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ON THE TERNARY COMMUTATOR, I:
EXACT MAL'TSEV CATEGORIES

CYRILLE SANDRY SIMEU AND TIM VAN DER LINDEN

Abstract. In this �rst article on the Bulatov commutator, we introduce a ternary
commutator of equivalence relations in the context of an exact Mal'tsev category with
binary coproducts. We prove that, for Mal'tsev varieties, our notion is a particular
case (where n � 3) of the n-fold commutator introduced (originally in the context of
Mal'tsev algebras) by A. Bulatov. We study its basic stability properties as well as the
relationship with the (binary) Smith-Pedicchio commutator.

In a forthcoming second article, we restrict the context to algebraically coherent semi-
abelian categories, where we prove that the commutator introduced here corresponds to
the ternary Higgins commutator of M. Hartl and the second author.

1. Introduction

In his study of polynomially inequivalent algebras, A. Bulatov introduced in [11] a higher-
order (n-ary) commutator operator of congruences in Mal'tsev algebras, which extends
the binary Smith commutator [30] and is based on a generalisation of the so-called term
condition. In the article [1], this higher-order commutator theory has been further de-
veloped by E. Aichinger and N. Mudrinski in the context of Mal'tsev varieties. In their
approach, they found analogues for the higher-order commutator of certain properties
known to be valid for the (binary) Smith commutator such as monotonicity, stability
with respect to joins, stability with respect to restriction, etc. In [26], J. Opr²al intro-
duced a relational description of the higher-order commutator in Mal'tsev varieties. He
studied the connection between the term condition and a certain n-fold relation, called
the algebra of 2n-matrices, which can be seen as a higher-order version of the double re-
lation ∆R,S (from [30], written in M. C. Pedicchio's notation [27]; in the present article,
we write ∆pR, Sq). From it, he derived properties of the higher-order commutator.

The theory of higher commutators has recently been extended to varieties that are no
longer Mal'tsev. In [23], A. Moorhead used the term condition as a basis for higher-order
commutator theory in congruence modular varieties. In [24] he introduced a concept
of higher centrality based on matrix constructions, which led to a connection with the
term condition in congruence modular varieties and a characterisation of the ternary
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Figure 1: The 3-fold ∆-equivalence relation ∆pR, S, T q

commutator in terms of a three-fold relation denoted ∆R,S,T which extends the double
relation ∆R,S. Further development of higher commutator properties outside congruence
modular varieties was made in [31] by A. Wires. Note that several ways of extending
centrality of two equivalence relations to more than two equivalence relations exist in the
literature that happen to be equivalent in the Mal'tsev context�see for instance [25].

In this article we make a categorical analysis of what we would call the Bulatov com-
mutator, extending the work of M. C. Pedicchio [27] and results of F. Borceux, D. Bourn
and M. Gran [7, 3] in the binary case. In parallel with A. Moorhead's work, we introduce
a construction, valid in the context of exact Mal'tsev categories with binary coproducts,
of a three-fold equivalence relation ∆pR, S, T q based on Pedicchio's ∆pR, Sq. In turn, we
introduce 3-fold ∆-equivalence relations, the concept of a 3-dimensional connector, and a
ternary Bulatov commutator.

Given three equivalence relations R, S and T on an object X, the 3-fold ∆-equivalence
relation ∆pR, S, T q in Figure 1 is the initial 3-fold equivalence relation on R, S and T .
It may be obtained as the kernel pair of the coequaliser of

�
∆R�σR�t1,∆R�σR�t2

�
where

σR : X Ñ R and ∆R : R Ñ ∆pR, Sq are the canonical morphisms that come with the
re�exivity of the relations R and ∆pR, Sq. Here, �∆-equivalence relation� means that the
front, right and bottom double equivalence relations in the cube are all instances of the
double equivalence relation introduced by Pedicchio.

The relations R, S and T are centralising when the cube of �rst projections in Figure 1
is a limit. This happens when a so-called 3-dimensional connector exists for R, S and T
(De�nition 5.18). The ternary Bulatov commutator rR, S, T sB measures how far a triple
pR, S, T q is from being centralising (De�nition 6.1). It has some convenient stability
properties, in parallel with what happens in the binary case, namely:

1. rR, S, T sB ¤ R ^ S ^ T ;

2. if T ¤ T 1, then rR, S, T sB ¤ rR, S, T 1sB
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3. rR, S, T sB ¤ rR, SsS, the Smith-Pedicchio commutator;

4. rR, S, T sB is independent of the order of R, S and T ;

5. fprR, S, T sBq � rfpRq, fpSq, fpT qsB;

6. rR, S, T _ T 1sB � rR, S, T sB _ rR, S, T 1sB,

for any regular epimorphism f : X Ñ Y and any equivalence relations R, S, T and T 1

on X.
The text is structured as follows. In Section 2 we recall the basic de�nitions and

properties of internal equivalence relations and their higher-order variations. Section 3
is devoted to a detailed analysis of Pedicchio's double equivalence ∆pR, Sq, so that we
have a solid foundation for its extension to three equivalence relations ∆pR, S, T q in
Section 4. Section 5 introduces centrality for triples of equivalence relations, and compares
the categorical approach with universal-algebraic versions of the concept. For instance,
Theorem 5.21 treats the case of Mal'tsev varieties. The second half of the section focuses
on stability properties of ∆pR, S, T q, which are useful in Section 6 where the commutator is
introduced and the above-mentioned properties are proved (Theorem 6.4 and the ensuing
propositions). Section 7 concludes this article with an overview of work-in-progress and
some open questions.

2. Equivalence relations, and their double and three-fold versions

In what follows, we let X be a regular category. We recall certain concepts and notations
having to do with equivalence relations, as well as double and three-fold equivalence
relations in this context.

2.1. Equivalence relations. An equivalence relation R on an object X of X is a
re�exive, symmetric and transitive relation and will be denoted as in the left part of the
diagram

R
r2 ,2

r1
,2 XσRlr qR ,2,2 QR,

where r1 and r2 are respectively the �rst and the second projection and σR : X Ñ R is
such that r1�σR � 1X � r2�σR. When X is a Barr exact category, R is an e�ective

equivalence relation, which means that the coequaliser qR : X Ñ QR of r1 and r2 exists
and R is its kernel relation X �QR X.

