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MASCHKE TYPE THEOREMS FOR HOPF MONOIDS

GABRIELLA BOHM

ABSTRACT. We study integrals of Hopf monoids in duoidal endohom categories of
naturally Frobenius map monoidales in monoidal bicategories. We prove two Maschke
type theorems, relating the separability of the underlying monoid and comonoid, re-
spectively, to the existence of normalized integrals. It covers the examples provided
by Hopf monoids in braided monoidal categories, weak Hopf algebras, Hopf algebroids
over central base algebras, Hopf monads on autonomous monoidal categories and Hopf
categories.

Introduction

One can find in recent literature many co-existing — sometimes competing — general-
izations of Hopf algebra; which is itself a generalization of group algebra. They were
introduced with different motivations and each of them has a more or less different set of
axioms. However, they share some essential features that make one wonder whether they
all could be seen as various instances of some common unifying structure. This question
was answered in [7] to some extent, by showing that Hopf monoids in braided monoidal
categories, weak Hopf algebras [8], Hopf algebroids over a central base algebra [28], and
Hopf monads on autonomous monoidal categories [12] are examples of Hopf comonads
on a naturally Frobenius map monoidale M in a suitable monoidal bicategory B. Conse-
quently, they also can be seen as bimonoids in the duoidal endohom category B(M, M),
possessing an antipode in an appropriate sense. In [4] also Hopf categories of [2] were
shown to fit this framework.

In this paper we use the term Hopf monoid for those bimonoids in the duoidal endo-
hom category B(M, M) that arise from a Hopf comonad on the naturally Frobenius map
monoidale M in a monoidal bicategory B; and hence possess an (unique) antipode in the
sense of [7, Theorem 7.2]. The terminology is strictly restricted to this setting, it is not
used in more general duoidal categories.

Maschke’s classical theorem [24] states that the group algebra kG of a finite group G
over an arbitrary field k is semisimple if and only if the characteristic of k£ does not divide
the order of G. A generalization to Hopf algebras is due to Larson and Sweedler. In [19]
they proved that a Hopf algebra H over a field is semisimple if and only if it possesses a
normalized integral; that is, an H-module section of the counit. A Hopf algebra over a
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10 GABRIELLA BOHM

field turns out to be semisimple if and only if it is separable; that is, its multiplication
admits a bimodule section. This is no longer true for Hopf algebras over more general
commutative base rings. In this more general situation it is the separability of a Hopf
algebra that becomes equivalent to the existence of a normalized integral, see e.g. [14].
Maschke type theorems — relating separability to the existence of normalized integrals —
were proved individually for most generalizations of Hopf algebra: for weak Hopf algebras
in [8], for Hopf algebroids in [3], for Hopf monads in [12] and [31]. Integrals in Hopf
categories occurred recently in [13].

The aim of this paper is a unification of all these generalizations into a single theorem,
relating normalized integrals (in a suitable sense) to the separability of the constituent
monoid (or coseparability of the constituent comonoid) of a Hopf monoid in the duoidal
category B(M, M) for a naturally Frobenius map monoidale M (in the sense of [20]) in
some monoidal bicategory B. This setting is suitable to prove such a theorem because by
[7, Theorem 7.2] the antipode is available (which is not the case for more general base
monoidale).

The paper is organized as follows. In Section 1 we recall the necessary background
about Hopf comonads on a naturally Frobenius map monoidale M in a monoidal bicate-
gory B. Such a gadget is interpreted as a Hopf monoid in the duoidal category B(M, M).
In Section 2 integrals are defined for arbitrary bimonoids in duoidal categories. For Hopf
monoids in B(M, M), the existence of a normalized integral is shown to be equivalent to
the separability of the constituent monoid, see Theorem 2.4. In Section 3 cointegrals are
defined for arbitrary bimonoids in duoidal categories. For Hopf monoids in B(M, M), the
existence of a normalized cointegral is shown to be equivalent to the coseparability of the
constituent comonoidm see Theorem 3.4. In final Section 4, our main Theorems 2.4 and
3.4 are applied to each of the examples provided by Hopf monoids in braided monoidal
categories, weak Hopf algebras, Hopf algebroids over central base algebras, Hopf monads
on autonomous monoidal categories and Hopf categories. While in the first four cases we
re-obtain known results thereby, for Hopf categories it gives the first such theorems.

Note that the statements of our main Theorems 2.4 and 3.4 are apparently dual of
each other. However, no duality principle is known that would allow us to derive one of
them from the other. They are proved independently, by basically different steps.

ACKNOWLEDGEMENT. Financial support by the Hungarian National Research, Develop-
ment and Innovation Office - NKFIH (grant K124138) is gratefully acknowledged.

1. Hopf comonads on naturally Frobenius map monoidales

1.1. DUOIDAL ENDOHOM CATEGORY OF A MAP MONOIDALE. We begin with briefly
recalling some information needed from [7, Section 3]. Then we prove some new identities
for later use.

Throughout we work in a monoidal bicategory B. Relying on the coherence theorem
of [17] — which says that any monoidal bicategory is equivalent, as a tricategory, to a
Gray monoid — we do not denote explicitly the coherence 2-cells in B except for the
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interchange isomorphisms. The monoidal product will be denoted by juxtaposition and I
stands for the monoidal unit. We use dots to denote the horizontal composition in B5.

We use the Australian term monoidale for a pseudo-monoid (M, m,u) in B. Its asso-
ciativity and unitality iso 2-cells are denoted by 2 without introducing symbols for them.
A monoidale (M, m,u) is a map monoidale if the 1-cells m : MM - M and u: I - M
possess respective right adjoints m* and u* (with units 7, : 1 > m*.m and 71, : 1 - u*.u,
counits &, : m.m* - 1 and ¢, : w.u* - 1) — in which case (M, m*,u*) is a comonoidale
(i.e. pseudo-comonoid) in B. Its left counitality iso 2-cell and its inverse, for example, are
the mates of the left unitality 2-cells of the monoidale (M, m,u); that is, the mutually
inverse 2-cells

~ l.ey1.1 €
w*lm* —mulu'lm ———mm*——— =1

(1.1)
1 . u*l.ul _Lmd wl.m*maul —u*1l.m*

that will be denoted by 2 for brevity too. Whenever we only put a symbol 2 as a label
of an arrow, we help the reader by under- or overlining the part to which some coherence
iso 2-cell is applied.

For any 0-cell M in B, the endohom category B(M, M) is monoidal via the opposite
fog:=g.f of the horizontal composition of B and the monoidal unit given by the identity
1-cell i. If M is also equipped with the structure of a map monoidale (m,u), then
there is a second monoidal structure on B(M, M) provided by the convolution product
feg:=m.fg.m* whose unit is j := u.u*. (We omit explicitly denoting the associativity
and unitality natural isomorphisms in both of these monoidal categories.) In fact, these
monoidal structures combine into a duoidal structure (called a 2-monoidal structure in
[1]), see [29] and [7, Section 3]. As in [7], we denote its structure morphisms by

. b MM ™ . & . — ! T
(iei—=i)=M lem M (G—i)=M_|e,
N “~

I VS e I S
\)M/

and for any 1-cells a,b,c,d: M — M, we write £: (aob) e (cod) — (aec)o(bed) for
/’—)MM\

M—>MM11>MM—>MM—MM—>MM1—d>MM—>M

I1m —/
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For any 1-cells b,c¢: M — M, we introduce the 2-cells A\, .: [(boj)ei]oc—>Dbec as

=
M M
M= MM = MM e MM _ MM =23 0

m %ﬂ%;

and symmetrically, we introduce gy :bo[ie(joc)] >bec as

u*l

C

1lu

m* MM lu*
/ = \
M M

b

M2 MM U MM -2 MM 2o MM —™~ M.
o~ 77m
N

They are natural in b and ¢, and for all 1-cells a: M — M, they are easily seen to render
commutative (up-to the omitted coherence iso 2-cells like those in (1.1)) the following
diagram

|

(¢%1)01 .
[(

joj)ei]oa
\L (1.2)

aolie(joj)]——F—a

a
10(1050)\
(

By one of the triangle identities of the adjunction m -+ m?*, the diagram

l.ey1

m.ul.u*l m
\\\\\\1;1;1Zzi;\ 1.9m
S moul.ulom*m =2 mm* m (1.3)
Lg (1.1) el
u*l —Y u*l m m

{114

commutes. Using it together with one of Mac Lane’s coherence triangles for the monoidale
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(M, m,u), we infer the commutativity of the following diagram.

mullmlmlﬂmull m.au* ullm—>u1m m.ml
(1.3) (Mac Lane) { T (1.3)
2 Tmu*ll = 1.u*

11

11
—_—

11

114

(1.4)
From that easily follows the commutativity of the first diagram of Figure 1, for all 1-cells
a,b,c: M — M.

