊗), written βV,A,W : f(V ⊗ A,W ) →
f(V,A⊗W ), such that for all V ∈ V, A,B ∈ A,W ∈W the diagram
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f(V ⊗ A,B ⊗W )

f((V ⊗ A)⊗B,W ) f(V,A⊗ (B ⊗W ))

f(V ⊗ (A⊗B),W ) f(V, (A⊗B)⊗W )

βV,A,B⊗WβV⊗A,B,W

idf ∗(αV,A,B×id)

βV,A⊗B,W

idf ∗(id×αA,B,W )

is commutative.

Sometimes A-balanced functors are also called A-bilinear. If A = Hilb is the C∗-
tensor category of separable Hilbert spaces then any bilinear ∗-functor is automatically
A-balanced. According to Proposition 3.5 every A-balanced functor V ×W → MX
factorises through V�maxW, since being A-balanced is further structure and properties on
top of a nondegenerate bilinear ∗-functor. In the sequel we will often identify A-balanced
functors V ×W→MX with nondegenerate linear ∗-functors V �max W→MX.

5.9. Definition. Let f ,g : V×W→ X be A-balanced bilinear ∗-functors, with balancing
transformations β : f ◦ (⊗ × idW) ⇒ f ◦ (idV×⊗), γ : g ◦ (⊗ × idW) ⇒ g ◦ (idV×⊗),
respectively. A natural transformation φ : f ⇒ g is called A-balanced if

f(V ⊗ A,W ) f(V,A⊗W )

g(V ⊗ A,W ) g(V,A⊗W )

βV,A,W

φV⊗A,W φV,A⊗W

γV,A,W

is commutative for all V ∈ V,W ∈W, A ∈ A.

If V is a right A-module category, W a left A-module category and X ∈ C∗ Lin, then
A-balanced functors V×W→ A together with the A-balanced natural transformations
form a C∗-category which we denote by C∗ BilinA(V,W;X).

Let us now state the main result of this section.

5.10. Theorem. Let A ∈ C∗ Lin be a countably additive C∗-tensor category. Morever
let V1,V2 ∈ C∗ Lin be right and left A-module categories, respectively. Then there exists
a C∗-category V1 �A V2 ∈ C∗ Lin together with an A-balanced bilinear ∗-functor �A :
V1 ×V2 → V1 �A V2 such that precomposition with �A induces an equivalence of C∗-
categories

C∗ BilinA(V1,V2;W) ' C∗ Lin(V1 �A V2,W)

for all W ∈ C∗ Lin, pseudonatural in W.

Proof. Throughout the proof we shall abbreviate �max = �. Moreover we will write
⊗ : A�A→MA for the tensor product functor of A and denote by λ : A�V2 →MV2

and ρ : V1 �A→MV1 the module category actions.
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Let I be the opposite of the 2-truncated presimplicial category. This means that I is
the category with three objects 〈2〉, 〈1〉, 〈0〉 and morphism sets generated by morphisms
∂i : 〈n〉 → 〈n− 1〉 for 0 ≤ i ≤ n such that ∂i ◦ ∂j = ∂j−1 ◦ ∂i for i < j.

We consider the I-diagram ι : I → C∗ Lin obtained from the truncated Bar complex

V1 �A�A�V2 V1 �A�V2 V1 �V2

for V1,V2. That is, we let

ι(〈0〉) = V1 �V2

ι(〈1〉) = V1 �A�V2

ι(〈2〉) = V1 �A�A�V2,

and consider the 1-morphisms di = ι(∂i) given by

d0 = ρ� id

d1 = id�λ

in degree 1,

d0 = ρ� id� id

d1 = id�⊗� id

d2 = id� id�λ

in degree 2, and we set

ι(∂j−1 ◦ ∂i) = ι(∂i ◦ ∂j) = ι(∂i) ◦ ι(∂j).

for i < j. We also define ι〈2〉,〈1〉,〈0〉 : ι(∂i)◦ι(∂j)⇒ ι(∂i◦∂j) to be the identity transformation
for i < j, and let ι〈2〉,〈1〉,〈0〉 : ι(∂j−1) ◦ ι(∂i) ⇒ ι(∂j−1 ◦ ∂i) be given by the associativity
constraints, that is,

α� id : d0 ◦ d0 ⇒ d0 ◦ d1

id : d1 ◦ d0 ⇒ d0 ◦ d2

id�α : d1 ◦ d1 ⇒ d1 ◦ d2,

respectively. Together with ι(1〈j〉) = 1ι(〈j〉) and ι〈j〉 = id for j = 0, 1, 2 this determines ι
uniquely.

