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RANK-BASED PERSISTENCE

MATTIA G. BERGOMI AND PIETRO VERTECHI

Abstract. Persistence has proved to be a valuable tool to analyze real world data ro-
bustly. Several approaches to persistence have been attempted over time, some topolog-
ical in flavor, based on the vector space-valued homology functor, others combinatorial,
based on arbitrary set-valued functors. To unify the study of topological and combina-
torial persistence in a common categorical framework, we give axioms for a generalized
rank function on objects in a target category so that functors to that category induce
persistence functions. We port the interleaving and bottleneck distances to this novel
framework and generalize classical equalities and inequalities. Unlike sets and vector
spaces, in many categories the rank of an object does not identify it up to isomorphism:
to preserve information about the structure of persistence modules, we define colorable
ranks, persistence diagrams and prove the equality between multicolored bottleneck
distance and interleaving distance in semisimple Abelian categories. To illustrate our
framework in practice, we give examples of multicolored persistent homology on filtered
topological spaces with a group action and labeled point cloud data.

1. Introduction

Topological persistence offers valuable tools to give encompassing representations of the
geometry and topology of sampled objects, even in high dimension. Moreover, persistent
homology and its encoding via persistence diagrams are endowed with essential properties
in data analysis, such as stability [10] and resistance to occlusions [11]. Equipped with
these fundamental features, persistent homology has been successfully employed in a vast
number of applications [16].

We provided a first generalized theory of persistence to concrete categories in [4]. This
first generalization allows one to define persistence in a very general setting, that includes
not only topological spaces or weighted graphs but also arbitrary categories of presheaves.
However, it fails to fully generalize the classical theory, for it does not show how to define
persistence functions based on functors to the target category of vector spaces (such as the
homology functors). The primary technique developed in [4] to define stable persistent
functions (named coherent sampling) requires using finite sets as target category, thus
failing to recover, for example, the study of higher persistent homology groups.
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Here, we aim at providing a new categorical generalization, embracing both the classi-
cal theory and the framework described in [4]. With this aim in mind, we first decompose
classical persistent homology into its basic ingredients: 1. A filtration in a source category
Top. 2. A functor Hk from the source category to a target category FinVecK. 3. A notion
of rank in the target category (the dimension of the vector space).

Thereafter, we explore which axioms each of these ingredients must respect for the
classical results on persistence diagrams, bottleneck and interleaving distances to hold.

Not only we establish a common generalization of the combinatorial [4] and topological
approach to persistence [13], but we also find examples of novel target categories, different
from FinSet or FinVecK, giving rise to persistence modules with structure. Of particular
interest is the case of persistent group representations, which arises naturally in the study
of filtrations of topological spaces or simplicial objects with a group action compatible
with the filtering function. By coloring the resulting persistence diagram, we are able to
recover a notion of similarity that respects the structure of our target category, e.g., the
group action. This construction holds in any target semisimple Abelian category: we show
examples arising from labeled point cloud datasets, relevant for instance in a machine
learning context.

The paper is organized as follows. In section 2 we determine what are the features
of the functions cardinality of a set and dimension of a vector space that make them
suitable as a notion of rank of an object in a target category. We lay down an axiomatic
foundation for such rank functions in the general setting of regular categories and provide
as an example the length of an object in an Abelian category, which naturally generalizes
the dimension of a vector space. In section 3, we first show how a functor from an arbi-
trary category to a regular category equipped with a rank function defines a categorical
persistence function. Then, we port the classical notions (e.g. regular and critical value,
tameness and cornerpoint multiplicity) to the categorical setting and use them to define
persistence diagrams. We show how persistence diagrams relate to persistence modules
in the case of a semisimple category. Finally, we discuss the notions of interleaving and
bottleneck distance and prove the inequality between them, i.e. that the interleaving dis-
tance is always greater or equal than bottleneck, with great generality. Equality between
the two distances requires additional assumptions: in section 4 we discuss how, in the case
of a semisimple target category, one can color the persistence diagram: a bottleneck dis-
tance computed allowing only color-preserving bijections is then equal to the interleaving
distance. We finally show examples of multicolored persistence in the case of topological
spaces with group actions and labeled point clouds.

For the sake of readability, we provide and exemplify basic definitions of category
theory in appendix A.

2. Rank functions in regular categories

Historically, there have been two different treatments of persistent homology, one associ-
ating to a map of topological spaces the cardinality of the image of a map of sets [17],
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the other the dimension of the image of a map of vector spaces [14]. To unify them in
a common framework, we introduce here the concept of ranked category, i.e. a regular
category definition A.25) equipped with an integer-valued rank function on objects.

The reason behind choosing to work with regular categories is that, by definition,

every morphism X
ϕ−→ Y in a regular category R can be factored in X

ε−→ Z
µ
↪−→ Y such

that ϕ = µ ◦ ε, where µ is a monomorphism (definition A.4) and ε a regular epimorphism
(definition A.24), which in turn gives a good notion of image of a morphism (Z being

the image of X
ϕ−→ Y ). This notion of image will allow us to define persistence functions

based on the rank of the image of a morphism. As both monomorphisms and regular epi-
morphisms are preserved by pullbacks (definition A.19), we will be able to prove classical
properties of persistence by building appropriate diagrams.

2.1. Definition. Let R be a regular category. Given a lower-bounded function r :
Obj(R) → Z, we say that r is a rank function if:

1. For any monomorphism A ↪→ B, r(A) ≤ r(B)

2. For any regular epimorphism B ↠ D, r(B) ≥ r(D)

3. For any pullback square:

A B

C D

ι1

π1 π2

ι2

where ι1, ι2 are monomorphisms and π1, π2 are regular epimorphisms, the following
inequality holds:

r(B)− r(A) ≥ r(D)− r(C)

We say that a rank function r is strict if the inequalities in conditions 1 and 2 are strict
unless the morphisms are invertible. If furthermore R has an initial object ∅ and r(∅) = 0,
we say that r is 0-based. A ranked category (R, r) is simply a regular category R equipped
with a rank function r.

The pullback requirement in the third condition is not necessary: this will prove useful
in the following sections when working with functors that do not preserve pullback squares.

2.2. Proposition. Given a ranked category (R, r), for any commutative square (not
necessarily pullback):

A′ B

C D

ι′1

π′
1

π2

ι2

where ι2 is a monomorphism and π2 is a regular epimorphism, the following inequality
holds:

r(B)− r(A′) ≥ r(D)− r(C)
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Proof. We can build the pullback square:

A B

C D

ι1

π1 π2

ι2

where ι1 is a monomorphism (as it is pullback of a monomorphism) and π1 is a regular
epimorphism (as it is pullback of a regular epimorphism).

Therefore r(B) − r(A) ≥ r(D) − r(C). We have a natural monomorphism A′ ↪→ A,
therefore, by property 1:

r(B)− r(A′) ≥ r(B)− r(A) ≥ r(D)− r(C)

2.3. Proposition. If a functor F : Q → R preserves the image factorization, i.e. it
preserves monomorphisms and regular epimorphisms, and r is a rank function on R, then
r ◦ F : Obj(Q) → Z is a rank function on Q.

Proof. As F preserves monomorphisms, given a monomorphism A ↪→ B we have a
monomorphism F (A) ↪→ F (B) and therefore r(F (A)) ≤ r(F (B)). Similarly given a
regular epimorphism B ↠ D we have a regular epimorphism F (B) ↠ F (D) so r(F (B)) ≥
r(F (D)). Finally, given a pullback square:

A B

C D

We have a commutative square (not necessarily pullback):

F (A) F (B)

F (C) F (D)

By proposition 2.2 we have r(F (B))− r(F (A)) ≥ r(F (D))− r(F (C))

This in particular applies to regular functors, i.e. functors that preserve regular epi-
morphisms and finite limits, as preserving limits implies preserving monomorphisms.

2.4. Fiber-wise rank functions. In this section we formalize the notion of fiber-wise
rank function, i.e. a function respecting the assumptions of definition 2.1, whose behavior
on regular epimorphisms can be determined from fibers on “points” (see definition A.22).
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2.5. Definition. Given a regular category R with terminal object pt, we say that a

function r : Obj(R) → Z is fiber-wise if, for all regular epimorphism B
ϕ
↠ D, we have

the following equality:

r(B)− r(D) =
∑

ι∈Hom(pt,D)

(r(B ×ι
D pt)− r(pt)) (1)

where the B ×ι
D pt realizes the pullback:

B ×ι
D pt B

pt D

ϕ

ι

The conditions of definition 2.1 become easier to prove in the case of fiber-wise func-
tions.

