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ALGEBRAIC EXPONENTIATION FOR LIE ALGEBRAS

XABIER GARCÍA-MARTÍNEZ AND JAMES R. A. GRAY

Abstract. It is known that the category of Lie algebras over a ring admits algebraic
exponents. The aim of this paper is to show that the same is true for the category of
internal Lie algebras in an additive, cocomplete, symmetric, closed, monoidal category.
In this way, we add some new examples to the brief list of known locally algebraically
cartesian closed categories, including the categories of Lie superalgebras and differen-
tially graded Lie algebras amongst others. Note that we are mainly interested in the
case where the underlying category is abelian, as is the case in all our examples, but do
not impose this condition since not requiring it adds no complexity to our arguments.

1. Introduction

Let C be a finitely complete category. Given an object B of C, we write PtB(C) for the
category of points over B in which an object (A, p, s) is a split epimorphism p : A→ B in
C, together with a chosen section s : B → A, so that p ◦ s = 1B. A morphism of PtB(C)
from (A, p, s) to (A′, p′, s′) is a morphism f : A→ A′ in C such that p′◦f = p and f ◦s = s′.
For each morphism q : E → B, there is a change-of-base functor q∗ : PtB(C) → PtE(C),
that takes a point (A, p, s) to the point (E ×B A, π1, 〈id, sq〉) obtained from the pullback

E ×B A
π2 ,2

π1
��

A

p

��
E q

,2

〈id,sp〉
LR

B

s

LR

If for each morphism q in C, the change-of-base functor q∗ reflects isomorphisms, the
category is said to be Bourn-protomodular [2]. If C is pointed, this is equivalent to the
same condition restricted to morphisms whose domain is the zero object. Note that the
composition of the change-of-base functor ¡∗B : PtB(C)→ Pt0(C), where ¡B : 0→ B is the
unique morphism from the zero object to B, with the isomorphism Pt0(C) ∼= C is the
kernel functor KerB sending each point (A, p, s) to the kernel of p. Therefore, a finitely
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complete pointed category is Bourn-protomodular if and only if for each B in C the kernel
functor reflects isomorphisms, or equivalently, the split short five lemma holds. Recall that
a pointed protomodular category which is Barr-exact and has finite coproducts is called
a semi-abelian category [20].

If the change-of-base functor q∗ has a right adjoint for each morphism q, then C is
said to be locally algebraically cartesian closed ((LACC) for short) [5, 17, 19]. If C is also
protomodular and pointed, then by [19, Theorem 5.1] it is sufficient to check if for each
B in C the kernel functor KerB : PtB(C)→ C has a right adjoint.

If C is a (LACC), semi-abelian category, it implies several categorical-algebraic prop-
erties are satisfied by C, such as peri-abelianness [4], strong protomodularity [3], the Smith
is Huq condition [25], normality of Higgins commutators [8], and algebraic coherence.

As we can see, (LACC) is a strong condition where the short list of known semi-
abelian examples includes groups, Lie algebras, crossed modules, cocommutative Hopf
algebras over a field and all abelian categories. In fact, it was shown in [13] that (LACC)
characterizes Lie algebras amongst all varieties of non-associative algebras over an infinite
field of characteristic not equal to two. Furthermore, for an infinite field of characteristic
two there are exactly two non-abelian (LACC) sub-varieties: Lie algebras and quasi-Lie
algebras; that is, the variety of algebras obtained from Lie algebras by replacing the
identity [x, x] = 0 by [x, y] = −[y, x] (which is of course the same as [x, y] = [y, x]).

It is not known whether there is any relation between (LACC) and action repres-
entability [1]. They coincide in non-associative algebras over an infinite field (they both
characterize Lie algebras [11]), but it is no longer true over finite fields, since Boolean
algebras are action representable but not (LACC) [1, 19].

The aim of the present paper is to show that, under certain conditions, the category of
Lie algebras in a monoidal category is (LACC). In doing so, we will add the categories of
Lie superalgebras, Z-graded Lie algebras and differentially graded Lie algebras, amongst
others, to the brief list of known (LACC) examples. Another interesting example, is
the category of Lie algebras in the Loday-Pirashvili category [23]. In this way, we will
show that the category of Leibniz algebras (which is not (LACC) [12]) is a full reflective
subcategory of a (LACC) category.

Let us briefly explain our approach, which is motivated by [18] where it is shown that
the category of Lie algebras over a commutative ring is (LACC). Let C be a symmetric
monoidal closed category with underlying category additive and small complete. We show
that for an object B in Lie(C), the category of internal Lie algebras in C, the category
PtB(Lie(C)) is equivalent to the category Lie(D) of internal Lie algebras in the symmetric
monoidal category D with underlying category the category of internal monoid actions
of U(B), the universal enveloping monoid of B, acting on the objects of C, and with
monoidal structure induced by C together with a natural comonoid structure on U(B).
Moreover, we show that the kernel functor KerB : PtB(Lie(C))→ Lie(C) factors, via this
isomorphism, through a forgetful functor V : Lie(D)→ Lie(C). This reduces the problem
of finding a right adjoint of KerB to finding a right adjoint of V , which can be found by
an adjoint lifting theorem.
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Note that although, when developing our theory, we don’t assume that the underlying
category is abelian, this is the case in all our examples. This means that semi-abelianess
of the respective categories of Lie algebras in our examples amounts to the existence of
coproducts, which can be constructed in each case in essentially the same way as for
classical Lie algebras.