Again by one of Mac Lane’s coherence triangles and one of the triangle identities of
the adjunction m —+ m*, also the second diagram of Figure 1 commutes, for all 1-cells
a,b,c: M — M.

Now the lower paths of both diagrams of Figure 1 are the same. So we infer the
commutativity of the following diagram, whose lower path is equal to the upper path of
the first diagram of Figure 1, and whose upper path is equal to the upper path of the
second diagram of Figure 1:

T (@o ) eile (bec)

lAa,b.c (1.5)

aebec.

([(aoj)eilob)ec—=[(acj)eisilo(hec)

Aa,,b.]-

A similar computation using (1.3), the triangle conditions on the adjunctions m + m*
and u 4 u* together with Mac Lane’s coherence triangles yields the commutativity of

([(aoj)ei]og)ei-2 ([(aoj)eilojoj)ei
gl l(Aa,jo1).1 (1.6)

(aoj)oioz' v (aoj)oi

for any 1-cell a: M — M.

1.2. ADDITIONAL STRUCTURE FOR NATURALLY FROBENIUS MAP MONOIDALES. A map
monoidale (M, m,u) in a monoidal bicategory B was said to be naturally Frobenius in [20)]



m.le.bl.ml.ull u*1l.all.m*1l.m*

|

m.1le.bl.u*1l.all.m*l.m*

|

m.le.bl.u*1l.all.lm*.m*

|

m.u*11.11c.101.1m*.al.m* mau*1l.m*1.ml.11e.101.1m*.al.m* ———= m.m1.11c.1b1.1m*.al.m*

| (1.4) |2

u*1l.1m.11c.1bl.1m*.al.m* PR EREEE] w*l.m*.m.1m.11lc.1b1.1m*.al.m* |mv§.::.:09393¥.®~.3*

1.1.m»1.1.1.1.1.1

1.1.19m,.1.1.1.1.1.1 - .
m.le.bl.mlull.u*ll.all.m*1.m* —=m.le.bl.m* m.mlull.u*1l.all.m*1.m* =m.lc.bl.m*.m.Im.ull.u*1l.all.m*1.m* =>m.lc.bl.m*. m.Imull.u*11l.all.Im*.m*

(Mac Lane) ,— s T

m.lc.bl.m*.maul.mu1l.all.m*1l.m* m.1lc.bl.m*.m.ul.ul.al.lm.Ilm*.m*

@

113
173

{114

*H.H.H.JS.H.H.H.H

m.le.bl.u*1l.all.m*l.m* ————m.le.bl.m* . mau*ll.all.m*l.m* —=————=m.1lc.bl.m*.m.u*11.all.m*1.m* 1.11.1.1.1.1.1.1em 1
m.le.bl.u*ll.all.Im*.m* m.le.bl.m*.m.u*ll.all.lm*.m* m.1le.bl.m*.m.aul.ul.al.m*
u*1.1m.11ec.1bl.all.lm*.m* uw*1.1m.11c.161.1m*.1m.all.lm*.m* m.le.bl.m*.u*l.al.m*
m,_ ERERTEER T LLLLLIem.1.1 T
u*1.1m.11ec.1bl.1m*.al.m* = uw*1.1m.11e.1b1.1m*.Im.1m*.al.m* ————u*1.1m.11c.1b1.1m*.al.m*
adjoint ,—H.JS.H.H.H.H.H.H

w*l.m*.m.Im.11lc.1bl.1m*.al.m*

|2

m.1lm.11c.1b1.1m*.al.m*

Figure 1: Proof of (1.5)
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if both 7w and 7', defined as the respective 2-cells

MM e Vnm MM MM leml bnm MM,

\MMTM44 \MM—m>M4

are invertible. Then M is a self-dual object of B, with unit m*.u : I - MM and counit
u*m: MM — I. So any morphism b: M — M has a mate

VMArlf%J\:\M\ nyMTf%flM\

b= (M =2 MM 2 MMM 22 MMM - MM -2 M.

For any 1-cells b,c¢: M — M, in [7, Section 4.5] 2-cells
preiboc” > [(bec)ojlei and  thc:b oc—>ie[jo(bec)],

natural in b and ¢, were introduced; and [7, Lemma 4.2] was proven about their com-
patibility with e. Together with the 2-cells A and o of the previous section, they render
commutative (modulo the omitted monoidal coherence isomorphisms) the diagram

aob-oc—""1 - ([(asb)oj]ei)oc

101/)17,6 \j)\aob,c (17)

ao(ieljo(bec)]) —g—asbec
for any 1-cells a,b,c: M — M. This is immediate by the explicit form of the occurring
2-cells.
In [7, Lemma 4.3] a further 2-cell 9¢,,: fo[(goj)ei]oh™ - [(feh)ogoj]ei was
introduced naturally in any 1-cells f,g,h: M — M.
We will omit the subscripts of all morphisms ¢, A, 9,9 — referring to the involved
objects of B(M, M) — if it may cause no confusion.

1.3. REMARK. Let us recall from [7, Section 4.3] — see also [1] and [29] — the following
duality. If (M,m,u) is a naturally Frobenius map monoidale in a monoidal bicategory B,
then (M, m*,u*) is a naturally Frobenius map monoidale in the monoidal bicategory BoPrev
obtained from B by formally reversing the 1-cells and taking the reversed monoidal prod-
uct. Repeating the construction of Section 1 with the naturally Frobenius map monoidale
(M, m*,u*) in BoPreY we arrive at the same category B°Pre(M, M) = B(M, M) with the
duoidal structure provided by the reversed products o™ and ™. As explained in [7, Section
4.8], b b~ is the object map of a strong duoidal equivalence between the duoidal category
B(M, M) of Section 1 and the same category with the reversed monoidal structures.

In these duoidal categories (B(M, M), e, 0) and (B(M,M),e"v o) the roles of the
morphisms X and o, as well as the roles of ¢ and v are pairwise interchanged, while 9
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has a symmetric counterpart Kggp: f~o[te(jog)loh—>ie[jogo(feh)] for all 1-cells
fig,h: M — M.

Recall a further duality of duoidal categories. Interchanging the roles of the o- and
e-monoidal structures we obtain a duoidal structure on the opposite category. In this way,
for a (not necessarily naturally Frobenius) map monoidale M in a monoidal bicategory
B, also (B(M,M)°P, 0, e) is a duoidal category. However, this latter one does not be-
long to the class described in Section 1. Namely, it is not true that its first monoidal
product is a convolution and the second one is a composition (but the other way around).
Therefore the results proved in (B(M,M),e,0), allow for no straightforward dualization
to (B(M,M)°P,o,e).

Using that £°: j - joj is induced by the unit n* of the adjunction u —+ u* (see Section
1), we see that for any 1-cell a: M - M, a morphism 6 : joa — j is left j-colinear; that
is,

. 0 .
joa———=]

5001l Lfo

Jjejoa——=joj

commutes, if and only if 6 is equal to

M I U— I o
i T u*
\\ " /

v u M.
Uau

By the explicit form of x in Remark 1.3 (see the dual of ¢ in [7, Lemma 4.3]), a morphism
0 of this form renders commutative

frolis(joa)]oh—>is[joaoc(feh)]
lo(loe)oll Llo(é‘ol) (1.8)

f‘ohmio[jo(foh)]
for any 1-cells f,h: M — M. (In the horizontal composite 2-cells of the columns of the
diagram of (1.8), only those components are non-identity 2-cells which meet identity 2-
cells of the 2-cells of the rows, when they are vertically composed.) The equality of the
morphisms in the bottom row of (1.8) follows by the dual version of [7, Lemma 4.3 (ii)].
For any objects b and ¢, and any morphism of right i-modules w : 7 — [(bec) o j] e
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in B(M, M) — that is, such that

ioi = [(bec)ojleiei
sol Llofo (1.9)
i [(be ) o] i
commutes — also the following diagram commutes.