2.6. Proposition. Let R be a regular category with terminal object pt and r : Obj(D) →
Z a lower-bounded function such that:

1. For any monomorphism A ↪→ B, r(A) ≤ r(B)

2. For any regular epimorphism A↠ pt, r(A) ≥ r(pt)

3. r is fiber-wise

Then r defines a rank function on R.

Proof. We will prove that r respects the assumptions of definition 2.1. It obviously
respects the first assumption. It also respects the second as, given A↠ C:

r(A)− r(C) =
∑

ι∈Hom(pt,C)

(r(A×ι
C pt)− r(pt))

and the right-hand side is ≥ 0 as it is a sum of nonnegative quantities. To verify assump-

tion 3, let us consider an inclusion pt
ι
↪−→ C and the following diagram, where all squares

are pullback

A×ι
C pt A B

pt C D

ι1

π1 π2

ι ι2

As the outermost square is pullback, we have an isomorphism A×ι
C pt ≃ B×ι2◦ι

D , thus

r(A)− r(C) =
∑

ι∈Hom(pt,C)

(r(A×ι
C pt)− r(pt)) =

∑
ι∈Hom(pt,C)

(r(B ×ι2◦ι
D pt)− r(pt))

≤
∑

ι′∈Hom(pt,D)

(r(B ×ι′

D pt)− r(pt)) = r(B)− r(D)

where the inequality comes from the fact that all summands are nonnegative and one sum
has all the summands of the other plus potentially some more.
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Under the stronger assumptions of Abelian category (definition A.28), the fiber-wise
condition simplifies greatly. As Abelian categories have a null object, given an epimor-

phism B
ϕ
↠ D, eq. (1) is equivalent to r(B) − r(D) = r(ker(ϕ)) − r(0), where of course

ker(ϕ) ↪→ B
ϕ
↠ D is a short exact sequence.

2.7. Proposition. Let R be an Abelian category. Then r : Obj(R) → Z is fiber-wise if
and only if for all short exact sequence A ↪→ B ↠ D, r(A) + r(D) = r(B) + r(0).

In the Abelian case fiber-wise functions require less assumptions to verify the rank
properties:

2.8. Proposition. Let R be an Abelian category. If r : Obj(R) → Z is fiber-wise and
for all D ∈ Obj(R), r(0) ≤ r(D) then r is a rank. Furthermore, if r(0) = r(D) only if D
is null then r is strict.

Proof. We can embed any monomorphism or epimorphism in a short exact sequence
A ↪→ B ↠ D where, as r is fiber-wise, r(0) + r(B) = r(A) + r(D). As r(0) ≤ r(D),
r(B) ≥ r(A). Similarly, as r(0) ≤ r(A), r(B) ≥ r(D).

To prove strictness, let us assume for example that r(A) = r(B), then r(D) = r(0)
therefore D is null so A ≃ B. Similarly if r(B) = r(D) then r(A) = r(0) therefore A is
null so B ≃ D.

Examples of fiber-wise rank functions. The cardinality function |− | : FinSet →
Z is fiber-wise (the terminal object pt being the singleton). Indeed given a surjective map

of sets A
f
↠ D:

|A| − |D| =
∑
d∈D

(|f−1(d)| − 1)

| − | is clearly a rank function: it is nondecreasing on monomorphisms and nonin-
creasing on epimorphisms. | − | is also strict, as a monomorphism (or an epimorphism)
between two sets with the same number of elements is invertible.

The category FinVecK is regular and the dimension function is a strict fiber-wise rank.
This case can be generalized to a wide variety of Abelian categories. We recall from [15,
Sect. 1] that, in an Abelian category an object X has finite length if there exists a series
of inclusions:

0 ≃ X0 ↪→ X1 ↪→ · · · ↪→ Xn ≃ X

where all quotients Xi/Xi−1 are simple. If such series exists, then length(X) = nIf all
objects in an Abelian category have finite length, we say that the category has finite
length.

The function length is 0-based and, by [15, Sect. 1], for all short exact sequence
A ↪→ B ↠ D, we have length(B) = length(A) + length(D) so, by proposition 2.7, length
is fiber-wise.
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2.9. Proposition. Given D an Abelian category of finite length, the function

length : Obj(D) → Z

is a strict 0-based fiber-wise rank.

Proof. length is nonnegative, and length(X) = 0 if and only if X is initial so, by
proposition 2.8, it is a strict 0-based fiber-wise rank.

The rank function length is characterized by the following two features: 1. It is 0-based
and fiber-wise. 2. It has value 1 on simple objects. Furthermore length and |− | share the
additive property, i.e. given two objects X, Y ∈ Obj(R), r(X ⨿ Y ) = r(X) + r(Y ).

2.10. Remark. Even though the category FinModZ of finitely generated Abelian groups
(i.e. finitely generated Z-modules) does not have finite length, we have an image factor-
ization preserving functor − ⊗Z Q : FinModZ → FinVecQ. By proposition 2.3, the
rank function dim : Obj(FinVecQ) → Z induces a rank function on FinModZ, which
coincides with the rank of finitely generated Abelian groups.

3. Categorical persistence

In general, given an arbitrary functor Ψ from a source category C to a regular target
category R equipped with a rank r, we can not naturally define a rank on C, unless
C is regular and Ψ preserves the image factorization (i.e. monomorphisms and regular
epimorphisms), see proposition 2.3. Unfortunately, these assumptions do not hold in
many common cases: for instance the category Top is not regular and, even though
FinSimp is regular, no homology functor Hk : FinSimp → FinVec preserves the image
factorization. However, we can still define an integer-valued function on the morphisms
of C, as a categorical persistence function. While categorical persistence functions have
very mild assumptions, they will be sufficient to guarantee the classical constructions
and results of persistent homology. See table 1 for an intuitive comparison between the
classical framework and ours.

3.1. Categorical persistence functions. In persistent homology, the functor Hk

maps a filtration of topological spaces and a field of coefficients K, into a sequence of
K-vector spaces Vu equipped with maps Vu → Vv for u ≤ v. The persistent homology
group and persistent Betti number correspond to the image of Vu → Vv and its rank,
respectively. The aim of this section is to extend this procedure to arbitrary categories.

First, we extend the notion of persistence function from [4], which in turn generalizes
persistent Betti number functions.

3.2. Definition. Let D be a category. A lower-bounded function p : Morph(D) → Z is
a categorical persistence function if, for all u1 → u2 → v1 → v2, the following inequalities
hold:

1. p(u1 → v1) ≤ p(u2 → v1) and p(u2 → v2) ≤ p(u2 → v1).
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2. p(u2 → v1)− p(u1 → v1) ≥ p(u2 → v2)− p(u1 → v2).

If D is the poset category (R,≤) whose objects are real numbers, with a unique
morphism from u to v if u ≤ v, then we recover the definition of persistence function
from [4]. In some sense, this is a categorification [3] of that notion.

3.3. Proposition. Given a functor F : C → D and a categorical persistence function p
for D, p ◦ F is a categorical persistence function for C.

Proof. Given u1 → u2 → v1 → v2 we have, by functoriality, F (u1) → F (u2) → F (v1) →
F (v2), so:

(p ◦ F )(u1 → v1) = p(F (u1 → v1)) ≤ p(F (u2 → v1)) = (p ◦ F )(u2 → v1)

All other inequalities are proved in an analogous way.

3.4. Remark. All functors we consider are covariant. Contravariant functors, if used,
will be written in the covariant form F : Cop → D.

Classical persistent homology is defined in terms of dimensions of images of maps
between vector spaces. The same construction holds in this setting. Given a regular cat-
egory R, we denote by im : Morph(R) → Obj(R) the map associating to each morphism
its image, which is defined up to a unique isomorphism. Given a rank function r on R
and a functor F : C → R, the function r ◦ im ◦ F : Morph(C) → Z is a categorical
persistence function. We will prove it in the following two propositions.

3.5. Proposition. Given a ranked category (R, r), r ◦ im defines categorical persistence
function on R.

Proof. Let us consider a diagram u1 → u2 → v1 → v2 in R. Then, we have an inclusion

im(u1 → v1) ↪→ im(u2 → v1),

and thus
r(im(u1 → v1)) ≥ r(im(u2 → v1)).

