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ISBELL CONJUGACY AND THE REFLEXIVE COMPLETION

TOM AVERY AND TOM LEINSTER

Abstract. The reflexive completion of a category consists of the Set-valued functors
on it that are canonically isomorphic to their double conjugate. After reviewing both
this construction and Isbell conjugacy itself, we give new examples and revisit Isbell’s
main results from 1960 in a modern categorical context. We establish the sense in which
reflexive completion is functorial, and find conditions under which two categories have
equivalent reflexive completions. We describe the relationship between the reflexive and
Cauchy completions, determine exactly which limits and colimits exist in an arbitrary
reflexive completion, and make precise the sense in which the reflexive completion of a
category is the intersection of the categories of covariant and contravariant functors on
it.
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1. Introduction

Isbell conjugacy inhabits the same basic level of category theory as the Yoneda lemma,
springing from the most primitive concepts of the subject: category, functor and natural
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transformation. It can be understood as follows.
Let A be a small category. Any functor X : Aop → Set gives rise to a new functor

X ′ : Aop → Set defined by

X ′(a) = [Aop,Set](A(−, a), X),

and so, in principle, an infinite sequence X,X ′, X ′′, . . . of functors Aop → Set. Of course,
they are all canonically isomorphic, by the Yoneda lemma. But X also gives rise to a
functor X∨ : A → Set, its Isbell conjugate, defined by

X∨(a) = [Aop,Set](X,A(−, a)). (1)

The same construction with A in place of Aop produces from X∨ a further functor
X∨∨ : Aop → Set, and so on, giving an infinite sequence X,X∨, X∨∨, . . . of functors on A
with alternating variances. Although it makes no sense to ask whether X∨ is isomorphic
to X (their types being different), one can ask whether X∨∨ ∼= X. This is false in general.
Thus, there is nontrivial structure.

The conjugacy operations define an adjunction between [Aop,Set] and [A,Set]op, so
that

[Aop,Set](X, Y ∨) ∼= [A,Set](Y,X∨)

naturally in X : Aop → Set and Y : A → Set. The unit and counit of the adjunction are
canonical maps X → X∨∨ and Y → Y ∨∨, and a covariant or contravariant functor on A
is said to be reflexive if the canonical map to its double conjugate is an isomorphism.

The reflexive completion R(A) ofA is the category of reflexive functors onA (covariant
or contravariant; it makes no difference). Put another way, R(A) is the invariant part of
the conjugacy adjunction. It contains A, since representables are reflexive. Its properties
are the main subject of this work.

The reflexive completion is very natural category-theoretically, but categories of re-
flexive objects also appear in other parts of mathematics. That is, there are many notions
of duality in mathematics, in most instances there is a canonical map ηX : X → X∗∗ from
each object X to its double dual, and special attention is paid to those X for which ηX is
an isomorphism. For example, in linear algebra, the vector spaces X with this property
are the finite-dimensional ones, and in functional analysis, there is a highly developed
theory of reflexivity for Banach spaces and topological vector spaces.

Content of the paper We begin with the definition of conjugacy on small categories,
giving several characterizations of the conjugacy operations and many examples (Sec-
tions 2 and 3). Defining conjugacy on an arbitrary category is more delicate, and we
review and use the notion of small functor (Section 4). This allows us to state the def-
inition of the reflexive completion of an arbitrary category, and again, we give many
examples (Sections 5 and 6).

Up to here, there are no substantial theorems, but the examples provide some surprises.
For instance, the reflexive completion of a nontrivial group is simply the group with initial
and terminal objects adjoined—except when the group is of order 2, in which case it is
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something more complicated (for reasons related to the fact that 2 + 2 = 2 × 2; see
Example 6.5). There is also a finite monoid whose reflexive completion is not even small,
a fact due to Isbell (Examples 6.8 and 8.7). Other examples involve the Dedekind–
MacNeille completion of an ordered set (Examples 6.10 and 6.11) and the tight span of a
metric space (at the end of Section 6).

The second half of the paper develops the theory, as follows.
Section 7 collects necessary results on dense and adequate functors. (See Defini-

tion 7.10 and Remark 7.11 for this terminology.) Many of them are standard, but we
address points about set-theoretic size that do not seem to have previously been consid-
ered. Using the results of Section 7, we give a unique characterization of the reflexive
completion that sharpens a result of Isbell’s (Theorem 8.4).

Reflexive completion is functorial (Section 9), but only with respect to a very lim-
ited class of functors: the small-adequate ones. It is often the case that the functor
R(F ) : R(B) → R(A) induced by a functor F : A → B is an equivalence. For example,
using work of Day and Lack on small functors together with the results on size just men-
tioned, we show that R(F ) is always an equivalence if B is either small or both complete
and cocomplete (Corollary 9.8).

Our study of functoriality naturally recovers Isbell’s result that reflexive completion
is idempotent: R(R(A)) ' R(A). A category is reflexively complete if it is the reflexive
completion of some category, or equivalently if every reflexive functor on it is representable.

Reflexive completion has certain formal resemblances to Cauchy completion, but the
reflexive completion is typically bigger (Figure 1). The relationship is analysed in Sec-
tion 10.

A reflexively complete category has absolute (co)limits, and if it is the reflexive com-
pletion of a small category then it has initial and terminal objects too, but these are
all the limits and colimits that it generally has (Section 11). The case of ordered sets,
where the reflexive (Dedekind–MacNeille) completion has all (co)limits, is atypical. On
the other hand, it is true that a complete or cocomplete category is reflexively complete
(Figure 1).

Informally, one can understand R(A) as the intersection Â ∩ A

̂

, where Â and A

̂

are

the free completions of A under small colimits and small limits. (If A is small then Â =

[Aop,Set] and A

̂

= [A,Set]op.) Section 12 formalizes this idea, reviewing the definition
of the Isbell envelope I(A) of a category and proving that the square in Figure 1(a) is a
pullback in the bicategorical sense.

We work with categories enriched over a suitable monoidal category V in Sections 2–6,
then restrict to V = Set from Section 7. While some of the later results are particular to
V = Set (such as Theorem 11.6 on limits), others can be generalized to any V . To avoid
complicating the presentation, we have not specified exactly which results generalize, but
we have tried to choose proofs that make any generalization transparent.

Relationship to Isbell’s paper Although there are many new results in this work,
some parts are accounts of results first proved in Isbell’s remarkable paper [9], and the
reader may ask what we bring that Isbell did not. There are several answers.
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I(A)

Â A

̂

R(A)

A

A

complete cocomplete

reflexively complete

Cauchy complete

(a) (b)

Figure 1: (a) Completions of a categoryA: the Cauchy completionA, reflexive completion

R(A), free completions Â and A

̂

with respect to small colimits and small limits, and Isbell
envelope I(A); (b) classes of complete categories.

First, Isbell’s paper was extraordinarily early. He submitted it in mid-1959, only the
year after the publication of Kan’s paper introducing adjoint functors. What we now
know about category theory can be used to give shape to Isbell’s original arguments.
In Grothendieck’s metaphor [20], the rising sea of general category theory has made the
hammer and chisel unnecessary.

Second, Isbell worked only with full subcategories, where we use arbitrary functors. It
is true that we will often need to assume our functors to be full and faithful, so that up
to equivalence, they are indeed inclusions of full subcategories. Nevertheless, the functor-
based approach has the benefits of being equivalence-invariant and of revealing exactly
where the full and faithful hypothesis is needed. Ulmer emphasized that many naturally
occurring dense functors are not full and faithful (Example 7.3), and the theory of dense
and adequate functors should be developed as far as possible without that assumption.

Third, we modernize some aspects, including the treatment of set-theoretic size. Isbell
used a size constraint on Set-valued functors that he called properness and Freyd later
called pettiness (Remark 4.5). It now seems clear that the most natural such notion is
that of small functor, which extends smoothly to the enriched context and is what we use
here.

Finally, Isbell simply omitted several proofs; we provide them.

Terminology Isbell conjugacy has sometimes been called Isbell duality (as in Di Lib-
erti [4]), but that term has also been used for a different purpose entirely (as in Barr,
Kennison and Raphael [1]). Reflexive completion has also been studied under the name
of Isbell completion (as in Willerton [22]).

Conventions Usually, and always in declarations such as ‘let A be a category’, the word
‘category’ means locally small category. However, we will sometimes form categories such
as [Aop,Set] that are not locally small. For us, the words small and large refer to sets
and proper classes. A category is (co)complete when it admits small (co)limits.
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The symbol × denotes both product and copower, so that when S is a set and a is an
object of some category, S × a =

∐
s∈S a.

2. Conjugacy for small categories

Certain aspects of conjugacy are simpler for small categories. In this section, we review
several descriptions and characterizations of conjugacy on small categories, all previously
known. Our categories will be enriched in a complete and cocomplete symmetric monoidal
closed category V . Henceforth, we will usually abbreviate ‘V-category’ to ‘category’, and
similarly for functors, adjunctions, etc.; all are understood to be V-enriched.

Let A be a small category. The (Isbell) conjugate of a functor X : Aop → V is the
functor X∨ : A → V defined by

X∨(a) = [Aop,V ](X,A(−, a))

(a ∈ A). With Aop in place of A, this means that the conjugate of a functor Y : A → V
is the functor Y ∨ : Aop → V defined by

Y ∨(a) = [A,V ](Y,A(a,−)).

Conjugacy defines a pair of functors

[Aop,V ] // [A,V ]opoo . (2)

2.1. Remark. Writing ∨A for the conjugacy functor [Aop,V ]→ [A,V ]op, the conjugacy
functor in the opposite direction is ∨opAop .

There is a case for adopting different symbols for the two directions. Others have done
this; for example, Wood uses X+ and Y − ([23], Section 1). We could write X∨ = ∨A(X)

and Y ∧ = ∨Aop(Y ), so that X∨ ∈ A

̂

and Y ∧ ∈ Â (in the notation defined in Section 4).
But we will use the same symbol for both. This is partly to emphasize that every functor
Z from a small category to V has a single, unambiguous, conjugate Z∨, which is the same
whether Z is regarded as a covariant functor on its domain or a contravariant functor on
the opposite of its domain.

Given X : Aop → V and Y : A → V , define

X � Y : Aop ⊗A → V
(a, b) 7→ X(a)⊗ Y (b).

