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METRIC SPACES OF EXTREME POINTS

ERNIE MANES

Abstract. It is shown that any compact metric space of diameter at most 2 embeds
isometrically as a linearly independent set of extreme points of the unit ball of a separable
Banach space. The proof illustrates how category theory can play a useful role in a
problem of functional analysis.

The well-known Arens-Eells embedding theorem [7] asserts that an arbitrary metric space
may be isometrically embedded as a set of linearly independent vectors in a Banach space.
We use elementary category theory to prove the following stronger result for compact
metric spaces.

Main Theorem Given a compact metric space (X, d) of diameter ≤ 2, there exists a
separable real Banach space F (X, d) in which (X, d) may be isometrically embedded with
image a linearly independent set of extreme points each of norm 1.

This result is counterintuitive. For example, consider the case with (X, d) the unit
interval. The isometry of the theorem provides a continuous curve in the “surface” of the
unit sphere. Hence the image of such a curve can be a linearly independent set of extreme
points.

In the first section of the paper we will review some basic definitions and facts. In
the second section we introduce free Banach spaces. The third section proves the main
theorem using the free Banach space generated by a metric space.

There is some literature concerned with categories of Banach spaces (see [9, 8, 2]
and the references cited there). These develop interesting concepts which have little
intersection with mainstream functional analysis. This paper attempts to demonstrate
that such an intersection is possible.

We thank the referee for helpful suggestions.

1. The Role of Extreme Points

See [6] for a wealth of theory and examples concerning Banach spaces. We outline here
some basic definitions and facts which we need.
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Let X be a real vector space. A norm on X is a function ‖ · ‖ : X → [0,∞)] satisfying
‖ x + y ‖≤‖ x ‖ + ‖ y ‖, ‖ λx ‖= |λ| ‖ x ‖ for all λ ∈ RR and ‖ x ‖= 0 ⇔ x = 0.
If ‖ · ‖ is a norm then (X, d) is a metric space if d(x, y) = ‖ x − y ‖. We then define
the ball of radius r to be Br = {x ∈ X : ‖ x ‖≤ r} and the sphere of radius r to be
Sr = {x ∈ X : ‖ x ‖= r}. B1 is the unit ball and S1 is the unit sphere.

For a, b ∈ X we define the line segment [a, b] to be {λ a + (1 − λ) b : 0 ≤ λ ≤ 1}.
Here a, b are the endpoints of the segment and all other points in the segment are its
interior points. A nonempty subset C ⊂ X is convex if [a, b] ⊂ C whenever a, b ∈ C.
For example, Br is convex for every norm. A subset B ⊂ X is radial at 0 if 0 ∈ B and
if for every 0 6= x ∈ X, there exists λ > 0 such that [0, λx] ⊂ B. For every norm, each Br

is radial at 0.
A subset B of X is the unit ball of some norm if and only if it is convex and radial

at 0. This is easy to prove: ‖ x ‖= (
∨
{λ ∈ RR : [0, λx] ⊂ B})−1. This opens up the

possibility of “generating a norm” by generating B1. Now any intersection of convex sets
is convex, so the convex hull of a set is the smallest convex set containing it. In RR2, any
square centered on the origin is convex and radial at 0 and it is finitely generated being
the convex hull of its four corners.

For any subset A ⊂ X, e ∈ A is an extreme point of A if no line segment contained
in A has e as interior point. In the example above with B1 a square centered at the origin
in the plane, the extreme points of B1 are its four corners and B1 is the convex hull of its
extreme points. For the Euclidean norm ‖ (x, y) ‖=

√
x2 + y2 in the plane, the extreme

points of B1 is all of S1, a circle of radius 1, and it is still true that B1 is the convex hull
of its extreme points.

A (real) Banach space is a real vector space with a norm whose metric is complete,
that is, every Cauchy sequence converges. All finite dimensional normed spaces are Banach
spaces and any two are homeomorphic [6, Corollary 1.4.17].

We are led to consider the question of whether the unit ball of a Banach space is,
in some appropriate sense, generated by its extreme points. This cannot always happen,
since there exist Banach spaces whose unit ball has no extreme points [6, Example 2.10.4].
Even so, there are large classes of Banach spaces possessing a more affirmative answer as
we now discuss.