Similarly, we have an epimorphism im(u2 → v1) ↠ im(u2 → v2), so r(im(u2 → v1)) ≥
r(im(u2 → v2)). To prove the second condition of definition 3.2, we remind that the
inequality of the third condition of definition 2.1 holds for all commutative squares and
not only pullback squares. Thus, we can build the following commutative diagram:

im(u1 → v1) im(u2 → v1)

im(u1 → v2) im(u2 → v2)

ι1

π1 π2

ι2

where ι1, ι2 are monomorphisms and π1, π2 are regular epimorphisms. By the third con-
dition of definition 2.1, we have:

r(im(u2 → v1))− r(im(u1 → v1)) ≥ r(im(u2 → v2))− r(im(u1 → v2))
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By combining proposition 3.5 and proposition 3.3, we obtain:

3.6. Proposition. Given a ranked category (R, r) and a functor F : C → R, the
function r ◦ im ◦ F : Morph(C) → Z is a categorical persistence function.

Functors to (FinSet, |−|) allow us to recover persistent 0-Betti numbers, as well as all
examples of coherent sampling in [4] such as blocks, edge-blocks and F -connected com-
ponents. In this framework , classical persistent homology can be seen as a combination
of the functor Hk : FinSimp → FinVecK with the fiber-wise rank function dimension.

3.7. Remark. The above examples require restricting the source category to accept only
monic morphisms (or, in the language of [4], canonical inclusions): for instance blocks
is a functor FinGraphmonic → FinSet, but in general a non-injective map of graphs
f : G→ H does not naturally correspond to a map of sets blocks(G) → blocks(H).

3.8. Remark. [(R,≤)-indexed diagrams] Classically, persistent Betti numbers, as well as
persistence functions in the sense of [4], are defined on ∆+, i.e. on pairs (u, v) ∈ R2 with
u ≤ v. Categorical persistence functions, on the other hand, are defined more abstractly
on Morph(C). However, as ∆+ is in one-to-one correspondence with Morph((R,≤)), to
define a function on ∆+ from a categorical persistence function in C, we simply need a
functor F : (R,≤) → C. We denote the category of these functors as C(R,≤) and call
them (R,≤)-indexed diagrams in C. They are analogous to filtrations with the difference
that, given a (R,≤)-indexed diagram F , we do not require morphisms F (u) → F (v) to be
monomorphisms. As an example, given a topological space X and a real-valued function
f : X → R, the functor

F : (R,≤) → Top

u 7→ f−1((−∞, u])

is a (R,≤)-indexed diagram in Top, with F (u ≤ v) given by the inclusion f−1((−∞, u]) ⊆
f−1((−∞, v]). Similarly, the homology in degree k of the various sublevels also naturally
forms a (R,≤)-indexed diagram u 7→ Hk(f

−1((−∞, u]))), where morphisms are no longer
necessarily injective.

Refer again to Table 1 for an intuitive list of analogies between the classical and
proposed frameworks.

3.9. Persistence diagrams. After generalizing the main ingredients of persistence, it
is important to discuss how the notion of persistence diagram can be defined in this new
context. Indeed, persistence diagrams are agile tools, that allow one to easily represent the
features determined by the persistence function as a multiset of two-dimensional points.
This representation is suitable for both rapid visualization and comparison of filtered
objects.

In the following we will work with an arbitrary category C, a categorical persistence
function p : Morph(C) → Z, as well as a (R,≤)-indexed diagram F in C, and the induced
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Table 1: From the classical to the categorical framework.

Classical framework Categorical framework

Topological spaces Source category C
Vector spaces Regular target category R
Dimension Rank function on R
Homology functor Arbitrary functor from C to R
Filtration of topological spaces (R,≤)-indexed diagram in C

persistence function on ∆+:

pF : ∆+ → Z
(u, v) 7→ p(F (u ≤ v))

To define a persistence diagram we follow the approach given in [4], which in turn
draws from the definition of multiplicity of [12] and [18]. We will limit ourselves to the
tame case: to do so we will need to generalize the definition of tameness from [5].

3.10. Definition. [5, Def. 4.3] Let F ∈ C(R,≤). Let I ⊂ R be an interval. We say
that F is constant on I if for all a ≤ b ∈ I we have pF (a, a) = pF (a, b) = pF (b, b).
We call a ∈ R a regular value (resp. right- or left-regular) for F if there is a connected
neighborhood (resp. connected right or left neighborhood) I ∈a such that F is constant
on I. Otherwise we call a a critical value. F is tame if it has a finite number of critical
values.

In the classical case of finite dimensional vector spaces, the regularity condition re-

quires that maps F (a)
ϕ−→ F (b) are isomorphisms for a, b in a neighborhood of a regular

value (see [5, Def. 4.3]). However, for a strict rank (such as dim or more generally length)
this is equivalent to our condition r(F (a)) = r(F (b)) = r(im(ϕ)) thanks to the following
lemma:

3.11. Lemma. Let r be a strict rank function and A
ϕ−→ B a morphism such as r(A) =

r(B) = r(im(ϕ)). Then ϕ is an isomorphism.

Proof. We have a natural regular epimorphism A
χ
↠ im(ϕ) and r(A) = r(im(ϕ)), so

χ is an isomorphism. Similarly we have a natural monomorphism im(ϕ)
ψ
↪−→ B and

r(im(ϕ)) = r(B) so ψ is an isomorphism. ϕ = ψ ◦ χ is therefore also an isomorphism.

We will need one more lemma to be able to use persistence functions to compute
multiplicity of cornerpoints.

3.12. Lemma. Let p be a persistence function on a category C. Then, given a diagram

A→ B → C → D
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in the category C, the function:

p(B → C)− p(A→ C)− p(B → D) + p(A→ D)

is weakly decreasing in A and C and weakly increasing in B and D.

Proof. Let us prove that it is weakly decreasing in A, i.e. that given a diagram A →
A′ → B → C → D, the following inequality holds

p(B → C)− p(A→ C)− p(B → D) + p(A→ D) ≥
p(B → C)− p(A′ → C)− p(B → D) + p(A′ → D)

Or, equivalently:

−p(A→ C) + p(A→ D) ≥ −p(A′ → C) + p(A′ → D)

which is simply the second property of definition 3.2.

3.13. Definition. [8, Sect. 2] Given u < v ∈ R ∪ {−∞,+∞} we define the multi-
plicity of u, v as the minimum of the following expression, over Iu, Iv disjoint connected
neighborhoods of u and v respectively:

pF (sup(Iu), inf(Iv))− pF (inf(Iu), inf(Iv))− pF (sup(Iu), sup(Iv)) + pF (inf(Iu), sup(Iv))

We denote this quantity by µ(u, v). Whenever µ(u, v) > 0 we say (u, v) is a cornerpoint.
By convention in this definition we consider pF (u, v) = minx,y pF (x, y) whenever either u
or v is not finite.

3.14. Remark. By lemma 3.12, the quantity:

pF (sup(Iu), inf(Iv))− pF (inf(Iu), inf(Iv))− pF (sup(Iu), sup(Iv)) + pF (inf(Iu), sup(Iv))

is weakly increasing in both Iu and Iv (where the ordering on the intervals is given by
inclusion), so in practice this minimum is achieved for Iu and Iv sufficiently small intervals
around u and v respectively.

3.15. Remark. [Cornerpoints at infinity] We identify the vertical line ϱ of equation
u = k with the pair (k,+∞). Section 3.13 allows one to define the multiplicity µ(ϱ) as
the minimum of

pF (sup(Ik), v)− pF (inf(Ik), v).

Whenever µ(ϱ) > 0, we say that ϱ is a cornerpoint at infinity.

3.16. Definition. The persistence diagram DF associated with the persistence function
pF is the multiset of its cornerpoints, along with all the diagonal points {(u, u)|u ∈ R≥0}
with infinite (countable) multiplicity.

It is easy to show that if F is tame the persistence diagram has only a finite number of
off-diagonal points. The following property is relevant when measuring distances between
diagrams and will be key in the remainder of this section.
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3.17. Proposition. If α < β ≤ γ < δ ∈ R ∪ {+∞} are right-regular points, then sum
of the multiplicities of the cornerpoints (u, v) s. t. α < u ≤ β and γ < v ≤ δ is

pF (β, γ)− pF (α, γ)− pF (β, δ) + pF (α, δ)

Proof. By induction on the number of cornerpoints in the box.