According to Theorem 4.3 there exists a bicolimit V1�AV2 ∈ C∗ Lin for this diagram,
together with a transformation T : ι → ∆(V1 �A V2) from ι to the constant diagram
with value V1 �A V2. In particular, there exists a nondegenerate linear ∗-functor �A =
T〈0〉 : ι(〈0〉) = V1 � V2 → M(V1 �A V2) and a natural isomorphism β = T〈1〉,〈0〉(∂1) ◦
T〈1〉,〈0〉(∂0)−1 : �A ◦ (ρ� id)⇒ �A ◦ (id�λ).
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The following argument, verifying that this data defines a balanced tensor product,
is folklore, but we shall carry out the details for the sake of completeness. In order to
improve legibility we will abbreviate j = 〈j〉 in the sequel.

It suffices to show that the category of transformations ι→ ∆(X) is equivalent to the
category of A-balanced functors V1 �V2 → MX for X ∈ C∗ Lin in a natural way. For
this we shall define F : [I, C∗ Lin](ι,∆(X))→ C∗ BilinA(V1,V2;X) on objects by sending
a transformation f : ι → ∆(X) to F (f) = f0, together with the natural isomorphism
βF (f) = f1,0(∂1) ◦ f1,0(∂0)−1. On the level of morphisms we define F (φ) = φ0.

To verify that F (f) and βF (f) yield an A-balanced functor we need to check the defining
relation in Definition 5.8. Using that f is a transformation we calculate

(βF (f) ∗ idid� id�λ) ◦ (βF (f) ∗ idρ�id� id)

= ((f1,0(∂1) ◦ f1,0(∂0)−1) ∗ idd2) ◦ ((f1,0(∂1) ◦ f1,0(∂0)−1) ∗ idd0)

= (f1,0(∂1) ∗ idd2) ◦ f2,1(∂2) ◦ f2,1(∂0)−1 ◦ (f1,0(∂0)−1 ∗ idd0)

= f2,0(∂1 ◦ ∂2) ◦ f2,0(∂0 ◦ ∂0)−1 ◦ (idf0 ∗ι2,1,0)

= f2,0(∂1 ◦ ∂1) ◦ f2,0(∂0 ◦ ∂1)−1 ◦ (idf0 ∗ι2,1,0)

= (idf0 ∗ι2,1,0) ◦ (f1,0(∂1) ∗ idd1) ◦ f2,1(∂1) ◦ f2,0(∂0 ◦ ∂1)−1 ◦ (idf0 ∗ι2,1,0)

= (idf0 ∗ι2,1,0) ◦ (f1,0(∂1) ∗ idd1) ◦ (f1,0(∂0)−1 ∗ idd1) ◦ (idf0 ∗ι2,1,0)

= (idF (f) ∗(id�α)) ◦ (βF (f) ∗ idid�⊗� id) ◦ (idF (f) ∗(α� id))

as required, showing that F is well-defined on objects. If φ : f → g is a modification then
the relations (φ0 ∗ iddj)◦ f1,0(∂j) = g1,0(∂j)◦φ1 for j = 0, 1 imply that F (φ) : F (f)⇒ F (g)
is an A-balanced natural transformation. It follows that F defines a functor as stated.

We claim that F is an equivalence of categories. Let g : V1 � V2 → MX be an
A-balanced functor. We define a transformation f : ι→ ∆(X) by setting

f0 = g

f1 = g ◦ d0

f2 = g ◦ d0 ◦ d0

on objects. Moreover let

f1,0(∂0) = id : f1 → f0 ◦ d0

f1,0(∂1) = β : f1 → f0 ◦ d1

in degree 1,

f2,1(∂0) = id : f2 = g ◦ d0 ◦ d0 → g ◦ d0 ◦ d0 = f1 ◦ d0

f2,1(∂1) = idg ∗(α� id) : f2 = g ◦ d0 ◦ d0 → g ◦ d0 ◦ d1 = f1 ◦ d1

f2,1(∂2) = β ∗ idρ�id� id : f2 = g ◦ d0 ◦ d0 → g ◦ d0 ◦ d2 = f1 ◦ d2
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in degree 2 and set fj,j(1j) = id for j = 0, 1, 2. We also need to fix f2,0 on the morphisms
from level 2 to level 0 in I, and in accordance with our choices for ι we let

f2,0(∂0 ◦ ∂0) = f2,0(∂0 ◦ ∂1) = (f1,0(∂0) ∗ idd1) ◦ f2,1(∂1)

f2,0(∂1 ◦ ∂0) = f2,0(∂0 ◦ ∂2) = (f1,0(∂0) ∗ idd2) ◦ f2,1(∂2)

f2,0(∂1 ◦ ∂1) = f2,0(∂1 ◦ ∂2) = (f1,0(∂1) ∗ idd2) ◦ f2,1(∂2).