(10€9)e1

(iojoj)ei
(wolol)el

Ve (ioi) DL [([(bec)ojlei)oile (ioi) L [([(bec)os]ei)ojo]ei

| 3

(isi)o(joi)  ([(bec)ojleiei)o(jei) 15)

i (ioj)ei

(Mol)el
iei zel [(bec)ojleiei
| —
o (1.9)
i _ [(bec)oj]ei

(1.10)
With this identity at hand, we see that for any right i-module morphism w :i - (boc™) e,
and the associated morphism €2 of

j ol [(boc )'Z]o](gl([(b°c)°]]°Z°Z)Oj(ﬂil([(boc)oj]oi)oj—)‘>boc

(1.11)
the diagram of Figure 2 commutes. The region marked by (1.10) commutes by the appli-
cation of (1.10) to the following particular right i-module morphism as w:

i~ (boc)ei L [(bec)oleiei T [(bec)o ] e

1.4. HOPF COMONADS. As observed in [29] and [7, Section 3.3], a monoidal comonad a
on a map monoidale M in a monoidal bicategory B can equivalently be seen as a bimonoid
— in the sense of [1, Definition 6.25] — in the duoidal category B(M, M) of Section 1.
We denote by p:aea — a and 7 :j — a its e-monoid structure and by 0 : @ > a o a and
€:a — 1 its o-comonoid structure.

By [7, Theorem 7.2] a monoidal comonad a on a naturally Frobenius map monoidale M
is a Hopf comonad (a right Hopf comonad in the terminology of [15]) if and only if there is
a 2-cell 0:a - a~ — the so-called antipode — rendering commutative the diagrams of [7,



. .. . . ol . .. le&o . .
(aod)ei = (@od)e (o)) oi——=(a0d) i —"—[(awd)oj]eisi— 2~ [(@ed)oj]ei
lew (1.10) le(Qol)el
lepel leley [(1e2)o1]el
(@od)o(boc)eim(@od)e[(bec)os]einin (aod)s[(bec)oj]ei S
Eeol
Sel Gelel [(1eS2e1)01]el
[(aeb)o(d-ec)]ei [(aebec)od ]eiei [(aebec)od ]ei
[7, Lemma 4.2] peolel aly
o ;m«o@ooo&vo,ios.o@.o& 1e1eto :Qovono&vo,ﬁo&o@.
le&pel L+
[(awb)o(cod)Toi—r[(anbocod)os]oivi [(asbeced)oj]ei

1e&p

Figure 2: Properties of Q of (1.11)
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Theorem 7.2]. In this case we term a — with the e-monoid structure (i, n), o-comonoid
structure (d,¢), and the antipode o : a - a= — a Hopf monoid in B(M,M). For a Hopf
monoid a, also the following diagram commutes.

1) loo 106~

a———>aoa aoa” ao(aoa)”
5 106 [7, Theorem 7.5] ~
dol logol _ loloo _ _
aoqgq——aoaqocq——>A°a °oa aoa oa
Lgpol @ol
col [7, Theorem 7.2] ([(aoa)oj]oi)oa ([(a.a)oj].i)oa— (112)
L[(uon-uol
0¢1)o01 ol)el]ol
q [(joj)oz']oaM[(aoj).@’]oa [(uol)el]ol
o loo
a (50.1)01 [(] j) .Z] a- [(7’]01)01]01 [(aoj) .7/] oa-

1.5. REMARK. A monoidal comonad a on a naturally Frobenius map monoidale (M, m,u)
in a monoidal bicategory B can be seen, equivalently, as a monoidal comonad on the natu-
rally Frobenius map monoidale (M, m*,u*) of Remark 1.3 in B°P"®'. The comultiplications
and the counits are the same while the monoidal structures are mates under the adjunc-
tions m 4 m* and u 4 u* in B. Hence it can equivalently be seen as a bimonoid in either
one of the duoidal categories (B(M,M),e,0) and (B(M,M),e™ o) of Remark 1.3.
The diagrams of [7, Theorem 7.2] in these duoidal categories take the same form (only
their roles are interchanged). Thus they commute in (B(M,M),o,e) if and only if they
commute in (B(M, M), o™, o). That is to say, a is a Hopf monoid in (B(M,M),o,e) if
and only if it is a Hopf monoid in (B(M, M), o™, ") via the same structure morphisms.

2. Separability of a Hopf monoid

Recall — e.g. from [26, page 117] — that a monoid (a,u,n) in a monoidal category
(C,e,7) is said to be separable if there is a morphism V : a - a e a rendering commutative
the following diagrams.

leV
aeq————=qa00a9qQ (Z—>CL.CL

aeqgeq————>aea
lep

That is, V is an a-bimodule section of . Although such a section V is not unique, in our
considerations only its existence plays any role.
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In the monoidal category of modules over a commutative ring, a separable monoid is
just a separable algebra in theh sense of [16].

The aim of this section is to find sufficient and necessary conditions for the separability
of the constituent monoid of a Hopf monoid.

2.1. DEFINITION. By a left integral for a bimonoid (a, (1,n),(d,€)) in a duoidal category
(D,e,0) we mean a left a-module and right i-module morphism 6 :i — a ei. That is, a
morphism 6 making the first two diagrams of

aei—0-geqei iei - geiei z—>aoz
soll

7079 pel &o 1e&o Z
fol

Z'T-CLOZ' ZT—CL.Z

commute. A left integral 0 is said to be normalized if also the third diagram of (2.1)
commutes.

Dually, a right integral for a bimonoid a in (D,e,0) is a left integral for a regarded
as a bimonoid in (D,e™ o). That is, a right a-module and left i-module morphism
0:i—iea. A right integral is normalized if it is normalized as a left integral; that is, it

. . . . 1 . . fo .
is a section of the a-action iea—=iei—>1 .

2.2. LEMMA. Consider a naturally Frobenius map monoidale M in a monoidal bicategory
B. For a Hopf monoid (a,(11,n),(0,€),0) in the duoidal category B(M, M) of Section 1,

. .0 .
and any morphism 1 —ae1 , take

wi=(1 b aei (aoa)oz(lo;‘);l aoa~)ei). (2.2)

For the corresponding morphism € of (1.11) the following assertions hold.
(1) Q renders commutative the diagram of Figure 3.
(2) If 0 renders commutative the rightmost diagram of (2.1) then . =n.
(8) If 0 is a left integral, then Q renders commutative the diagram of Figure 5.

PROOF. Part (1) is proved by Figure 3, part (2) is proved by Figure 4 and part (3) is
proved by Figure 5 (whose region (*) commutes by a bimonoid axiom). [
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aoa 1o aoa” ‘ [(aea)oj]ei
le&d legd 1.1.ggt \
(a0a)ei (a0a)ei—"—[(asa)oj]eiei—""x[(asa)oj]ei
1e0
(aca)eaei (aoca”
ledel ledel
(aca)e(aca)ei (aca)e
le(loo)el Figure 2 [(1eS2e1)o01]e1
gol (aca”)e(aca)ei
gol
[(aea)o(aea)] 1= [(aeayo(aea)]oi
(pop)el [(aea)o(aea)] Oigl[(aoaoaoa)Oj] OiOilﬁo[(aoaoaoa)Oj] o
(7, heorem 73] (nop~)el [(uop)o1]el

(a0a)ei (a0a)si——g—[(asa)o ]eisi—[(asa)oj]ei

(loo)el pel le&o

Figure 3: Proof of Lemma 2.2 (1)



j S (aei) o j < :iaéﬁ%?éE:Eagéé.ZEEEEVéé:|>é;
(eo1)ol [7, Theorem 7.2] [(pol)elel]ol
(i0i) o /= (o) wini]o) et [(aof)eisiloj ——=[(aoj)ei]o z
ool (1e€0)o1 L)ool /
0 [(og)eilo) a
(1.2)

Figure 4: Proof of Lemma 2.2 (2)
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2.3. PROPOSITION. Consider a naturally Frobenius map monoidale M in a monoidal
bicategory B, and the duoidal category B(M, M) of Section 1.