3.18. Indecomposable persistence modules. Given a tame (with respect to a strict
rank) (R,≤)-indexed diagram F ∈ Obj(D(R,≤)), we can partition R into a finite number of
non-empty intervals C1, . . . , Cn ⊆ R such that F (x ≤ y) is an isomorphism whenever x, y
lie in the same interval. The full subcategory of such (R,≤)-indexed diagrams is equivalent
to the category of representations of the poset ({1, . . . , n},≤). Given a sequence of points
ci ∈ Ci, the equivalence of the two representation categories is induced by the pair of
order-preserving maps:

ι : ({1, . . . , n},≤) → (R,≤)

i 7→ ci
and

π : (R,≤) → ({1, . . . , n},≤)

x 7→ i such that x ∈ Ci

If D is an Abelian category of finite length, then so is D({1,...,n},≤). Indeed, we can
bound the length of any F ∈ D({1,...,n},≤) as follows:

length(F ) ≤
n∑
i=1

length(F (i))

By Krull-Schmidt theorem [1], F can then be decomposed as direct sum of indecom-
posable objects

F =
⊕
k∈K

Ik

Indecomposable objects in D({1,...,n},≤) have been characterized in the case of finite
vector spaces D = FinVecK. Indeed, let An be the quiver having as nodes the points
{1, . . . , n} and non-trivial edges i → i + 1 for i ∈ {1, . . . , n − 1}. Then, An has trivially
the same representations of ({1, . . . , n},≤) and is one of the ADE Dynkin diagrams for
which Gabriel’s theorem [19] can characterize all indecomposable representations. See [20]
for a treatment of persistence homology that takes Gabriel’s theorem and Krull-Schmidt
theorem as starting points. We can not, unfortunately, use Gabriel’s theorem as we wish
to work with a more general D, but we will provide an equivalent classification for the
quiver An and D semisimple (definition A.31). To do so, we will need to generalize
[5, Def. 4.1].

3.19. Definition. [5, Def. 4.1] Given a semisimple Abelian category D, a simple object
S ∈ Obj(D) and an interval I ⊆ R we define the diagram χI,S ∈ D(R,≤) as:

χI,S(a) =

{
S if a ∈ I

0 otherwise
and χI,S(a ≤ b) =

{
IdS if a, b ∈ I

0 otherwise
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When working in D({1,...,n},≤) we abuse of the same notation and write:

χ[b,d],S = 0 → · · · → 0︸ ︷︷ ︸
[1,b−1]

→ S
Id−→ . . .

Id−→ S︸ ︷︷ ︸
[b,d]

→ 0 → · · · → 0︸ ︷︷ ︸
[d+1,n]

We say that a F has finite type if F =
⊕

k∈K χIk,Sk

3.20. Proposition. If D is semisimple, all indecomposable objects in D({1,...,n},≤) are
isomorphic to an “interval object” of the form χ[b,d],S where S is a simple object.

Proof. We proceed by contradiction. Let us take the smallest n ∈ N for which this does
not hold and an indecomposable F ∈ D({1,...,n},≤) not isomorphic to any χ[b,d],S. F (1) ̸≃ 0
and F (n) ̸≃ 0, as otherwise we could find a counter-example for D({1,...,n−1},≤). Similarly
ϕ = F (n − 1 ≤ n) cannot be an isomorphism, as otherwise we would have a counter-
example in D({1,...,n−1},≤). ϕ must be epi, otherwise, we could write F (n) = im(ϕ) ⊕ C
with C ̸≃ 0 and F would be the direct sum of:

i 7→

{
im(ϕ) if i = n

F (i) otherwise
and i 7→

{
C if i = n

0 otherwise

So, necessarily ϕ is not monic, as in an Abelian category morphisms that are both monic
and epic are isomorphisms. We can decompose each F (i) starting from i = 1 and pro-
ceeding recursively, by setting F (i) = ker(F (i ≤ n))⊕ Ci, for every i ∈ {1, 2, . . . , n− 1},
where we can take Ci such that F (i− 1 ≤ i)(Ci−1) ⊆ Ci. We can then decompose F as a
direct sum of:

i 7→

{
F (n) if i = n

Ci otherwise
and i 7→

{
0 if i = n

ker(F (i ≤ n)) otherwise

By assumption F (n) ̸≃ 0 and ker(F (n− 1 ≤ n)) ̸≃ 0 so this is a non-trivial decompo-
sition which is absurd.

3.21. Theorem. In the semisimple Abelian case, given the rank function length, a
(R,≤)-indexed diagram F is of finite type if and only if it is tame.

Proof. If F is of finite type, then all points that are not extrema of some of the intervals
defining F are regular, so there can only be finitely many critical values. Conversely,
if F is tame, then we can find some partition of the real line in nonempty intervals
C1, . . . , Cn ⊆ R (which we assume to be sorted, i.e. ci < cj whenever ci ∈ Ci, cj,∈ Cj
and i < j) such that F (x ≤ y) is an isomorphism whenever x, y lie in the same interval.
We can then build F̃ ∈ Obj(D)An by F̃ (i) = F (ci) (where ci is some point in Ci). By
proposition 3.20 F̃ ≃ χ[b,d],S for some b, d ∈ {1, . . . , n} and some simple object S, so
F ≃ χI,S where I = ∪di=bCi.
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3.22. Interleaving and bottleneck distances. There is a natural notion of dis-
tance between (R,≤)-indexed diagram, the interleaving distance. Here we recall the cat-
egorical notion of interleaving from [5], which in turn draws from [9]. Note that here we
will only consider strong interleavings, thus not considering the weaker definition provided
in [9].

As in [5] we define the translation functor Tb : (R,≤) → (R,≤) as Tb(a) = a + b and
the natural transformation ηb : Id(R,≤) → Tb given by ηb : a ≤ a+ b.

Given a (R,≤)-indexed diagram F , FTϵ is simply defined by x 7→ F (x + ϵ). We will
often compose functors to the left of natural transformation (thus applying the functor
to the morphism the natural transformation returns) or to the right (thus calling the
natural transformation on the object returned by the functor). For example, starting
from ηb : Id→ Tb, we can compose F to the left and obtain a new natural transformation
Fηb : F → FTb. Then, similarly, we can compose Tc to the right and obtain FηbTc :
FTc → FTb+c.

3.23. Definition. [5, Def. 3.4] We remind that given two (R,≤)-indexed diagrams
F,G, they are ϵ-interleaved if there are natural transformations ϕF : F → GTϵ and
ϕG : G→ FTϵ such that:

(ϕGTϵ)ϕ
F = Fη2ϵ and (ϕFTϵ)ϕ

G = Gη2ϵ

The interleaving distance d(F,G) is the infimum of all ϵ values such that F and G are
ϵ-interleaved.

There is a simple example coming from filtering functions. Given a topological spaces
X and two real-valued functions f, g : X → R, if f and g differ no more than ϵ, i.e.,
for all x ∈ X, |f(x) − g(x)| ≤ ϵ, then there is a natural ϵ-interleaving between the two
(R,≤)-indexed diagrams corresponding to the sublevels of f and g respectively.

It is natural to define persistence starting from one or sometimes more functors (see sec-
tion 4.8 for an example with two functors):

C0
Ψ1−→ C1

Ψ2−→ . . .
Ψn−→ Cn

where C0, . . . ,Cn−1 are arbitrary categories, whereas (Cn, r) is a ranked category. A

(R,≤)-indexed diagram F ∈ C
(R,≤)
0 is mapped by the various functors Ψi in (R,≤)-

indexed diagrams
Ψ1(F ) ∈ C

(R,≤)
1 , . . . ,Ψn(F ) ∈ C(R,≤)

n

Similarly an ϵ-interleaving between F,G ∈ C
(R,≤)
0 is mapped to ϵ-interleavings between

Ψ1(F ),Ψ1(G), Ψ2(F ),Ψ2(G), et cetera. As a consequence we can define a sequence of
interleaving distances d0 ≥ d1 ≥ · · · ≥ dn as follows:

di(F,G) = dCi(Ψi(F ),Ψi(G))

where dCi is the interleaving distance in category Ci.
Furthermore, the bottleneck distance neglects the underlying category and is defined

only via the persistence diagram.
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3.24. Definition. Let F,G be two tame (R,≤)-indexed diagrams in R and DF,DG their
persistence diagrams. The bottleneck distance between the persistence diagrams is defined
as

d(DF,DG) = inf
β∈B

sup
p∈D(F )

∥p− β(p)∥∞,

where B is the collection of all bijections between DF and DG.

We now prove that under mild hypotheses (Cn admits finite colimits) the chain of
decreasing distances can be continued to include the bottleneck distance

d0(F,G) ≥ d1(F,G) ≥ · · · ≥ dn(F,G) ≥ d(DF,DG)

and find examples of ranked categories that achieve the equality dn(F,G) = d(DF,DG).
In particular, this chain of inequalities grants stability in the classical sense: as noted
in remark 3.8, given two filtering functions that differ less than ϵ, the associated (R,≤)-
indexed diagrams are ϵ-interleaved.