The paper is organized as follows: In Section 2 after recalling the definition of various
relevant types of internal algebras we construct adjoint functors between certain categories
of such internal algebras, which we will use in Section 4. In Section 3 we recall the
necessary background and then prove the adjoint lifting theorem which we use to produce
the right adjoint of the functor V mentioned above. The adjoint functors previously
defined are used in Section 4 to produce the symmetric monoidal category D as well as
the equivalence of categories between PtB(Lie(C)) and Lie(D) mentioned before. Finally,
in Section 5 we study some applications of the obtained result.

2. Internal algebras

Throughout the rest of paper we denote by C = (C,⊗, I, α, λ, ρ, σ) a symmetric monoidal
category. We refer to [24] for basic knowledge about this topic. Recall that C is said
to be closed if for each object X in C the endofunctor X ⊗ − : C → C is a left adjoint.
A chosen right adjoint will be denoted by (−)X and the counit by ev. As the main
non-cartesian example we have the symmetric monoidal category VectK of vector spaces
with the tensor product ⊗K. The canonical isomorphism between HomVectK(X ⊗K Z, Y )
and HomVectK(Z,HomVectK(X, Y )) gives us the right adjoint (−)X = HomVectK(X,−). In
this particular case, the counit of the adjunction evY : Y X ⊗X → Y maps f ⊗ x to the
evaluation f(x).

The setting we need in this manuscript is the following: C is a symmetric monoidal
closed category with underlying category C additive and cocomplete.

Recall that a monoid (A,m, u) in C is a triple, where A is an object of C, m : A⊗A→
A and u : I → A are morphisms of C, such that the diagrams

A⊗ (A⊗ A) α ,2

id⊗m
��

(A⊗ A)⊗ A
m⊗id
��

A⊗ I id⊗u ,2

ρ
�)

A⊗ A
m

��

I ⊗ Au⊗idlr

λ
u�

A⊗ A m ,2 A A⊗ Amlr A

commute [24]. If in addition the diagram

A⊗ A σ ,2

m
�'

A⊗ A

m
w�

A

commutes, then it is said to be a commutative monoid. The categories of such objects will
be denoted by Mon(C) and Monc(C), respectively. Recall that since C is a symmetric
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monoidal category, given two monoids (A,m, u) and (A′,m′, u′) in C the triple (A ⊗
A′, (m⊗m′)i, (u⊗u′)λ), where i is the middle interchange isomorphism, is a monoid which
we denote by (A,m, u)⊗ (A′,m′, u′) (which is commutative whenever both (A,m, u) and
(A′,m′, u′) are). Moreover, with this definition of tensor product the symmetric monoidal
structure of C lifts to both Mon(C) and Monc(C). Let us write MonC and MoncC
for the respective symmetric monoidal categories. The duals of the notions of monoid
and commutative monoid are comonoid and cocommutative comonoid, respectively, and
the categories of such objects are denoted CoMon(C) and CoMoncoc(C), respectively. By
duality the symmetric monoidal structure on C lifts to both CoMon(C) and CoMoncoc(C),
producing the symmetric monoidal categories CoMonC and CoMoncocC, respectively.

A bimonoid can be defined as a comonoid in the symmetric monoidal category Mon(C)
(or equivalently as a monoid in CoMon(C)). We present a bimonoid as a quintuple
(A,m, u, d, e) where (A,m, u) is an monoid, (A, d, e) is a comonoid and d : (A,m, e) →
(A,m, u) ⊗ (A,m, u) and e : (A,m, u) → (I, λ, id) are monoid morphisms, or equival-
ently m and u are comonoid morphisms. The category of bimonoids will be denoted by
BiMon(C). A bimonoid is called commutative if the monoid part is commutative, and it
is called cocommutative if the comonoid part is cocommutative.

Under the conditions assumed on C it is well known that free monoids exist, in fact
much milder assumptions are needed (see e.g. [22] and the references therein).

2.1. Proposition. The forgetful functor G : Mon(C) → C has a left adjoint which we
will denote by F .

A Lie algebra in C is a pair (X, b) where X is an object and b : X ⊗ X → X is a
morphism in C making the diagrams

X ⊗X
0

��

id +σ ,2 X ⊗X

b
u~

X ⊗ (X ⊗X)
id +σα+(σα)2 ,2

0
��

X ⊗ (X ⊗X)

id⊗b
��

X X X ⊗X
b

lr

(1)

commute. Note that we can sum morphisms since we are assuming that C is additive.
The category of Lie algebras in C will be denoted by Lie(C). As expected, when C is the
category of vector spaces (with the usual monoidal structure) Lie algebras in C are usual
Lie algebras.

