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MINIMAL ACCESSIBLE CATEGORIES

Dedicated to Robert Rosebrugh in gratitude for all his work for the journal

JIŘÍ ROSICKÝ

Abstract. We give a purely category-theoretic proof of the result of Makkai and
Paré saying that the category Lin of linearly ordered sets and order preserving injective
mappings is a minimal finitely accessible category. We also discuss the existence of a
minimal ℵ1-accessible category.

1. Introduction

One of striking results of [8] is that the category Lin of linearly ordered sets and order
preserving injective mappings is a minimal finitely accessible category. This means that
for every large finitely accessible category K there is a faithful functor Lin //K preserving
directed colimits. [8] does not contain a proof of this result – Makkai and Paré just say
that it essentially follows from the work of Morley [9]. Since there are many applications
of this result (see, e.g., [5]), it might be useful to give an explicit proof of it. We do
it by transferring the standard model-theoretic argument to the language of accessible
categories. Another, more model-theoretic proof, of the theorem of Makkai and Paré was
recently given by Boney [2].

Model-theoretically, the minimality of Lin means the existence of order indiscernibles
and the proof uses the infinitary combinatorial argument called Erdös-Rado theorem. In
order to apply it on a finitely accessible categoryK, we need a faithful functor U : K //Set
preserving directed colimits such that every subset Z ⊆ UK generates the smallest sub-
object 〈Z〉 of K and, moreover, any two morphisms f, g : 〈Z〉 //L such that Uf and Ug
have the same restriction on Z are equal. We show that every finitely accessible category
K admits a faithful directed colimits preserving functor L //K from a finitely accessible
category L with this property. Hence it suffices to construct Lin // L. The category L
can be considered as a skolemization of K.

The minimality of Lin among finitely accessible categories implies its minimality
among (∞, ω)-elementary categories (see [8] 3.4.1) and, even, among accessible categories
with directed colimits whose morphisms are monomorphisms ([5] 2.5). One cannot expect
that Lin is a minimal accessible category because there is no faithful functor from Lin to
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the ℵ1-accessible category of well ordered sets and order preserving injective mappings.
The reason is that any well ordered set A is iso-rigid, it means that every isomorphism
A //A is the identity. Using [6], we give an example of a ℵ1-accessible category K having
every object K rigid, i.e., every morphism K //K is the identity. This yields a candi-
date for a minimal ℵ1-accessible category. Similarly, one gets a candidate for a minimal
ℵα-accesible category.

Acknowledgement. We are grateful to T. Beke and the referee for valuable com-
ments to this paper.

2. Skolem cover

Let K be a finitely accessible category and A its representative small full subcategory
of finitely presentable objects (i.e., any finitely presentable object of K is isomorphic to
some A ∈ A). Let

E : K // SetA
op

be the canonical embedding that takes each K ∈ K to the contravariant functor
K(−, K) : A // Set. We note that, by Proposition 2.8 in [1], this functor is fully faithful
and preserves directed colimits and finitely presentable objects. Following Theorem 4.17
in [1], K is equivalent to a finitary-cone-injectivity class Inj(T ) in SetA

op

; this means
that there is a set T of cones a = (ai : X // EAi)i∈I where X is finitely presentable
in SetA

op

and Ai ∈ A, i ∈ I such that Inj(T ) consists of functors F injective to each
cone a ∈ T . The latter means that for any morphism f : X // F there is i ∈ I and
g : EAi // F with gai = f . Let S(K) be the category whose objects are (F, aF )a∈T
consisting of F : Aop // Set with aF assigning to a cone a and f : X // F a morphism
aF (f) : EAi // F for some i ∈ I such that aF (f)ai = f . Morphisms (F, aF ) // (F ′, aF ′)
are natural transformations ϕ : F // F ′ such that aF ′(ϕf) = ϕaF (f). The forgetful
functor G : S(K) // SetA

op

is faithful and has values in Inj(T ). Its codomain restriction
S(K) // Inj(T ) is surjective on objects. Since E : K // Inj(T ) is an equivalence, we get a
faithful functor H : S(K) //K which is essentially surjective on objects, i.e., any K ∈ K
is isomorphic to some H(F, aF ).

2.1. Lemma. The category S(K) is finitely accessible and H : S(K) // K preserves di-
rected colimits.

Proof. Let D : D // S(K) be a directed diagram and consider the colimit δ : GD // F
in SetA

op

. Let a = (ai : X // EAi)i∈I be a cone and f : X // F a morphism. Since
X is finitely presentable, there is d ∈ D and g : X // GDd such that f = δdg. We put
aF = δdaDd(g). Then (F, aF ) = colimD. Thus S(K) has directed colimits and G preserves
them. Hence H preserves them too.