To prove inequalities between interleaving and bottleneck distance, we will general-
ize [9, Lm. 4.5] to the case of persistence function on an arbitrary category and [9, Lm.
4.6, 4.7] from the category of vector spaces to an arbitrary category with finite colimits.

3.25. Lemma. [Box lemma] Let F,G be two tame (R,≤)-indexed diagrams that are ϵ-
interleaved. Given α < β < γ < δ let □ denote the region (α, β]× (γ, δ] and □ϵ the region
(α − ϵ, β + ϵ] × (γ − ϵ, δ + ϵ]. Then the sum of the multiplicities of the points of DF
contained in □ is smaller or equal to the sum of the multiplicities of the points of DG
contained in □ϵ.

Proof. As in [9, Lm. 4.5] we notice that, if β+ ϵ > γ− ϵ, then □ϵ intersects the diagonal
and so the total multiplicity of DG intersected with the diagonal is ∞, so we can assume
β + ϵ ≤ γ − ϵ.

As F and G are ϵ-interleaved, we have the commutative diagram:

F (α) F (β) F (γ) F (δ)

G(α− ϵ) G(β + ϵ) G(γ − ϵ) G(δ + ϵ)

from which we can consider the sequence of morphisms

G(α− ϵ) → F (α) → F (β) → G(β + ϵ) → G(γ − ϵ) → F (γ) → F (δ) → G(δ + ϵ)

Let us first assume that α, β, γ, δ are all right-regular values for F and α− ϵ, β+ ϵ, γ−
ϵ, δ + ϵ are all right-regular values for G. Then by proposition 3.17, we can compute the
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sum of the multiplicities of the points of DF and DG using the categorical persistence
function p at the corners of the respective regions. Therefore we simply need to prove:

p(G(β + ϵ ≤ γ − ϵ))− p(G(α− ϵ ≤ γ − ϵ))+

−p(G(β + ϵ ≤ δ + ϵ)) + p(G(α− ϵ ≤ δ + ϵ))
≥

p(F (β ≤ γ))− p(F (α ≤ γ))+

−p(F (β ≤ δ)) + p(F (α ≤ δ))

The inequality can be proven by repeatedly applying lemma 3.12. A smaller diagram,
not including F (δ) and G(δ + ϵ), can be used to prove the case δ = +∞.

If some of α, β, γ, δ is not right-regular for F or some of α−ϵ, β+ϵ, γ−ϵ, δ+ϵ is not right-
regular for G, we can simply prove the inequality for α′, β′, γ′, δ′ = α+h, β+h, γ+h, δ+h,
where h is such that α′, β′, γ′, δ′ are right-regular points for F and α′−ϵ, β′+ϵ, γ′−ϵ, δ′+ϵ
are right-regular for G. Taking the limit for h→ 0+ ends the proof.

3.26. Lemma. [Interpolation lemma] Let C be a category with finite colimits. If F,G ∈
C(R,≤) are ϵ-interleaved, there exists an interpolation H̃s for all s ∈ [0, ϵ] such that: F and
H̃s are s-interleaved, G and H̃s are (ϵ−s)-interleaved, H̃s and H̃s′ are |s−s′|-interleaved.

Proof. The proof follows the construction of [9], but in the more general setting of
categories with finite colimits. We start by defining ϵ1 = s and ϵ2 = ϵ − s. Then
Hs = FT−ϵ1 ⨿GT−ϵ2 . We have a natural transformation

F
ιF−→ HsTϵ1 = F ⨿GTϵ1−ϵ2

given by the coproduct inclusion as well as a natural transformation

Hs = FT−ϵ1 ⨿GT−ϵ2
πF−→ FTϵ1

which is defined as Fη2ϵ1T−ϵ1 on the first term of the coproduct and as ϕGT−ϵ2 on the
second term of the coproduct.

For this to be an interleaving, we need to prove that (πFTϵ1)ι
F = Fη2ϵ1 (going from F

to HsTϵ1 and then to FT2e 1 versus going from F to FT2ϵ1 directly) and that ιFTϵ1π
F =

Hsη2ϵ1 (going fromHs to FTϵ1 and then toHsT2ϵ1 versus going fromHs toHsT2ϵ1 directly).
We have (πFTϵ1)ι

F = Fη2ϵ1 as the left hand side is the composition:

F → F ⨿GTϵ1−ϵ2 → FT2ϵ1

where the first morphism is the coproduct inclusion and the second morphism is Fη2ϵ1 on
the first component of the coproduct.

As remarked by [9, Appendix A], however, lF = ιFTϵ1π
F and dF = Hsη2ϵ1 are not

equal in general. Similarly, the dG and lG morphisms defined symmetrically are also not
equal in general. H̃s is defined by coequalizing both dFT−2ϵ1 with lFT−2ϵ1 and dGT−2ϵ2

with lGT−2ϵ2 . This would of course satisfy all the desired interleaving properties between
F , G and Hs but we need to show that the existing natural transformations Hs → FTϵ1
and Hs → GTϵ2 pass to the coequalizer (i.e. induce natural transformations H̃s → FTϵ1
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and H̃s → GTϵ2). As everything is symmetric, we only need to prove it for the map
Hs → FTϵ1 .

We start by proving that the transformation Hs → FTϵ1 passes to the coequalizer of
dFT−2ϵ1 and lFT−2ϵ1 . We observe that

HsT−2ϵ1 → FT−ϵ1 → Hs → FTϵ1

is the same as the more direct map

HsT−2ϵ1 → Hs → FTϵ1

as both the blue parallelogram and the green rightmost triangle are commutative in the
following diagram:

F (x− ϵ1) F (x+ ϵ1)

Hs(x− 2ϵ1) Hs(x)

therefore

HsT−2ϵ1 → FT−ϵ1 → Hs → FTϵ1 = HsT−2ϵ1 → FT−ϵ1 → FTϵ1
= HsT−2ϵ1 → Hs → FTϵ1

Proving that the transformation Hs → FTϵ1 passes to the coequalizer of dGT−2ϵ2 and
lGT−2ϵ2 is slightly trickier. We need to prove that:

HsT−2ϵ2 → GT−ϵ2 → Hs → FTϵ1 = HsT−2ϵ2 → Hs → FTϵ1

As HsT−2ϵ2 = FT−ϵ1−2ϵ2 ⨿GT−3ϵ2 we can prove the above equality on the two components
separately. We consider the diagram:

F (x− ϵ1 − 2ϵ2) F (x+ ϵ1)

Hs(x− 2ϵ2) Hs(x)

G(x− 3ϵ2) G(x− ϵ2)

As the dark blue bottom parallelogram and the dark green bottom-left triangle are com-
mutative, we have:

GT−3ϵ2 → HsT−2ϵ2 → GT−ϵ2 → Hs → FTϵ1 = GT−3ϵ2 → GT−ϵ2 → Hs → FTϵ1
= GT−3ϵ2 → HsT−2ϵ2 → Hs → FTϵ1
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As a consequence of the interleaving between F and G, the large inverted light green
triangle is also commutative and so is the top light blue trapezoid. Consequently, we
have:

FT−ϵ1−2ϵ2 → HsT−2ϵ2 → GT−ϵ2 → Hs → FTϵ1 = FT−ϵ1−2ϵ2 → GT−ϵ2 → FTϵ1
= FT−ϵ1−2ϵ2 → FTϵ1
= FT−ϵ1−2ϵ2 → HsT−2ϵ2 → Hs → FTϵ1

so, necessarily

HsT−2ϵ2 → GT−ϵ2 → Hs → FTϵ1 = HsT−2ϵ2 → Hs → FTϵ1

Proving that morphisms of the type Hs → Hs′T|s−s′| also pass to the coequalizer is a
similar exercise in diagram chasing.

The following result is a generalization, in our setting, of [9, Thm. 4.4]. Given
lemma 3.25 and 3.26, which are the equivalent of [9, Lm. 4.5, 4.6, 4.7], the proof of
the following result is identical to the proof of [9, Thm. 4.4]: we reproduce it here with
slight changes to adjust for differences in notation.

3.27. Theorem. Let R be a category with finite colimits and p be a categorical persistence
function. If F,G are two tame (R,≤)-indexed diagrams in R, then

dR(F,G) ≥ d(DF,DG).