Throughout this paper we will denote the direct sum of A and B by A ⊕ B with
projections π1 : A ⊕ B → A and π2 : A ⊕ B → B and inclusions ι1 : A → A ⊕ B and
ι2 : B → B ⊕ A. For morphisms f : W → A, g : W → B and h : A → C and i : B → C
we will denote by 〈f, g〉 : W → A⊕B and [h, i] : A⊕B → C the unique morphisms with
π1〈f, g〉 = f , π2〈f, g〉 = g, [h, i]ι1 = h and [h, i]ι2 = i.

Given a monoid (A,m, u) in C, the pair (A,m(id−σ)) is an object in Lie(C) and this
assignment determines the object map of a functor L : Mon(C) → Lie(C) which is the
identity on morphisms (see e.g. [18]). The following proposition is probably known, but
we couldn’t find a reference so we included a proof.
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2.2. Proposition. The functor L : Mon(C)→ Lie(C) has a left adjoint, which we denote
by U .

Proof. Let us write η for the unit of the adjunction F a G from Proposition 2.1.
Let (B, b) be an object in Lie(C) and (A,m, u) an object in Mon(C). For a morphism
f : B → A in C let f̄ be the corresponding monoid morphism from F (B) = (T (B),mB, uB)
to (A,m, u) obtained via the adjunction F a G, that is the unique monoid morphism such
that G(f̄)η = f . By considering the diagram

B⊗2 b ,2

f⊗2

�)
id−σ

��

1

B
η

�&
f

��

B⊗2

f⊗2

�)
η⊗η

��

A⊗2

id−σ
��

T (B)

f̄x�
A⊗2 m ,2 A

T (B)⊗2

f̄⊗2
5?

mB

,2 T (B)

f̄

8B

ones sees that the sub-diagram 1 commutes if and only if the outer arrows commute.
This implies that f is a morphism from (B, b) to L(A,m, u) in Lie(C) if and only if the
diagram

B⊗2
ηb ,2

mB(η⊗η)(id−σ)
,2 T (B)

f̄ ,2 A

is a fork in C. However, the previous diagram is a fork if and only if the diagram

B ⊕B⊗2
[η,ηb] ,2

[η,mB(η⊗η)(id−σ)]
,2 T (B)

f̄ ,2 A

is a fork. Therefore, writing r, s : F (B ⊕ B⊗2) → F (B) for the corresponding monoid
morphisms induced by [η, ηb] and [η,mB(η⊗η)(id−σ)], respectively, we see that previous
diagram is a fork if and only if the diagram

F (B ⊕B⊗2)
r ,2
s

,2 F (B)
f̄ ,2 (A,m, u)

is a fork in Mon(C). Since the tensor ⊗ preserves coequalizers in each argument, it is
well-known that it preserves reflexive coequalizers, and the forgetful functor Mon(C)→ C
creates reflexive coequalizers. Noting that the parallel pair of morphisms in the previous
diagram is reflexive it easily follows that if q : F (B)→ U(B, b) is the coequalizer of r and
s in Mon(C), then U(B, b) together with the morphism qη from (B, b) to L(U(B, b)) in
Lie(C) is the universal morphism from (B, b) to L.
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Next we show that for any B in Lie(C) the monoid U(B) is the underlying monoid

of a cocommutative bimonoid (in fact of a cocommutative Hopf monoid) Ũ(B), and the

assignment B 7→ Ũ(B) is the object map of a functor which is left adjoint of a functor P
which we construct below. This functor P generalizes the construction of the primitive
Lie algebra of a bialgebra.

Recall, as mentioned above, that since C is symmetric monoidal the monoidal structure
lifts to Mon(C).

2.3. Proposition. For each monoid A = (A,m, u) the morphism δA : A→ A⊗A defined
by δA = (u⊗ id)λ−1 +(id⊗u)ρ−1 is a morphism from L(A) to L(A⊗A) in Lie(C), natural
in A.

Proof. Let A = (A,m, u) be a monoid in C and let δA : A→ A⊗A be the morphism δA =
lA + rA where lA = (u ⊗ id)λ−1 and rA = (id⊗u)ρ−1. The naturality of δ easily follows
from the naturality of l and r. Therefore, it only remains to show that δA is a morphism
from L(A) to L(A⊗ A). We have

(m⊗m)i(l ⊗ r) = (m⊗m)i((u⊗ id)⊗ (id⊗u)(λ−1 ⊗ ρ−1)

= (m⊗m)((u⊗ id)⊗ (id⊗u))i(λ−1 ⊗ ρ−1)

= (λ⊗ ρ)i(λ−1 ⊗ ρ−1)

= σ

and

(m⊗m)iσ(l ⊗ r) = (m⊗m)iσ((u⊗ id)⊗ (id⊗u)(λ−1 ⊗ ρ−1)

= (m⊗m)((id⊗u)⊗ (u⊗ id))iσ(λ−1 ⊗ ρ−1)

= (ρ⊗ λ)iσ(λ−1 ⊗ ρ−1)

= σ

and hence
(m⊗m)i(id−σ)(l ⊗ r) = 0

and

(m⊗m)i(id−σ)(r ⊗ l) = (m⊗m)i(σ − id)σ(r ⊗ l) = −(m⊗m)i(id−σ)(l ⊗ r)σ = 0.