We denote by ERelpXq the category where objects are pairs pX,Rq where X is an
object of X and R is an equivalence relation on X. An arrow pf, fRq between pX,Rq and
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pY,R1q in ERelpXq is a commutative diagram of the form

R

fR

��

r1
,2

r2 ,2
X

f

��

σRlr

R1

r11

,2

r12 ,2
Y.σ1R

lr

Here �commutative� means that f �r1 � r11�fR, f �r2 � r12�fR and σ1R�f � fR�σR.
A �nitely complete category X is a Mal'tsev category when every re�exive relation

in X is an equivalence relation. If X is a regular Mal'tsev category, then so is ERelpXq:
see [7]. The category ERelpXq has those limits and colimits X has. Regular epimorphisms
in ERelpXq are level-wise. Also limits in ERelpXq are computed level-wise, so that a morph-
ism pf, fRq is a monomorphism in ERelpXq if and only if f and fR are monomorphisms.

2.2. Double equivalence relations. A double equivalence relation in a regular
category X is an object of ERelpERelpXqq. Such a double equivalence relation may be
pictured as in the commutative diagram

D
πS1

,2

πS2 ,2

πR1

��

πR2

��

S

s2

��

s1

��

σDS
lr

R
r1

,2

r2 ,2

σDR

LR

Xlr

LR

(A)

where D Ñ R, D Ñ S, R Ñ X and S Ñ X are objects of ERelpXq. D is also called a
double equivalence relation on R and S, which are relations on a common object X.
�Commutative� here means that the following diagrams are arrows in ERelpXq:

D
πS1

,2

πS2 ,2

πR1

��

S

s1

��

σDS
lr

R
r1

,2

r2 ,2
Xlr

D
πS1

,2

πS2 ,2

πR2

��

S

s2

��

σDS
lr

R
r1

,2

r2 ,2
Xlr

D
πS1

,2

πS2 ,2
SσDS

lr

R
r1

,2

r2 ,2

σDR

LR

Xlr

σS

LR

We write ERel2pXq instead of ERelpERelpXqq for the category whose objects are double
equivalence relation in X. As above, limits in ERel2pXq are level-wise, so that mono-
morphisms there are level-wise monomorphisms. ERel2pXq is a regular Mal'tsev category
as soon as X is.
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RlS
πS2 ,2

πS1

,2

πR2

��

πR1

��

Slr

s2

��

s1

��
R

LR

r1 ,2

r2
,2 Xlr

LR RlS
xπS1 ,π

S
2 y ,2

xπR1 ,π
R
2 y

��

S � S

xs1,s2y�xs1,s2y

��
R �R

xr1�r1,r2�r2y
,2 X4

Figure 2: The double equivalence relation RlS

The largest double equivalence relation on two given equivalence relations R and S
on a common object X always exists; it is denoted as on the left in Figure 2 and may be
constructed via the pullback on the right. An �element� of RlS is a quadruple

c R

S

b

S

d R a

of elements of X where aRd, bRc, aSb and dSc,
Given I � 2 � t0, 1u, we write dIpR, Sq � RdIS for the pullback of rδIp0q and sδIp1q,

where δIpiq is 1 if i R I and 2 if i P I. So the subset I of 2 chooses which pair of projections
to take a pullback of. Actually, up to isomorphism, that pullback is independent of the
chosen set I: the symmetry of the relations R and S allows us to easily prove that
dIpR, Sq � dJpR, Sq for any choice of I, J � 2. For this reason we shall suppress the
index I from the notation, writing dpR, Sq � RdS � R �X S. We take I � H when a
choice needs to be made, as in the pullback of split epimorphisms

RdS

πdR

��

πdS ,2 S

s1

��

σdS

lr

R

σdR

LR

r1 ,2 X.

σS

LR

σR
lr

(B)

2.3. Three-fold equivalence relations. Inductively, n-fold equivalence rela-

tions are de�ned in any regular category, and ERelnpXq denotes the category of n-fold
equivalence relations in X�see Section 3 in [29] for more details. Here we are interested
in the case n � 3. So, a three-fold equivalence relation on an object X of a regular
category may be viewed as a diagram as in Figure 3 where all of the cube's faces are double
equivalence relations in X and DH � X. When R � Dt0u, S � Dt1u and T � Dt2u, we say
that D is a three-fold equivalence relation on R, S and T . ERel3pXq denotes the
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D3
,2,2

����

z�z�

Dt1,2u

z�z�

����

Dt0,1u

����

,2,2 Dt1u

����

Dt0,2u
,2,2

z�z�

Dt2u

z�z�
Dt0u

,2 ,2 DH

Figure 3: A three-fold equivalence relation

category of three-fold equivalence relations in X. When X is a regular Mal'tsev category,
ERel3pXq is again a regular Mal'tsev category.

The largest three-fold equivalence relation on R, S and T , denoted lpR, S, T q, was
studied in detail in Section 3.1 of [29]. Its top object, also denoted lpR, S, T q, consists
of 2� 2� 2 matrices

a �

a1 R

S

T

a0

S

Ta3 R

T

a2

T

a5 R

S

a4

S

a7 R a6

�

at1,2u R

S

T

at0,1,2u

S

Tat2u R

T

at0,2u

T

at1u R

S

at0,1u

S

aH R at0u

where the elements are related by R, S and T as indicated. We can either number those
elements using subsets I � 3 where 0, 1 or 2 in I or not in I indicates whether the element
is in the second or in the �rst factor of R, S or T , respectively. We can also number them
as on the left, and the two points of view correspond via I ÞÑ

°
iP3zI 2i.

Any choice of a subset I � 3 corresponds to one of the commutative three-cubes
in the three-fold equivalence relation D, namely the cube whose diagonal is the I-th
projection, which sends a three-dimensional matrix a to the element aI . We shall denote
this cube DI . There are three �initial ribs� in this cube, each of which is a morphism
with domain the initial object D3 of the cube. The one in the direction i is given by the
projection πD3

D3ztiu,δIpiq
: D3 Ñ D3ztiu.