Proof.The proof is analogous to [9, Thm. 4.4]. Let us assume that F,G are ϵ-interleaved.
We can construct H̃s as in lemma 3.26. We define:

δ(s) =
1

2
min

{
||p− q||∞, p ∈ DH̃s \∆, q ∈ DH̃s \ {p}

}
We say that H̃s′ is very close to H̃s if |s− s′| < δ(s). In such case, by lemma 3.25, as H̃s

and H̃s′ are |s − s′| interleaved, any off-diagonal point of DH̃s admits exactly one point
of DH̃s′ within l∞ distance |s − s′|. By compactness, we can find a sequence 0 = s0 <
s1 < · · · < sn < sn+1 = ϵ such that for i = 0, . . . , n either H̃si is very close to H̃si+1

or vice

versa. From the Easy Bijection Lemma [10], it follows that d(DH̃si ,DH̃si+1
) ≤ si+1 − si.

By applying repeatedly the triangle inequality we obtain that d(DF,DG) ≤ ϵ.

Even though the interleaving distance is, under mild assumptions, larger than the
bottleneck distance, the opposite is not true with such generality. In the rest of this
section we will show a class of categories and rank functions for which the converse holds.

3.28. Definition. A ranked category (R, r) is tight if, for any tame (R,≤)-indexed di-
agrams F and G, the following equality holds:

dR(F,G) = d(DF,DG)
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3.29. Theorem. Let D be a semisimple Abelian category with only one simple object
up to isomorphism, equipped with the rank length. Then the interleaving and bottleneck
distances coincide on tame (R,≤)-indexed diagrams, that is to say (D, length) is tight.

Proof.Given F,G two (R,≤)-indexed diagrams, we know already dD(F,G) ≤ d(DF,DG)
because of theorem 3.27. To prove the inequality, let us call S the only (up to isomor-
phism) simple object in D. As F and G are tame, by theorem 3.21, they are also of finite
type and we can therefore write:

F ≃
⊕
k∈DF

χIk,S and G ≃
⊕
k∈DG

χIk,S

where S is a representative of the unique isomorphism class of simple objects in D. We
take Ik to be the empty interval if k lies on the diagonal of the persistence diagram.

Given ϵ > d(DF,DG), let us take a bijection of persistence diagrams ψ : DF → DG
which sends each point to a point of distance < ϵ. The interleaving map ϕF : F → GTϵ
will send χIk,S into χIψ(k),S

Tϵ.

Theorem 3.29 is more general than the usual result (which considersD = FinVecK), as
it includes modules over non-commutative division rings, which are a semisimple category
with essentially one simple object. This will be important in the follow up to make general
theorems about multicolored persistence in semisimple categories.

Having, up to isomorphism, only one simple object is a necessary assumption. As a
counter-example, given a semisimple Abelian categoryD with at least two non-isomorphic
simple objects O1 and O2, (D, length) as in proposition 2.9 is not tight. If we take two
constant (R,≤)-indexed diagrams: u 7→ O1 and u 7→ O2, their interleaving distance is
∞ and their bottleneck distance is 0. To recover the equality, we will use the concept of
coloring.

4. Multicolored persistence

The aim of this section is to find a suitable way to still use persistence diagrams to com-
pute the interleaving distance (or find tighter bounds for it) even in categories with many
non-isomorphic indecomposable objects. We will do so by defining multicolored persis-
tence diagrams, where each color encodes the isomorphism class of an indecomposable
persistence module.

We start by introducing the concept of coloring of ranked categories.

4.1. Definition. Given an index set Γ, we say that a ranked category (R, r) is Γ-
colorable if there exist ranked categories (Qγ, rγ) for γ ∈ Γ and image-preserving functors
Cγ : R → Qγ such that

1. the induced functor C : R →
∏

γ∈ΓQγ is fully faithful;
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2. for each X ∈ Obj(R), rγ(X) is 0 for all but finitely many γ ∈ Γ and:

r(X) =
∑
γ∈Γ

rγ(Cγ(X)) (2)

We call such C a Γ-coloring and we say that (R, r) is C-colored.

The fully faithful condition may sound quite abstract, in practice what we are asking
is that given X, Y ∈ Obj(R) the natural map of sets:

Hom(X, Y ) →
∏
γ∈Γ

Hom(Cγ(X), Cγ(Y ))

is bijective.
Note that in an Abelian category C of finite length, equipped with the rank function

length, we have a coloring given by the block decomposition into indecomposable categories
Cγ (see [15, Sect. 1]). Consequently eq. (2) follows from the additivity of length.

4.2. Multicolored persistence diagrams. In what follows, we will show how, given
(R, r) a C-colored ranked category, it is possible to construct a multicolored persistence
diagram. First we will need a simple lemma:

4.3. Lemma. Let (R, r) be a C-colored ranked category. Given F ∈ R(R,≤), if F is
constant on an interval I with respect to r, then F is also constant on I with respect to
all colored components rγ. As a consequence, if F is tame with respect to r, then F is
tame with respect to rγ, for all γ ∈ Γ.

Proof. Let I ⊆ R be an interval. Given u ≤ v ∈ I we know that r(F (u)) = r(im(F (u ≤
v))), i.e.: ∑

γ∈Γ

rγ(F (u)) =
∑
γ∈Γ

rγ(im(F (u ≤ v)))

Of course, for any γ, we have rγ(F (u)) ≥ rγ(im(F (u ≤ v))). If for some γ we had a strict
inequality rγ(F (u)) > rγ(im(F (u ≤ v))), then we would have a strict inequality:∑

γ∈Γ

rγ(F (u)) >
∑
γ∈Γ

rγ(im(F (u ≤ v)))

which is absurd. rγ(im(F (u ≤ v))) = rγ(F (v)) is proved in the same way.

As a consequence, given a C-colored ranked category (R, r) and a (R,≤)-indexed
diagram F , we can draw its multicolored persistence diagram by superimposing the per-
sistence diagrams associated to each colored component, see fig. 3(b). Let (R, r) be a
C-colored ranked category. The multicolored bottleneck distance between two multicol-
ored persistence diagrams is computed just like the normal bottleneck distance, but only
accepting bijections that preserve the color of cornerpoints. We denote it by dC.
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Figure 1: H1 and multicolored simplicial complexes. Coloring the vertices of a
simplicial complex allows one to create a compact poset representation of all possible
interaction between colored components evaluated through a rank function. Here, we
consider a two-class coloring, namely orange o and blue b. In each panel, the leftmost
object is a multicolored simplicial complex, in the center the poset obtained by considering
colors and their interactions: ({{b}, {o}, {b, o}} ,⊆). Finally, the diagram obtained by
computing the first homology group for each element of {{b}, {o}, {b, o}}. Observe how
the cycle generated by the orange component propagates to {b, o} in Panel (a), whilst it
disappears from {b, o} in Panel (b), because of the central blue vertex.

4.4. Definition. Let C be a coloring on a ranked category (R, r). We say that C is tight
if for any tame (R,≤)-indexed diagrams F,G the following equality holds:

dR(F,G) = dC(DF,DG)

The multicolored bottleneck distance is greater or equal than the normal bottleneck
distance, as the minimum is calculated across a smaller set of possible bijections. First,
it is natural to ask whether the multicolored bottleneck distance is still bounded by the
interleaving distance.

4.5. Theorem. Let C : R →
∏

γ∈ΓQγ be a Γ-coloring of a ranked category (R, r) with
components (Qγ, rγ). If, for all γ ∈ Γ, the category Qγ admits finite colimits, then the
multicolored bottleneck distance is bounded by the interleaving distance, i.e.

dR(F,G) ≥ dC(DF,DG)

Furthermore, if all (Qγ, rγ) are tight, then C is a tight coloring in the sense of defini-
tion 4.4.

Proof. The functor C is fully faithful by definition 4.1, hence F and G are ϵ-interleaved
in R if and only if CγF and CγG are ϵ-interleaved in Qγ for all γ. Therefore:

dR(F,G) = sup
γ∈Γ

dQγ (CγF, CγG)

Similarly:
dC(DF,DG) = sup

γ∈Γ
d(D(CγF ),D(CγG))
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As all Qγ have finite colimits, thanks to theorem 3.27, we have element-wise inequalities

dQγ (CγF, CγG) ≥ d(D(CγF ),D(CγG))

so, necessarily
dR(F,G) ≥ dC(DF,DG)

Similarly, if all (Qγ, rγ) are tight, we have element-wise equalities:

dQγ (CγF, CγG) = d(D(CγF ),D(CγG))

and thus
dR(F,G) = dC(DF,DG)

Given an Abelian semisimple category C, let Γ be a maximal set of non-isomorphic
simple objects of C and, for each γ ∈ Γ, Cγ the full subcategory spanned by objects
isomorphic to

⊕n
i=1 γ for n ∈ N. As in the case of finite group representations [22],

objects in C can be canonically decomposed as a direct sum of components in the various
Cγ. This decomposition induces a natural tight coloring C : C →

∏
γ∈ΓCγ on (C, length).