On the other hand it is easy to check that lA and rA are monoid morphisms from A to
A⊗ A and hence they are morphisms from L(A) to L(A⊗ A) in Lie(C). Therefore

(m⊗m)i(id−σ)(δA ⊗ δA) = (m⊗m)i(id−σ)(lA ⊗ lA) + (m⊗m)i(id−σ)(lA ⊗ rA)

+ (m⊗m)i(id−σ)(rA ⊗ lA) + (m⊗m)i(id−σ)(rA ⊗ rA)

= lAm(id−σ) + 0 + 0 + rAm(id−σ)

= δAm(id−σ)

as desired.
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Recall that a bimonoid (A,m, u, d, e) is called a Hopf monoid if there is a morphism
s : A→ A making the diagram

A⊗ A id⊗s ,2 A⊗ A
m

!*
A

d !*

d
4=

e ,2 I
u ,2 A

A⊗ A s⊗id ,2 A⊗ A
m

4=

commute. Recall also that such a morphism s is unique (whenever it exists) and is called
the antipode of the Hopf monoid (A,m, u, d, e). Note that Goyvaerts and Vercruysse have
studied a generalization of the functor P , below, in [15]. In fact, the following proposition
can be found in [16, Proposition 2.8]

2.4. Proposition. Let H be the forgetful functor from BiMon(C) → Mon(C). For a
bimonoid A, with comultiplication dA : A→ A⊗A, the morphism denoted by jA : P (A)→
L(H(A)) forming part of the equalizer diagram

P (A)
jA ,2 L(H(A))

δH(A) ,2

L(dA)
,2 L(H(A)⊗H(A)),

is the component of a natural transformation from a functor P : BiMon(C) → Lie(C) to

the functor LH. Moreover, the functor P is part of an adjunction with left adjoint Ũ and
unit ν̃ such that: HŨ = U and (j ◦ Ũ)ν̃ = ν where ν is the unit of the adjunction U a L.

Furthermore, for each object X in Lie(C) the bimonoid Ũ(X) is a cocommutative Hopf
monoid. �

3. Monoidal functors and lifting of adjoints

Given two monoidal categories C = (C,⊗, I, α, λ, ρ) and C′ = (C′,⊗′, α′, λ′, ρ′) a lax
monoidal functor from C to C′ is a triple (F, θ, φ) where F : C→ C′ is a functor, θ : I ′ →
F (I) is a morphism in C′, and (φA,B : F (A) ⊗′ F (B) → F (A ⊗ B))A,B∈C is a natural
transformation, such that for all A, B and C in C the diagrams

F (A)⊗′ (F (B)⊗′ F (C)) α′ ,2

id⊗′φ
��

(F (A)⊗′ F (B))⊗′ F (C)

φ⊗′id
��

F (A)⊗′ F (B ⊗ C)

φ
��

(F (A⊗B)⊗′ F (C)

φ
��

F (A⊗ (B ⊗ C))
F (α)

,2 F ((A⊗B)⊗ C)
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F (A) λ′ ,2

F (λ)

�$

I ′ ⊗′ F (A)

θ⊗′id
��

F (A)⊗′ I ′

id⊗′θ
��

F (A)
ρ′lr

F (ρ)

{�

F (I)⊗′ F (A)

φ

��

F (A)⊗ F (I)

φ

��
F (I ⊗ A) F (A⊗ I)

commute. If C and C′ are symmetric monoidal categories with symmetry isomorphisms
σ and σ′ respectively, then a lax monoidal functor (F, θ, φ) between C and C′ is called a
lax symmetric monoidal functor as soon as the diagram

F (A)⊗′ F (B) σ′ ,2

φ

��

F (B)⊗′ F (A)

φ

��
F (A⊗B)

F (σ)
,2 F (B ⊗ A)

commutes, for every A and B in C. A lax symmetric monoidal functor (F, θ, φ) is called
strong when θ and φ are isomorphisms, and strict when they are identity morphisms.

Recall also that (symmetric) monoidal structures on categories lift to both functor
categories and products of categories (componentwise). In particular, if C is a (symmetric)
monoidal category, then by C × C we will mean the (symmetric) monoidal category
with underlying category C × C, with tensor product defined by (A,B) ⊗ (A′, B′) =
(A⊗A′, B ⊗B′), and with remaining structure defined componentwise. For a symmetric
monoidal category C there is via the coherence theorem a unique natural isomorphism
iA,B,C,D : (A ⊗ B) ⊗ (C ⊗ D) → (A ⊗ C) ⊗ (B ⊗ D) built from α, λ, ρ and σ which we
will call (middle) interchange isomorphism. Note that this produces a strong symmetric
monoidal functor (⊗, λ, i) : C×C→ C.