If F is finitely presentable in SetA
op

then any (F, aF ) is finitely presentable in S(K). In
order to show that any (F, aF ) is a directed colimit of finitely presentable objects in S(K)
it suffices to express F as a directed colimit of finitely presentable objects Fd in SetA

op
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and complete them to (Fd, aFd) using finite presentability of X again. Then (F, aF ) is a
directed colimit of (Fd, aFd). Thus S(K) is finitely accessible.

In fact, we have shown that

S(K) = S(IndA) = IndS(A)

S(K) will be called a Skolem cover of K because it is a skolemization of the L∞,ω-
theory corresponding to T . Let U : SetA

op // Set assign to F the set
∐

A∈A FA. The
functor U is faithful and preserves directed colimits. Thus (K, UE) and (S(K), UG) are
concrete finitely accessible categories with concrete directed colimits and H : S(K) //K
is a concrete functor.

2.2. Lemma. Let (F, aF ) ∈ S(K) and Z ⊆ UG(F, aF ). Then there is the smallest subob-
ject (FZ , aFZ ) of (F, aF ) such that Z ⊆ UGFZ.

Moreover, for every g, h : (FZ , aFZ ) // (F ′, aF ′), we have g = h provided that Ug and
Uh have the same restriction on Z.

Proof. Let F0 be the smallest subfunctor of F such that Z ⊆ UF0; let σ : F0
// F

denote the inclusion. Consider a cone a : X // EAi in T and a morphism f : X // F0.
Then σf = aF (f)ai. Let F1 be the smallest subfunctor of F containing U(F0) and the
images of U(aF (f)) for all cones a and all morphisms f . We iterate this construction by
replacing F0 with F1, etc. In this way, we get the chain F0

//F1
// . . . Fn // . . . . Then

FZ = colimFn carries the desired smallest subobject of (F, aF ). In fact, every f : X //FZ
factorizes through some Fn // F because X is finitely presentable.

Consider g, h : (FZ , aFZ ) // (F ′, aF ′) such that Ug and Uh have the same restriction
on Z. Then Ug and Uh have the same restriction of UF0. Consequently, they have the
same restriction on UF1, etc. Hence g = h.

This is the virtue of the skolemization and reflects the fact that the skolemized theory
is universal. We skolemized cone-injectivity while algebraic factorization systems (see [4])
skolemize injectivity. J. Bourke [3] came to the same point from a different motivation.

2.3. Remark. For any Z, there is only a set of non-isomorphic (FZ , aFZ ), F : Aop // Set.
Indeed, let κ be greater than the number of morphisms of A and the cardinalities

of UEAi of cones a of T . Then, for every F : Aop // Set and Z ⊆ UF , the smallest
subfunctor of F such that Z ⊆ UF0 has UF0 of cardinality smaller than κ. Consequently,
every UFZ has cardinality smaller than κ.

3. Minimal finitely accessible categories

3.1. Theorem. For any large finitely accessible category K there is a faithful functor
Lin //K preserving directed colimits.
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Proof. Following 2.2, we can assume that K is equipped with a faithful functor U :
K // Set preserving directed colimits and such that for any subset Z ⊆ UK there is the
smallest subobject KZ of K such that Z ⊆ UKZ . Let L be the category with objects
(K,X) where K ∈ K and X ⊆ UK is linearly ordered. Morphisms (K1, X1) // (K2, X2)
are morphisms f : K1

//K2 such that the restriction of Uf to X1 is an order preserving
injective mapping to X2. The category L has directed colimits given as

colim(Ki, Xi) = (colimKi, colimXi)

and any (K,X) with K finitely presentable in K and X finite is finitely presentable
in L. Thus L is finitely accessible and the forgetful functor L // K preserves directed
colimits.

For a L-object (K,X), let ρ(K,X) be the greatest ordinal 0 < ρ(K,X) ≤ ω, |X| such that
for any n < ρ(K,X) and any a1 < a2 < · · · < an and b1 < b2 < · · · < bn in X there is an
isomorphism s : K{a1,...,an} // K{b1,...,bn} such that Us(ai) = bi for i = 1, . . . , n. Assume
that there is (K,X) ∈ L with ρ(K,X) = ω. Then X is infinite and thus it contains a chain
a1 < a2 < · · · < an . . . or a chain a1 > a2 > · · · > an . . . . Indeed, if X does not contain
a strictly decreasing countable chain, it is well-ordered and hence it contains a strictly
increasing countable chain.