Then the unit conditions for a transformation are trivially satisfied, and the remaining
conditions read

f2,0(∂i ◦ ∂j) = (idf0 ∗ι2,1,0) ◦ (f1,0(∂i) ∗ iddj) ◦ f2,1(∂j)

for all i, j. For i < j these equalities hold by construction. In addition we have

f2,0(∂0 ◦ ∂0) = f2,0(∂0 ◦ ∂1)

= (f1,0(∂0) ∗ idd1) ◦ f2,1(∂1)

= (id ∗ idd1) ◦ (idg ∗(α� id))

= idg ∗(α� id)

= (idg ∗(α� id)) ◦ (id ∗ idd0) ◦ id

= (idf0 ∗ι2,1,0) ◦ (f1,0(∂0) ∗ idd0) ◦ f2,1(∂0)

as required, and similarly

f2,0(∂1 ◦ ∂0) = f2,0(∂0 ◦ ∂2)

= (f1,0(∂0) ∗ idd2) ◦ f2,1(∂2)

= (id ∗ idd2) ◦ (β ∗ idρ�id� id)

= β ∗ idρ�id� id

= (β ∗ idd0) ◦ id

= (f1,0(∂1) ∗ idd0) ◦ f2,1(∂0).

Finally, the equality

f2,0(∂1 ◦ ∂1) = f2,0(∂1 ◦ ∂2)

= (f1,0(∂1) ∗ idd2) ◦ f2,1(∂2)

= (β ∗ idd2) ◦ (β ∗ idρ�id� id)

= (idg ∗(id�α)) ◦ (β ∗ idid�⊗� id) ◦ (idg ∗(α� id))

= (idf0 ∗ι2,1,0) ◦ (f1,0(∂1) ∗ idd1) ◦ f2,1(∂1)

follows from the defining relation of the A-balanced functor g. Hence f is indeed a
transformation, and since F (f) = g we conclude that F is essentially surjective.

If f ,g : ι → ∆(X) are transformations and φ : f → g is a modification such that
F (φ) = φ0 = 0, then the modification property implies φi = 0 for i = 0, 1, 2. It follows that
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F is faithful. Conversely, assume that ψ : F (f)→ F (g) is an A-balanced transformation.
Define φ : f → g by

φ0 = ψ

φ1 = g1,0(∂0)−1 ◦ (ψ ∗ idd0) ◦ f1,0(∂0)

φ2 = g2,1(∂0)−1 ◦ (g1,0(∂0)−1 ∗ idd0) ◦ (ψ ∗ idd0◦d0) ◦ (f1,0(∂0) ∗ idd0) ◦ f2,1(∂0).

Then (φ0 ∗ iddj) ◦ f1,0(∂j) = g1,0(∂j) ◦φ1 for j = 0 by definition, and for j = 1 this relation
follows form the fact that ψ is A-balanced, that is,

g1,0(∂1)−1 ◦ (ψ ∗ idd1) ◦ f1,0(∂1) = g1,0(∂1)−1 ◦ (ψ ∗ idd1) ◦ βF (f) ◦ f1,0(∂0)

= g1,0(∂1)−1 ◦ βF (g) ◦ (ψ ∗ idd0) ◦ f1,0(∂0)

= g1,0(∂0)−1 ◦ (ψ ∗ idd0) ◦ f1,0(∂0).

Similarly, for j = 0 we obtain the relation (φ1 ∗ iddj) ◦ f2,1(∂j) = g2,1(∂j) ◦φ2 directly from
the definition. To check the case j = 1 note that

φ2 = g2,0(∂0 ◦ ∂0)−1 ◦ (idg0 ∗ι2,1,0) ◦ (ψ ∗ idd0◦d0) ◦ (idf0 ∗ι−1
2,1,0) ◦ f2,0(∂0 ◦ ∂0)

= g2,0(∂0 ◦ ∂1)−1 ◦ (ψ ∗ idd0◦d1) ◦ f2,0(∂0 ◦ ∂1)

= g2,1(∂1)−1 ◦ (g1,0(∂0)−1 ∗ idd1) ◦ (ψ ∗ idd0◦d1) ◦ (f1,0(∂0) ∗ idd1) ◦ f2,1(∂1).