2.4. The object dD. Given any three-fold equivalence relation D on R, S and T , and
any subset I � 3, the object dID is the limit LpDIq of the diagram DI from which the
initial object D3 is removed. Its elements are 2�2�2 matrices as in lpR, S, T q with one
element (indexed by I) missing. That limit comes with projections πdD3ztiu

: dID Ñ D3ztiu,

split by monomorphisms σd
D3ztiu

: D3ztiu Ñ dID for all i   3. We write πI : D3 Ñ dID
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X
p ,2

β

��

Y

p�pβq

��

X
p ,2

α

��

Y

p�pαq

��

B ,2 Y �X B

A ,2

f

:D

Y �X A

p�pfq

:D

Figure 4: The cobase change functor

for the canonical projection (induced by the universal property of the limit) which forgets
the I-face. In what follows, when the I is suppressed from the notation, we mean that
I � H. In particular, this gives us the object dD with its projection π : D3 Ñ dD.

3. The double equivalence relation ∆pR, Sq

3.1. Cobase change for arrows. Let X be a category. For an object X in X, the
coslice category pX Ó Xq is the category whose objects are pairs pA,αq, where A is an ob-
ject of X and α : X Ñ A a morphism whose domain is X; a morphism f : pA,αq Ñ pB, βq
is an arrow f : AÑ B such that β � f �α.

We assume that X is �nitely cocomplete. Then any morphism p : X Ñ Y induces a
cobase change functor

p� : pX Ó Xq Ñ pY Ó Xq : pA,αq ÞÑ pY �X A, p�pαqq

de�ned on morphisms as in Figure 4. From the �rst statement in the following well-known
result we immediately deduce Lemma 3.3.

3.2. Lemma. Consider a commutative diagram

X
p ,2

α
��

Y
q ,2

β
��

Z
γ
��

A
f
,2 B g

,2 C.

1. If both squares are pushouts, then the outer rectangle is a pushout as well.

2. If the outer rectangle is a pushout and either β or f is an epimorphism, then the
right hand side square is a pushout.
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3.3. Lemma. Given morphisms p : X Ñ Y , q : Y Ñ Z in a �nitely cocomplete category,
we have pq�pq� � q��p� : pX Ó Xq Ñ pZ Ó Xq.

3.4. Arrows versus equivalence relations. Let X be a category in which every
arrow has a kernel pair and every re�exive graph has a coequaliser. We consider the basic
coequaliser/kernel pair adjunction

RGrphpXq
Coeq ,2
K ArrpXq
Eq
lr

between the category RGrphpXq of re�exive graphs and the category ArrpXq of arrows in X.
The left adjoint sends a re�exive graph pG, d, c, eq

G
d ,2

c
,2 Xelr d�e � 1X � c�e

to the coequaliser Coeqpd, cq of d and c, while the right adjoint sends an arrow f : X Ñ Y
to its kernel relation Eqpfq � pX �Y X, π1, π2, σq.

We shall be concerned with restricting this adjunction to an adjoint equivalence. By
de�nition, an arrow is a regular epimorphism if and only if it is the coequaliser of some
parallel pair of maps. Equivalently, it is the coequaliser of its kernel pair. So the image of
the left adjoint Coeq is the full subcategory RegpXq of ArrpXq determined by the regular
epimorphisms. On the other hand, a re�exive graph is in the image of the functor Eq
precisely when it is an e�ective equivalence relation. Writing EERelpXq for the category
of e�ective equivalence relations in X, the above adjunction restricts to an equivalence of
categories

EERelpXq
Coeq ,2
� RegpXq.
Eq
lr (C)

When X is Barr exact, we may take the category ERelpXq of equivalence relations in X
on the left; and when X is, moreover, a Mal'tsev category, we may take the category
RRelpXq of re�exive relations instead. When X is a regular category, the existence of
the respective equivalence characterises when X is Barr exact (equivalence relations are
e�ective) or Barr exact Mal'tsev (re�exive relations are e�ective equivalence relations).
Note that in a Barr exact Mal'tsev category, any re�exive graph has a coequaliser, since
this coequaliser may be computed as the coequaliser of the support of the graph. Given
a re�exive graph pG, d, c, eq, its support pR, r1, r2, σRq, which is a re�exive relation, hence
an e�ective equivalence relation, is obtained via the factorisation

R

r2

��
r1

��
G

p

AIAI

d ,2

c
,2 X

σR

U]

elr qR ,2,2 QR

(D)
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R

r1

��

r2

��

p ,2 ppRq

r1

��

r2

��
X

p ,2

qR

����

LR

Y

p�pqRq

����

LR

QR
,2 Y �X QR.

Figure 5: Cobase change

of xd, cy : GÑ X�X into a regular epi p and a mono xr1, r2y : RÑ X�X. The coequaliser
qR of r1 and r2 is also the coequaliser of d and c since p is an epimorphism. (An alternative
viewpoint, which follows from this analysis, is that the universal comparison p from G to
the kernel pair R of the coequaliser qR of d and c is always a regular epimorphism.) We
may conclude that existence of binary coproducts su�ces for the category to be �nitely
cocomplete. For this reason, we shall be working mainly in the context of a Barr exact
Mal'tsev category with binary coproducts.

3.5. Cobase change for equivalence relations. Given an object X in X, we write
ERelXpXq for the category of equivalence relations on X. Combining the construction
in 3.1 with the equivalence in 3.4, we see that if X is a �nitely cocomplete Barr exact
category, then each morphism p : X Ñ Y induces a cobase change functor

p : ERelXpXq Ñ ERelY pXq : R ÞÑ ppRq� Eqpp�pCoeqpRqqq

which takes an equivalence relation R on X and sends it to the kernel pair of p�pqRq,
where qR is the coequaliser of the two projections of R as in Figure 5.

3.6. Lemma. Given morphisms p : X Ñ Y and q : Y Ñ Z in a �nitely cocomplete Barr
exact category, we have pq�pq � q�p : ERelXpXq Ñ ERelZpXq.

Proof. This follows immediately from Lemma 3.3 and the fact that (C) is an equivalence
of categories.