(3)

One verifies that

[Aop,V ](X, Y ∨) ∼= [Aop ⊗A,V ](X � Y,HomA) ∼= [A,V ](Y,X∨) (4)

naturally in X and Y . In particular, the conjugacy functors (2) are adjoint.
Evidently

A(−, a)∨ ∼= A(a,−), A(a,−)∨ ∼= A(−, a)



ISBELL CONJUGACY AND THE REFLEXIVE COMPLETION 311

naturally in a ∈ A. Thus, both triangles in the diagram

[Aop,V ]
∨ --

[A,V ]op

∨op
⊥mm

A
H•

dd

H•

;;
(5)

commute, where H• and H• are the two Yoneda embeddings. This property characterizes
conjugacy:

2.2. Lemma. Isbell conjugacy is the unique adjunction such that both triangles in (5)
commute up to isomorphism.

Proof. Let P : [Aop,V ] → [A,V ]op be a left adjoint satisfying P ◦ H• ∼= H•. By hy-
pothesis, P (X) ∼= X∨ when X is representable. But every object of [Aop,V ] is a small
colimit of representables (as A is small), and both P and ( )∨ preserve colimits (being left
adjoints), so P ∼= ( )∨.

Conjugacy can also be described as a nerve-realization adjunction. Any functor
F : A → E induces a nerve functor

NF : E → [Aop,V ]
E 7→ A(F−, E).

When E is cocomplete, the nerve functor has a left adjoint, sometimes called the realization
functor of F (after the case where F is the standard embedding of the simplex category
∆ into Top). It is the left Kan extension of F along the Yoneda embedding H•.

Taking F to be H• : A → [A,V ]op, we thus obtain a pair of adjoint functors between
[Aop,V ] and [A,V ]op. This is the conjugacy adjunction. For example, in diagram (5), the
functor ( )∨ : [Aop,V ]→ [A,V ]op is the left Kan extension of H• along H•.

Yet another derivation of conjugacy uses profunctors. Our convention is that for small
categories A and B, a profunctor B +−→ A is a functor Aop⊗B → V , and the composite
of profunctors Q : C +−→ B and P : B +−→ A is denoted by P �Q : C +−→ A.

The operation of composition with a profunctor, on either the left or the right, has a
right adjoint. Indeed, given profunctors

C
�
R

55
�Q // B �P // A,

there are profunctors

C �[P,R]> // B �[Q,R]< // A
defined by

[P,R]>(b, c) = [Aop,V ](P (−, b), R(−, c)),
[Q,R]<(a, b) = [C,V ](Q(b,−), R(a,−)),



312 TOM AVERY AND TOM LEINSTER

which satisfy the adjoint correspondences

P → [Q,R]<

P �Q→R

Q→ [P,R]>

(6)

Now take B to be the unit V-category I, with C = A and R = HomA. The profunctors
P and Q are functors X : Aop → V and Y : A → V , respectively. Then [P,R]> = X∨ and
[Q,R]< = Y ∨, while P �Q = X � Y , and the general adjointness relations (6) reduce to
the conjugacy relations (4).

Finally, conjugates can be described as Kan extensions or lifts in the bicategory V-Prof
of V-profunctors. Let X : Aop → V . There is a canonical natural transformation

A �X∨ //

�
HomA

⇐εX

��

1

_X

��
A

(7)

whose (a, b)-component

X(a)⊗ [Aop,V ](X,A(−, b))→ A(a, b)

is defined in the case V = Set by (x, ξ) 7→ ξb(x), and by the obvious generalization
for arbitrary V . Equivalently, using the second of the isomorphisms (4), εX is the map
X �X∨ → HomA corresponding to the identity on X∨.

The result is that εX exhibits X∨ as the right Kan lift of HomA through X in V-Prof .
(That is, the pair (X∨, εX) is terminal of its type.) This follows from the second adjoint-
ness relation in (6) on taking P = X and R = HomA.

Dually, for Y : A → V , a similarly defined transformation εY : Y ∨ � Y → HomA
exhibits Y ∨ as the right Kan extension of HomA along Y in V-Prof .

3. Examples of conjugacy

We list some examples of conjugacy, beginning with unenriched categories.

3.1. Example. Let A be a small discrete category, Y : A → Set, and a ∈ A. Then

Y ∨(a) =

{
1 if Y (b) = ∅ for all b 6= a

∅ otherwise.

Thus, writing

suppY = {b ∈ A : Y (b) is nonempty}, (8)
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we have

Y ∨ ∼=


1 if Y ∼= 0

A(−, a) if suppY = {a}
0 otherwise.

3.2. Example. LetG be a group, seen as a one-object category. A functorX : Gop → Set
is a right G-set, and the unique representable such functor is Gr, the set G acted on by G
by right multiplication. Thus, X∨ is the left G-set of G-equivariant maps G → Gr. We
now compute X∨ explicitly.

First suppose that the G-set X is nonempty, transitive and free (for g ∈ G, if xg = x
for some x then g = 1). Then X ∼= Gr, so X∨ is isomorphic to G`, the set G acted on by
the group G by left multiplication.

Next suppose that X is nonempty and transitive but not free. Choose x ∈ X and
1 6= g ∈ G such that xg = x. Any equivariant α : X → Gr satisfies α(x) = α(xg) = α(x)g,
a contradiction since g 6= 1. Hence X∨ = ∅.

Finally, take an arbitrary G-set X. It is a coproduct
∑

i∈I Xi of nonempty transitive
G-sets, so by adjointness, X∨ =

∏
i∈I X

∨
i . By the previous paragraph, X∨ is empty unless

every orbit Xi is free, or equivalently unless X is free. If X is free then X is the copower
I ×Gr and X∨ is the power GI

` . But I ∼= X/G, so

X∨ ∼=

{
G
X/G
` if X is free

∅ otherwise.

3.3. Example. Let A be a partially ordered set regarded as a category, and let X : Aop →
Set. The set suppX ⊆ A (equation (8)) is downwards closed, and when X = A(−, a), it
is ↓ a = {b ∈ A : b ≤ a}. Now

X∨(a) ∼=

{
1 if suppX ⊆ ↓ a
∅ otherwise.

Of course, the dual result also holds, involving ↑ a = {b ∈ A : b ≥ a}.
A Set-valued functor on a category is subterminal if it is a subobject of the terminal

functor, or equivalently if all of its values are empty or singletons. Subterminal functors
A → Set correspond via supp to upwards closed subsets of A. The conjugate of any
functor X : Aop → Set is subterminal, corresponding to the upwards closed set of upper
bounds of suppX in A.

3.4. Example. Write 2 = (0→ 1) with min as monoidal structure. A small 2-category
A is a partially ordered set (up to equivalence), and a 2-functor X : Aop → 2 amounts to
a downwards closed subset of A, namely, {a ∈ A : X(a) = 1}. Dually, a 2-functor A→ 2
is an upwards closed subset of A.

From this perspective, the conjugacy adjunction is as follows: for a downwards closed
set X ⊆ A, the upwards closed set X∨ is the set of upper bounds of X, and dually.
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3.5. Example. Write Ab for the category of abelian groups. A one-object Ab-category
R is a ring, and an Ab-functor Rop → Ab is a right R-module. The unique representable
on R is Rr, the abelian group R regarded as a right R-module. Thus, the conjugate of a
right module M is

M∨ = ModR(M,Rr)

with the left module structure induced by the left action of R on itself. When R is a field,
M∨ is the dual of the vector space M .

3.6. Example. Consider the ordered set ([0,∞],≥) with its additive monoidal structure.
This is a monoidal closed category, the internal hom [x, y] being the truncated difference

y ·− x = max{y − x, 0}.

Lawvere [17] famously observed that a [0,∞]-category is a generalized metric space, ‘gen-
eralized’ in that distances need not be symmetric or finite, and distinct points can be
distance 0 apart.

Let A = (A, d) be a generalized metric space. A [0,∞]-functor Aop → [0,∞] is a
function f : A→ [0,∞] such that

f(a) ·− f(b) ≤ d(a, b)

for all a, b ∈ A. Its conjugate f∨ : A→ [0,∞] is defined by

f∨(a) = sup
b∈A

(
d(b, a) ·− f(b)

)
.

4. Conjugacy for general categories

To define conjugacy on a general category requires more delicacy than on a small category.
The reader who wants to get on to the reflexive completion can ignore this section for now.
However, because of the phenomenon noted in Example 6.8, the theory of the reflexive
completion ultimately requires this more general definition of conjugacy: it is not possible
to confine oneself to small categories only.

The following example shows that the definition of conjugacy for small categories
cannot be extended verbatim to large categories.

4.1. Example. Let C be a proper class. Let A be the category obtained by adjoining
to the discrete category C a further object z and maps p0c , p

1
c : z → c for each c ∈ C. Let

Y : A → Set be the functor defined by

Y (a) =

{
1 if a ∈ C
∅ if a = z.

A natural transformation Y → A(z,−) is a choice of element of {p0c , p1c} for each c ∈
C. There is a proper class of such transformations, so there is no Set-valued functor
Y ∨ : Aop → Set defined by Y ∨(a) = [A,Set](Y,A(a,−)).
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Since not every functor has a conjugate, we restrict ourselves to a class of functors that
do. These are the small functors introduced by Ulmer ([21], Remark 2.29). We briefly
review them now, referring to Day and Lack [3] for details.

Again we work over a complete and cocomplete symmetric monoidal closed category
V , understanding all categories, functors, etc., to be V-enriched.

For a category A, a functor A → V is small if it can expressed as a small colimit
of representables, or equivalently if it is the left Kan extension of its restriction to some
small full subcategory of A, or equivalently if it is the left Kan extension of some V-valued
functor on some small category B along some functor B → A.

4.2. Example. When A is small, every functor A → V is small.

4.3. Example. Taking V = Set, the constant functor 1 on a large discrete category is
not small; nor is the functor Y of Example 4.1.

4.4. Example. For later purposes, let us consider an ordered class A and a subterminal
functor X : Aop → Set (as defined in Example 3.3). Then X is small if and only if there
is some small K ⊆ suppX such that for all a ∈ suppX, the poset K ∩ ↑ a is connected
(and in particular, nonempty). This follows from the definition of a small functor as one
that is the left Kan extension of its restriction to some small full subcategory.

For arbitrary functors X,X ′ : Aop → V , the V-natural transformations X → X ′ do
not always define an object of V , as Example 4.1 shows in the case V = Set. But when
X is small, they do: it is the (possibly large) end

V-Nat(X,X ′) =

∫
a

[X(a), X ′(a)] ∈ V . (9)

To see that this end exists, first note that by smallness of X, we can choose a small full
subcategory C of A such that X is the left Kan extension of its restriction to C. Since C
is small and V has small limits, the functor V-category [Cop,V ] exists, and the universal
property of Kan extensions implies that [Cop,V ]

(
X|C, X ′|C

)
is the end (9).

In particular, the small functors Aop → V form a V-category Â. We also write A

̂

for
the opposite of the V-category of small functors A → V . When A is small,

Â = [Aop,V ], A

̂

= [A,V ]op.

When A is large, the right-hand sides are in general undefined as V-categories. In the
case V = Set, the right-hand sides can be interpreted as categories that are not locally
small, but typically

Â ( [Aop,Set], A

̂

( [A,Set]op.