(1) For a Hopf monoid (a,(1,n),(6,€),0) in B(M, M), and a left integral 0, the corre-
sponding morphism § of Lemma 2.2 renders commutative the following diagram.

Qel
a——=qaeqaqeq

mt lm

aeaqgeq——Qaqe®Q
pel

(2) If the integral @ of part (1) is normalized then the equal paths around the diagram of
part (1) provide an a-bimodule section of the multiplication . Thus the e-monoid
(a,p,m) is separable.

PRrROOF. (1) In both Figures 6 and 7, w denotes the morphism of (2.2). The top-right
paths of the commutative diagrams in Figure 6 and in Figure 7 coincide. Hence their
left-bottom paths are equal. The region marked by (*) in Figure 6 commutes since by
the right ¢-linearity of 6 also w is right ¢-linear.

(2) The top-right path of the diagram of part (1) is obviously a right a-module mor-
phism and the left-bottom path is a left a-module morphism. It follows by the associativity
and the unitality of the e-monoid (a, ,7), together with Lemma 2.2 (2), that either path
around the diagram of part (1) provides a section of p. n

For a naturally Frobenius map monoidale M in a monoidal bicategory B, and the
duoidal category B(M, M) of Section 1, we may regard right i-modules as Eilenberg-
Moore algebras of the monad — e i on B(M, M) (whose multiplication is induced by &
and whose unit is induced by &)). Let us denote their category by B(M,M)=*". For a
monoid a in (B(M, M),e), we may regard left a-modules - right i-modules as Eilenberg-
Moore algebras of the monad a e — e 7 on B(M, M) — equivalently, as Filenberg-Moore
algebras of the monad a e — on B(M, M)=*. We denote their category by B(M, M)ae-*¢;
and we use similar notations when the roles of left and right actions are interchanged.

The following Maschke type theorem is our first main result.

2.4. THEOREM. Consider a naturally Frobenius map monoidale M in a monoidal bicate-
gory B. For a Hopf monoid (a,(u,n), (0,€),0) in the duoidal category B(M, M) of Section
1, the following assertions are equivalent.

(i) The monoid (a,p,n) in (B(M,M),e,7) is separable.
(ii) There exists a normalized left integral i - a o 1.
(i1i) There exists a normalized right integral i — i e a.

(iv) The forgetful functor B(M, M )®*=* — B(M,M)=* is separable (in the sense of [25,
page 398]).
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(v) The forgetful functor B(M, M)i*=*¢ - B(M, M)~ is separable.
(vi) The forgetful functor B(M, M)**=* — B(M,M)=* reflects split epimorphisms.
(vii) The forgetful functor B(M, M)i=*¢ - B(M, M )%~ reflects split epimorphisms.

PROOF. It is well-known that (i)=(iv), (v) — see e.g. [5, Paragraph 2.9] — and that
(iv)=>(vi) and (v)=>(vii) — see [25, Proposition 1.2]. By the bimonoid axiom .n = &), the
right vertical of

.. nel .
jet—>=aqei

col
Ny

107

B

i

is an epimorphism of right i-modules split by the top row. It is a morphism of left
a-modules by the commutativity of

. lecel . . 1050 .
aeqe)]—>(Q0,0] —>( 0]

lEOIol jaol
Le&o

pel 100, ———>7 @9
lﬁo'l jéo

. o '
aeil - 107 = 7

whose rectangle on the left commutes by a bimonoid axiom. Thus if (vi) holds then
it is a split epimorphism of left a-modules - right i-modules as well whence its section
is a normalized left integral. This proves (vi)=-(ii). The implication (vii)=-(iii) follows
symmetrically. We infer from Proposition 2.3 that (ii)=(i) and (iii)=(i) follows symmet-
rically. [

2.5. REMARK. Any bimonoid (a,(u,n),(d,€)) in a duoidal category (D, e, o) induces an
opmonoidal monad ae (=) on the monoidal category (D, o), see [10, Theorem 6.7]. Appli-
cation of the Maschke type theorem [31, Theorem 8.11] to it yields the equivalence of the
following assertions.

(x) The counit of the adjunction a e — - forgetful functor: D~ — D possesses a right
muverse.

(x) For any object (v, aev v ) of D®, v is a split epimorphism in D**~,

0
F) aei =lieitsi isa split epimorphism in D~
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Consider now a naturally Frobenius map monoidale M in a monoidal bicategory B.
There are several easy ways to see that the above equivalent conditions hold for a Hopf
monoid in the duoidal category B(M, M) of Section 1 if it satisfies the equivalent con-
ditions of Theorem 2.4 (while there is no reason to expect the converse in general). For
example, Theorem 2.4 (ii)= (%) is trivial.

3. Coseparability of a Hopf monoid

Recall that a comonoid in a monoidal category is said to be coseparable if it is a separa-
ble monoid in the opposite category. That is, its comultiplication admits a bicomodule
retraction. The aim of this section is to find sufficient and necessary conditions for the
coseparability of the constituent comonoid of a Hopf monoid in the duoidal category
B(M, M) for a naturally Frobenius map monoidale M in some monoidal bicategory 5.

Both monoidal structures of the duoidal category B(M, M) come from different sources:
one of them is a composition while the other one is a convolution in B. Their roles can
not be interchanged. Therefore the results of this section can not be obtained from those
in Section 2 by some kind of duality; they need independent proofs.

3.1. DEFINITION. By a left cointegral for a bimonoid (a,(u,n),(0,€)) in a duoidal cat-
egory (D, e, 0) we mean a left integral for the bimonoid (a,(d,¢),(u,n)) in the duoidal
category (D°P, o e). That is, a left a-comodule right j-comodule morphism 0 : aoj — j;
meaning that the first two diagrams of

. 0 . . 0 .
aocj——=] aocj——=]
¢
5ol JoyJ 10g? € J (3.1)
lqyol 'r]ol
aeacj—g=ac] aejejmiel “o 57

commute. A left cointegral 0 is said to be normalized if it is normalized as a left integral;
that is, also the third diagram above commutes.

Dually, a right cointegral for a bimonoid a in (D, e,0) is a left cointegral for a regarded
as a bimonoid in (D, e o). That is, a right a-comodule left j-comodule morphism

O:j70a— j. A right cointegral is normalized if it is normalized as a left cointegral; that

£° . lon
18, it is a retraction of the a-coaction j—=joj—=joa.

Consider a naturally Frobenius map monoidale M in a monoidal bicategory B and
the duoidal category B(M, M) of Section 1. For a Hopf monoid (a,(u,7n),(d,),0) in
B(M, M), and any morphism @ : j o a — j, consider the composite morphism

@:z(aoaa—d>a‘oa—w>z’o[jO(aoa)]ﬂ)iO(joa)ii : (3.2)
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3.2. LEMMA. Consider a naturally Frobenius map monoidale M in a monoidal bicategory
B and a Hopf monoid (a,(p,n),(d,€),0) in the duoidal category B(M, M) of Section 1.
For a morphism 0 : joa — j such that the rightmost diagram of (3.1) commutes, the
associated morphism © of (3.2) satisfies ©.0 = ¢.

PRrROOF. The claim follows by the commutativity of the next diagram, whose top-right
path is equal to ©.

ool v Le(lop) . .
aca—=a oca—>=ie[jo(aea)]—=ie(joa) )
s [7, Theorem 7.2] 1.(1on)T

1050

3.3. PROPOSITION. Consider a naturally Frobenius map monoidale M in a monoidal
bicategory B, and the duoidal category B(M, M) of Section 1.