Assume that X contains a chain a1 < a2 < · · · < an . . . (the other case is analogous).
We will construct a functor F : Lin //K as follows. Finitely presentable objects in Lin
are finite chains Cn with elements 1 < 2 < · · · < n. Put F0(Cn) = Ka1,...,an . Given an
injective order preserving mapping h : Cm // Cn, let F0h be the composition

Ka1,...,am
//Kah(1),...,ah(m)

//Ka1,...,an

where the first morphism is the isomorphism s above and the second morphism is the inclu-
sion. Given h1 : Ck //Cm and h2 : Cm //Cn then, following 2.2, F0(h2h1) = F0(h2)F0(h1).
In fact, we always get the composition

Ka1,...,ak
//Kah2h1(1),...ah2h1(k)

followed by the inclusionKah2h1(1),...ah2h1(k)
//Ka1,...,an . Thus we get the functor F0 : FinLin

//K defined on finite linear orderings. This functor is faithful because if h, h′ : Cm //Cn
have distinct values on i then F0(h)(ai) = ahi 6= ah′i = F0(h

′)(ai). Since Lin =
IndFinLin, F0 extends to a functor F : Lin //K preserving directed colimits. Since F0

is faithful, F is faithful too.
Assume that ρ(K,X) < ω for any (K,X) ∈ L. We put (K1, X1) < (K2, X2) provided

that ρ(K2,X2) < ρ(K1,X1) and (K1){a1,...,aρ(K2,X2)
} ∼= (K2){b1,...,bρ(K2,X2)

} for any a1 < · · · <
aρ(K2,X2)

in X1 and any b1 < · · · < bρ(K2,X2)
in X2. Then < partially orders objects of L

and this order is well-founded in the sense that there is no decreasing chain

· · · < (Kn, Xn) < (Kn−1, Xn−1) < · · · < (K1, X1) .
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Such chain would yield a diagram

(K1){a11} // (K2){a21,a22} // (Kn){an1,...,ann} // . . .

whose colimit (K,X) in L has ρ(K,X) = ω. Thus we can assign an ordinal α(K,X) to
each (K,X) ∈ L in such a way that

α(K,X) = sup
(K′,X′)<(K,X)

α(K ′, X ′) + 1 .

Following 2.3, there is an infinite cardinal µ greater or equal to the number of non-
isomorphic objects KZ for Z finite and K arbitrary. For (K,X) ∈ L, choose a1 < · · · <
aρ(K,X)−1 in X and put

(K,X)∗ = (K{a1,...,aρ(K,X)−1}, X ∩ UK{a1,...,aρ(K,X)−1}) .

We will prove that
|X| < expω(α(K,X)∗+1)(µ)

for any (K,X) ∈ L. Recall that exp0(µ) = µ, expξ+1(µ) = 2expξ(µ) and expη(µ) =
supξ<η expξ(µ). Since every set UK can be linearly ordered, (K,UK) ∈ L for any K in
K, this inequality implies that K is small.

The proof will use the recursion on α(K,X)∗. Let α(K,X)∗ = 0 and assume that
|X| ≥ expω(µ). For n = ρ(K,X), the set [X]n of the subsets of X of size n is decomposed
into ≤ µ parts following isomorphisms types of K{a1,...,an}. Following the Erdös-Rado
partition theorem (see [7], Exercise 29.1), there is X0 ⊆ X such that |X0| > µ and
K{a1,...,an}

∼= K{b1,...,bn} for any a1 < · · · < an and b1 < · · · < bn in X0. For m < n, the
least subobjects associated to chains a1 < . . . am in X0 are isomorphic because this is true
for such chains in X. Thus

(K,X0)
∗ = (K{a1,...,an}, X0 ∩ UK{a1,...,an}) < (K,X)∗,

which is impossible because α(K,X)∗ = 0.
Assume that the claim holds for any (K,X) ∈ L with α(K,X)∗ < β and consider

(L, Y ) ∈ L with α(L, Y )∗ = β. Assume that |Y | ≥ expω(α(L,Y )∗+1)(µ) and let n = ρ(L,Y ).
We have

|Y | ≥ expω(β+1)(µ) > expωβ+n−1(µ) = expn−1(expωβ(µ)).

Following the Erdös-Rado partition theorem, there is Y0 ⊆ Y such that |Y0| > expωβ(µ)
and L{b1,...,bn}

∼= L{c1,...,cn} for each b1 < · · · < bn and c1 < · · · < cn in Y0. Then ρ(L,Y0) > n
and (L, Y0) < (L, Y ). For m < n, the least subobjects associated to chains a1 < . . . am
in Y0 are isomorphic because this is true for such chains in Y . Thus (L, Y0)

∗ < (L, Y )∗.
Hence α(L, Y0)

∗ < β and thus

|Y0| < expω(α(L,Y0)∗+1)(µ) ≤ expωβ(µ),

which is a contradiction.
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4. Towards minimal λ-accessible categories

4.1. Example. The category W of well-ordered sets is ℵ1-accessible and any its object
K is iso-rigid in the sense that the only isomorphism K // K is the identity. Thus
there is no faithful functor Lin //W and a prospective minimal ℵ1-accessible category
is iso-rigid.