An important construction is the dual X? of a normed space X which is the vector
space of all of the continuous linear maps f : X → RR with norm ‖ f ‖=

∨
{|fx| : ‖ x ‖=

1}. Even if X is not complete, X? is always a Banach space.
In a normed linear space, a subset is bounded if it is contained in Br for some r > 0.
Now, any normed space X is a topological vector space, that is, addition and

scalar multiplication are continuous X × X → X, RR × X → X. Every normed space
is Hausdorff. In any topological vector space, the closure of a convex set is convex so
the smallest closed and convex set containing a subset A is the closure of the convex hull
of A. A topological vector space is locally convex if every neighborhood of the origin
contains a convex neighborhood of the origin. Any normed space is locally convex. Thus
the following theorem applies:
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Krein-Milman Theorem [6, Theorem 2.10.6] In any locally convex, Hausdorff topo-
logical vector space, every non-empty compact convex set is the closed convex hull of its
extreme points.

For a finite-dimensional Banach space, the unit ball is closed and bounded so is com-
pact by the Heine-Borel theorem. For any infinite dimensional normed space, the unit
ball, while closed and bounded, is not compact [1]. For a dual space X? there is a way
around this problem. If (Yi) is a family of topological vector spaces and fi : X → Yi are
linear maps, the smallest topology on X rendering the fi continuous makes X a topologi-
cal vector space. If X is a normed space, we may apply this construction to the continuous
linear maps {X? evx−−→ X : x ∈ X} where evx(f) = fx. In this way, X? is a topological
vector space which, in general, has fewer open sets than it has in the norm topology, but
the space is still Hausdorff by the Hahn-Banach theorem stated in Theorem 2.3. This
new topology is called the weak-? topology on X?. We have

Banach-Alaoglu Theorem [6, Theorem 2.6.18] For any normed space X, the unit
ball of X? is compact in the weak-? topology.

Thus the Krein-Milman theorem gives that, in the Banach space X?, the unit ball is
the weak-? closure of the convex hull of its extreme points (and, in particular, the unit
ball has extreme points).

For any normed space X, the canonical map ev : X → X??, x 7→ evx, is a linear
isometry. If this map is surjective, X is said to be reflexive. In that case, X is linearly
isometric to a dual space so must be a Banach space. Every finite-dimensional Banach
space is reflexive [6, Theorem 1.11.9].

Two sections of [6] are devoted to characterizations of reflexive Banach spaces. One
of the most basic results was proved by Smullyan in 1939 and is as follows:

Theorem [6, Theorem 1.13.9] A Banach space is reflexive if and only if each descending
sequence of non-empty closed and bounded convex sets has non-empty intersection.

2. Free Banach Spaces

To define a category of Banach spaces we must settle on a notion of morphism. One very
natural choice would be continuous linear maps. There is some danger that respecting
the topology as opposed to the norm, we will lose information. The following shows that
this is not really true.

2.1. Proposition. Let X, Y be Banach spaces and let ψ : X → Y be a linear map.
Then ψ is continuous if and only if ψ is bounded, that is, there exists M > 0 such that
‖ fx ‖ ≤ M ‖ x ‖ for all x ∈ X.

Proof. If ψ is continuous then ψ−1(0) is a neighborhood of 0 so there exists r > 0 with
ψ(Br) ⊂ B1, i.e., ‖ x ‖ ≤ r ⇒‖ ψx ‖ ≤ 1. Let λ = r

‖x‖ . As ‖ λx ‖= r, λ ‖ ψx ‖ ≤ 1 so

‖ ψx ‖ ≤ 1
r
‖ x ‖. Conversely, let ψ be bounded and let xn be a sequence converging to
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x in X. Then ‖ ψx − ψxn ‖= ‖ ψ(x − xn) ‖≤ M ‖ x − xn ‖ and this converges to 0, so
ψxn converges to ψx and ψ is continuous.

When ψ as above is a continuous linear map, the norm ‖ ψ ‖ of ψ is the infimum of
all M as in the Proposition. With this norm, the vector space [X, Y ] of all continuous
linear maps X → Y is a Banach space. It is well known that there is a notion of tensor
product (see [2]) with respect to which Banach spaces and continuous maps becomes a
closed monoidal category with internal hom [X, Y ].

Even so, we reject continuous linear maps as our choice of morphism. This is because
the category of Banach spaces and continuous linear maps does not have infinite products.
To see this, suppose πn : P → RR (n ∈ IN) were a countably infinite power of the scalar
field. Let fn : RR → RR be the continuous linear map fnλ = ‖ πn ‖ nλ. By the universal
property there exists continuous linear ψ : RR→ P with πnψ = fn for all n. Then

‖ πn ‖ n = |fn1| = |πnψ1| ≤ ‖ πn ‖‖ ψ ‖

We can assume no πn = 0, so this gives the contradiction that ‖ ψ ‖ ≥ n for all n.
Our choice of morphism is as follows:

2.2. Definition. The category Ban has Banach spaces as objects and norm-decreasing
linear maps as morphisms.

Thus the morphisms have been chosen as those continuous linear ψ with ‖ ψ ‖ ≤ 1.
That this forms a category is routine.