A small colimit of small V-valued functors is small, so the V-category Â has small
colimits, computed pointwise. Indeed, it is the free cocompletion of A: the Yoneda
embedding A ↪→ Â is the initial functor (in a 2-categorical sense) from A to a category

with small colimits. Dually, A

̂

is the free completion of A.
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4.5. Remark. Isbell used a different size condition, defining a Set-valued functor to
be proper if it admits an epimorphism from a small coproduct of representables ([9],
Section 1). (Freyd later called such functors ‘petty’ [6].) Properness is a weaker condition

than smallness, but the universal properties of Â and A

̂

make smallness a natural choice,
and it generalizes smoothly to arbitrary V .

4.6. Definition. A functor F : A → B is representably small if for each b ∈ B, the
functor

NF (b) = B(F−, b) : Aop → V

is small, and corepresentably small if for each b ∈ B,

NF (b) = B(b, F−) : A → V

is small. (This is dual to the convention in Section 8 of Day and Lack [3].)

Thus, a representably small functor F : A → B induces a nerve functor NF : B → Â,
and dually.

4.7. Lemma. Let A F−→ B G−→ C be functors. If F and G are representably small then
so is GF , and dually for corepresentably small.

Proof. Suppose that F and G are representably small, and let c ∈ C. We must show
that C(GF−, c) is small. By hypothesis, C(G−, c) is a small colimit of representables, say
C(G−, c) = W ∗ B(−, D) where I is a small category, W : Iop → V and D : I → B. Then
C(GF−, c) = W ∗ B(F−, D), which by hypothesis is a small colimit of small functors,
hence small.

This completes our review of smallness. Now let A be a category. The conjugate of
a small functor X : Aop → V is the functor X∨ : A → V defined by

X∨(a) = Â(X,A(−, a)).

Since Âop =
(
A

̂)op
, this implies that the conjugate of a small functor Y : A → V is the

functor Y ∨ : Aop → V defined by

Y ∨(a) = A

̂

(Y,A(a,−)).

The conjugate of a small functor need not be small:

4.8. Example. Let A be a discrete category on a proper class of objects. The small
functors Y : A → Set are precisely those such that suppY is small. So the initial (empty)
functor 0 : A → Set is small, but its conjugate is the terminal functor 1, which is not
small.

When V = Set, conjugacy defines functors

Â → [A,Set]op, A

̂

→ [Aop,Set],
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whose codomains are in general not locally small. For a general V and A, conjugacy is
still contravariantly functorial in X and Y , but there are no V-categories [A,V ]op and
[Aop,V ] to act as the codomains. So it no longer makes sense to speak of a conjugacy
adjunction. However, we do have the following.

4.9. Lemma. Let A be a category. Then

V-Nat(X, Y ∨) ∼= V-Nat(Y,X∨)

naturally in X ∈ Â and Y ∈ A

̂

.

Since X and Y are small, each side of the claimed isomorphism is a well-defined object
of V (equation (9)).

Proof. It is routine to verify that each side is naturally isomorphic to V-Nat(X �
Y,HomA), where � was defined in (3).

The isomorphism of Lemma 4.9 gives rise in the usual way to a canonical map ηX : X →
X∨∨ whenever X : Aop → V is a small functor such that X∨ is also small. Dually, for any
small functor Y : A → V with small conjugate, there is a canonical map ηY : Y → Y ∨∨.

4.10. Remark. The reuse of the letter η is not an abuse, in that ηX is the same whether
X is regarded as a contravariant functor on A or a covariant functor on Aop. (Compare
Remark 2.1.)

In the case V = Set, the unit transformation η can be described explicitly as follows.
Let X : Aop → Set be a small functor with small conjugate. Let a ∈ A and x ∈ X(a).
Then ηX,a(x) ∈ X∨∨(a) is the natural transformation

ηX,a(x) : X∨ → A(a,−)

that evaluates at x: its component at b ∈ A is the function

Â(X,A(−, b)) → A(a, b)
ξ 7→ ξa(x).

4.11. Remark. Define a category A to be gentle if Â is complete and A

̂

is cocomplete.
Small categories are certainly gentle. Day and Lack proved that Â is complete if A is
(Corollary 3.9 of [3]), so by duality, any complete and cocomplete category is also gentle.

On the other hand, a large discrete category A is not gentle, as Â has no terminal object.
For a gentle category A, the conjugate of a small functor on A is again small, so that

conjugacy defines a genuine adjunction between Â and A

̂

. This was shown by Day and
Lack in Section 9 of [3].

In fact, when A is complete and cocomplete, the conjugate of a small functor A → V
or Aop → V is not only small but representable. Indeed, if X is a small colimit of
representables A(−, ai) then X∨ is represented by the corresponding colimit of the ai,
and dually. Specializing further, if A is totally complete and totally cocomplete then the
conjugate of any functor on A (not necessarily small) is representable, the representing
object of X∨ being the image of X under the left adjoint to the Yoneda embedding. (We
thank the referee for these observations.)
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5. The reflexive completion

The reflexive completion of a category was first defined by Isbell (Section 1 of [9]), for
unenriched categories. We consider it for categories enriched in a complete and cocom-
plete symmetric monoidal closed category V , beginning with the case of small V-categories
and then generalizing to arbitrary V-categories. For small categories over V = Set, our
definition is precisely Isbell’s. For general categories over Set, there is the set-theoretic
difference that our definition uses small functors where his used proper functors (Re-
mark 4.5).

Recall that every adjunction

C
F )) D
G

⊥hh

between V-categories restricts canonically to an equivalence between full subcategories
of C and D (Lambek and Rattray [16], Theorem 1.1). The subcategory of C consists of
those objects c for which the unit map c → GFc (in the underlying category of C) is
an isomorphism, and dually for D. We call either of these equivalent subcategories the
invariant part of the adjunction.

The reflexive completion R(A) of a small V-category A is the invariant part of the
conjugacy adjunction

Â
∨ ** A
̂

.
∨op
⊥ii

When R(A) is seen as a full subcategory of Â, it consists of those functors X : Aop → V
such that the unit map ηX : X → X∨∨ is an isomorphism; such functors X are called
reflexive. Dually, R(A) can be seen as the full subcategory of A

̂

consisting of the
reflexive functors A → V .

Now let A be an any V-category, not necessarily small. To define reflexivity of a
functor X on A, we need X∨∨ to be defined, so we ask that X and X∨ are small.

5.1. Definition. A functor X : Aop → V is reflexive if X ∈ Â, X∨ ∈ A

̂

, and the
canonical natural transformation ηX : X → X∨∨ is an isomorphism.

This extends the earlier definition for small A. Although conjugacy for an arbitrary A
does not define an adjunction between Â andA

̂

, it still induces an equivalence between the
full subcategory of Â consisting of the reflexive functors Aop → V and the full subcategory
of A

̂

consisting of the reflexive functors A → V . The reflexive completion R(A) of A
is either of these equivalent categories.

In the case V = Set, we have the concrete description of ηX given after Lemma 4.9.
It implies that X ∈ Â is reflexive if and only if for each a ∈ A, every element of X∨∨(a)
is evaluation at a unique element of X(a).

5.2. Remark. By Remark 4.10, whether a V-valued functor is reflexive does not depend
on whether it is considered as a covariant functor on its domain or a contravariant functor
on the opposite of its domain. It follows that R(Aop) ' R(A)op for all V-categories A.
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5.3. Example. Let A be a V-category. For each a ∈ A,

A(−, a)∨ ∼= A(a,−), A(a,−)∨ ∼= A(−, a),

and the unit map A(−, a) → A(−, a)∨∨ is an isomorphism. Hence representables are
reflexive.

The image of the Yoneda embedding A ↪→ Â therefore lies in R(A), when the latter is

seen as a subcategory of Â. A dual statement holds for A

̂

. There is, then, an unambiguous
Yoneda embeddding

JA : A → R(A)

such that the diagram of full and faithful functors

Â

A
% �

33

� �
JA //

� y

++

R(A)
* 


77

� t

'' A

̂

(10)

commutes.

6. Examples of reflexive completion

We begin with unenriched examples.

6.1. Example. Let 0 denote the empty category. Then [0op,Set] and [0,Set]op are both
the terminal category 1, so R(0) ' 1. In particular, the reflexive completion of a category
need not be equivalent to its Cauchy completion.

6.2. Example. The conjugacy adjunction for the terminal category 1 consists of the
functors Set � Setop with constant value 1, giving R(1) ' 1.

6.3. Example. Let A be a small discrete category with at least two objects. By Exam-
ple 3.1, for Y : A → Set,

Y ∨∨ ∼=


0 if Y ∼= 0

A(a,−) if suppY = {a}
1 otherwise.

Hence the reflexive functors A → Set are those that are initial, terminal or representable.
(Contrast this with Example 6.2, in which the initial functor 1 → Set is not reflexive.)
It follows that R(A) is A with initial and terminal objects adjoined.
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6.4. Example. Now let A be a large discrete category. As observed in Example 4.8, the
conjugate of the small functor 0 : A → Set is the non-small functor 1 : Aop → Set. Hence
neither 0 nor 1 is reflexive. The same argument as in Example 6.3 then shows that the
only reflexive functors on A are the representables. Thus, unlike in the small case, the
reflexive completion of a large discrete category is itself.

6.5. Example. Let G be a group, regarded as a one-object category. If G is trivial then
R(G) ' 1 by Example 6.2. Suppose not.

Let X be a right G-set. In Example 3.2, we showed that

X∨ ∼=

{
G
X/G
` if X is free

∅ otherwise,

and of course a similar result holds for left G-sets. If X is not free then X∨∨ = 1, so the
only non-free reflexive G-set is the terminal G-set 1.

Now suppose that X is free. If X is empty then X∨∨ = 1∨ = ∅ (using the nontriviality
of G in the second equality), so X is reflexive. Assume now that X is nonempty, write
S = X/G, and choose s0 ∈ S. The left G-action on X∨ ∼= GS

` is free, and each orbit
contains exactly one element whose s0-component is the identity element of G, so X∨ has
|G||S\{s0}| orbits. Writing |S| − 1 for |S \ {s0}|, we conclude that X∨ is a free G-set with

|X∨/G| = |G||S|−1.

Repeating the argument in the dual situation then gives

|X∨∨/G| = |G||G||S|−1−1.

Hence if X is reflexive,

|S| = |G||G||S|−1−1.

By elementary arguments, this implies that |S| = 1 (in which case X is representable) or
|G| = |S| = 2. Hence when |G| > 2, the only reflexive right G-sets are ∅, 1 and Gr.

The remaining case is where G is the two-element group and X is the free G-set on
two generators. A direct calculation shows that

Gr +Gr
∼= Gr ×Gr

in [Gop,Set]. Since G is abelian, the same is true for G`. Now using the adjoint property
of conjugates,

X∨ ∼= (Gr +Gr)
∨ ∼= G` ×G`

∼= G` +G`,

X∨∨ ∼= (G` +G`)
∨ ∼= Gr ×Gr

∼= Gr +Gr,

giving X∨∨ ∼= X. We claim that X is reflexive, that is, the unit map ηX : X → X∨∨ is
an isomorphism. One of the triangle identities for the conjugacy adjunction implies that
ηW∨ is split monic for any W : G→ Set. But X ∼= (X∨)∨, so ηX is an injection between
finite sets of the same cardinality, hence bijective, hence an isomorphism.