(1) For a Hopf monoid (a,(u,n),(0,€),0) in B(M,M), and a right cointegral 0, the
associated morphism © of (3.2) renders commutative the following diagram.

dol
aocaq——=aoaoa

1o5l llo@

oqoq —>
aocaoa 01

(2) If the right cointegral 0 of part (1) is normalized, then the equal paths around the
diagram of part (1) provide an a-bicomodule retraction of the comultiplication 6.

PROOF. (1) The region of Figure 8 marked by the symbol (*) commutes by a bimonoid
axiom. The region marked by [7, Lemma 4.3 (iii)] commutes by the application of [7,
Lemma 4.3 (iii)] to the naturally Frobenius map monoidale (M, m* ,u*) in BoPrev  see
Remark 1.3. The bottom rows of the commutative diagrams in Figure 8 and in Figure 9
coincide. The left columns are equal by (1.12). Therefore also the top paths are equal.
(2) The top-right path of the diagram of part (1) is obviously a morphism of left a-
comodules and the left-bottom path is a morphism of right a-comodules. Either path is a
retraction of d by the coassociativity and the counitality of the comonoid (a,d, ), applied
together with Lemma 3.2. n

For a naturally Frobenius map monoidale M in a monoidal bicategory B, and the
duoidal category B(M, M) of Section 1, we may regard left j-comodules as Eilenberg-
Moore coalgebras of the comonad j o — on B(M, M) (whose comultiplication is induced
by &Y and whose counit is induced by &0). Let us denote their category by B(M, M )i°-.
For a comonoid a in (B(M, M),0), we may regard right a-comodules - left j-comodules
as Eilenberg-Moore coalgebras of the comonad jo - oa on B(M,M) — equivalently,
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as Eilenberg-Moore coalgebras of the comonad — o a on B(M,M)/°~. We denote their
category by B(M, M)i°=°%; and we use similar notations when the roles of left and right
coactions are interchanged.

The Maschke type theorem below is our second main result.

3.4. THEOREM. Consider a naturally Frobenius map monoidale M in a monoidal bicate-
gory B. For a Hopf monoid (a, (1,n), (0,€),0) in the duoidal category B(M, M) of Section
1, the following assertions are equivalent.

(i) (a,d,€) is a coseparable comonoid in (B(M,M),o,1).
(ii) There exists a normalized left cointegral aoj — j.
(11i) There exists a normalized right cointegral joa — j.

(iv) The forgetful functor B(M, M)~ — B(M, M)~ is separable (in the sense of [25,
page 398]).

(v) The forgetful functor B(M, M)ie=°e — B(M, M)I°~ is separable.
(vi) The forgetful functor B(M, M)*=°3 — B(M, M)~ reflects split monomorphisms.
(vii) The forgetful functor B(M, M)i°=°¢ - B(M, M)i°= reflects split monomorphisms.

PRrROOF. It is well-known that (i)=(iv),(v) — see e.g. [5, Paragraph 2.9 (2)] — and that
(iv)=>(vi) and (v)=-(vii) — see [25, Proposition 1.2 (1’)]. By the bimonoid axiom e.n = &,
the top row of

L& . . lonp .
J JoJ Jea

Nt
1058

joi

J
is a monomorphism of left j-comodules split by the right column. It is a morphism of

right a-comodules by the commutativity of

0

. . . lon .

J JoJ Joa
501 jloéo
L S L
joj—>)070] 106

lonl jlolon

joq——Jojoq——>Jo0Q@O
Jea %1 Jojea lonol Jeaoca
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whose rectangle on the right commutes by a bimonoid axiom. Thus if (vii) holds then
it is a split monomorphism of right a-comodules - left j-comodules as well whence its
retraction is a normalized right cointegral. This proves (vii)=-(iii). The implication
(vi)=(ii) follows symmetrically. We infer from Proposition 3.3 that (iii)=(i) and (ii)=(i)
follows symmetrically. m

4. Applications

4.1. HOPF MONOIDS IN BRAIDED MONOIDAL CATEGORIES. Any monoidal category (C, ®,
k) can be regarded as a bicategory with a single object, the 1-cells provided by the ob-
jects of C and the 2-cells provided by the morphisms of C. The vertical composition is
the composition in C while the horizontal composition is the monoidal product ®.

If furthermore the monoidal category (C, ®, k) is braided, then the reverse of ® renders
the above bicategory monoidal. Its single object is a trivial naturally Frobenius map
monoidale, hence its endohom category C possesses a duoidal structure as in Section 1.
Both monoidal structures turn out to be (®, k) with compatibility morphism ¢ determined
by the braiding; and the other compatibility morphisms £°, £ and &0 given by the unitality
natural isomorphisms, as in [1, Section 6.3].

As the bimonoids (respectively, Hopf monoids) in this duoidal category we re-obtain
the usual notion of bimonoids (respectively, Hopf monoids) in the braided monoidal cat-
egory (C,®,k); see e.g. [23, pages 113-114].

A left (or right) integral in the sense of Definition 2.1 for a bimonoid (a, (1,7), (4,€))
in a braided monoidal category (C,®, k) — regarded as a duoidal category — is just a
left (or right) a-module morphism & — a. It is normalized in the sense of Definition 2.1 if
it is a section of the counit e.

Applying Theorem 2.4 to the above situation we obtain the following.

4.2. THEOREM. For a Hopf monoid (a,(u,n),(d,€),0) in a braided monoidal category
(C,®, k), the following assertions are equivalent.

(i) (a,u,n) is a separable monoid in (C,®,k).
(i1) a admits a normalized left integral, that is, a left a-module section of .
(71i) a admits a normalized right integral, that is, a right a-module section of .

Application of Theorem 3.4 to a Hopf monoid (a, (14,7), (J,€),0) in a braided monoidal
category (C,®,k) yields nothing new in this case but the same as the application of
Theorem 2.4 to (a,(u,n),(d,€),0) regarded as a Hopf monoid in the opposite of the
category C.

4.3. WEAK HOPF ALGEBRAS. A weak bialgebra in [8, Definition 2.1], over a field k, is a
vector space A equipped with an algebra structure (u, ) and a coalgebra structure (A, €)
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subject to the axioms formulated as the commutativity of the diagrams below.

1eflipl

A9 A—2%0 . AgAA®A A9AA® A

a |

A < Ao A

where flip: A®@ A > A® A is the flip map a® b~ b ® a, and

k vey A® A A®A®A%A®A®A®A
A® A A ARARA®A AQRARARA A AR A
e T T e -
A®A®A®ATOP:I>A®A®A Ag A Ty

where 2 @ p.(p®1) = p.(1®p) and A? .= (A®1).A = (1® A).A, p = pflip and
A°P := flip.A.

While the first diagram requires the multiplicativity of the comultiplication in the
usual sense of a proper bialgebra, unitality of the comultiplication; that is, A.v=v®v is
not required.

Essential roles are played by the following — in fact idempotent — linear maps.

MR = (AL A9 A2 A9 A9 AT Ag A2 A)
A= (A AeAl% AedeA - A0 A2 1)
o= (A% A@A %2 AegAeA T A AL A)

A= (A% A0 A8 AeAe AL A9 A-2L 4).

The coinciding images of N and 7 form a subalgebra of A that we term the base algebra.
Also the coinciding images of N and 7 form a subalgebra of A whose elements commute
with the elements of the base algebra. The pair n® and T, and also the pair N’ and 7"
restrict to mutually inverse anti-isomorphisms between these commuting subalgebras of
A. For more details we refer to [§].

A weak Hopf algebra is a weak bialgebra (A, (u,v), (A, €)) which admits a further
linear map o : A - A — the so-called antipode — rendering commutative the following
diagrams.

A AL Ag A A AL Ag A
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Whenever the antipode exists, it is unique, and it is an algebra anti-homomorphism as
well as a coalgebra anti-homomorphism.

On elements h of A, the Sweedler type index notation A(h) = hy ® hy will be used,
where implicit summation is understood. The multiplication is denoted by juxtaposition
of elements. The image of the number 1 in k£ under v is also denoted by 1 € A.