For j = 2 we calculate

φ2 = g2,1(∂0)−1 ◦ (g1,0(∂0)−1 ∗ idd0) ◦ (ψ ∗ idd0◦d0) ◦ (f1,0(∂0) ∗ idd0) ◦ f2,1(∂0)

= g2,1(∂0)−1 ◦ (g1,0(∂1)−1 ∗ idd0) ◦ (ψ ∗ idd1◦d0) ◦ (f1,0(∂1) ∗ idd0) ◦ f2,1(∂0)

= g2,0(∂1 ◦ ∂0)−1 ◦ (ψ ∗ idd1◦d0) ◦ f2,0(∂1 ◦ ∂0)

= g2,0(∂0 ◦ ∂2)−1 ◦ (ψ ∗ idd0◦d2) ◦ f2,0(∂0 ◦ ∂2)

= g2,1(∂2)−1 ◦ (g1,0(∂0)−1 ∗ idd2) ◦ (ψ ∗ idd0◦d2) ◦ (f1,0(∂0) ∗ idd2) ◦ f2,1(∂2).

It follows that φ : f → g is a modification, and we have F (φ) = ψ by construction. This
shows that F is full, and finishes the proof.

Let us conclude our discussion by describing two simple examples of balanced tensor
products.

5.11. Lemma. Let A be a countably additive C∗-tensor category. If V is a left A-module
category then the module category structure induces an equivalence of A-module categories

A�A V ' V.

An analogous statement holds for right module categories.

Proof. The nondegenerate linear ∗-functor λ : A�maxV→ V giving the module category
structure is A-balanced, so that it induces a nondegenerate linear ∗-functor λ : A �A

V → MV. We get a linear ∗-functor η : V → M(A �A V) induced by the functor
V → M(A �max V) given by η(V ) = 1 � V . The composite λ ◦ η is easily seen to be
naturally isomorphic to the identity. In the opposite direction we get (η ◦ λ)(X � V ) =
1 � (X ⊗ V ) ∼= X � V for X ∈ A and V ∈ V by balancedness, and it follows that η ◦ λ
is naturally isomorphic to the identity.
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Recall the infinite matrix C∗-tensor category over a countably additive C∗-tensor cat-
egory and its module categories described in Example 5.7 c).

5.12. Proposition. Let A be a countably additive C∗-tensor category. Moreover let KA

be the infinite matrix C∗-tensor category over A and let HA and H∨A be the associated
column and row bimodule categories, respectively. Then we have equivalences

H∨A �KA
HA ' A, HA �A H∨A ' KA

of A-A and KA-KA-bimodule categories, respectively.

Proof. We obtain balanced functors H∨A×HA → A and HA×H∨A → KA using categorical
matrix multiplication. These are naturally functors of A-A-bimodule categories and KA-
KA-bimodule categories, respectively. It is straightforward to check that both satisfy the
defining property of a balanced tensor product.
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[1] Adámek, J., and Rosický, J. Locally presentable and accessible categories,
vol. 189 of London Mathematical Society Lecture Note Series. Cambridge Univer-
sity Press, Cambridge, 1994.

[2] Albandik, S., and Meyer, R. Product systems over Ore monoids. Doc. Math.
20 (2015), 1331–1402.

[3] Albandik, S., and Meyer, R. Colimits in the correspondence bicategory. Münster
J. Math. 9, 1 (2016), 51–76.

[4] Ben-Zvi, D., Brochier, A., and Jordan, D. Integrating quantum groups over
surfaces. J. Topol. 11, 4 (2018), 874–917.

[5] Bischoff, M., Kawahigashi, Y., Longo, R., and Rehren, K.-H. Tensor cat-
egories and endomorphisms of von Neumann algebras—with applications to quantum
field theory, vol. 3 of SpringerBriefs in Mathematical Physics. Springer, Cham, 2015.

[6] Blackwell, R., Kelly, G. M., and Power, A. J. Two-dimensional monad
theory. J. Pure Appl. Algebra 59, 1 (1989), 1–41.
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