In summary, the reflexive completion of a group G is as follows:
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� if |G| = 1 then R(G) ∼= G;

� if |G| = 2 thenR(G) is the full subcategory of the category ofG-sets consisting of the
initial G-set, the terminal G-set, the representable G-set Gr, and the four-element
G-set Gr +Gr

∼= Gr ×Gr.

� if |G| > 2 thenR(G) is the full subcategory of the category of right G-sets consisting
of the initial G-set, the terminal G-set, and the representable G-set. It is equivalent
to G with initial and terminal objects adjoined.

6.6. Remark. For a Set-valued functor X, the sequence X,X∨, X∨∨, X∨∨∨, . . . need not
ever repeat itself. For consider functors on the three-element group C3. By Example 6.5,
the conjugate of the free C3-set n×C3 on n elements is 3n−1×C3. Since 3n−1 > n for all
n ≥ 2, no two of the iterated conjugates of 2× C3 are isomorphic.

6.7. Example. Let M be the two-element commutative monoid whose non-identity el-
ement e is idempotent. A covariant or contravariant functor from M to Set amounts to
a set X together with an idempotent endomorphism f . The representable such functor
corresponds to the set M = {id, e} together with the endomorphism with constant value
e.

Given a pair (X, f), write X0 = im f and X1 = X \X0. A routine calculation shows
that ∣∣(X∨∨)

0

∣∣ = 1 and
∣∣(X∨∨)

1

∣∣ = 22|X1|−1 − 1.

So if X is reflexive then |X0| = 1 and |X1| = 22|X1|−1 − 1, and the latter equation implies
that |X1| is 0 or 1. Thus, X is either the representable functor or the terminal functor on
M . Both are indeed reflexive.

The reflexive completion of M is, therefore, the full subcategory of the category of
M -sets consisting of M itself and 1. This is the free category on a split epimorphism, and
is the same as the Cauchy completion of M .

6.8. Example. There is a 7-element monoid whose reflexive completion is large. In
particular, the reflexive completion of a finite category need not even be small. This is
an example of Isbell to which we return in Example 8.7.

6.9. Remark. The Cauchy completion of a category A has a well-known concrete de-
scription: an object is an object a ∈ A together with an idempotent e on a, a map
(a, e) → (a′, e′) is a map f : a → a′ in A such that e′fe = f , composition is as in A,
and the identity on (a, e) is e. It follows that the Cauchy completion of a finite or small
category is finite or small, respectively. Example 6.8 implies that the reflexive completion
can have no very similar description.

6.10. Example. Let A be a poset, regarded as a category. The conjugacy adjunction of
A, when restricted to subterminal functors (Example 3.3), is an adjunction

{downwards closed subsets of A}
↑ // {upwards closed subsets of A}op.
↓
oo
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Here both sets are ordered by inclusion, and ↑S and ↓S are the sets of upper and lower
bounds of a subset S ⊆ A, respectively. The adjointness states that X ⊆ ↓Y ⇐⇒ Y ⊆
↑X.

A reflexive functor Aop → Set amounts to a downwards closed set X ⊆ A such
that X = ↓ ↑X. The reflexive completion R(A) is the set of such subsets X, ordered by
inclusion. This is the Dedekind–MacNeille completion of the poset A (Definition 7.38
of Davey and Priestley [2]). For example, the reflexive completion of (Q,≤) is the extended
real line [−∞,∞].

The Dedekind–MacNeille completion of a poset is always a complete lattice. (And
conversely, any complete lattice is the Dedekind–MacNeille completion of itself.) How-
ever, the reflexive completion of an arbitrary small category is far from complete, as
Theorem 11.6 shows.

6.11. Example. Now let A be a poset, but regarded as a category enriched in 2. By
Example 3.4 and the same argument as in Example 6.10, the reflexive completion of A as
a 2-category is again its Dedekind–MacNeille completion.

6.12. Example. As in Example 3.5, let V = Ab, let R be a ring, and let M be a right
R-module. The double conjugate of M is its double dual

M∨∨ = RMod(ModR(M,Rr), R`),

so the notion of reflexive functor on R coincides with the algebraists’ notion of reflexive
module (as in Section 5.1.7 of McConnell and Robson [19]). Hence the reflexive completion
of a ring, viewed as a one-object Ab-category, is its category of reflexive modules. In
particular, the reflexive completion of a field k is the category of finite-dimensional k-
vector spaces.

The rest of this section concerns the case V = [0,∞] (Example 3.6), summarizing
results from Willerton’s analysis [22] of the reflexive completion of a generalized metric
space A. It follows from Example 3.6 that R(A) is the set of distance-decreasing functions
f : Aop → [0,∞] such that

f(c) = sup
b∈A

inf
a∈A

(
d(c, b) ·−

(
d(a, b) ·− f(a)

))
for all c ∈ A, with metric

d(f, g) = sup
a

(
g(a) ·− f(a)

)
. (11)

The reflexive completion of A consists of the [0,∞]-valued functors equal to their
double conjugate. But when A is symmetric, covariant and contravariant functors on A
can be identified, so we can form the set

T (A) = {distance-decreasing functions f : A→ [0,∞] such that f∨ = f}

of [0,∞]-valued functors equal to their single conjugate. Then T (A), metrized as in
equation (11), is called the tight span of A. Evidently A ⊆ T (A) ⊆ R(A). Both
inclusions can be strict, as the following example shows.
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(0, D)

(D, 0)

T
({0, D})

R({0, D})

Figure 2: The symmetric metric space {0, D} embedded into its tight span T ({0, D}) and
reflexive completion R({0, D}) (Example 6.13).

6.13. Example. Take the symmetric metric space {0, D} consisting of two points dis-
tance D apart (Figure 2). It follows from the description above that R({0, D}) is the set
[0, D]2 with metric

d
(
(t1, t2), (u1, u2)

)
= max{u1 ·− t1, u2 ·− t2}

(Example 3.2.1 of [22]). The Yoneda embedding {0, D} → [0, D]2 is given by 0 7→ (0, D)
and D 7→ (D, 0). The tight span T ({0, D}) is the interval [0, D] with its usual metric,
and embeds in R({0, D}) as shown.

The tight span construction has been discovered independently several times, as re-
counted in the introduction of [22]. That the form given here is equivalent to other forms
of the definition was established by Dress (Section 1 of [5]). The first to discover it was
Isbell [10], who called it the ‘injective envelope’, T (A) being the smallest injective metric
space containing A. But Isbell does not seem to have noticed the connection with Isbell
conjugacy.

The tight span is only defined for symmetric spaces, and is itself symmetric (not quite
trivially). On the other hand, the reflexive completion of a symmetric space need not be
symmetric, as the two-point example shows. Theorem 4.1.1 of [22] states that the tight
span is the symmetric part of the reflexive completion:

6.14. Theorem. [Willerton] Let A be a symmetric metric space. Then the tight span
T (A) is the largest symmetric subspace of R(A) containing A.

Here ‘largest’ is with respect to inclusion. A nontrivial corollary is that R(A) has a
largest symmetric subspace containing A.

Finally, reflexive completion of metric spaces has arisen in fields far from category
theory. Pursuing a project in combinatorial optimization, Hirai and Koichi [8] defined the
‘directed tight span’ of a generalized metric space. As Willerton showed (Theorem 4.2.1
of [22]), it is exactly the reflexive completion.
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7. Dense and adequate functors

Here we gather results on dense and adequate functors that will be used later to char-
acterize the reflexive completion. Some can be found in Isbell’s or Ulmer’s foundational
papers [9, 21] or in Chapter 5 of Kelly [13], while some appear to be new. For the rest
of this work, we restrict to unenriched categories, although much of what we do can be
extended to the enriched setting.

7.1. Definition. A functor F : A → B is dense if its nerve functor NF : B → [Aop,Set]
(Definition 4.6) is full and faithful, and codense if NF : B → [A,Set]op is full and faithful.

A functor is small-dense if dense and representably small, and small-codense if
codense and corepresentably small.

7.2. Remark. It is a curious fact (not needed here) that while F is dense if and only if
NF is full and faithful, F is full and faithful if and only if NF is dense.

7.3. Example. Let F : A → B be a functor with a right adjoint G. It is very well known
that G is full and faithful if and only if the counit of the adjunction is an isomorphism.
Less well known, but already pointed out by Ulmer in 1968 (Theorem 1.13 of [21]), is that
these conditions are also equivalent to F being dense. Thus, any functor F with a full and
faithful right adjoint is dense. Indeed, F is small-dense, since B(F−, b) is representable
for each b ∈ B.

A functor F : A → B is small-dense when NF is full, faithful, and takes values in the
category Â of small functors Aop → Set. Then B embeds fully into Â. When A is small,
every dense functor A → B is small-dense.

7.4. Example. The archetypal dense functor is the Yoneda embedding A ↪→ [Aop,Set],

and the archetypal small-dense functor is the Yoneda embedding A ↪→ Â.

A standard result is that F : A → B is dense if and only if every object of B is
canonically a colimit of objects of the form Fa; that is, for each b ∈ B, the canonical
cocone on the diagram

(F ↓ b) pr−→ A F−→ B

with vertex b is a colimit cocone (Section X.6 of Mac Lane [18]). In terms of coends, this
means that

b ∼=
∫ a

B(Fa, b)× Fa.

That the Yoneda embedding is dense gives the density formula

X ∼=
∫ a

X(a)×A(−, a)

for functors X : Aop → Set.
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7.5. Example. When B is an ordered set (or class) and A ⊆ B with the induced order,
the inclusion A ↪→ B is dense if and only if it is join-dense: every element of B is a join
of elements of A.

7.6. Lemma. Let F : A → B be a small-dense functor. Then for each b ∈ B, there is a
small diagram (ai)i∈I in A such that b ∼= colimi Fai.

Proof. Let b ∈ B. Since F is representably small, we can choose a small diagram (ai) in
A such that B(F−, b) ∼= colimiA(−, ai). Then by density of F and the density formula,

b ∼=
∫ a

B(Fa, b)× Fa ∼=
∫ a,i

A(a, ai)× Fa ∼=
∫ i

Fai.

We will be especially interested in the (co)density of functors that are full and faith-
ful. Up to equivalence, such functors are inclusions of full subcategories, which are called
(co)dense or small-(co)dense subcategories if the inclusion functor has the corre-
sponding property.

We now state some basic lemmas on full, faithful and dense functors, beginning with
one whose proof is immediate from the definitions.