We note that the isomorphisms ψ : X → Y of Ban are those linear isomorphisms
which are also isometries, ‖ ψx− ψy ‖ =‖ x− y ‖. To see this,

‖ x− y ‖ = ‖ ψ−1(ψx− ψy) ‖ ≤ ‖ ψx− ψy ‖
= ‖ ψ(x− y) ‖ ≤ ‖ x− y ‖

Before stating the main theorem of this section, we recall the Hahn-Banach theorem
[6, 1.9.6]

2.3. Theorem. Let X be a normed vector space and let A be a vector subspace of X.
Then every RR-valued continuous linear function on A extends to a continuous linear
function on X with the same norm.

2.4. Theorem. Let C be a locally small category. Every functor U : Ban → C which
preserves limits has a left adjoint.

Proof. We check all the conditions of the special adjoint functor theorem. If f, g : X → Y
then E = {x ∈ X : fx = gx} is a closed vector subspace of X and so is a Banach space
since a closed subset of a complete metric space is complete. It is easy to show that the
inclusion of E provides the equalizer of f, g in Ban. Let (Xi : i ∈ I) be a family of Banach
spaces. Let P be the set of all I-tuples (xi) with xi ∈ Xi such that

∨
‖ xi ‖ <∞ and let

πi : P → Xi map (xj) to xi, a norm-decreasing map. That this forms a product in Ban
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is immediate. Thus Ban is a locally small category with small limits. Let ψ : X → Y be
monic in Ban and let x, y ∈ X with x 6= y. Let φ : RR→ X be the morphism φλ = λ x−y

‖x−y‖ .
If ψx = ψy then ψφ = ψ0. As φ 6= 0, this contradicts ψ being monic. It follows that
monics are injective functions in Ban. In particular, Ban is well-powered, that is, every
object has a small set of subobjects. To complete the proof, we show RR is a cogenerator,
that is, if φ, ψ : X → Y with φ 6= ψ then there exists γ : Y → RR with γφ 6= γψ. If
φx 6= ψx, S = RR(φx − ψx) is a nonzero subspace of Y . Let ho : S → RR be the linear
map sending φx−ψx

‖φx−ψx‖ to 1. Then ‖ ho ‖= 1. By the Hahn-Banach theorem, there exists
a norm-1 extension γ : Y → RR so γ is a morphism in Ban and γφ 6= γψ.

For (X, d) a metric space, f : X → RR is a Lipschitz function if there exists M ≥ 0
with |fx − fy| ≤ Md(x, y) for all x, y ∈ X. Bounded Lipschitz functions comprise a
Banach space Lip(X, d) with ‖ f ‖ the maximum of

∨
(|fx| : x ∈ X) and the infimum of

all M above.
We will take a closer look at Lip(X, d) in the next section.

3. Free Banach Spaces Over a Metric Space

In this section, we prove the main theorem as well as Theorem 3.8 by studying the left
adjoint of a particular functor Ban→Met where

3.1. Definition. Met is the category of metric spaces and maps f : (X, d) → (Y, e)
which satisfy e(fa, fb) ≤ d(a, b) for all a, b ∈ X. Such maps are said to be distance-
decreasing

That Met is a category is routine. Since distance is a function of two variables as
opposed to norm which is a function of only one, the device used to define products in
Ban does not work in Met. On the other hand, let (Xi, di) be a family of metric spaces
with each of diameter ≤M , that is, di(a, b) ≤M for all a, b ∈ Xi. Then the usual product
set

∏
Xi with metric d((xi), (yi)) =

∨
di(xi, yi) provides a product in Met. The proof is

routine.
For the balance of the paper, let U : Ban → Met be the unit ball functor mapping

the Banach space X to its unit Ball UX = B1 considered as a metric space. Because a
map in Ban has norm ≤ 1 it maps the unit ball into the unit ball. Since maps in Ban
are distance-decreasing X → Y their restriction UX → UY remains distance-decreasing.