It is well known that if C = (C,⊗, I, α, λ, ρ) and C′ = (C′,⊗′, α′, λ′, ρ′) are mon-
oidal categories, and (F, θ, φ) is a lax monoidal functor C → C′, then the assignment
(A,m, u) 7→ (F (A), F (m)φ, F (u)θ) is the object map of a functor Mon(C)→ Mon(C′)
which sends a morphism f to F (f). In a similar way, when C, C′ and F are also additive,
the assignment (B, b) 7→ (F (B), F (b)φ) is the object map of a functor Lie(C) → Lie(C′)
which sends a morphism f to F (f). Let us denote this induced functor by Lie(F ). The
following fact may be known, but we couldn’t find a refence:

3.1. Proposition. Let C = (C,⊗, I, α, λ, ρ) and C′ = (C′,⊗′, α′, λ′, ρ′) be monoidal
categories such that C and C′ are additive, and let F : C → C′ be a strict monoidal
functor which is additive. If F : C → C′ has a right adjoint, then Lie(F ) has a right
adjoint.

Proof. Suppose F has a right adjoint G, and the unit and counit of the associated
adjunction are denoted by η and ε, respectively. According to [21] we know that defining
θ = ηI , and for each A′ and B′ in C′, φA′,B′ : G(A′) ⊗ G(B′) → G(A′ ⊗′ B′) to be the
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composite G(εA′ ⊗′ εB′)ηG(A′)⊗G(B′) produces a lax monoidal functor (G, θ, φ) : C′ → C,
and furthermore, these data make the triangle in (2), below, commute. As explained
above this lax functor determines a functor Lie(G) : Lie(C′) → Lie(C). The claim now
follows by observing that for objects (X, b) and (X ′, b′) in Lie(C) and Lie(C′), respectively,
and for f : X → G(X ′) a morphism in C, either (and hence both) of the statements:
f : (X, b)→ (G(X), G(b′)φ) is a morphism in Lie(C); and εF (f) : (F (X), F (b))→ (X ′, b′)
is a morphism in Lie(C′); are equivalent to the commutativity of the diagram

F (X)⊗′ F (X)
F (f)⊗′F (f) ,2 FG(X ′)⊗′ FG(X ′)

εX′⊗′εX′

!)

F (X ⊗X)
F (f⊗f) ,2

F (b)

��

F (G(X ′)⊗G(X ′))

F (φX′,X′ )

��
FG(X ′ ⊗′ X ′)

εX′⊗′X′ ,2

FG(b′)
��

X ′ ⊗′ X ′

b′

��
F (X)

F (f)
,2 FG(X ′) εX′

,2 X ′.

(2)

4. Actions

Recall that if A = (A,m, u) is a monoid in C and X is an object in C an action of A on
X is a morphism φ : A⊗X → X making the diagrams

(A⊗ A)⊗X α−1
,2

m⊗id
��

A⊗ (A⊗X)

id⊗φ
��

A⊗X
φ

,2 X A⊗X
φ

lr

I ⊗X

λ  )

u⊗id ,2 A⊗X
φ
��
X

commute. Given an object B = (B, b) in Lie(C) and an object X in C we say that a
morphism θ : B ⊗X → X is an action of B on X if the diagram

(B ⊗B)⊗X α−1((id−σ)⊗id) ,2

b⊗id
��

B ⊗ (B ⊗X)

id⊗θ
��

B ⊗X
θ

,2 X B ⊗X
θ

lr

(3)

commutes. Let us write E(X) for the monoid with underlying object XX and with
multiplication m : XX ⊗XX → XX and u : I → XX the unique morphisms making the
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diagrams

(XX ⊗XX)⊗X α−1
,2

m⊗id
��

XX ⊗ (XX ⊗X)

id⊗ ev
��

XX ⊗X ev
,2 X XX ⊗Xev
lr

I ⊗X

λ !)

u⊗id ,2 XX ⊗X
ev

��
X

commute. Let f : A′ → A be a morphism in Mon(C), g : B′ → B be a morphism in Lie(C),
φ : A ⊗ X → X be an action of A on X, and θ : B ⊗ X → X be an action of B on X,
then φ(f ⊗ id) is an action of A′ on X and θ(g ⊗ id) is an action of B′ on X. We have

4.1. Proposition. For an object X in C there are natural isomorphisms between the
following functors:

1. the functor assigning to each B in Lie(C)op the set of actions of B on X;

2. hom(−, L(E(X)) : Lie(C)op → Set;

3. hom(U(−), E(X)) : Lie(C)op → Set;

4. the functor assigning to each B in Lie(C)op the set of monoid actions of U(B) on
X.