A separable algebra over a field k is a monoid R equipped with a separability structure
in the monoidal category vec of k-vector spaces. In this case the separability structure
can be given by the so-called separability element Y, e; ® f; € R ® R which is the image
of the unit element of R under the bilinear section of the multiplication. Then, by its
bilinearity, the section sends any r € R to >, re; ® f; = ¥, €; ® f;r. Since it is a section
of the multiplication, >, e;f; = 1. A Frobenius-separability structure on an algebra R is
a separability structure admitting a (necessarily unique) linear map ¢ : R - k — the
Frobenius functional — such that ¥, 4¥(e;)f; = 1 = ¥, e0(f;). For example, the base
algebra R of a weak bialgebra possesses a Frobenius-separable structure. The separability
element is 1; ® N%(1,) and the Frobenius functional is the restriction of the counit to the
base algebra. The enveloping algebra R ® R°P of a Frobenius-separable algebra R is again
Frobenius-separable via the obvious factorwise structure.

For any algebra R, a monoid in the monoidal category bim(R) of R-bimodules can
be characterized, equivalently, as an algebra A together with an algebra homomorphism
n:R— A. If R is a separable algebra, then any separability structure on a monoid (A,n)
in bim(R) determines a separability structure on the algebra A (as a monoid in vec).
Conversely, also any separability structure on the algebra A determines a separability
structure on the corresponding monoid (A, 7n) in bim(R) for any algebra homomorphism
n: R — A (although the correspondence is not bijective in general).

It was shown in [6] that for any Frobenius-separable algebra R the category bim(R ®
R°P) of R ® ReP-bimodules possesses a duoidal structure. In terms of a Frobenius-
separability element , e; ® f; € R® R, the e-monoidal product of any R ® R°P-bimodules
M and N lives on the subspace Y, ; M(e; ® f;) ® (f; ® e;)N of the vector space M ® N.
The e-monoidal unit 7 is R ® R°P with the actions provided by the multiplication:

(roy)(peq)(z'®y’) =apr’ ®y'qy. (4.1)

The o-monoidal product of any R® R°P-bimodules M and N lives on the subspace 3, ;(e;®
1)M(e;®1)® (1® fi)N(1® f;) of the vector space M ® N. The o-monoidal unit ¢ also
lives on R ® R°P; at this time the actions are given in terms of the Frobenius functional
Y:R—>k as

(zoy)(peq)(z' ®y") =y'pa:'®a:qzw(yfi)ei. (4.2)

As explained in [7, Section 5.3], this duoidal category bim(R ® R°P) arises in the way
described in Section 1. That is, it is the endohom category of a naturally Frobenius map
monoidale R® R°P in the monoidal bicategory of algebras, bimodules and bimodule maps.

The bimonoids in this duoidal category bim(R ® R°P) were identified in [6] with the
weak bialgebras whose base algebra is isomorphic to R. By [7, Section 8.4], a weak
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bialgebra is a weak Hopf algebra if and only if the the corresponding bimonoid in bim(R®
R°P) is a Hopf monoid.

In a bit more detail, the bimonoid a in bim(R ® R°P), associated to a weak bialgebra
(A, (p,v), (A, €)) with the base algebra R (identified with nf*(A) ¢ A), lives on the R® R°P-

bimodule A with the actions
(x@y)h(z' ®y') = aF”(y)ha'T" (y). (4.3)

The unit of the e-monoid a is
n:j—a, peqepa(g). (4.4)

The multiplication occurs in the factorization of the algebra multiplication p: A® A - A
via the canonical epimorphism A® A - Ae A:

The counit of the o-comonoid a is the map
e:A—i,  henf(h) i (h). (4.5)

The comultiplication is the composite of the coalgebra comultiplication A : A - A® A
and the canonical epimorphism A® A - Ao A:

§=(A—2>A@A—=AcA). (4.6)

If A is a weak Hopf algebra, then the antipode of the Hopf monoid a in bim(R ® R°P) is
the same map A - A as the antipode of the weak Hopf algebra A.

After all these considerations, from Theorem 2.4 we re-obtain [8, Theorem 3.13] as
follows.

4.4. THEOREM. For a weak Hopf algebra A over a field k, with base algebra R, the
following assertions are equivalent.

(i’) A is a separable k-algebra.

(i) The algebra A and the algebra homomorphism (4.4) describe a separable monoid in

(bim(R ® R°P), e, ).

(i1°) There is a normalized left integral in the sense of [8, Definition 3.1]. That is, an
element t' of A satisfying the following conditions.

o ht' =nl(h)t' in A, for all he A.
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o A(t') =1 in R.

(ii) Regarding A as a bimonoid a in bim(R® R°P), it possesses a normalized left integral
in the sense of Definition 2.1. That is, there exists an element t of A satisfying the
conditions of part (ii’) together with the further condition

o tnL (z)=tA" A" (x) in A, for all x € R.

(i1i’) There is a normalized right integral in the sense of [8, Definition 3.1]. That is, an
element t' of A satisfying the following conditions.
o t/h=t'n(h) in A, for all he A.
e Nfi(t')=11in R.
(11i) Regarding A as a bimonoid a in bim( R® R°P), it possesses a normalized right integral

in the sense of Definition 2.1. That is, there exists an element t of A satisfying the
conditions of part (iii’) together with the further condition

o A" (z)t=nRnL (2)t in A, for all x € R.

PROOF. We have (i) < (ii) < (iii) by Theorem 2.4. Since R is a separable k-algebra —
see [8, Proposition 2.11] — so is R ® R°P. Therefore (i) < (i’). Finally, (i) < (ii") <
(iii’) by [8, Theorem 3.13] and its symmetric counterpart. =

Note that any integral ¢ in part (ii) of Theorem 4.4 can be used as t' in part (ii’).
Conversely, if ¢’ is an integral in part (ii’), then ¢'1; n* nf(1,) is a suitable ¢ in part (ii).
Similarly, any integral ¢ in part (iii) can be used as ¢’ in part (iii’). Conversely, if ¢’ is an
integral in part (iii’), then nf N’ (1;)15¢' is a suitable ¢ in part (iii).

Analogously, from Theorem 3.4 we obtain the following.

4.5. THEOREM. For a weak Hopf algebra (A, (u,v), (A €),0) over a field k, with base
algebra R, the following assertions are equivalent.

(i’) (A, A e€) is a coseparable k-coalgebra.
(1) (A,d,¢) of (4.6) and (4.5) is a coseparable comonoid in (bim(R ® R),0,1).

(ii°) There is a normalized left cointegral in the sense of a linear map 7' : A — k satisfying
the following conditions.

o hi7'(hy) =t (hy)7'(hy) in A, for all he A.
o 7' .Ml =¢.

(i) Regarding A as a bimonoid a in bim(R® R°P), it possesses a normalized left cointegral
in the sense of Definition 3.1. That is, there exists a linear map 7: A — k satisfying
the conditions of part (ii’) together with the further condition
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o 7(zh) =7(hnfnk(x)), for all z€ R and h e A.

(i1i’) There is a normalized right cointegral in the sense of a linear map 7' : A - k
satisfying the following conditions.

e 7/(hi)hy =7'(hy) nf (hy) in A, for all h e A.

o T/.mt=¢.

(11i) Regarding A as a bimonoid a in bim(R® R°P), it possesses a normalized right coin-
tegral in the sense of Definition 3.1. That is, there exists a linear map 7 : A - k
satisfying the conditions of part (11i’) together with the further condition

o 7(hA"(x)) = T(nL(x)h), for all z € R and h e A.

Note that any cointegral 7 in part (ii) of Theorem 4.5 can be used as 7/ in part (ii’).
Conversely, if 7/ is a cointegral in part (ii’), then 7/(1; — nf(13)) is a suitable 7 in part
(ii). Similarly, any cointegral 7 in part (iii) can be used as 7/ in part (iii’). Conversely, if
7/ is a cointegral in part (iii’), then 7/(n*(1;) — 15) is a suitable 7 in part (iii).