3.7. The double equivalence relation ∆pR, Sq. Let X be a Barr exact category
with �nite coproducts and X an object of X. Given any two equivalence relations R and S
on X, in the articles [27, 28], Pedicchio de�nes a double equivalence relation ∆pR, Sq on R
and S as in Figure 6. It is constructed by �rst taking the coequaliser qRS : R Ñ QRS of
the pair pσR�s1, σR�s2q and then the kernel pair ∆pR, Sq � EqpqRSq of the result. S being
a kernel pair, by the universal property of S, this construction induces a re�exive graph
p∆pR, Sq, dS1 , d

S
2 q on S, which is clearly a re�exive relation. Hence it is an (e�ective)
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∆pR, Sq
dS2 ,2

dS1

,2

dR1

��

dR2

��

S

s2

��

s1

��

∆S
lr qSR ,2,2 QSR

����
R

r2 ,2

r1
,2

∆R

LR

qRS

����

X��σRlr

σS

LR

qS

����

qR
,2,2 QR

LR

q1

����

QRS
,2
,2 QSσlr

q
,2,2 Q

Figure 6: Constructing the double equivalence relation ∆pR, Sq

equivalence relation, so that the top left part of the diagram forms a double equivalence
relation on R and S.

As we shall see, ∆pR, Sq is the smallest double equivalence relation on R and S. We
�rst analyse its construction in terms of a cobase change.

3.8. Proposition. Let R and S be equivalence relations on an object X of an exact
category with �nite colimits. Complete the diagram in Figure 6 with the coequaliser qS
and the induced bottom left re�exive graph induced by the universal property. The thus
obtained square

R

qRS

����

X
σRlr

qS

����

QRS QSσ
lr

is a pushout.

Proof. In order to check the universal property, we assume that u : RÑ Z, v : QS Ñ Z
are morphisms such that u�σR � v�qS. Since qRS is the coequaliser of pσR�s1, σR�s2q,
the equalities u�σR�s1 � v�qS�s1 � v�qS�s2 � u�σR�s2 tell us that there exists a unique
morphism φ : QRS Ñ Z for which φ�qRS � u. We also have φ�σ�qS � φ�qRS�σR � u�σR �
v�qS. Since qS is a (regular) epimorphism, it follows that φ�σ � v.

3.9. Corollary. Let R and S be equivalence relations on an object X of an exact cat-
egory with �nite colimits. Then ∆pR, Sq � pσRqpSq as a relation on R.

3.10. Proposition. [27, 28] In an exact Mal'tsev category with binary coproducts, if R
and S are equivalence relations on an object X, then ∆pR, Sq � ∆pS,Rq.
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Proof. Let us complete the diagram in Figure 6 with the coequaliser qR and qSR �
pσSq�pqRq. In order to show that ∆pR, Sq � pσSqpRq, which yields the claimed iso-
morphism, we only need to prove that qSR is the coequaliser of the e�ective equival-
ence relation p∆pR, Sq, dS1 , d

S
2 ,∆Sq. Suppose t : S Ñ T is such that t�dS1 � t�dS2 . Then

t�σS�r1 � t�dS1 �∆R � t�dS2 �∆R � t�σS�r2. Hence t�σS factors through qR via a unique
morphism u : QR Ñ T such that u�qR � t�σS. The pushout property of QSR now yields
the needed v : QSR Ñ T such that v�qSR � t.

The rest of the diagram in Figure 6 is obtained by taking the coequaliser q, and then
completing with the top right re�exive graph. Since qRS is an epimorphism, the induced
bottom right square is a pushout.

3.11. Universal-algebraic interpretation. Let us recall from [16] that in a con-
gruence modular variety V, given congruences R and S on an algebra X in V, the double
relation MpR, Sq is the subalgebra of X4 generated by matrices of the form

b0 a0

S

b0 R a0

and

b1 b1

S

a1 R a1

where a0Rb0 and a1Sb1. More precisely, MpR, Sq consists of all matrices

tpb0, b1q tpa0, b1q

S

tpb0, a1q R tpa0, a1q

where a0, b0 are m-tuples and a1, b1 are n-tuples of elements of X such that a0Rb0 and
a1Sb1, whereas t is a term of arity m� n. On the other hand, ∆pR, Sq is the congruence
on R generated by matrices of the form

b b

S

a R a

where aSb. SinceMpR, Sq is always a double re�exive and symmetric relation, in general,
∆pR, Sq is the transitive closure of MpR, Sq; hence in the Mal'tsev setting, they coincide.
Proposition 3.29 gives a categorical expression of this fact.

3.12. Pairs of connected equivalence relations. In an exact Mal'tsev category
with binary coproducts, two equivalence relations R and S on an object X are connected
when they admit a centralising double equivalence relation, which is a double equi-
valence relation (A) on R and S such that any of the commutative squares of projections
forms a pullback.
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3.13. Proposition. [27] In an exact Mal'tsev category with binary coproducts, if two
equivalence relations R and S on an object X admit a centralising double equivalence
relation C, then C � ∆pR, Sq.

In other words, R and S are connected if and only if any of the top left downward
pointing commutative squares in Figure 6 is a pullback.

Recall the object dpR, Sq from diagram (B). Its �elements� may be viewed as triples
px, y, zq where xRy and ySz. It is well known�see, for instance, [8, 7, 27, 28]�that
the existence of a centralising double equivalence relation C on R and S is equivalent to
the existence of a unique morphism (called a connector) p : dpR, Sq Ñ X, such that
ppx, y, yq � x and ppx, x, yq � y.

There is a universal way of making equivalence relations connected. The colimit
cpR, Sq of the outer solid arrows of the left hand diagram below can be obtained as the
pushout in the right hand diagram.

R

��

x1R,σS�r2y

z�

r1

�$
dpR, Sq

ϕX ,2 cpR, Sq X
ψXlr

S

LR

s2

:D

xσR�s1,1Sy

Zd

R � S
pr1,s2q ,2

����

X

ψX

����

dpR, Sq ϕX
,2 cpR, Sq

The morphism ψX is an extremal epimorphism. It is universal for making the equivalence
relations ψXpRq and ψXpSq connected.

3.14. Definition. Let X be an exact Mal'tsev category with �nite colimits. For any two
equivalence relations R, S on an object X of X, their Smith-Pedicchio commutator
rR, SsS is the kernel pair of the morphism ψX .