3.2. Theorem. U : Ban→Met has a left adjoint.

Proof. While a product in Ban is not built on the whole cartesian product set, the unit
ball of the product is the cartesian product of the unit balls. Thus U preserves products
based on the discussion of products of metric spaces of diameter ≤ 2 above. That U
preserves equalizers is routine. Now use Theorem 2.4.
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To spell out what the previous theorem says, given an arbitrary metric space (X, d)
there exists a Banach space F (X, d) called the free Banach space generated by (X, d)
together with a distance-decreasing map η : (X, d) → UF (X, d) possessing the universal
mapping property summed up by the following diagram:

(X, d) UF (X, d)
η //(X, d)

UE

f

��?
??

??
??

??
??

??
??

?
UF (X, d)

UE

Uψ

��

F (X, d)

E

F (X, d)

E

ψ

��

In detail, for every Banach space E and distance-decreasing map f : (X, d)→ UE there
exists a unique linear, norm-decreasing map ψ : F (X, d) → E such that the triangle
commutes.

The next series of lemmas studies the properties of η. We begin with a preliminary
result which is due to [7].

3.3. Lemma. Let (X, d) be any metric space. Then there exists a Banach space C and
an isometry h : (X, d)→ C, i.e. ‖ hx− hy ‖= d(x, y) for all x, y ∈ X.

Proof. This is trivial if X has 2 or fewer elements. Otherwise, let yo 6= zo ∈ X. Let
Y = X ∪ {xo} where xo /∈ X and extend d to a metric e on Y by

e(x, xo) =
1

2
( d(yo, x) + d(zo, x) )

That e is a metric is routine. In [7] is is shown that the subspace of L of functions in
Lip(Y, e) with f(x0) = 0 provided with a modified Lipschitz norm is such that (Y, e) is
isometrically embedded in the dual space L? via y 7→ evy.

3.4. Lemma. Let (X, d) be a metric space of diameter ≤ 2. Then η : (X, d) → F (X, d)
is an isometry.

Proof. Let Y = X ∪ {xo} with xo /∈ X and extend d to a metric e on Y by e(x, xo) = 1
for all x ∈ X. That this is a metric is trivial. Applying Lemma 3.3, there exists a Banach
space C and an isometry g : (Y, e) → C. Define h : (Y, e) → UC by hy = gy − gx0. We
have

‖ hy ‖ = ‖ gy − gx0 ‖ = e(y, xo) ∈ {1, 0}
so this is well defined. Also, h is an isometry because z 7→ z−gx0 is. Let t : (X, d)→ UC
be the restriction of h to (X, d). Induce ϕ by the universal mapping property (Uϕ)η = t.
It follows that

d(x, y) = ‖ tx− ty ‖ = ‖ ϕηx− ϕηy ‖ ≤ ‖ ϕ ‖ ‖ ηx− ηy ‖
≤ ‖ ηx− ηy ‖ ≤ d(x, y)

the last because η is distance-decreasing.
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The next result shows that any metric space of diameter ≤ 2 may be isometrically
embedded in the unit sphere of a Banach space.

3.5. Lemma. For any metric space (X, d), η : (X, d) → UF (X, d) maps all elements of
X to unit vectors.

Proof. The universal property of freeness induces a diagram

(X, d) UF (X, d)
η //(X, d)

URR

1

��?
??

??
??

??
??

??
??

?
UF (X, d)

URR

Uψ

��

F (X, d)

RR

F (X, d)

RR

ψ

��

where 1 is the constant function with value 1. As ψηx = 1,

1 = |ψηx| ≤ ‖ ψ ‖ ‖ ηx ‖≤‖ ηx ‖≤ 1.

3.6. Lemma. Let (X, d) be a metric space of diameter ≤ 2. Then the image of η :
(X, d)→ UF (X, d) is a linearly independent set.

Proof. For a ∈ X, da(x) = d(a, x) is a distance-decreasing function (X, d) → RR since
d(a, x) ≤ d(a, y)+d(y, x) ⇒ |d(a, x)−d(a, y)| ≤ d(x, y). A routine calculation shows that
if f1, . . . , fn are distance-decreasing then f1∧· · ·∧fn also is. Now suppose x1, . . . , xn+1 are
distinct elements of X and let f : (X, d)→ [0, 1] be the distance-decreasing map defined
by

fx =
1

4
( d(x1, x) ∧ · · · ∧ d(xn, x) )

By the universal property, there exists ψ : F (X, d) → RR in Ban with (Uψ) η = f . If
η xn+1 = λ1(ηx1) + · · ·+ λn(ηxn) we obtain the contradiction

0 6= f(xn+1) = ψ η xn+1 =
∑

λi f(xi) = 0

This shows that η x1, . . . , η xn+1 cannot be dependent.