4.2. Example. There is an ℵ1-accessible category L having all objects K rigid in the
sense that the only morphism K //K is the identity. Thus there is no faithful functor
W // L.

The construction of L is motivated by [6], II.3. Let K be the category of structures
(A,<, sup, s, S, R) where < is a well-ordering, sup is the countable join, s is the unary
operation of taking the successor, S is an ω-ary relation choosing for every ordinal a of
cofinality ω a countable increasing chain with the join a and R is a unary relation choosing
ordinals of cofinality > ω. This is achieved by taking the following set T of axioms:

1. (∀x0, x1, y1, . . . , xn, yn, . . . )(S(x0, x1, . . . , xn, . . . ) ∧ S(x0, y1, . . . , yn, . . . ) //∧
0<n(xn = yn))

2. (∀x0, x1, . . . , xn, . . . )(S(x0, x1 . . . , xn . . . ) // (
∧

0<n xn < xn+1) ∧ x0 = supxn)

3. (∀x)(∃y1, . . . , yn, . . . )((
∧

0<n(yn < yn+1) ∧ x = sup yn)
// (∃x1, . . . , xn, . . . )S(x, x1, . . . , xn, . . . ))

4. (∀x)(R(x)↔ ¬(∃y)(x = s(y)) ∧ ¬(∃x1, . . . , xn, . . . )S(x, x1, . . . , xn, . . . ))

Let A2 be the set of isolated elements of A, A0 be the set of all limit elements of a ∈ A
such that S(a, a1, . . . , an, . . . ) for some a1, . . . , an, · · · ∈ A and A1 = A\ (A0∪A2). All the
sets A2, A0 and A1 are preserved by homomorphisms f : A //B (due to the preservation
of s, S and R resp.).

This category clearly has ℵ1-directed colimits. Objects A of L generated by 0 are
ordinals ω1 with a choice of S for every a ∈ A0. Thus there is ℵℵ10 = 2ℵ1 such objects.
These objects are ℵ1-presentable and the same is true for objects ω1 · α where α < ω1.
Clearly, every object of L is an ℵ1-directed colimit of these objects ω1 · α, α < ω1. Thus
L is ℵ1-accessible.

Assume that there exists a morphism f : A // A in L which is not the identity. Let
a be the least element in A such that f(a) 6= a. Since A is a well-ordered set and f is
injective, a < f(a). Hence

a < f(a) < f 2(a) < · · · < fn(a) < . . .

Let b = sup fn(a). Hence f(b) = sup fn+1(a) = b. There are b1 < b2 < · · · < bn < . . .
such that S(b, b1, . . . , bn, . . . ). Since S(f(b), f(b1), . . . , f(bn), . . . ) and f(b) = b, we have
f(bn) = bn for each n. Since a < bm for some m, fn(a) < bm for each n. Hence b ≤ bm,
which is a contradiction.
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4.3. Remark. (1) Let L1 be a full subcategory of L where we choose S for every a ∈ A0

in every object generated by 0. This category does not depend of the choices of S and
is also ℵ1-accessible. In fact, it is Indℵ1(C1) where C1 is the category of ordinals ω1 · α,
α < ω1 with non-identity morphisms

ω1 · f : ω · α // ω1 · β

where f : α // β is an order preserving injective mapping with α < β. The category
C1 is, in fact, the category of ordinals α < ω1 where non-identity morphisms are order
preserving injective mappings α // β for α < β < ω1.

(2) The category FinLin is the category C0 of ordinals α < ω where non-identity
morphisms are order preserving injective mapping α // β for α < β < ω. Observe that
FinLin is rigid, i.e., the only morphisms α // α are the identities. Hence L1 = Indω1 C1
is ℵ1-modification of a minimal ℵ0-accessible category Lin.

(3) Let Cγ be the category of ordinals α < ωγ where non-identity morphisms are
order preserving injective mapping α // β for α < β < ωγ. Then Lγ = Indℵγ Cγ is an
ℵγ-accessible category.

4.4. Problem. Is L1 a minimal ℵ1-accessible category? This means that for every large
ℵ1-accessible categoryK there is a faithful functor L1

//K preserving ℵ1-directed colimits.
Similarly, is Lγ a minimal ℵγ-accessible category for 0 < γ?
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