4.6. Theorem. Let C be an Abelian semisimple category. C is a tight coloring on
(C, length).

Proof. By theorem 4.5 we only need to prove that, for all γ ∈ Γ, the ranked category
(Cγ, length) is tight. However the category Cγ is semisimple and has only one simple
object γ up to isomorphism so, by theorem 3.29 it is tight.

We have two examples in mind: groups and posets.

4.7. Persistent homology on simplicial complexes with a group action. If
G is a finite group whose cardinality is not a multiple of the characteristic of K, then the
category of G-representations in FinVecK is semisimple. The homology functor induces
a map Hn : FinSimpG → FinVecGK which allows us to define a categorical persistence
function on finite simplicial complexes with a G-action.

If a filtering function f : X → R is G-invariant, i.e. for all x ∈ X, g ∈ G, f(x) = f(gx),
then the sublevels of f form a (R,≤)-indexed diagram in FinVecGK. In practice it may
well happen that the filtration and the group action are not compatible and the condition
f(x) = f(gx) is not always respected. In this case, one can consider an adjusted filtration
such as:

f(x) :=
1

|G|
∑
g∈G

f(gx)

Application: Vietoris-Rips filtration under a group action The above construc-
tion also applies on simplicial complexes arising from point cloud data. Let G be a finite
group and (X, d) a finite metric space with a distance-preserving G-action. The Vietoris-
Rips filtration [6] on (X, d) is G-invariant and therefore induces a (R,≤)-indexed diagram
in FinSimpG. Again, if the group action is not distance preserving, we can define an
adjusted distance d(x, y) := 1

|G|
∑

g∈G d(g · xi, g · xj).
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Figure 2: H1 multicolored persistence in TopZ2. We consider the action of Z2 on the
space X represented in Panel (a) and generating the quotient highlighted in green. Note
how the dashed loop lying on the (y, z)-plane is fixed by the action of group. We consider
the filtration induced by the height function h : X → R. In Panel (b) cycles are labelled
according to the group action. The same labeling is reported in the persistence diagram
of Panel (c).

4.8. Persistent homology on labeled point clouds. Let (P,⪯) be a finite poset.
We can consider the category FinSimp(P,⪯), i.e. (P,⪯)-indexed diagrams of finite sim-
plicial complexes. We have a chain of functors:

FinSimp(P,⪯) Hk−→ FinVec
(P,⪯)
K

Q−→ FinVec
|P |
K

where we define Q as follows:

p 7→ coker
(⊕

i⪵p F (i) → F (p)
)

That is to say Q(F ) maps p to F (p) quotiented by the images of F (i) with i strictly

smaller than p. As FinVec
|P |
K is an Abelian semisimple category, the results of section 4.2

hold.

Application: Vietoris-Rips filtration with labeled data Let (X, d, l) be a finite
metric space with a labeling function l : X → {l1, . . . , ln} fromX to a discrete set of labels.
Let X1, . . . , Xn be the subdatasets corresponding to the various labels, i.e. Xi = l−1(li).
We wish to answer the following question: how do the homologies of the various Xi

interact with one another? Let (Pn,⊆) be the poset of non-empty subsets of {1, . . . , n}
ordered by inclusion. We have a functor (Pn,⊆) → Met sending r ⊆ {1, . . . , n} to ∪i∈rXi.
By applying the Vietoris Rips construction we obtain a (Pn,⊆)-indexed diagram of finite
simplicial complexes. This allows us to build a multicolored persistence diagram from a
labeled dataset keeping into account whether a persistent cycle originates from a single
subdataset or a union. See fig. 3.



RANK-BASED PERSISTENCE 251

5 22

11

5 5

3

3

3

3

5

5

5

5

21 3 54

2

1

3

5

4

1 2 3 5

(a)

5 22

11

5 5

3

3

3

3

5

5

5

5

21 3 54

2

1

3

5

4

1 2 3 5 (b)

1 2 3 5

21 3 54 ∞FinVec|P|

"

"

"

0"

0

0

0

0

0 0

"

21 3 54 ∞

"

" ⨿ "

"

""

FinVec(P,⪯)

0

0

0

0

0 0

"

ι1
ι2

π1

(c)

1 2 3 5

21 3 54 ∞FinVec|P|

"

"

"

0"

0

0

0

0

0 0

"

21 3 54 ∞

"

" ⨿ "

"

""

FinVec(P,⪯)

0

0

0

0

0 0

"

ι1
ι2

π1

(d)

1 2 3 5

21 3 54 ∞FinVec|P|

"

"

"

0"

0

0

0

0

0 0

"

21 3 54 ∞

"

" ⨿ "

"

""

FinVec(P,⪯)

0

0

0

0

0 0

"

ι1
ι2

π1

(e)

Figure 3: Multicolored persistence. We consider the colored weighted graph depicted
in Panel (a), obtained by considering pairwise distances of points in a finite metric space,
and the Vietoris-Rips filtration induced by the weight function defined on the edges. The
multicolored persistence diagram in Panel (b) is obtained by considering the persistence
of the cycles in the filtration along with their color, as depicted in Panel (c). Panels (d)
and (e) are (R,≤)-indexed diagrams in FinVec(P,⪯) and FinVec|P |, respectively. Note
how the indecomposable components of the diagram in Panel (e) are the ones described
in Section 3.18.
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5. Conclusion

Topological persistence and persistent homology allow for a deeper understanding of the
high-dimensional organization of data [7, 21, 2]. Notably, persistence diagrams provide
an encompassing view on the topological and geometrical properties of a given dataset,
both as a whole and at sample level. The main limitation of these methods is their innate
confinement to the category of topological spaces. In [4], we described a first generalization
of persistence to concrete categories, extending the persistence paradigm to the analysis
of objects such as weighted graphs and quivers, without need of auxiliary topological
constructions. However, the classical persistence homology can not be deduced naturally
from this generalization. Specifically, whereas the coherent sampling technique defines a
persistence function from a set-valued functor (e.g. the connected components), higher
homology functors are naturally vector space-valued.

The proposed framework generalizes both the classical and the concrete category-based
persistence. We captured the essential properties of the cardinality function in FinSet
and the dimension function in FinVec upon which the theory of size and persistent Betti
numbers is built. This led us to the definition of ranked category : a regular category
equipped with an integer-valued rank function defined on its objects. We provide strate-
gies to build such functions as fiber-wise rank functions. As special cases of fiber-wise
ranks we recover both the cardinality of sets and dimension of vector spaces, as well as
the length function in the general case of Abelian categories of finite length. Finally, we
show how categorical persistence functions can be built from rank functions, generalizing
the construction of coherent sampling introduced in [4].

We provide definitions and more general proofs of the main results in classical and
concrete category-based persistence. We define cornerpoints, their multiplicity and thus
introduce a general paradigm to build persistence diagrams. We describe the structure of
persistence modules and characterize their irreducible components in the semisimple case.
These results allow us to define and discuss the interleaving and bottleneck distances,
proving the stability of persistence diagrams in our framework. As finite dimensional
vector spaces are an Abelian, semisimple category with essentially one simple object, we
determine which of these hypotheses are needed for the classical results to hold in the
generalized framework.

Our definitions are, to a large extent, preserved by functors. In particular, given two
regular categories and a regular functor between them, a rank function on the target cat-
egory induces a rank function on the source category. The same, without the regularity
assumption, holds for any categorical persistence function. (R,≤)-indexed diagrams, as
well as ϵ-interleavings between them, are preserved by arbitrary functors. As a general
strategy, we apply functors to move from (R,≤)-indexed diagrams in arbitrary categories
to (R,≤)-indexed diagrams in categories where the interleaving distance and the bottle-
neck distance are equal. In particular, this allows one to define chains of inequalities of
interleaving distances in coarser and coarser categories. We observe how, in our setting,
the generalized definition of filtration gets freer than the classical one, by not requiring
the functions between sublevels to be monomorphisms.
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The target categories of choice in the classical approach to persistence (FinSet or
FinVec) offer a clear correspondence between classes of isomorphism of objects and nat-
ural numbers, namely cardinality and dimension. To be able to deal with richer cate-
gories, we develop the concept of coloring, which allows us to recover the equality between
interleaving and multicolored bottleneck distance.