7.7. Lemma. Let F : A → B be a full and faithful functor. Then the composite

A F−→ B NF−→ [Aop,Set]

is canonically isomorphic to the Yoneda embedding.

The next lemma follows from the corollary to Proposition 3.2 in Lambek [15], but we
include the short proof for completeness.

7.8. Lemma. Every full and faithful dense functor preserves all (not just small) limits.

Proof. We use Lemma 7.7. Since NF is full and faithful, it reflects arbitrary limits; but
the Yoneda embedding preserves them, so F does too.

The composite of two full and faithful dense functors need not be dense. Isbell gave
one counterexample (paragraph 1.2 of [9]) and Kelly gave another (Section 5.2 of [13]).
Nevertheless:

7.9. Lemma. Let A F−→ B G−→ C be dense functors, and suppose that G preserves arbi-
trary colimits. Then GF is dense.
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Proof. For c ∈ C, we have canonical isomorphisms

c ∼=
∫ b

C(Gb, c)×Gb (G is dense)

∼=
∫ b

C(Gb, c)×G
(∫ a

B(Fa, b)× Fa
)

(F is dense)

∼=
∫ a,b

C(Gb, c)× B(Fa, b)×GFa (G preserves colimits)

∼=
∫ a

C(GFa, c)×GFa (density formula),

so GF is dense.

7.10. Definition. A functor is adequate if it is full, faithful, dense and codense, and
small-adequate if it is full, faithful, small-dense and small-codense.

7.11. Remark. Isbell’s foundational paper [9] considered adequacy only for full subcat-
egories. Up to equivalence, this amounts to working only with functors that are full and
faithful. For him, fullness and faithfulness were implicit assumptions rather than explicit
hypotheses. He used ‘left/right adequate’ for what is now called dense/codense, and ‘ad-
equate’ for dense and codense. The word ‘dense’ was introduced later by Ulmer [21], who
extended the theory to arbitrary functors.

7.12. Example. Let f : A → B be an order-preserving map between partially ordered
classes. It is full and faithful if and only if it is an order-embedding (that is, reflects the
order relation), and by Example 7.5, it is adequate if and only if it is also both join-dense
and meet-dense. Small-adequacy means that each element of B is a join of some small
family of elements of im f , and similarly for meets.

7.13. Lemma. The classes of adequate and small-adequate functors are each closed under
composition.

Isbell proved an analogue of this result for properly adequate functors (statement 1.6
of [9]), using a different argument.

Proof. Let A F−→ B G−→ C be adequate functors. Then G preserves arbitrary colimits
by the dual of Lemma 7.8, so GF is dense by Lemma 7.9. Dually, GF is codense. So GF
is adequate. If F and G are small-adequate then so is GF , by Lemma 4.7.

7.14. Lemma. For adequate functors A F //B
G //

G′
//C , if GF ∼= G′F then G ∼= G′.

Proof. We prove the stronger result that if F is codense and G and G′ are full, faithful
and dense then GF ∼= G′F ⇒ G ∼= G′. Indeed, under these assumptions, Lemma 7.8
implies that G preserves all limits, so by codensity of F ,

Gb ∼= G

∫
a

[B(b, Fa), Fa] ∼=
∫
a

[B(b, Fa), GFa]
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naturally in b ∈ B (where [−,−] denotes a power). The same holds for G′, so if GF ∼= G′F
then G ∼= G′.

For full subcategories A ⊆ B ⊆ C, if A is dense in C then both intermediate inclusions
are dense. More generally:

7.15. Lemma. Let A F−→ B G−→ C be functors, with G full and faithful.

i. If GF is dense then so are F and G.

ii. If GF is small-dense then so is F .

That G is dense was asserted without proof in statement 1.1 of Isbell [9].

Proof. For (i), to prove that F is dense, note that the composite functor

B G−→ C NGF−→ [Aop,Set]
b 7−→ Gb 7−→ C(GF−, Gb) ∼= B(F−, b)

is isomorphic to NF . But both G and NGF are full and faithful, so NF is too.
To prove that G is dense, let c ∈ C. Then

c ∼=
∫ a

C(GFa, c)×GFa (GF is dense)

∼=
∫ a,b

C(Gb, c)× B(Fa, b)×GFa (density formula)

∼=
∫ b

C(Gb, c)×
∫ a

C(GFa,Gb)×GFa (G is full and faithful)

∼=
∫ b

C(Gb, c)×Gb (GF is dense)

naturally in c, as required.
For (ii), suppose that GF is small-dense. We must prove that F is representably small.

Let b ∈ B. Since G is full and faithful, B(F−, b) ∼= C(GF−, Gb), which is small since GF
is small-dense.

7.16. Proposition. For every category A, the Yoneda embedding JA : A → R(A) is
small-adequate.

Proof. We refer to diagram (10) (p. 319). Certainly JA is full and faithful. Lemma 7.15(ii)

applied to A JA−→ R(A) ↪→ Â implies that JA is small-dense. By duality, it is also small-
codense.
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1

4

3

2

5
∞ (3,∞)

P Q

C = P ×Q

Figure 3: The ordered classes of Example 7.19, with A ⊆ C shown in blue.

Lemma 7.15 and its dual immediately imply:

7.17. Proposition. Let A F−→ B G−→ C be functors, with G full and faithful. If GF is
small-adequate then G is adequate and F is small-adequate.

Propositions 7.16 and 7.17 have the following corollary. It is implicit in Section 1 of
Isbell [9], modulo the difference in size conditions (Remark 4.5).

7.18. Corollary. [Isbell] Let A be a category. For any full subcategory B of R(A)
containing the representables, the inclusion A ↪→ B is small-adequate.

Proposition 7.17 does not conclude that G must be small -adequate. Indeed, it need
not be. This apparently technical point becomes important later, so we give both a
counterexample and a sufficient condition for G to be small-adequate.

7.19. Example. We exhibit ordered classes A ⊆ B ⊆ C such that A ↪→ C is small-
adequate (hence A ↪→ B is too, by Proposition 7.17) but B ↪→ C is not.

Let P be the 5-element poset shown in Figure 3, and let Q be the ordered class of
ordinals with a greatest element ∞ adjoined. Put

C = P ×Q, B = C \ {(3,∞)}, A = C \ ({3} ×Q),

with the product order on C and the induced orders on A,B ⊆ C. We will prove that
A ↪→ C is small-adequate but B ↪→ C is not representably small, and, therefore, not
small-adequate.

First we show that A ↪→ C is dense, that is, A is join-dense in C (Example 7.5). Let
c ∈ C. If c ∈ A then c is trivially a join of elements of A. Otherwise, c = (3, q) for some
q ∈ Q, and then c = (1, q) ∨ (2, q) with (1, q), (2, q) ∈ A.

Second, A ↪→ C is codense by the same argument, because it used nothing about the
ordered class Q and because P ∼= P op.

Third, we show that A ↪→ C is representably small; that is, for each c ∈ C, the
subterminal functor Aop → Set with support A∩↓ c is small. Let c ∈ C. By Example 4.4,
we must find a small K ⊆ A∩ ↓ c such that for all a ∈ A, the poset K ∩ ↑ a is connected.
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If c ∈ A, we can take K = {a}. Otherwise, c = (3, q) for some q ∈ Q. Put K =
{(1, q), (2, q)}. Given a ∈ A∩↓ c, we may suppose without loss of generality that a = (1, q′)
for some q′ ≤ q, and then K ∩ ↑ a is the connected poset {(1, q)}.

Fourth, A ↪→ C is corepresentably small by the same argument, again because it used
nothing about Q and because P ∼= P op.

Finally, we show that B ↪→ C is not representably small. In fact, we show that the
subterminal functor Bop → Set with support B ∩ ↓(3,∞) is not small. Suppose for a
contradiction that it is small. Then we can choose a small class K ⊆ B ∩ ↓(3,∞) such
that for all b ∈ B, the poset K ∩ ↑ b is connected. In particular, every element of B is
less than or equal to some element of K. Now for each ordinal q we have (3, q) ∈ B, so
(3, q) ≤ k for some k ∈ K, and then k = (3, q′) for some ordinal q′ with q ≤ q′. So if we
put Q′ = {ordinals q′ : (3, q′) ∈ K} then Q′ is small (since K is) and every ordinal is less
than or equal to some element of Q′. But there is no set of ordinals with this property, a
contradiction.

The following companion to Proposition 7.17 uses the notion of gentle category from
Remark 4.11.

7.20. Lemma. Let A F−→ B G−→ C be functors, with G full and faithful. Suppose that B
is gentle. If GF is small-adequate then so is G.

Proof. If GF is adequate then G is adequate by Proposition 7.17, so it only remains to
prove that G is representably and corepresentably small. By duality, it is enough to show
that G is representably small.

Let c ∈ C. Since GF is small-codense, the dual of Lemma 7.6 implies that c =
limiGFai for some small diagram (ai) in A. Then

C(G−, c) ∼= lim
i
C(G−, GFai) ∼= lim

i
B(−, Fai)

as G is full and faithful. Hence C(G−, c) is a small limit in [Bop,Set] of representables.

Since B is gentle, the subcategory B̂ of [Bop,Set] is complete. Limits in B̂ are computed
pointwise because it contains the representables (as noted by Day and Lack in Section 3

of [3]). Hence B̂ is closed under small limits in [Bop,Set], and in particular, C(G−, c) is
small.

8. Characterization of the reflexive completion

Here we prove a theorem characterizing the reflexive completion of a category uniquely
up to equivalence. It is a refinement and variant of Theorem 1.8 of Isbell [9]. Roughly
put, the result is that the reflexive completion of a category A is the largest category into
which A embeds as a small-adequate subcategory. This is formally similar to the fact
that the completion of a metric space A is the largest metric space in which A is dense.
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8.1. Lemma. Let F : A → B be a full and faithful small-dense functor. Then B(F−, b)∨ ∼=
B(b, F−) naturally in b ∈ B; that is, the diagram

Â

∨

��

B
NF

55

NF ))
[A,Set]op

commutes up to a canonical natural isomorphism.

The smallness hypothesis guarantees that B(F−, b)∨ is defined.

Proof. By the hypotheses on F ,

B(F−, b)∨(a) ∼= Â(B(F−, b),A(−, a))

∼= Â(B(F−, b),B(F−, Fa))
∼= B(b, Fa)

naturally in a ∈ A and b ∈ B.

For a representably small functor F : A → B, the nerve functor NF has image in Â.
When does it have image in R(A)? The next result provides an answer (given without
proof as statement 1.5 of [9]).

8.2. Proposition. [Isbell] Let F : A → B be a full and faithful small-dense functor.
Then B(F−, b) is reflexive for each b ∈ B if and only if F is small-adequate.

Proof. Suppose that B(F−, b) is reflexive for each b ∈ B. Then we have functors

A F−→ B NF−→ R(A)

whose composite is the Yoneda embedding JA : A → R(A) (Lemma 7.7). By Proposi-
tion 7.16, JA is small-adequate. Hence by Proposition 7.17, F is small-adequate.