4.6. HOPF ALGEBROIDS OVER CENTRAL BASE ALGEBRAS. In [1, Example 6.18] the
category bim(R) of bimodules of a commutative algebra R (say, over a field k) was shown
to carry a duoidal structure as follows. The o-monoidal product is the usual R-bimodule
tensor product provided by the coequalizer

right R-action ®1

M®R®N M®N——MoN

1® left R-action

for any R-bimodules M and N and for the tensor product ® of vector spaces. Thus the o-
monoidal unit ¢ is R with equal left and right actions provided by the multiplication. Since
R is commutative, R-bimodules can be identified with modules over the commutative
algebra R ® R. The e-monoidal product of R-bimodules M and N is their R ® R-module
tensor product occurring in the coequalizer

(R ® R)-action ®1
Me®eR®R®N M®N-—MeN.

1® (R ® R)-action

The e-monoidal unit j is R ® R with the actions z(p ® ¢)y = zp ® yq. As explained in [7,
Section 5.2], this duoidal category bim(R) arises in the way described in Section 1. That
is, it is the endohom category of a naturally Frobenius map monoidale R in the monoidal
bicategory of algebras, bimodules and bimodule maps.

In [1, Example 6.44] the bimonoids in this duoidal category were identified with a
particular kind of Takeuchi bialgebroid in [30] (see also [22] and [18]). The occurring bial-
gebroids are distinguished by the property that their source and target maps below land
in the center of the total algebra. Explicitly, a monoid in (bim(R), e, j) is characterized by
a k-algebra A — termed the total algebra — and an algebra homomorphism 7 from R® R
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to the center of A. Such a homomorphism 7 is conveniently encoded in a pair of algebra
homomorphisms s := (- ® 1) — the source map — and ¢ := n(1 ® =) — the target map
— from R to the center of A (so that n(x ®y) = s(z)t(y)). A comonoid in (bim(R),o,1)
consists of an R-bimodule A with R-bimodule maps  : A > Ao A and € : A - R such
that 0 is coassociative with the counit €. The bimonoid compatibility axioms translate to
the conditions that the R-actions corresponding to the comonoid structure of A are

xhy = s(z)t(y)h, Vr,ye R, he A, (4.7)

and that § : A > Ao A and ¢ : A - R are algebra homomorphisms (with respect to
the well-defined factorwise multiplication on Ao A). Such a datum can be seen as a left
bialgeboid in the sense of [18] and, interchanging the roles of the source and target maps,
also as a right bialgebroid in the sense of [18].

By [7, Section 8.3] an antipode (in the sense of [7, Theorem 7.2]) for such a bimonoid
in bim(R) is a linear map o : A - A satisfying

o (s(z)h) = t(x)o(h) o (t(x)h) = s(x)a(h)
hio(he) = s(e(h)) o(h1)he =t(e(h))

for all h € A and = € R, where a Sweedler type index notation §(h) = hy o hy is used,
with implicit summation understood; and juxtaposition stands for the multiplication of
elements in the k-algebra A. This structure is termed a Hopf algebroid A with central base
algebra R, because it can be seen as particular instance of a Hopf algebroid in the sense of
[3, Definition 2.2] (see also [9] for a slightly more restrictive case) — with left bialgeboid
structure (A, R, s,t,9,¢), right bialgeboid structure (A, R,t,s,d,e) and antipode o. If not
only the algebra R but also A is commutative then this reduces to a groupoid object in the
opposite of the category of commutative algebras and their homomorphisms, discussed in
Appendix A.1 of [28].
Summarizing the above facts, from Theorem 2.4 we obtain the following.

4.7. THEOREM. For any commutative algebra R and any Hopf algebroid A with central
base algebra R, the following assertions — formulated using the notation of this section
— are equivalent.

(i) With the multiplication Ae A -~ A and the unit R& R - A, z @y~ s(z)t(y), A is
a separable monoid in (bim(R),e,7).

(i) There is a normalized left integral in A in the sense of Definition 2.1. That is, an
element n of A satisfying the following conditions.

e Forall he A, hn—s(e(h))n belongs to the ideal {s(x)k —t(z)klx € R, ke A}
in A.
e c(n)=1.

(i1i) There is a normalized right integral in A in the sense of Definition 2.1. That is, an
element n of A satisfying the following conditions.
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e For all h e A, nh—s(e(h))n belongs to the ideal {s(x)k —t(z)klx € R, ke A}
n A.

e c(n)=1.

The equivalent assertions of [3, Theorem 3.1] imply the assertions of Theorem 4.7
— separability over R implies separability over R ® R — but not conversely: the Hopf
algebroid R® R in [22, Example 3.1] satisfies the assertions of Theorem 4.7 but not those
of [3, Theorem 3.1] (for arbitrary commutative algebras R).

On the contrary, from Theorem 3.4 we re-obtain [3, Theorem 3.2] for Hopf algebroids
with central base algebra as follows.

4.8. THEOREM. For any commutative algebra R and any Hopf algebroid A with central
base algebra R, the following assertions — formulated using the notation of this section
— are equivalent.

(i) The comonoid (A,d,e) in (bim(R),o0,i) — where A is understood to be an R-
bimodule as in (4.7) — is coseparable.

(ii) There is a normalized left cointegral in the coinciding senses of Definition 3.1 and [3,
Definition 2.9]. That is, a linear map v: A — R subject to the following conditions.

e v(s(z)h)=xv(h) in R, for allz € R and h € A.
o hit(v(hy)) =s(v(h)) in A, for all he A.
o l/(lA) = 1R-

(i1i) There is a normalized right cointegral in the coinciding senses of Definition 3.1
and [3, Definition 2.9]. That is, a linear map v : A > R subject to the following
conditions.

e v(t(x)h) =xv(h) in R, for all z € R and h € A.
e s(v(hy))he =t(v(h)) in A, for all he A.
o v(ly)=1g.

4.9. HOPF MONADS ON AUTONOMOUS MONOIDAL CATEGORIES. In the bicategory prof
the 0-cells are the (small) categories, the 1-cells A — B are the profunctors — that is, the
functors B°P x A - set — and the 2-cells are the natural transformations. The 0lrlorizomtal
composition of any 1-cells F: A - B and G : B — C is given by the coend fbeB F(-,b) x
G(b,-). This bicategory prof is monoidal via the cartesian product of categories. Any
functor f: A — B can be regarded as a left adjoint profunctor B(-, f-); that is, as a map
in prof. In this way any monoidal category (C,®, K) can be seen as a map monoidale in
prof. It is furthermore naturally Frobenius if and only if (C,®, K) is autonomous; that
is, every object has a left and a right dual, see [21, 20]. In this case there is a duoidal
structure on prof(C, C) as in Section 1.
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Via the above inclusion of cat into prof, any monoidal comonad ¢ on a monoidal
category (C,®,K) gives rise to a monoidal comonad on the naturally Frobenius map
monoidale (C,®, K) in prof; hence to a bimonoid in the duoidal category prof(C,C). By
[7, Section 8.5], this bimonoid is a Hopf monoid if and only if it is a Hopf comonad in the
sense of [12, Section 3.6]; equivalently, in the sense of [11, Section 2.7].

While Theorem 2.4 seems to have no interesting message in this case, from Theorem
3.4 we re-obtain [12, Theorem 6.5] (see also [31, Theorem 8.11}) as follows.

4.10. THEOREM. For an autonomous monoidal category (C,®, K), and a Hopf comonad
t on (C,®,K) — with comonad structure (d,¢) and monoidal structure (ta,ty) — the
following assertions are equivalent.

(i’) The comonoid (t,0,e) is coseparable in cat(C,C) (considered with the monoidal
structure provided by the composition of functors).

(i) The comonoid (t,0,¢) is coseparable in the monoidal category (prof(C,C),o0,1).

(ii) There exists a normalized left cointegral in the coinciding senses of Definition 3.1
and [12, Section 6.3]. That is, a morphism A : t(K) — K rendering commutative
the following diagrams.