For Mal'tsev varieties, this is exactly the well-known Smith commutator introduced
in [30]. Moreover, the following properties hold in any �nitely cocomplete exact Mal'tsev
category [3, 5]:

1. rR, SsS � rS,RsS;

2. rR, SsS ¤ R ^ S;

3. if R ¤ R1 and S ¤ S 1, then rR, SsS ¤ rR1, S1sS;

4. fprR, SsSq � rfpRq, fpSqsS for any regular epimorphism f : X Ñ Y .
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3.15. Regular pushouts, higher extensions. Our aim is to obtain similar proper-
ties for the ternary commutator which we shall introduce below. As a �rst step towards
these results, in Subsection 3.21 we need to recall certain stability properties of the ob-
jects ∆pR, Sq. Our approach depends on the concept of a higher extension. We start by
recalling the de�nition of a regular pushout.

3.16. Proposition. [4, 2] In a regular Mal'tsev category, a commutative square of regular
epimorphisms

X
f ,2,2

x

����

Y

y

����

X 1

f 1
,2,2 Y 1

is called a regular pushout when any of the following equivalent conditions hold:

(i) the comparison morphism xx, fy : X Ñ X 1 �Y 1 Y is a regular epimorphism;

(ii) the induced morphism x : X �Y X Ñ X 1 �Y 1 X 1 is a regular epimorphism;

(iii) the induced morphism f : X �X 1 X Ñ Y �Y 1 Y is a regular epimorphism.

Proposition 5.6 in [12] says that a regular category is exact Mal'tsev precisely when
any two regular epimorphisms with a common domain admit a pushout, and this pushout
is a regular pushout. So in a Barr exact Mal'tsev category, when the morphism p in
Figure 5 is a regular epimorphism, the morphism p is also a regular epimorphism. This
implies that the relation ppRq may be obtained as the regular image of R along p, via
the image factorisation of the morphism pp� pq�xr1, r2y : RÑ Y � Y .

An n-fold arrow in X is a contravariant functor F : p2nqop Ñ X where 2n is the
power-set of n � t0, . . . , n � 1u considered as a small category. Morphisms between two
n-fold arrows F and G are natural transformations f : F Ñ G. We write ArrnpXq �
Funpp2nqop,Xq for the functor category of n-fold arrows in X. Limits and colimits in
ArrnpXq are computed pointwise in X, so it is an exact Mal'tsev category as soon as X is.
See [14] for further details on this category, and on the following use we make of it:

3.17. Definition. Let X be a regular category. A 0-fold extension is an object of X and
a 1-fold extension is a regular epimorphism in X. An n-fold extension in X with n ¥ 2
is a commutative diagram in Arrn�2pXq as in Figure 7 where all arrows are pn � 1q-fold
extensions. The n-fold extensions in X forms a full subcategory ExtnpXq of ArrnpXq.

3.18. Example. In any regular Mal'tsev category X, a 2-fold extension is a regular
pushout in X. In any exact Mal'tsev category, a 2-fold extension is a pushout square
of regular epimorphisms.
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A1 f1

�'

a

�'

xa,f1y

�'
A0 �B0 B1

,2

��

B1

b

��
A0 f0

,2 B0

Figure 7: The outer square is an n-fold extension when all arrows in the diagram are
pn� 1q-fold extensions

3.19. Example. It easily follows from Proposition 3.16 that in any regular Mal'tsev
category, a split epimorphism of split epimorphisms, viewed as a commutative square, is
always a double extension. More generally, any n-fold split epimorphism gives rise to an
n-fold extension. A concrete situation where this happens is pictured in Figure 3: any of
the commutative three-cubes induced by choosing projections in a three-fold equivalence
relation is a three-fold extension, as a split epimorphism between double extensions.

Recall that a family pfi : Ai Ñ BqiPI of morphisms in X with the same codomain is
said to be jointly extremal-epimorphic when any monomorphism m : M Ñ B through
which all the fi factor is an isomorphism.

3.20. Theorem. Let E be a three-fold split epimorphism in a regular Mal'tsev category.
Then the induced comparison arrows σi : E3ztiu Ñ LpEq form a jointly extremal-epimorphic
family pσiqiP3.

Proof. Recall the de�nition of the limit LpEq from 2.4. Consider a monomorphism
m : M Ñ LpEq through which each σi factors as an arrow τi : E3ztiu Ñ M such that
m�τi � σi. Then we obtain a three-fold split epimorphism F by putting F3 � M and
FI � EI for I � 3, with the obvious arrows which are either the arrows of the diagram E,
arrows induced by composition with m, or one of the τi. Then F is a three-fold extension,
which implies that m is a regular epimorphism, hence an isomorphism. It follows that
the σi form a jointly extremal-epimorphic family.

3.21. Stability properties. We start with preservation of ∆pR, Sq under direct im-
ages, where we can immediately apply the above. Let X be a regular Mal'tsev category.
Recall from [7] the construction of the category 2-EqpXq whose objects are triples pX,R, Sq
where R and S are equivalence relations on X. A morphism

pf, fR, fSq : pX,R, Sq Ñ pY,R1, S1q

consists of morphisms f : X Ñ Y , fR : RÑ R1, fS : S Ñ S 1 in X making pf, fRq and pf, fSq
morphisms of equivalence relations. As explained in [7], limits and regular epimorphisms
in this category are pointwise.
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∆pR, Sq
RL

σ∆
R

z�
z�

f∆ ,2

����

∆pR1, S1q

z�
z�

����

SRL

σS

qSR

z� z�

:D

fS ,2,2

����

S 1RL

σS
1

Y

:D

����

qS1R1

z� z�

QSR
,2,2 QS1R1

R

z�
z�

fR ,2,2 R1

z�
z�

σ∆
R1

LR

X

qR

z� z�

f ,2,2

σR

:D

Y

qR1

z� z�

σR
1

Y

:D

QR

LR

,2,2 QR1

LR

Figure 8: Preservation of ∆ under direct images

3.22. Proposition. In an exact Mal'tsev category with binary coproducts X, consider
a regular epimorphism pf, fR, fSq : pX,R, Sq Ñ pY,R1, S1q in 2-EqpXq. Then the in-
duced morphism f∆ : ∆pR, Sq Ñ ∆pR1, S1q in X is a regular epimorphism as well, so
that fp∆pR, Sqq � ∆pfpRq, fpSqq.