Conversely, suppose that F is small-adequate. Let b ∈ B. Then by Lemma 8.1 and its
dual, there are canonical isomorphisms

B(F−, b)∨∨ ∼= B(b, F−)∨ ∼= B(F−, b),

and B(F−, b) is reflexive.



ISBELL CONJUGACY AND THE REFLEXIVE COMPLETION 331

8.3. Corollary. Let F : A → B be a small-adequate functor. Then there is a functor
N(F ) : B → R(A), unique up to isomorphism, such that the diagram

Â

B

NF

33

N(F ) //

NF

++

R(A)
* 


77

� t

'' A

̂

commutes up to isomorphism. Moreover, N(F ) is full and faithful.

Precomposing this whole diagram with the functor F : A → B gives the diagram (10)
of Yoneda embeddings, by Lemma 7.7.

The main theorem of this section is as follows.

8.4. Theorem. Let F : A → B be a small-adequate functor. Then the functor N(F ) : B →
R(A) is adequate, and the triangle

B N(F ) //R(A)

A
F

__

- 
JA

<<

commutes up to canonical isomorphism. Moreover, up to isomorphism, N(F ) is the unique
full and faithful functor B → R(A) such that the triangle commutes.

This result is mostly due to Isbell (Theorem 1.8 of [9]). He proved a version for
properly adequate functors (Remark 4.5), but without the conclusion that the functor
B → R(A) is adequate or unique.

Proof. The triangle commutes by Lemma 7.7, N(F ) is full and faithful by Corollary 8.3,
and then N(F ) is adequate by Propositions 7.16 and 7.17. For uniqueness, the same
two propositions prove the adequacy of any full and faithful functor making the triangle
commute, and the result follows from Lemma 7.14.

Theorem 8.4 characterizes the reflexive completion uniquely up to equivalence. Indeed,
given a category A, form the 2-category whose objects are small-adequate functors out
of A and whose maps are adequate functors between their codomains making the evident
triangle commute. Theorem 8.4 states that its terminal object (in a 2-categorical sense)
is the Yoneda embedding JA : A ↪→ R(A).

8.5. Remark. Corollary 7.18 and Theorem 8.4 together imply that the categories con-
taining A as a small-adequate subcategory are, up to equivalence, precisely the full sub-
categories of R(A) containing A. When B is a full subcategory of R(A) containing A,
writing F : A ↪→ B for the inclusion, the uniqueness part of Theorem 8.4 implies that
N(F ) is the inclusion B ↪→ R(A).
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8.6. Example. Let A be a poset, and recall Examples 6.10 and 7.12. Loosely, Theo-
rem 8.4 for A states that its Dedekind–MacNeille completion is the largest ordered class
containing A and with the property that every element can be expressed as both a join and
a meet of elements of A. For example, any poset containing Q as a join- and meet-dense
full subposet embeds into [−∞,∞].

8.7. Example. The following example is due to Isbell (Example 1 of [12]). Let B be
the category of sets and partial bijections, and let A be the full subcategory consisting
of a single two-element set. Thus, A corresponds to a 7-element monoid. Isbell showed
that the inclusion A ↪→ B is adequate. It is small-adequate since A is small. Hence by
Theorem 8.4, there is an adequate functor B → R(A). In particular, there is a full and
faithful functor from a large category intoR(A), soR(A) is large (in the strong sense that
it is not equivalent to any small category). This proves the statement in Example 6.8:
the reflexive completion of a finite category can be large.

Theorem 8.4 shows that when F is small-adequate, N(F ) is adequate. But N(F ) need
not be small-adequate, as the following lemma and example show.

8.8. Lemma. Let F : A → B be a small-adequate functor such that N(F ) is small-
adequate. Then for every full and faithful functor G : B → C such that GF is small-
adequate, G is also small-adequate.

For a general small-adequate F , without the hypothesis that N(F ) is small-adequate,
Proposition 7.17 implies that any such functorG is adequate. So the force of the conclusion
is that G is small -adequate.

Proof. The proof will use the functors in the following diagram.

C N(GF ) //R(A)

B
G

^^
N(F )

44

AF

__ JA

??

Let G be a full and faithful functor such that GF is small-adequate. Then there is an
induced adequate functor N(GF ) as shown. Also, since GF is adequate, Proposition 7.17
implies that G is adequate. Hence by Lemma 7.13, N(GF ) ◦ G is adequate. Now by
Theorem 8.4, N(F ) is the unique adequate functor satisfying N(F ) ◦ F = JA. Since also
N(GF )◦G◦F = JA by definition of N(GF ), we have N(GF )◦G = N(F ). The hypothesis
that N(F ) is small-adequate and Proposition 7.17 then imply that G is small-adequate.

8.9. Example. Let F be the inclusion A ↪→ B of Example 7.19. As shown there, the
conclusion of Lemma 8.8 is false for F . Hence N(F ) is not small-adequate.

So, for full subcategories A ⊆ B ⊆ R(A), it is true that A ↪→ B is small-adequate and
B ↪→ R(A) is adequate, but B ↪→ R(A) need not be small -adequate.
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9. Functoriality of the reflexive completion

The reflexive completion differs from many other completions in that it is only functorial
in a very restricted sense. First, there is no way to make it act on all functors:

9.1. Proposition. There is no covariant or contravariant pseudofunctor Q from CAT
to CAT such that Q(A) ' R(A) for all A ∈ CAT.

Proof. Suppose that there is. Write C2 for the two-element group, viewed as a one-
object category. Then C2 is a retract of C2 × C2, so Q(C2) is a retract (up to natural
isomorphism) of Q(C2 × C2). Hence Q(C2) has at most as many isomorphism classes of
objects as Q(C2 × C2). But by Example 6.5, Q(C2) has four isomorphism classes and
Q(C2 × C2) has three, a contradiction.

Second, reflexive completion is functorial in the following sense. For a small-adequate
functor F : A → B, the composite JB ◦ F is small-adequate by Lemma 7.13, giving a
functor

R(F ) = N(JB ◦ F ) : R(B)→ R(A).

By Theorem 8.4, R(F ) is adequate, and up to isomorphism, it is the unique full and
faithful functor such that the diagram

R(A) R(B)
R(F )oo

A
F

//
?�

JA

OO

B
?�

JB

OO
(12)

commutes. The uniqueness implies that R defines a pseudofunctor

R : (categories and small-adequate functors)op → (categories and adequate functors).

When the reflexive completion of a category is regarded as a subcategory of the Set-
valued functors on it, R(F ) is simply composition with F :

9.2. Lemma. Let F : A → B be a small-adequate functor. Then the squares

[Aop,Set] [Bop,Set]
−◦Foo

R(A)
?�

OO

R(B)
?�

OO

R(F )
oo

[A,Set]op [B,Set]op
−◦Foo

R(A)
?�

OO

R(B)
?�

OO

R(F )
oo

commute up to canonical isomorphism.
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Proof. Identify R(A) with the category of reflexive functors Aop → Set, and similarly
for B. For Z ∈ R(B),

(R(F ))(Z) = (N(JB ◦ F ))(Z) = R(B)
(
(JB ◦ F )(−), Z

)
,

which at a ∈ A gives(
(R(F ))(Z)

)
(a) = [Bop,Set]

(
B(−, Fa), Z

) ∼= Z(Fa).

Hence R(F ) ∼= − ◦ F , proving the commutativity of the first square. The second follows
by duality.

For example, when F is the inclusion of a small-adequate subcategory and reflexive
completions are viewed as categories of functors, R(F ) is restriction.

The pseudofunctor R applied to a small-adequate functor F produces a functor R(F )
that is adequate but not always small-adequate:

9.3. Theorem. Let F : A → B be a small-adequate functor. The following are equivalent:

i. N(F ) is small-adequate;

ii. R(F ) is small-adequate;

iii. R(F ) is an equivalence.

If these conditions hold then NN(F ) is defined and pseudo-inverse to R(F ).

These equivalent conditions do not always hold, by Example 8.9.

Proof. First, since R(F ) ◦ JB is an adequate functor satisfying R(F ) ◦ JB ◦ F ∼= JA
(diagram (12)), Theorem 8.4 gives

R(F ) ◦ JB ∼= N(F ), (13)

Trivially, (iii) implies (ii). Now assuming (ii), equation (13) gives (i), since the com-
posite of small-adequate functors is small-adequate.

Finally, assume (i). Then NN(F ) is defined, and we show that it is pseudo-inverse to
R(F ), proving (iii) and the final assertion. Consider the diagram

R(A)
NN(F )

22R(B)
R(F )

rr

A
?�

JA

OO

F
// B.
?�

JB

OO

N(F )

cc

The bottom-left triangle and the top-right triangle involving NN(F ) commute by Theo-
rem 8.4, the top-right triangle involving R(F ) commutes by equation (13), and the outer
square commutes by definition of R(F ). Simple diagram chases then show that

R(F ) ◦NN(F ) ◦ JA ∼= JA, NN(F ) ◦ R(F ) ◦ JB ∼= JB.

Hence by Lemma 7.14, R(F ) and NN(F ) are mutually pseudo-inverse.
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It follows that reflexive completion is idempotent:

9.4. Corollary. [Isbell] For every category A, the functors

R(A)

JR(A)--
RR(A)

R(JA)
ll

define an equivalence R(A) ' RR(A).

A version of this result appeared as part of Theorem 1.8 of Isbell [9], with a partial
proof.

Proof. Take F = JA : A → R(A) in Theorem 9.3. We have N(JA) = 1R(A), which
is certainly small-adequate, so R(JA) and NN(JA) are pseudo-inverse. But NN(JA) =
N(1R(A)) = JR(A).

9.5. Corollary. The following conditions on a category A are equivalent:

i. JA : A ↪→ R(A) is an equivalence;

ii. every reflexive functor Aop → Set is representable;

iii. every reflexive functor A → Set is representable;

iv. A ' R(B) for some category B.

Proof. JA is always full and faithful, so it is an equivalence just when it is essentially
surjective on objects. Hence (i)⇐⇒ (ii)⇐⇒ (iii) by diagram (10). That (iv) is equivalent
to (i) follows from Corollary 9.4.

A category satisfying the equivalent conditions of Corollary 9.5 is reflexively com-
plete. It is a self-dual condition: A is reflexively complete if and only if Aop is.

In the introduction to Section 8, we compared reflexive completion to metric comple-
tion, drawing an analogy between Theorem 8.4 and the characterization of the completion
of a metric space A as the largest metric space in which A is dense. The completion of a
metric space A can also be characterized as the smallest complete metric space containing
A. However, the reflexive analogue of that characterization is false:

9.6. Example. Let F : A → B be a small-adequate functor such that N(F ) is not
small-adequate, as in Example 8.9. Then by Theorem 9.3, the full and faithful functor
R(F ) : R(B)→ R(A) is not an equivalence. Its image is a full subcategory of R(A) that
is reflexively complete and contains A, but is strictly smaller than R(A).