HK) —22 1K) K2 t(K)
Al Lt(A) \ l/\
K ——t(K) K

(i1i) There exists a normalized right cointegral in the sense of Definition 3.1. That is, a
retraction T of the natural transformation

C(to,l)

C(K,—) — C(t(K),t(-)) —= C(K,t(-))
rendering commutative the following diagram.

C(K,6.)

C(K,[()) C(K,It())
T Ti(-)
C(K, =) —— C(H(K), 1(=)) gy CULLE(5))

4.11. HOPF CATEGORIES. For any braided monoidal small category (C, ®, K), categories
enriched in the monoidal category of comonoids in C were studied in [2]. This includes
small categories themselves (that are re-obtained if (C,®, K) is the cartesian monoidal
category set of sets).
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In [4], a monoidal bicategory span|C was associated to the same datum; that is, to a
braided monoidal small category (C,®, K). Any set X was shown to induce a naturally
Frobenius map monoidale in the vertically opposite bicategory (span|C)8 — obtained from
span|C by formally reversing the 2-cells —; also denoted by the same symbol X. Categories
enriched in the category of comonoids in C, with the object set X, were interpreted as
opmonoidal monads in (span|C)8 on the naturally Frobenius map monoidale X (with
suitably chosen 1-cell parts; see below). Consequently, they can be seen as bimonoids
in the duoidal endohom category (span|C)8 (X, X) = (span|C)(X, X)°P. By [4, Paragraph
4.11], a category enriched in the category of comonoids in C, with the object set X, is a
Hopf C-category in the sense of [2, Definition 3.3] if and only if the corresponding bimonoid
in (span|C)8(X,X) is a Hopf monoid. In particular, a Hopf set-category is precisely a
small groupoid.

In this section we apply Theorem 2.4 and Theorem 3.4 to Hopf C-categories as above.

Without repeating the description of the monoidal bicategory (span|C)s and its nat-
urally Frobenius map monoidale provided by a set X, we only present briefly the the
resulting duoidal endohom category (span|C)& (X, X). An object in it consists of a span
X <—A—X and a map (of sets) a from A to the set of objects of C. A morphism
(A,a) - (A’,a’) consists of a map of spans f : A’ > A and a family of morphisms in
C, {pn : a’(h) = af(h)} labelled by the elements h of the set A’. The composition of
morphisms comes from the composition of maps and the composition in C.

The o-monoidal product of any objects (A, a) and (B,b) is given by the pullback span

oA
B/B \A
X/ \X/ \X

and the map sending (d,h) € B o A to the object b(d) ® a(h) of C. The o-product of
morphisms (f,¢) : (A,a) - (A’,a’) and (g,7) : (B,b) - (B’,V’) consists of the map of
spans

gof:B'oA'>BoA,  (dh)~ (9(d), f(h))

between the pullback spans and the morphisms
Ya® ¢p b (d)®@a'(h) - bg(d) ® af(h) in C, for (d,h) e B o A’.

The o-monoidal unit i consists of the trivial span X = X = X and the constant map
sending each element of X to the monoidal unit K of C.

The e-monoidal product of any objects (A, a) and (B,b) is given by the product Be A
in the category of spans and their maps; together with the map sending (d,h) € Be A to
the object b(d) ® a(h) of C. The e-product of morphisms (f,¢) : (A,a) - (A’,a’) and
(g,7) : (B,b) = (B',b") consists of the map of spans

gef:B'eA'>DBeA,  (dh)r (9(d), f(h))
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between the product spans and the morphisms
Ya® ¢p b (d)®a'(h) - bg(d) ® af(h) in C, for (d,h) e B e A’

The e-monoidal unit j consists of the terminal (a.k.a. complete) span X <— X2 2% X
and the constant map sending each element of the cartesian product set X2 = X x X to
the monoidal unit K of C.

A bimonoid in this duoidal category (span|C)s (X, X) = (span|C)(X, X )P consists of a

span X <= A-> X | amap a from A to the set of objects in C together with the following
morphisms:

e comultiplication ( Ao A— A, a(h)® a(k‘)@a(h.k) )

e counit (X %A, K-%a(u(z)) )

h(h1,h2)
_—

e multiplication (A Ae A a(h) 2 a(hy) ® a(hy) )

o unit (A= X2, a(h) LK)

subject to suitable compatibility conditions.

Consider a category enriched in the category of comonoids in C, with the object
set X, with hom-comonoids (a(x,y),0s,,s,), composition morphisms f,, . and unit
morphisms 7, (for z,y,z € X). It gives rise to a bimonoid in (span|C)&(X, X) with the

underlying terminal span X <= X2 2 X | the map sending (,y) € X2 to a(z,y) together
with the following morphisms:

e comultiplication ( X20 X2 2 X322 X2 q(2,y) ® a(y, 2) =X a(x, 2) )
. A 2 N
e counit ( X = X2, K —a(zr,z))

e multiplication ( X2 > X2 = X2e X2 a(x,y)aﬁa(x,y) ®a(x,y))

o unit ( X2-> X2 a(z,y) = K).

The compatibility conditions translate precisely to the requirements that the composition
and the unit morphisms of the enriched category must be comonoid morphisms.
By the above considerations Theorem 2.4 leads to the following.
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4.12. THEOREM. For a Hopf C-category ({(a(,v),0zy,2y) }(zy)ex2s {Hwy,z f (2y,2)ex?
{Nz}eex), the following assertions are equivalent.

(i) The comonoid {(a(,V),0zy,Ezy)}zy)exz n (span|C(X, X), e, ) is coseparable.

(1) Each of the comonoids (a(z,y),0zy,€xy) i (C,®,K), for (z,y) € X2, is cosepara-
ble.

(ii) For all x € X, n, : K - a(x,x) has a left a(x,x)-comodule retraction. That is, for
all z € X there is a morphism 0, : a(x,x) - K in C rendering commutative the
following diagrams.

a(z,z) % K K —=a(x,x)
| |- \ o
a(z,x) ®a(x,x)ma(x,x) K

(i1i) For all x € X, n, : K - a(x,x) has a right a(x,x)-comodule retraction. That is,
for all x € X, there is a morphism 0, : a(x,x) - K in C rendering commutative the
following diagrams.

a(x,x) O K K5 a(x,z)
e | | \ o
a(z,x) ®a(x,x)ma(x,x) K

Theorem 3.4, on the other hand, tells the following.

4.13. THEOREM. For a Hopf C-category ({(a(,v),0zy,E2y) } (zy)ex2s {Hoy,z f (2,,2)ex3
{Ns}eex), the following assertions are equivalent.

(1) The monoid ({a(x,y)}, {ftzy:},{n:}) in (span|C(X,X),0,1) admits a separability
structure. That is, a family of morphisms {0y y.. : a(x, z) = a(x,y)®a(y, 2) } (z,y,2)exs
making the following diagrams commute, for all x,y,v,z € X.

ZT,U,Y

a(z,y) ® aly, z) ooyl a(z,v)®a(v,y)®a(y,z) alx,y) Doy a(z,v) ®a(v,y)

180y,v,2 a(l‘7 Z) 9 1®pv,y,z Hz,v,y

a(a;,y)®a(y,v)®a(v,z)m>a(x,v)®a(v,z) a(a:,y).



(i)

(iii)
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There exists a normalized left cointegral in the sense of Definition 3.1; equivalently,
a normalized left integral family in the sense of [13, Definition 4.1] with an addi-
tional normalization condition. That is, a family of morphisms in C, {0, : K —
a(x,y) }uyex rendering commutative the following diagrams for all x,y,z € X.

1®0y,z ez,y
a(x,y)—>a(x,y)®a(y,z) K—>a(x,y)
e KR
K - a(x,z) K

There exists a normalized right cointegral in the sense of Definition 3.1; equiva-
lently, a normalized right integral family in the sense of [13, eq. (35)] with an
additional normalization condition. That is, a family of morphisms in C, {6, :
K - a(x,y)}ayex rendering commutative the following diagrams for all x,y,z € X.

O,y ®1 0z,y
a(y,z)—>a(m,y)®a(y,z) K—>a($7y)
e

K - a(z,z) K
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