Proof. The commutative diagram in Figure 8 leads us to diagram

X
σS ,2

qR

����

S
fS ,2,2

qSR

����

S 1

qS1R1

����

QR
,2 QSR

,2,2 QS1R1

in which the outer rectangle is a pushout. This outer rectangle is a pushout square because
in the front commutative cube of Figure 8, the bottom square is a pushout square, since
fR is a regular epimorphism. Moreover, in the de�nition of ∆pR1, S1q, Proposition 3.8
tells us that the right-hand square pointing up is also a pushout square. Hence, the
rectangle is a pushout square. By Lemma 3.2, the right-hand square is a pushout square
of regular epimorphisms, which in our (Barr-exact) context is a regular pushout. Hence
by Proposition 3.16, f∆ is a regular epimorphism, so that fp∆pR, Sqq � ∆pfpRq, fpSqq.

3.23. Preservation of joins. The join R_S of two equivalence relations R and S on
an object X is the smallest equivalence relation that contains them both. It is well known
that in the context of a regular Mal'tsev category, it may be obtained as the composite
R�S � S�R of R and S. In the exact Mal'tsev case [12], there is a characterisation in
terms of the induced quotients of R and S: the diagonal in their pushout is precisely the
quotient induced by R _ S.



394 CYRILLE SANDRY SIMEU AND TIM VAN DER LINDEN

∆pR, S _ S 1q
,2
,2

����

S _ S 1

��

lr

��

∆pR, Sq
,2
,2

����

S

����

lr

∆pR, S 1q

u}
u}

,2
,2 S

1

u}
u}

lr

R

DL

5=

LR

qRS1

u} u}

qRS

����

,2
,2

�� ��

XσRlr

qS

����

DL

qS1

u} u}

5=

LR

�� ��

QRS1
,2
,2

����

QS1
lr

����

QRS

u} u}

,2
,2 QS

lr

u} u}
Q

,2
,2 Q

1lr

Figure 9: Preservation of joins by ∆pR,�q

3.24. Proposition. In an exact Mal'tsev category with binary coproducts, let R, S and S 1

be equivalence relations on an object X. Then as equivalence relations on R, we have
∆pR, S _ S 1q � ∆pR, Sq _∆pR, S 1q.

Proof. Let us consider the diagram in Figure 9, where ∆pR, Sq, ∆pR, S 1q and ∆pR, S_S 1q
are constructed. The solid diagonal square is a pushout, hence so is the bottom square in
the cube of solid arrows. By Lemma 3.2, it follows that the left-hand square in this cube
is a pushout as well, which implies ∆pR, S _ S 1q � ∆pR, Sq _∆pR, S 1q.

In what follows, when R and S are connected, we can always consider ∆pR, Sq as the
double centralising equivalence relation on R and S. This apparently simple consideration
will allows us to provide alternative proofs for some useful results which already appeared
in the literature, see for instance [8, 7, 27, 28], and which will help generalising the theory
to ternary commutators.

3.25. Lemma. [17] In a regular category, consider the commutative diagram

A
f ,2,2

a

����
p1q

B
g ,2

b

����
p2q

C

c

��
A1

f 1
,2,2 B1

g1
,2 C 1.

If the outer rectangle p1q � p2q is a pullback and the left hand square p1q is a regular
pushout, then both squares p1q and p2q are pullbacks.
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3.26. Lemma. [15] Suppose that the following three-cube is an extension.

A1 ,2

��

B1

��

A

:D

,2

��

B

:D

��

C 1 ,2 D1

C ,2

:D

D

:D

If the top square is a pullback, then so is the bottom square.

Proof. Assume that the top square is a pullback. Taking pullbacks on the top and on
the bottom squares, we obtain the comparison morphism

A

����

A1 �B1 B

����

C ,2,2 C 1 �D1 D

which is a double extension, hence a pushout square. Therefore, the comparison morphism
of the bottom square is an isomorphism.

3.27. Proposition. [7, 8, 27, 28] In an exact Mal'tsev category with binary coproducts,
let R, S and S 1 be equivalence relations on an object X. Then the following are equivalent:

(i) R and S are connected, and R and S 1 are connected;

(ii) R and S _ S 1 are connected.

Proof. (i) ñ (ii) If we assume that R and S, respectively R and S 1 are connected,
then in Figure 9, the double equivalence relations ∆pR, Sq and ∆pR, S 1q are centralising
double equivalence relations. We must prove that also ∆pR, S _ S 1q is a centralising
double equivalence relation. By the Barr�Kock Theorem [3, Lemma A.5.8], the top and
the back square in the cube determined by �rst projections pointing to the right are
pullbacks. Since any split epimorphism between double extensions determines a three-
fold extension, Lemma 3.26 implies that the bottom square of �rst projections pointing
to the right is a pullback. It follows that the diagonal square of �rst projections is a
pullback, so that ∆pR, S _ S 1q is a centralising double equivalence relation.

(ii) ñ (i) Now suppose that ∆pR, S _ S 1q is a centralising double equivalence relation
on R and S _ S 1. Then the diagonal square of �rst projections, pointing to the right in
Figure 9, is a pullback square. Using Lemma 3.25, it is easy to see that ∆pR, Sq and
∆pR, S 1q are centralising double equivalence relations.
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We end this section with the characterisation of ∆pR, Sq as the initial double equival-
ence relation on R and S.

3.28. Lemma. In an exact Mal'tsev category with binary coproducts, consider a commut-
ative diagram

Eqpfq
π1 ,2

π2

,2

u

��

A
f ,2,2

v

��

σlr B

w

��
Eqpf 1q

π11 ,2

π12

,2 A
1

σ1lr
f 1

,2,2 B1

where the rows are exact forks. The right hand square is a pushout if and only if u and
σ1 are jointly extremal-epimorphic.

Proof. Assume that u and σ1 are jointly extremal-epimorphic. Let a : A1 Ñ M and
b : B ÑM be morphisms such that a�v � b�f . We then have

a�π11�u � a�v�π1 � b�f �π1 � b�f �π2 � a�v�π2 � a�π12�u

and a�π11�σ
1 � a � a�π12�σ

1. Since u and σ1 are jointly extremal-epimorphic, we have
a�π11 � a�π12. Hence there exists a unique morphism ϕ : B1 Ñ M such that ϕ�f 1 � a. It
remains to be shown that ϕ�w � b. That follows because f is a regular epimorphism and
b�f � a�v � ϕ�f 1�v � ϕ�w�f .