Such examples can be excluded by restricting to categories that are gentle. There, the
pseudofunctor R acts somewhat trivially, in the sense of part (i) of Corollary 9.8 below.

9.7. Proposition. Let F : A → B be a small-adequate functor. If B is gentle then N(F )
is small-adequate.

Proof. Apply Lemma 7.20 with G = N(F ), recalling that N(F )◦F is the small-adequate
functor JA.
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9.8. Corollary. Let B be a gentle category. Then:

i. for every category A and small-adequate functor F : A → B, the functorR(F ) : R(B)→
R(A) is an equivalence;

ii. R(A) ' R(B) for every small-adequate subcategory A ⊆ B.

Proof. Part (i) follows from Proposition 9.7 and Theorem 9.3, and part (ii) is then
immediate.

For example, every small-adequate subcategory of a complete and cocomplete category
B has the same reflexive completion as B, which by Proposition 11.11 below is B itself.

10. Reflexive completion and Cauchy completion

Some formal resemblances are apparent between the reflexive and Cauchy completions.
Both are idempotent completions; both commute with the operation of taking opposites;
and to the analogy between reflexive and metric completion mentioned in the introduction
to Section 8, one can add the fact that metric completion is Cauchy completion in the
[0,∞]-enriched setting. On the other hand, the reflexive and Cauchy completions are
different, as even the example of the empty category shows (Example 6.1). In this section,
we describe the relationship between them.

10.1. Proposition. Let A be a category.

i. In [Aop,Set], the class of reflexive functors is closed under small absolute colimits.

ii. R(A) is Cauchy complete.

iii. A ⊆ R(A), when the Cauchy completion A and reflexive completion R(A) are
viewed as subcategories of [Aop,Set].

iv. R(A) ' R(A).

Proof. For (i), let X = colimiXi be a small absolute colimit of reflexive functors Xi in
[Aop,Set]. Each Xi is small, so X is small, and X is the absolute colimit of the Xi in

Â. Since ∨ : Â → [A,Set]op preserves this colimit, X∨ ∼= colimiX
∨
i in [A,Set]op, again

an absolute colimit. Since each Xi is reflexive, each X∨i is small. Now A

̂

⊆ [A,Set]op is
complete, hence Cauchy complete, hence closed under small absolute colimits in [A,Set]op.

So X∨ is small and is the absolute colimit of the X∨i in A

̂

. Since ∨ : A

̂

→ [Aop,Set]
preserves this colimit, X∨∨ ∼= colimiX

∨∨
i . Since each Xi is reflexive, so is X.

This proves (i). Colimits in R(A) ⊆ [Aop,Set] are computed pointwise, so R(A) has
absolute colimits, proving (ii). And A is the closure of A ⊆ [Aop,Set] under absolute
colimits, giving (iii).

For (iv), Corollary 7.18 and (iii) imply that the inclusion F : A ↪→ A is small-adequate.
We will prove that the induced adequate functor N(F ) : A → R(A) is representably
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small. It will follow by duality that N(F ) is small-adequate, and so by Theorem 9.3 that
R(F ) : R(A)→ R(A) is an equivalence.

First recall that by the 2-universal property of Cauchy completion, restriction along
F is an equivalence

[Aop
,Set]

'−→ [Aop,Set]. (14)

Its pseudo-inverse is left Kan extension along F , and left Kan extension along any functor
preserves smallness, so every Z : Aop → Set such that Z|Aop is small is itself small.

To prove that N(F ) : A → R(A) is representably small, we regard A and R(A)
as subcategories of [Aop,Set] and recall that N(F ) is then the inclusion A ↪→ R(A)
(Remark 8.5). For each X ∈ R(A), the Yoneda lemma gives

R(A)(−, X)|Aop ∼= X,

so R(A)(−, X)|Aop is small, so R(A)(−, X)|Aop is small, as required.

10.2. Remark. There is another, more elementary, proof of (iv). One shows that the

equivalence (14) restricts to an equivalence Â '−→ Â, and dually. Then one shows that
the conjugacy operations on A and A commute with these equivalences. It follows that
the equivalence (14) also restricts to an equivalence R(A)

'−→ R(A).

Proposition 10.1(iv) implies:

10.3. Corollary. Morita equivalent categories have equivalent reflexive completions.

Hence the category R(A) is determined by the category [Aop,Set], without knowledge
of A itself.

Conjugacy (as opposed to reflexivity) also plays a role in the theory of Cauchy com-
pletion. For vector spaces X and Z, there is a canonical linear map

X∨ ⊗ Z → Vect(X,Z)
ξ ⊗ z 7→ ξ(−) · z, (15)

where X∨ is the linear dual of X. Analogously, for a category A and X,Z ∈ Â, there is
a canonical map of sets

κX,Z : X∨ � Z → Â(X,Z),

to be defined. Here

X∨ � Z =

∫ a

X∨(a)× Z(a),

and the coend exists since Z is small. The map κX,Z can be defined concretely by speci-
fying a natural family of functions

X∨(a)× Z(a)→ [X(b), Z(b)]
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(a, b ∈ A), which are taken to be

(ξ, z) 7→
(
x 7→

(
Z(ξb(x))

)
(z)
)
.

Equivalently, X∨ � Z is the composite profunctor

1 �Z // A �X∨ // 1,

and the map κX,Z corresponds under the adjunctions (6) to

X �X∨ � Z εX�Z−−−→ HomA � Z ∼= Z,

where εX : X �X∨ → HomA is the natural transformation of (7).

10.4. Proposition. Let A be a small category. The following conditions on a functor
X : Aop → Set are equivalent:

i. X ∈ A, when A is regarded as a subcategory of Â;

ii. Â(X,−) : Â → Set preserves small colimits;

iii. X : 1 +−→ A has a right adjoint in the bicategory Prof ;

iv. X : 1 +−→ A has right adjoint X∨ in Prof , with counit εX ;

v. κX,Z : X∨ � Z → Â(X,Z) is a bijection for all Z ∈ Â.

Proof. The equivalence of (i)–(iii) is standard, and (iv)⇒(iii) is trivial.
To prove (iii)⇒(iv), suppose that X has a right adjoint Y in Prof , with counit β. As

in any bicategory, this implies that β exhibits Y as the right Kan lift of HomA through X.
(Here we are using a result more often given in the dual form, involving Kan extensions.
See, for instance, Theorem X.7.2 of Mac Lane [18], which is stated for CAT but the proof
is valid in any bicategory.) But as shown at the end of Section 2, εX exhibits X∨ as the
right Kan lift of HomA through X. Hence (X∨, εX) ∼= (Y, β) and (iv) follows.

Now assume (v). The maps κX,Z are natural in Z ∈ Â, so

(X∨ �−) ∼= Â(X,−) : Â → Set.

But X∨ �− preserves small colimits by the adjointness relations (6), giving (ii).
Finally, assuming (ii), we prove (v). When Z is representable, the function

κX,Z : X∨ � Z → Â(X,Z)

is bijective. But every Z ∈ Â is a small colimit of representables, and both X∨ �− and
Â(X,−) preserve small colimits, so κX,Z is bijective for all Z.
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This result can be generalized to enriched categories. When A is a one-object Ab-
category corresponding to a field, A is the category of finite-dimensional vector spaces,
the maps κX,Z are as defined in equation (15), and we recover the following fact: a vector
space X is finite-dimensional if and only if κX,Z is an isomorphism for all vector spaces
Z.

Further results on Isbell conjugacy and Cauchy completion can be found in Sections 6
and 7 of Kelly and Schmitt [14].

11. Limits in reflexive completions

A partially ordered set is complete if and only if it is reflexively complete (Example 6.10).
In one direction, we show that, more generally, every complete or cocomplete category is
reflexively complete (Proposition 11.11). But the converse is another matter entirely: in
general, reflexively complete categories have very few limits. We identify exactly which
ones.

11.1. Lemma. Let A be a category.

i. The inclusion JA : A ↪→ R(A) preserves and reflects both limits and colimits.

ii. The inclusion R(A) ↪→ [Aop,Set] preserves limits and reflects both limits and col-
imits.

The inclusion R(A) ↪→ [Aop,Set] does not preserve colimits, since JA : A ↪→ R(A)
preserves colimits but the Yoneda embedding A ↪→ [Aop,Set] does not.

Proof. The statements on reflection are immediate, since both functors are full and
faithful.

For (i), the embedding JA : A ↪→ R(A) is adequate by Proposition 7.16, so preserves
limits and colimits by Lemma 7.8 and its dual.

For (ii), the composite of R(A) ↪→ [Aop,Set] with JA : A ↪→ R(A) is the Yoneda
embedding, which is dense, so R(A) ↪→ [Aop,Set] is dense by Lemma 7.15. Since it is
also full and faithful, it preserves limits by Lemma 7.8.

We have already shown that reflexively complete categories are Cauchy complete, that
is, have absolute limits and colimits (Proposition 10.1(ii)). The next few results show that
the reflexive completion of a small category also has initial and terminal objects, but that
the (co)limits just mentioned are the only ones that generally exist.

For a small category A and b ∈ A, write Cone(id, b) for the set of cones from the
identity to b (natural transformations from idA to the constant endofunctor b). This
defines a functor Cone(id,−) : A → Set.

11.2. Lemma. Let A be a small category. Then Cone(id,−)∨ is the terminal functor
Aop → Set.
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Proof. Fixing a ∈ A, we must show that there is exactly one natural transformation
α : Cone(id,−)→ A(a,−). There is at least one, since we can define αb(p) = pa for each
b ∈ A and p ∈ Cone(id, b).

To prove uniqueness, let β : Cone(id,−) → A(a,−). Let b ∈ B and p ∈ Cone(id, b).
We must prove that βb(p) = pa.

Since p is a cone, pb ◦ pc = pc for all c ∈ A. So we have an equality of cones pb ◦ p = p,
and then naturality of β gives pb ◦ βb(p) = βb(p). On the other hand, pb ◦ βb(p) = pa since
p is a cone. Hence βb(p) = pa, as required.

11.3. Proposition. The reflexive completion of a small category has initial and terminal
objects.

Proof. Let A be a small category. Write 1 for the terminal functor Aop → Set. Then
1∨ ∼= Cone(id,−), so 1∨∨ ∼= 1 by Lemma 11.2. Hence 1 is reflexive. It follows that 1 is a
terminal object of R(A) ⊆ [Aop,Set]. By duality (Remark 5.2), R(A) also has an initial
object.

11.4. Remark. When R(A) is viewed as a subcategory of [Aop,Set], its initial object
is not in general the initial (empty) functor Aop → Set. The case A = 1 already shows
this (Example 6.2).

Proposition 11.3 is false for large categories. The proof fails because the terminal
functor need not be small. Any large discrete category A is a counterexample to the
statement, since then R(A) ' A (Example 6.4).