For an object B in Lie(C), under these natural isomorphisms, an action θ of B on X, a
morphism θ̄ : B → L(E(X)) in Lie(C), a morphism φ̄ : U(B)→ E(X) in Mon(C), and a
monoid action φ of U(B) on X are related when: θ = ev(θ̄⊗ id), θ̄ = φ̄ν, φ = ev(φ̄⊗ id),
and (hence) θ = φ(ν ⊗ id), where ν is the unit of the adjunction U a L.

Proof. The natural isomorphism between the functors in (3) and (4) is standard, while
the natural isomorphism between the functors in (2) and (3) is obtained from the ad-
junction U a L. Given a morphism θ : B ⊗ X → X, let θ̄ : B → XX be the unique
morphism such that ev(θ̄⊗ id) = θ. One easily observes that if the map θ̄ : B → L(E(X))
is a morphism in Lie(C), then the diagram 1 below is commutative, making the whole
diagram

(B ⊗B)⊗X (id−σ)⊗id ,2

(θ̄⊗θ̄)⊗id &-

b⊗id

��

1

(B ⊗B)⊗X α−1
,2 B ⊗ (B ⊗X)

θ̄⊗(θ̄⊗id)

��

id⊗θ

�'

(XX ⊗XX)⊗X
(id−σ)⊗id
��

(XX ⊗XX)⊗X
m⊗id
��

α−1
,2 XX ⊗ (XX ⊗X)

id⊗ ev
��

B ⊗X

θ

v�

B ⊗X θ̄⊗id ,2

θ ,2

XX ⊗X
ev

'.

XX ⊗X
ev
��
X
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commute and hence θ is an action of B on X. The converse follows immediately from the
universal property of ev.

Let 2 denote the category with two objects 0 and 1 and one non-identity morphism
0 → 1. Recall that the functor category C2 can be made into a symmetric monoidal
category C2 with monoidal structure defined componentwise. Recall also, that when C
has pullbacks the symmetric monoidal category C2 is monoidal closed. Since the functor
L : Lie(C2) → Mon(C2) is, up to isomorphism, the same as the functor L2 : Lie(C)2 →
Mon(C)2, it follows from the previous proposition applied to C2 that for a morphism
g : B → B′ in Lie(C), a morphism f : X → X ′ in C, and monoid actions φ and φ′ of U(B)
on X and U(B′) on X ′ respectively, the outer arrows of the diagram

B ⊗X ν⊗id ,2

g⊗f
��

U(B)⊗X
U(g)⊗f
��

φ ,2 X

f

��
B′ ⊗X ′

ν⊗id
,2 U(B′)⊗X ′

φ′
,2 X ′

commute if and only if the right hand square commutes. In particular, writing LieAct(B,C)
and MonAct(A,C) for the categories of B actions and A actions respectively (for some
objects B in Lie(C) and A in Mon(C)), this implies:

4.2. Proposition. For an object B in Lie(C) the assignment (X,φ) 7→ (X,φ(ν⊗ id)) is
the object map of an isomorphism

MonAct(U(B),C)→ LieAct(B,C)

which is identity on morphisms.

Now suppose that A is a bimonoid with comultiplication d : A → A ⊗ A. If φ and φ′

are actions of the underlying monoid of A on X and Y , respectively, then φ ⊗d φ′ : A ⊗
(X ⊗ Y ) → (X ⊗ Y ) defined by φ ⊗d φ′ = (φ ⊗ φ′)i(d ⊗ id) is a monoid action. To see
why, note that the monoidal functor (⊗, λ, i) : C×C→ C sends the action (φ, φ′) of the
monoid (A,A) on (X, Y ) to the action (φ⊗φ′)i of the monoid A⊗A on X⊗Y . However,
since d : A → A ⊗ A is a monoid morphism it follows that φ ⊗d φ′ = (φ ⊗ φ′)i(d ⊗ id) is
an action of A on X ⊗ Y .

Noting that the counit of the bimonoid A determines a monoid action of A on I
one easily establishes that the symmetric monoidal structure of C lifts to MonAct(A,C)
and hence the forgetful functor GA : MonAct(A,C) → C is strict monoidal. Let us
write MonAct(A,C) for this monoidal category. It is well known that when C is monoidal
closed GA has a right adjoint. The object map of this right adjoint assigns to each object
X the object XA with action φ : A⊗XA → XA, the unique morphism making the diagram

(A⊗XA)⊗ A φ⊗id ,2

(id⊗σ)α(σ⊗id)

��

XA ⊗ A
ev

��
XA ⊗ (A⊗ A)

id⊗m
,2 XA ⊗ A ev ,2 X
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commute. Therefore, since the categories C and MonAct(A,C) are additive and so is the
functor GA, by Proposition 3.1, it follows that:

4.3. Proposition. The induced forgetful functor Lie(GA) : Lie(MonAct(A,C))→ Lie(C)
has a right adjoint.

Suppose B is an object in Lie(C). Let us write LieAct(B,C) for the monoidal category
obtained by translating the monoidal structure from MonAct(U(B),C) via the isomorph-
ism given in Proposition 4.2. Trivially:

4.4. Proposition. For an object B in Lie(C) the assignment given by ((X,φ), b) 7→
((X,φ(ν ⊗ id)), b) is the object map of an isomorphism

Lie(MonAct(U(B),C))→ Lie(LieAct(B,C))

which is the identity on morphisms.