For the converse, assume now that the right hand square is a pushout. Let us compute
the pushout of v and σ and write φ for the induced morphism Eqpfq�AA

1 Ñ Eqpf 1q. We
have to prove that it is an extremal epimorphism. In the current, Barr-exact Mal'tsev
context, from the reasoning involving Diagram (D) we may deduce that this is equivalent
to saying that f 1 is still the coequaliser of π11�φ and π12�φ. Let us consider this coequaliser
and denote it by q : A1 Ñ Q. It is easily seen that a unique morphism λ : Q Ñ B1 exists
such that f 1 � λ�q. We also have

q�v�π1 � q�π11�u � q�π11�φ�v̄ � q�π12�φ�v̄ � q�π12�u � q�v�π2,

so there is a unique α : B Ñ Q for which α�f � q�v. The right hand square being pushout
implies the existence of a unique λ1 : B1 Ñ Q such that λ1�f 1 � q and λ1�w � α. Hence
since q and f 1 are epimorphisms, the morphism λ is an isomorphism. The Barr-exactness
of X implies that φ is an extremal epimorphism. Now since σ̄ and v̄ are jointly extremal-
epimorphic, we conclude that u � φ�v̄ and σ1 � φ�σ̄ are jointly extremal-epimorphic.

3.29. Proposition. In an exact Mal'tsev category with binary coproducts, the morphisms
∆R and ∆S in Figure 6 are jointly extremal-epimorphic.

Proof. This follows immediately from the construction of the diagram in Figure 6 com-
bined with Lemma 3.28.
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This implies that ∆pR, Sq is minimal amongst double equivalence relations on R and S,
since any double equivalence relation included in ∆pR, Sq is isomorphic to it. It is actually
a minimum, as follows from Proposition 3.31. We may also use this to prove the next
result; however, a more general proof, valid in regular Mal'tsev categories, is already
known�see [3].

3.30. Proposition. In a regular Mal'tsev category, the splittings σd
R and σd

S in the pull-
back (B) are jointly extremal-epimorphic.

3.31. Proposition. In an exact Mal'tsev category with binary coproducts, consider equi-
valence relations R and S on a common object X. The double equivalence relation ∆pR, Sq
is an initial object in the category of double equivalence relations on R and S.

Proof.This follows from the construction of ∆pR, Sq as a kernel pair of a coequaliser. Let
(A) be a double equivalence relation on R and S, and write qD : RÑ QD for the induced
coequaliser of πR1 and πR2 . Since qD�σR�s1 � qD�σR�s2, there is a unique comparison
morphism t : QRS Ñ QS such that t�qRS � qD, which induces the needed morphism
∆pR, Sq Ñ D.

3.32. Corollary. In an exact Mal'tsev category with binary coproducts, a double equi-
valence relation such as (A) is ∆pR, Sq if and only if the morphisms σDR and σDS are
jointly extremal-epimorphic.

Proof. Given a double equivalence relation (A) on R and S such that σDR and σDS are
jointly extremal-epimorphic, since the comparison morphism from ∆pR, Sq to D, induced
by Proposition 3.31 is a monomorphism (as a morphism of equivalence relations on a
common object), it is an isomorphism. Hence the given double equivalence relation is
isomorphic to ∆pR, Sq.

4. The three-fold equivalence relation ∆pR, S, T q

Our aim is now to extend the de�nition of ∆pR, Sq to a similar notion for three equival-
ence relations: the object ∆pR, S, T q, which is the initial vertex of the initial three-fold
equivalence relation on R, S and T .

Given equivalence relations R, S and T on a common object X, let us consider the
diagram in Figure 10, where ∆pR, Sq,∆pR, T q and ∆pS, T q are the equivalence relations
de�ned as in 3.7 and q∆∆ is the coequaliser of the pair

�
∆R�σR�t1,∆R�σR�t2

�
. By the

commutativity of the sub-diagrams that determine ∆pR, Sq, ∆pR, T q and ∆pS, T q, this
coequaliser can be obtained in several equivalent ways; for instance, it is also the coequal-
iser of the pair p∆R�d

R
1 �∆T ,∆R�d

R
2 �∆T q.

4.1. Definition. In an exact category with �nite colimits X, consider equivalence rela-
tions R, S and T on an object X. We let ∆pR, S, T q be the kernel pair of the morphism
q∆∆ de�ned above. When X is Mal'tsev, the construction in Figure 10 (with functori-
ally induced arrows between the kernel pairs) determines a three-fold equivalence relation
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∆pR, S, T q

u�
u�

,2
,2

����

∆pS, T q

u�

lr

u�

����

∆pR, Sq

5?

q∆∆

u� u�

,2
,2

����

S∆S
lr

5?

����

qST

u� u�
Q∆∆ QST

lr

∆pR, T q

LR

dR2

u�

dR1

u�

,2
,2 T

LR

t2
u�

t1

u�

qST

����

∆T
lr

R

qRT

u� u�

qRS

����

,2
,2

∆R

LR

5?

XσRlr

qS

����

σS

LR

qT

u� u�

σT

5?

QRT

LR

QT
lr

LR

QTS

QRS QS
lr

5?

Figure 10: The construction of ∆pR, S, T q

∆pR, S, T q on R, S and T . When X is exact Mal'tsev, all re�exive graphs in the diagram
are e�ective equivalence relations.

4.2. Proposition. In an exact Mal'tsev category with binary coproducts, consider equi-
valence relations R, S and T on an object X. ∆pR, S, T q is the initial three-fold equival-
ence relation on R, S and T .

Proof. Consider a three-fold equivalence relation as in Figure 3, where X � DH,
R � Dt0u, S � Dt1u and T � Dt2u. By Proposition 3.31, we already �nd universally
induced arrows ∆pR, Sq Ñ Dt0,1u, ∆pR, T q Ñ Dt0,2u and ∆pS, T q Ñ Dt1,2u. The needed
arrow ∆pR, S, T q Ñ D3 is now obtained either via an argument as in the proof of Pro-
position 3.31, or as a consequence of Proposition 4.8.

4.3. Example. In any congruence modular variety, the object ∆pR, S, T q happens to be
a congruence on ∆pR, Sq, generated by cubes of the form

b b

Tb b

a a
S

a R a

P lpR, S, T q.