3.7. Lemma. F (X, d) is the closed linear span of η(X).

Proof. Let E be the closed linear span of η(X) with inclusion i : E → F (X, d). Since E is
a Banach space, there exists unique ψ : F (X, d)→ E in Ban with (Uψ)η = η0 : X → UE,
the range-restriction of η. Then iψ : F (X, d) → F (X, d) in Ban satisfies U(iψ) η = η so
iψ = idF (X,d) and i : E → F (X, d) is surjective as desired.
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We turn now to some applications of the theory so far. It is always interesting to ask
if a given Banach space is the dual of some other Banach space. This would prove, for
instance, that the unit ball would have extreme points.

[10, Section 2] was devoted to showing if (X, d) is the unit cube in RRn with an appro-
priate metric, then Lip(X, d) is a dual space. Two years later, [3, Theorem 4.1] showed
that this was true for all metric spaces. The following, proved by the author in 1974,
showed that Lip(X, d) is the dual of the free Banach space F (X, d). This leads to:

3.8. Theorem. Let (X, d) be a metric space and let T be the smallest topology making
the linear maps Lip(X, d) → RR, f 7→ fx (for x ∈ X) continuous. Then the unit ball of
Lip(X, d) is the T -closed convex hull of its extreme points.

Proof. Lip(X, d) ∼= F (X, d)? by [5, Example 1.1 and Corollary 3.2]. That the weak-?
topology transfers as stated to Lip(X, d) is obvious.

The way one proves that Lip(X, d) ∼= F (X, d)? in the above proof is to scale down
a Lipschitz function to map f : (X, d) → UF (X, d) to yield a corresponding element of
F (X, d)? using the universal property. The cited proof takes care of the details. The result
is a good example of how the existence of the free Banach space has specific consequences
without needing to determine its detailed structure.

That being said, the next result determines an aspect of the structure of F (X, d).

3.9. Theorem. Let (X, d) be a metric space of diameter at most 2, and let D ⊂ X be
dense. Define a set X̂ of unit vectors in F (X, d) by

X̂ = { ηa− ηb
‖ ηa− ηb ‖

: a 6= b ∈ D} ∪ {ηx : x ∈ D} ∪ {−ηx : x ∈ D}

Then the closed convex hull of X̂ is all of B1.

Proof. Let C be the closed convex hull of X̂. Suppose ‖ u ‖≤ 1 in F (X, d) with u /∈ C.
We seek a contradiction. As X̂ = −X̂, it follows from the theorem of strong separation
[4, Corollary 14.4] that there exists a linear functional f : F (X, d)→ RR with∨

{|fy| : y ∈ C} < 1 < fu

Noting that η(X) ⊂ C, let g be the restriction of f to η(X). For x, y ∈ X with x 6= y there
exist sequences an, bn in D with an 6= bn, an ⇁ x, bn ⇁ y (where ⇁ denotes convergence).
We have

|gηx− gηy|
‖ ηx− ηy ‖

= limn f(
|ηan − ηbn|
‖ ηan − ηbn ‖

) ≤ 1

so that g : (X, d)→ [−1, 1] is distance-decreasing and so has a linear extension of norm≤ 1
by the universal mapping property. By Lemma 3.7, any two continuous linear functionals
on F (X, d) agreeing on η(X) must be equal. But f is an extension of g with norm > 1,
the desired contradiction.
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A Banach space is separable if it is the closed linear span of a countable set.

Proof of the main theorem. Let (X, d) be compact. In particular, (X, d) has a
countable dense set. We will show that the free Banach space F (X, d) has the desired
properties. By Theorem 3.9, the unit ball is the closed convex hull of a countable set
so F (X, d) is the closed span of a countable set, hence is separable. It remains to show
that η(X) consists of extreme points, since then η is the desired embedding. We note the
obvious fact that if X is a vector subspace of a vector space Y and if a ∈ A ⊂ X then
if a is an extreme point of A in Y it is also an extreme point of A in X. Recall from
Theorem 3.8 that Lip(X, d) ∼= F (X, d)?. Now using compactness of (X, d), it is proved in
[10, Lemma 1.2] that the evaluation function evx : Lip(X, d)→ RR is an extreme point of
the unit ball of (Lip(X, d))?. Putting these together, for x ∈ X, ηx is an extreme point of
the unit ball of (F (X, d))?? so is a fortiori an extreme point of the unit ball in F (X, d).
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