Let us calculate explicitly what the tensor product in LieAct(B,C) is. Suppose that
(X, θ) and (X ′, θ′) are objects in LieAct(B,C). Letting (X,φ) and (X ′, φ′) be the corres-
ponding objects in MonAct(U(B),C) we see that the diagram

U(B)⊗2 ⊗ (X ⊗X ′)

i

��

(B ⊗ I)⊗ (X ⊗X ′)

(ν⊗u)⊗id
18

i

��

(I ⊗B)⊗ (X ⊗X ′)

((u⊗ν)⊗id
fm

i

��

B ⊗ (X ⊗X ′)

ρ−1⊗id
3;

α

�)

(U(B)⊗X)⊗ (U(B)⊗X ′)

φ⊗φ′

��

B ⊗ (X ⊗X ′)

λ−1⊗id
ck

σα(id⊗σ)

u�

(B ⊗X)⊗ (I ⊗X ′)

id⊗λ

��

(ν⊗id)⊗(u⊗id)

18

(I ⊗X)⊗ (B ⊗X ′)
(u⊗id)⊗(ν⊗id)

fm

λ⊗id

��

X ⊗X ′

(B ⊗X)⊗X ′
θ⊗id

18

X ⊗ (B ⊗X ′)
id⊗θ′

fm

commutes. This implies that

(φ⊗d φ′)(ν ⊗ id) = (φ⊗ φ′)i(dν ⊗ id)

= (φ⊗ φ′)i(δν ⊗ id)

= (φ⊗ φ′)i(((u⊗ ν)λ−1 + (ν ⊗ u)ρ−1)⊗ id)

= (θ ⊗ id)α + (id⊗θ′)σα(id⊗σ)

and hence the translated tensor product of LieAct(B,C) is defined by

(X, θ)⊗ (X ′, θ′) = (X ⊗X ′, θ ∗ θ′)
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where θ ∗ θ′ = (θ ⊗ id)α + (id⊗θ′)σα(id⊗σ). One easily observes that this means that
an object in Lie(LieAct(B,C)) can be identified with a pair ((X, b), θ) where (X, b) is an
object in Lie(C), and θ is an action of B on X making the diagram

B ⊗ (X ⊗X)
id⊗b ,2

θ∗θ
��

B ⊗X
θ
��

X ⊗X
b

,2 X

(4)

commute. Writing GB : LieAct(B,C)→ C for the forgetful functor we have:

4.5. Proposition. For an object B in Lie(C) the map assigning to each object (A, p, s)
in PtB(Lie(C)) the pair (X, θ) where X is the domain of k : X → A the kernel of p and
θ : B ⊗X → X is the unique morphism in C with kθ = bA(s⊗ k), is the object map of a
functor W : PtB(Lie(C))→ Lie(LieAct(B,C)) which is part of an equivalence of categories
making the diagram

PtB(Lie(C)) W ,2

KerB �(

Lie(LieAct(B,C))

Lie(GB)u}
Lie(C)

(5)

commute.

Proof. Let B be an object in Lie(C), for an object (A, p, s) in PtB(Lie(C)), defining
W (A, p, s) = (X, θ) where X and θ are defined as above. One can check that the commut-
ativity of diagrams (3) and (4) follow from commutativity of diagrams (1) and coherence.

If f : (A, p, s) → (A′, p′, s′) is a morphism in PtB(Lie(C)), then an easy calcula-
tion shows that the induced map between the kernels of p and p′ lifts to a morphism
W (A, p, s) → W (A′, p′, s′) producing a functor W : PtB(Lie(C)) → Lie(LieAct(B,C))
making diagram (5) commute. On the other hand, given (X, θ) in Lie(LieAct(B,C))
letting b : (B ⊕X)⊗ (B ⊕X)→ B ⊕X be the unique morphism with b(ι1 ⊗ ι1) = ι1bB,
b(ι1 ⊗ ι2) = θ, b(ι2 ⊗ ι1) = −θσ and b(ι2 ⊗ ι2) = ι2bX makes ((B ⊕ X, b), π1, ι1) into an
object of PtB(Lie(C)) such that W ((B⊕X, b), π2, ι2) = (X, θ). Therefore, noting that W
is faithful, to show that it is part of an equivalence of categories we need only show it is
full.