Finally, we discuss and exemplify via toy examples several applications. In the Abelian
semisimple case, we explicitly study the multicolored persistence and build the associated
persistence diagram in the case of filtered simplicial complexes or point clouds with a
group action. As much of the interest in persistent homology comes from its applications
on real world data, we explore applications to point cloud data, where the extra structure
is given by labels. Such datasets are routinely used in the training and testing of machine
learning models on classification problems. Multicolored persistence naturally defines
a topological notion of similarity of two datasets that keeps into account the labeling
information. We speculate that such measure of similarity may be used to qualitatively
assess the performance of machine learning models on classification problems.
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A. Basic definitions and results

The aim of this section is to provide basic definitions of category theory to the unfamiliar
reader.

A.1. Properties of morphisms.

A.2. Definition. [Epimorphism] Consider X, Y ∈ Obj(C). f : X // Y is an epimor-
phism if given the following diagram

X Y Z
f g

h

if g ◦ f = h ◦ f then g = h.

A.3. Example. [Epimorphism] Let X, Y ∈ Obj(Set) and f : X → Y , then f is an
epimorphism if and only if it is surjective.

A.4. Definition. [Monomorphism] Consider X, Y ∈ Obj(C). f : X //Y is a monomor-
phism if given the following diagram

Z X Y
g

h

f

if f ◦ g = f ◦ h then g = h.

A.5. Example. [Monomorphism] Let X, Y ∈ Obj(Set) and f : X → Y , then f is a
monomorphism if and only if it is injective.

A.6. Universal objects: limits and colimits. Many interesting objects can be
defined in terms of universal properties. We will describe examples from two groups:
limits (there are universal arrows to them) and colimits of diagrams (there are universal
arrows from them).

A.7. Definition. [Terminal object] An object pt in a category C is called terminal if

there exists a unique morphism x
!−→ pt for any object x ∈ C. If it exists, the terminal

object is unique, up to unique isomorphism. For instance, the point space pt is terminal
in Top.

A.8. Definition. [Initial object] An object ∅ in a category C is initial if for any object

x ∈ C there exists a unique morphism ∅ !−→ x.

A.9. Definition. [Zero object and pointed category] An object which is both initial and
terminal is said zero object. A category C equipped with a zero object is said pointed.

A.10. Example. [Zero object] The trivial group 1 is the zero object in Grp. Indeed
1 ↪→ G↠ G/G = 1, for every G ∈ Grp. In the category of VecK of vector spaces on the
field K, the zero object is the 0-dimensional vector space.



RANK-BASED PERSISTENCE 257

A.11. Definition. [Product] Let X, Y be objects of a category C. The product of X and
Y is the object P , along with morphisms πX : Z //X and πY : Z // Y , such that given
another such P ′, π′

X , π
′
y, we have a unique morphism P ′ // P that makes the following

diagram commute:

P ′

X P Y

π′
Xu

π′
Y

πYπX

We denote the product X × Y .

A.12. Definition. [Coproduct] Let X, Y be objects of a category C. The coproduct of
X and Y is the object C, along with morphisms ιX : X // C and ιY : Y // C, such
that given another such C ′, ι′X , ι

′
Y , we have a unique morphism C // C ′ that makes the

following diagram commute:

C

X X ⨿ Y Y

ι′Xu
ι′Y

ιYιX

We denote the coproduct X ⨿ Y .

A.13. Example. [Product and coproduct] Let X, Y ∈ Obj(Set). The product X × Y is
simply the cartesian product. The coproduct X ⨿ Y is the disjoint union of X and Y .

A.14. Definition. [Equalizer] Let X, Y be objects of C and consider two morphisms

X
f−→ Y , X

g−→ Y . An object Q, together with a morphism Q
q−→ Y is an equalizer if f ◦q =

g ◦ q. Moreover, the pair (Q, q) must be universal, i.e. given another coequalizer (Q′, q′),
there exists a unique morphism Q′ u−→ Q such that the following diagrams commutes.

Q X Y

Q′

q f

g

q′
u

Thus, equalizers are unique up to isomorphism. Moreover, every equalizer is a monomor-
phism.

A.15. Example. [Equalizer] Let A,B ∈ Obj(Set) and f, g : A → B, then the equalizer
is

{a ∈ A | f(a) = g(a)}
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A.16. Definition. [Coequalizer] Let X, Y be objects of C and consider two morphisms

X
f−→ Y , X

g−→ Y . An object Q, together with a morphism Y
q−→ Q is a coequalizer if q◦f =

q ◦ g. Moreover, the pair (Q, q) must be universal, i.e. given another coequalizer (Q′, q′),
there exists a unique morphism Q

u−→ Q′ such that the following diagrams commutes.

X Y Q

Q′

f

g

q

q′
u

Thus, coequalizers are unique up to isomorphism. Moreover, every coequalizer is an epi-
morphism.

A.17. Example. [Coequalizer] Let A,B ∈ Obj(Set) and f, g : A → B, then the co-
equalizer is the quotient of B with ∼, such that f(x) ∼ g(x) for every x ∈ A.

A.18. Definition. [Finitely (co)complete category] A category C is finitely complete if
it has equalizers, a terminal object and binary products. Analogously, a category C is
finitely cocomplete if it has coequalizers, an initial object and binary coproducts.

A.19. Definition. [Pullback] Let X, Y and Z be objects of a category C, and X
f−→ Z,

Y
g−→ Z morphisms. An object P and the morphisms P

p1−→ X, P
p2−→ Y is a pullback if

the following diagram

P X

Y Z

p1

p2 f

g

commutes and, given another such P ′, p′1, p
′
2 we have a unique morphism P ′ u−→ P that

makes the following diagram commute:

P ′

P X

Y Z

p′1

p′2

u

p1

p2 f

g

That is to say, the pullback is universal with respect to the diagram, and thus unique
up to isomorphism. We denote it X ×Z Y .

A.20. Remark. The pullback X ×Z Y is the equalizer of the natural maps Z ⇒ X ×Y .
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A.21. Example. [Pullback] Given three sets X, Y and Z and functions X
f−→ Z, Y

g−→ Z,
the coproduct X ×Z Y is the subset of the cartesian product:

X ×Z Y = {(x, y) | x ∈ X, y ∈ Y and f(x) = g(y)}

A.22. Example. [Fiber] In the category of sets, let pt be the terminal object. Let
f : X → Y be a map between sets and y ∈ Y . The fiber over y is f−1(y) ⊂ X realised by
the pullback

f−1(y) X

pt Y

f

A.23. Regular, Abelian and semisimple categories.

A.24. Definition. [Regular epimorphism] An epimorphism that is the coequalizer of a
parallel pair of morphism.

A.25. Definition. [Regular category] A category R is regular if the following conditions
hold:

1. R is finitely complete.

2. Given X
f−→ Y a morphism and its pullback (P, p1, p2), then the coequalizer of p1

and p2 exists.

3. Given the pullback

R X

Z Y

g f

if f is a regular epimorphism, so is g.

We will introduce some preparatory concepts to the definition of Abelian category.

Kernels and cokernels Let C be a category and ξ : X // Y a morphism. If for every
object Z and morphisms g, h : Z // X, we have ξg = ξh, then ξ is said a (left) zero
morphism. If C is pointed, i.e. it has a zero object 0, then given two objects X, Y there
exists a unique zero morphism ξ : X // Y given by the composition X // 0 // Y .

A.26. Definition. [Kernel] Let C be a category with zero morphism ξ and f : X // Y
a morphism. The kernel of f is defined as the equalizer of ξ and f .

A.27. Definition. [Cokernel] Let C be a category with zero morphism ξ and f : X //Y
a morphism. The cokernel of f is defined as the coequalizer of ξ and f .
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A.28. Definition. [Abelian category] A category C is abelian if

1. it is pointed, i.e. C has a zero objet;

2. has binary products and binary coproducts;

3. every morphism has kernel and cokernel;

4. each monomorphism is a kernel and each epimorphism is a cokernel.

In an Abelian category, the binary product and binary coproduct coincide and are
sometimes called biproduct. We will sometimes simply call it sum, in analogy with the
sum of vector spaces.

A.29. Definition. [Simple object] Let C be an Abelian category. An object X ∈ Obj(C)
is simple if its only subobjects are 0 and X.

A.30. Lemma. [Schur Lemma] Given S, S ′ simple objects in an Abelian category, mor-
phisms from S to S ′ are either zero or invertible.

A.31. Definition. [Semisimple category] An Abelian category is semisimple if all its
objects are semisimple, i.e. each object can be written as a finite sum of simple objects.
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