To show that reflexive completions have no other (co)limits in general, we use the
following lemma. A category I is an absolute limit shape if all I-limits are absolute.

11.5. Lemma. A small category is an absolute limit shape if and only if it admits a cone
on the identity.

This result is at least implicit in the literature on Cauchy completeness, but since we
have been unable to find it stated explicitly, we include a proof.

Proof. Let I be a small category admitting a cone(
k

ui−→ i
)
i∈I

on the identity. Take functors I D−→ A F−→ B and a limit cone(
L

pi−→ Di
)
i∈I (16)

on D. The cone (Dk
Dui−→ Di) induces a map Dk

f−→ L in A. Then f ◦ pk = 1L. To show

that (FL
Fpi−→ FDi) is a limit cone on FD, let(

B
ri−→ FDi

)
i∈I
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be any other cone on FD. We have a map B
rk−→ FDk

Ff−→ FL, and it is routine to
check that this is the unique map of cones from (ri) to (Fpi). Hence the limit cone (16)
is absolute.

We sketch the proof of the converse, which will not be needed here. Suppose that I-
limits are absolute. The limit of the Yoneda embedding I ↪→ Î is Cone(−, idI). By abso-

luteness, this limit is preserved by colimI : Î → Set. It follows that colimI(Cone(−, idI)) =
1, so there exists a cone on idI .

11.6. Theorem. Let I be a small category. The following are equivalent:

i. I-limits exist in the reflexive completion of every small category;

ii. I-limits exist in every Cauchy complete category with a terminal object;

iii. I is empty or an absolute limit shape.

By Remark 5.2, dual results hold for colimits.

Proof. Every Cauchy complete category has small absolute limits, so (iii)⇒(ii). Ev-
ery reflexive completion of a small category is Cauchy complete with a terminal object
(Propositions 10.1(ii) and 11.3), so (ii)⇒(i). It remains to prove (i)⇒(iii), which we do
by contradiction.

Assume (i), and that I is neither empty nor an absolute limit shape. By Lemma 11.5,
I admits no cone on the identity.

Let J be the category obtained from I by adjoining a new object z and maps
p0i , p

1
i : z → i for each i ∈ I, subject to u ◦ pεi = pεj for each map i

u−→ j in I and
ε ∈ {0, 1}. By assumption, the composite

I ↪→ J ↪→ R(J )

has a limit, L. Since the inclusion R(J ) ↪→ [J op,Set] preserves limits (Lemma 11.1), L
is the limit of the composite

I ↪→ J ↪→ [J op,Set],

and is reflexive. Now for i ∈ I,

L(i) = lim
i′∈I
J (i, i′) = Cone(i, idI) = ∅,

and
L(z) = lim

i′∈I
J (z, i′) ∼= {0, 1}π0I ,

where π0I is the set of connected-components of I. Write S = L(z). Since I is nonempty,
|S| ≥ 2. Then

L ∼= S × J (−, z),
so

L∨ ∼= J (z,−)S.



342 TOM AVERY AND TOM LEINSTER

Since L is reflexive, the unit map ηL,z : L(z)→ L∨∨(z) is surjective. That is, every natural
transformation

α : J (z,−)S → J (z,−) (17)

is the s-projection for some s ∈ S.
We will derive a contradiction by constructing a transformation (17) not of this form.

For i ∈ I, let αi be the function

αi : J (z, i)S → J (z, i)(
pεsi
)
s∈S 7→ pmins εs

i ,

and let αz be the unique function J (z, z)S → J (z, z). It is routine to check that α defines
a natural transformation (17). Hence α is t-projection for some t ∈ S.

Choose some i ∈ I, as we may since I is nonempty. Writing δ for the Kronecker delta
and recalling that |S| ≥ 2,

αi
((
pδsti
)
s∈S

)
= pmins δst

i = p0i .

But the t-projection of
(
pδsti
)
s∈S is pδtti = p1i , a contradiction.

11.7. Remark. Theorem 11.6 might suggest the idea that reflexive completion is Cauchy
completion followed by the adjoining of initial and terminal objects, and there are exam-
ples in Section 6 where this is indeed the case. But the group of order 2 (Example 6.5)
shows that this is false in general.

Theorem 11.6 concerns limits in reflexive completions of small categories. Every re-
flexively complete category is the reflexive completion of some category (Corollary 9.5),
but not always of a small category. For example, any large discrete category is reflex-
ively complete (Example 6.4), but does not have a terminal object and so cannot be
the reflexive completion of a small category. The following corollary is the analogue of
Theorem 11.6 for the larger class of reflexively complete categories.

11.8. Corollary. Let I be a small category. The following are equivalent:

i. I-limits exist in every reflexively complete category;

ii. I-limits exist in every Cauchy complete category;

iii. I is an absolute limit shape.

Proof. Certainly (iii)⇒(ii), and (ii)⇒(i) because reflexively complete categories are
Cauchy complete. Assuming (i), I is empty or an absolute limit shape by Theorem 11.6.
But any large discrete category is a reflexively complete category with no terminal object,
so I is not empty, proving (iii).
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Every Set-valued functor on a small category can be expressed as a small colimit of
representables. Not every such functor can be expressed as a small limit of representables,
since then it would preserve small limits.

11.9. Lemma. Let A be a category. A functor Aop → Set is a small limit of representa-
bles if and only if it is the conjugate of some small functor A → Set.

Proof. Let X : Aop → Set. If X ∼= limiA(−, ai) for some small diagram (ai) in A then
X is the conjugate of the small functor colimiA(ai,−). Conversely, every small functor
A → Set can be expressed as a small colimit of representables, and its conjugate is the
corresponding small limit of representables.

11.10. Proposition. Every reflexive Set-valued functor preserves small limits.

Proof. By Lemma 11.9, every reflexive functor X is a small limit of representables. But
representables preserve small limits, so X does too.

A reflexive functor need not preserve colimits. For example, the unique reflexive
functor 1→ Set is the terminal functor, which does not preserve initial objects.

Moreover, although a reflexive functor A → Set preserves all limits that exist in A,
it need not be flat. Indeed, many of the examples in Section 6 are of categories A where
the initial functor 0 : A → Set is reflexive; but 0 is not flat.

11.11. Proposition. Every complete or cocomplete category is reflexively complete.

Proof. Let A be a complete category. By Lemma 11.9, every reflexive functor X : Aop →
Set is a small limit of representables. But A is complete, so X is representable. This
proves that every complete category if reflexively complete. Since reflexive completeness
is a self-dual condition, the dual result follows.

An alternative proof can be given, based on the last paragraph of Remark 4.11.

12. The Isbell envelope

This short section describes the relationship between two constructions due to Isbell. As
well as introducing the reflexive completion of a category A in 1960 [9], he also defined
what is now called the Isbell envelope I(A) in 1966 (naming it the ‘couple category’: [11],
p. 622). See also Garner [7] for a thorough modern treatment of the Isbell envelope.

We begin with an arbitrary adjunction

C
F

⊥
** D,

G

ii
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with unit η and counit ε. We already defined the invariant part Inv(F,G) (Section 5),
which comes with full and faithful inclusion functors

Inv(F,G) //

��

C

D

The envelope Env(F,G) of the adjunction is the category of quadruples

(c ∈ C, d ∈ D, f : c→ Gd, g : Fc→ d)

such that f and g are each other’s transposes. A map (c, d, f, g) → (c′, d′, f ′, g′) in
Env(F,G) is a pair of maps

(p : c→ c′, q : d→ d′)

such that (Gq) ◦ f = f ′ ◦ p, or equivalently, q ◦ g = g′ ◦ (Fp). There are canonical functors

C

��
D // Env(F,G)

(18)

defined by
c 7→ (c, Fc, ηc, 1Fc), d 7→ (Gd, d, 1Gd, εd)

(c ∈ C, d ∈ D), which are full and faithful.
The invariant part and the envelope are related as follows.

12.1. Lemma. Let F a G : D → C be an adjunction.

i. The full and faithful functors

Inv(F,G) //

��

C

��
D // Env(F,G)

defined above form a 2-pullback square (in the up-to-isomorphism sense).

ii. The composite functor Inv(F,G) → Env(F,G) defines an equivalence between
Inv(F,G) and the full subcategory of objects (c, d, f, g) of Env(F,G) such that f
and g are isomorphisms.

Proof. The proof is a series of elementary checks, omitted here. In outline, an object of
the 2-pullback of the two functors into Env(F,G) consists of objects c ∈ C and d ∈ D
together with an isomorphism

(c, Fc, ηc, 1Fc)
∼=−→ (Gd, d, 1Gd, εd)

in Env(F,G), and one verifies that this amounts to an object of Inv(F,G).
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12.2. Remark. The Inv and Env constructions can be understood as adjoints. Let
ADJ be the 2-category defined as follows. Objects are adjunctions (C,D, F,G). A map
(C,D, F,G)→ (C ′,D′, F ′, G′) consists of functors and natural transformations(

C P−→ C ′, D Q−→,D′, F ′P α−→ QF, PG
β−→ G′Q

)
such that α and β are each other’s mates. The 2-cells are the evident ones. Let ADJ∼=
be the sub-2-category of ADJ consisting of all objects, just those maps (P,Q, α, β) for
which α and β are isomorphisms, and all 2-cells between them.

There are 2-functors and 2-adjunctions

ADJ

CAT
zz

Env

>
& �

44

cc

Inv

⊥

� x

**
ADJ∼=
?�

OO

Here, the embedding of CAT into ADJ∼= associates to a category the identity adjunction
on it, and Inv is its right 2-adjoint. Similarly, Env is the right 2-adjoint of CAT ↪→ ADJ.

Now consider the conjugacy adjunction Â � A

̂
of a small category A. Its invariant

part isR(A). Its envelope is the Isbell envelope I(A). An object of I(A) is a quadruple

(X : Aop → Set, Y : A → Set, φ : X → Y ∨, ψ : Y → X∨)

such that φ and ψ correspond to one another under the conjugacy adjunction. By the
isomorphisms (4), I(A) is equivalently the category of triples

(X : Aop → Set, Y : A → Set, χ : X � Y → HomA),

with the obvious maps between them (as Isbell observed in Section 1.1 of [11]). With this

formulation of I(A), the canonical functor Â → I(A) (as in diagram (18)) maps X ∈ Â
to (X,X∨, εX), where εX is the natural transformation of (7). A dual statement holds

for A

̂

.
Lemma 12.1 immediately implies:

12.3. Proposition. For a small category A, the canonical full and faithful functors

R(A) //

��

Â

��
A

̂

// I(A)

form a 2-pullback square.

Thus, informally, R(A) = Â ∩ A

̂

.
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Clemens Berger, Université de Nice-Sophia Antipolis: cberger@math.unice.fr
Julie Bergner, University of Virginia: jeb2md (at) virginia.edu
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