To that end suppose that (A, p, s) and (A′, p′, s′) are objects in PtB(Lie(C)), k : X → A
and k′ : X ′ → A′ are the kernels of p and p′, respectively, θ : B⊗X → X and θ′ : B⊗X ′ →
X ′ are morphisms such that W (A, p, s) = (X, θ) and W (A′, p′, s′) = (X ′, θ′), and f is a
morphism from W (A, p, s) to W (A′, p′, s′). Letting l : A → X be the unique morphism
in C such that kl = id−sp, using the fact that k and s are jointly epimorphic, one can
easily check that if g = k′fl + s′p then g is a morphism from (A, p, s) to (A′, p′, s′) such
that W (g) = f .
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Combining the previous proposition with Proposition 4.4 we obtain:

4.6. Proposition. For each B in Lie(C) the kernel functor KerB : PtB(Lie(C)) → C
factors through the forgetful functor Lie(GU(B)) : Lie(MonAct(U(B),C)) → Lie(C) via an
equivalence of categories.

We are now ready to prove our main theorem:

4.7. Theorem. For a symmetric monoidal closed category C = (C,⊗, I, α, λ, ρ, σ) such
that C is cocomplete and additive, the category Lie(C) is (LACC).

Proof. Combining the previous proposition and Proposition 4.3 we see that for each B
in Lie(C) the functor KerB : PtB(Lie(C)) → Lie(C) has a right adjoint. The claim now
follows by [19, Theorem 5.1].

5. Examples

5.1. Example. Let R be a commutative ring and consider the category of chain complexes
of R-modules. If (V, d) and (V ′, d′) are chain complexes, the tensor product of (V, d) and
(V ′, d′) is the chain complex (V ⊗ V ′, δ) where

(V ⊗ V ′)i =
⊕
j+k=i

Vj ⊗ V ′k ,

and δ is defined for all v ∈ Vj and v′ ∈ V ′k by

δ(v ⊗ v′) = d(v)⊗ v′ + (−1)jv ⊗ d′(v′).

The symmetry isomorphism σ : V ⊗ V ′ → V ′ ⊗ V is defined for all v ∈ Vj and v′ ∈ V ′k
by σ(v ⊗ v′) = (−1)ijv′ ⊗ v. With this tensor product, symmetry isomorphism and the
remaining structure defined canonically, it forms a symmetric monoidal closed category
whose underlying category is cocomplete and abelian.

Its category of internal Lie algebras is equivalent to the category whose objects are
differential graded Lie algebras, i.e., a Z-graded R-module V , with a linear map d : V → V
of degree −1 such that d ◦ d = 0, and a bilinear map [−,−] : V ⊗ V → V of degree zero
satisfying: for all homogeneus x, y, z in V

1. [x, y] = −(−1)|x||y|[y, x],

2. (−1)|x||z|[x, [y, z]] + (−1)|y||x|[y, [z, x]] + (−1)|z||y|[z, [x, y]],

3. d([x, y]) = [d(x), y] + (−1)|x|[x, d(y)]

where |v| denotes the degree of v. By Theorem 4.7 it follows that the category of differential
graded Lie algebras is (LACC).
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5.2. Example. If in the previous example we consider the full subcategory formed by
chain complexes where d = 0, internal Lie algebras are essentially Z-graded Lie alge-
bras. Applying Theorem 4.7 again we know that the category of Z-graded Lie algebras is
(LACC).

In a similar way, the category of Lie superalgebras over a commutative ring can be
seen as the category of internal Lie algebras in the symmetric monoidal closed category of
super R-modules and hence it is (LACC).

5.3. Example. Let us consider now the category whose objects are linear maps f : V →
W and morphisms are homomorphisms of R-modules making the diagram commutative

V ,2

f

��

V ′

f ′

��
W ,2W ′

There is a tensor product, called the infinitesimal tensor product defined as V

f

��
W

⊗
 V ′

f ′

��
W ′

 =


(V ⊗W ′)⊕ (W ⊗ V ′)

[f⊗id,id⊗f ′]
��

W ⊗W ′


This monoidal category was introduced in [23] as the tensor category of linear maps,

and in more recent papers was renamed to the Loday-Pirashvili category [9, 10, 26],
denoted by LP. An internal Lie algebra in this category is a linear map f : M → g,
where g is a Lie algebra, M is a right g-module and f preserves the g-action. Once
more, as a consequence of Theorem 4.7, the category of Lie algebras in LP is (LACC).
Furthermore, the category of Leibniz algebras can be found as a full reflective subcategory
of internal Lie algebras in LP, but it is known that the category of Leibniz algebras is not
(LACC) [12].

5.4. Example. Whereas the categories of Hom-Lie algebras and multiplicative Hom-Lie
algebras are known to be semi-abelian categories satisfying very few categorical-algebraic
properties (see [7]), it was shown in [6, 14] that regular Hom-Lie algebras (Hom-Lie
algebras whose twist is an isomorphism preserving the bracket) can be found as internal Lie
algebras in a certain symmetric monoidal category, and therefore, again by Theorem 4.7,
it is (LACC).
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