Hence the construction in De�nition 4.1 is a categorical conceptualisation of the relation
∆pR, S, T q introduced in [24, 26].
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In the Mal'tsev context this can be further worked out, because re�exivity is enough
for a relation to be an equivalence relation:

4.4. Example. In a congruence modular variety V, the object MpR, S, T q introduced
in [26] is generated as a subalgebra of lpR, S, T q ¤ X8 by elements of the form

b a

Tb a

b a
S

b R a

c c

Td d

c c
S

d R d

e e

Te e

f f
S

f R f

where aRb, cSd and eTf . Hence a general element of MpR, S, T q is of the form

tpb0, a1, a2q tpa0, a1, a2q

tpb0, b1, a2q tpa0, b1, a2q

tpb0, a1, b2q tpa0, a1, b2q

tpb0, b1, b2q tpa0, b1, b2q

for some pk � n � lq-ary term t in the theory of V and for all vectors a0, b0 P X
k, a1,

b1 P X
n, and a2, b2 P X

l such that a0Rb0, a1Sb1 and a2Tb2.
It is clear that MpR, S, T q ¤ ∆pR, S, T q; Theorem 5.4 shows that the two coincide in

the context of a Mal'tsev variety.

4.5. Remark. In any Mal'tsev variety, let R, S and T be equivalence relations on a
common algebra X. If

a1 a0

Ta3 a2

a5 a4

S

a7 R a6

is in ∆pR, S, T q, then for instance also

a1 a0

a1 a0

a5 a4

a5 a4

a1 a0

a3 a2

a1 a0

a3 a2

a0 a0

a2 a2

a4 a4

a6 a6
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are in ∆pR, S, T q.

In order to study this relation's properties, we �rst simplify its construction. To do
so, we depend on the following lemma.

4.6. Lemma. In a category with coequalisers, we consider the diagram

A
f ,2 B

u ,2
v

,2 C
g ,2 D.

If Coeqpu, vq � Coeqpu�f, v�fq, then Coeqpg�u, g�vq � Coeqpg�u�f, g�v�fq.

Proof. Note that Coeqpu, vq � Coeqpu�f, v�fq precisely when for each h : C Ñ Z,

h�u�f � h�v�f ô h�u � h�v.

In particular, for any j : D Ñ Z we have

j�g�u�f � j�g�v�f ô j�g�u � j�g�v.

It follows that Coeqpg�u�f, g�v�fq � Coeqpg�u, g�vq, because these two coequalisers have
the same universal property.

4.7. Lemma. In an exact category with �nite colimits, consider equivalence relations R,
S and T on an object X. Then ∆pR, S, T q � p∆R�σRqpT q as equivalence relations
on ∆pR, Sq.

Proof. First of all, we notice that p∆R�σRqpT q � p∆RqppσRqpT qq � p∆Rqp∆pR, T qq.
So, we must prove that q∆∆ � Coeqp∆R�d

R
1 ,∆R�d

R
2 q. Since

qRT � CoeqpdR1 , d
R
2 q � CoeqpσR�t1, σR�t2q � Coeq

�
dR1 �∆T , d

R
2 �∆T

�
,

by Lemma 4.6 it follows that Coeqp∆R�d
R
1 ,∆R�d

R
2 q � Coeqp∆R�d

R
1 �∆T ,∆R�d

R
2 �∆T q. Now

q∆∆ � Coeqp∆R�d
R
1 ,∆R�d

R
2 q, and ∆pR, S, T q � p∆Rqp∆pR, T qq � p∆R�σRqpT q by Co-

rollary 3.9.

4.8. Proposition. In an exact category with �nite colimits, consider equivalence rela-
tions R, S and T on an object X. Then ∆pR, S, T q � ∆p∆pR, Sq,∆pR, T qq as equivalence
relations on ∆pR, Sq.

Proof. By Lemma 4.7 we have ∆pR, S, T q � p∆R�σRqpT q, equal to p∆RqppσRqpT qq �
p∆Rqp∆pR, T qq � ∆p∆pR, Sq,∆pR, T qq.
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4.9. Proposition. In an exact Mal'tsev category with binary coproducts, let R, S and T
be equivalence relations on an object X. Then

∆pR, S, T q � ∆pR, T, Sq � ∆pS,R, T q � ∆pS, T,Rq � ∆pT,R, Sq � ∆pT, S,Rq.

Proof. Without loss of generality, we may show that ∆pR, S, T q � ∆pS,R, T q.

∆pR, S, T q � p∆R�σRqpT q � p∆S�σSqpT q

� p∆SqppσSqpT qq � p∆Sqp∆pS, T qq

� ∆p∆pR, Sq,∆pS, T qq � ∆p∆pS,Rq,∆pS, T qq

� ∆pS,R, T q,

using Proposition 4.8, Proposition 3.10 and the fact that all equivalence relations in
Figure 10 are e�ective.

4.10. Proposition. In an exact Mal'tsev category with binary coproducts, let R, S, T
and T 1 be equivalence relations on an object X. As equivalence relations on ∆pR, Sq, we
have ∆pR, S, T _ T 1q � ∆pR, S, T q _∆pR, S, T 1q.

Proof. The equalities

∆pR, S, T _ T 1q � ∆p∆pR, Sq,∆pR, T _ T 1qq

� ∆p∆pR, Sq,∆pR, T q _∆pR, T 1qq

� ∆p∆pR, Sq,∆pR, T qq _∆p∆pR, Sq,∆pR, T 1qq

� ∆pR, S, T q _∆pR, S, T 1q

follow from Proposition 3.24 and Proposition 4.8.

Recall the notation 2-EqpXq introduced in 3.21. Given a regular Mal'tsev category X,
we now write 3-EqpXq for the category whose objects are quadruples pX,R, S, T q where
R, S and T are equivalence relations on a common object X and arrows in 3-EqpXq are
quadruples pf, fR, fS, fT q making the diagram

R

fR

��

,2,2 X

f

��

Slrlr

fS

��
T

:D :D

fT

��
R1 ,2,2 X 1 S 1lrlr

T 1

:D :D

commute. In other words, any arrow f : X Ñ X 1 in X such that fpRq ¤ R1, fpSq ¤ S 1

and fpT q ¤ T 1 determines and arrow f : pX,R, S, T q Ñ pX 1, R1, S1, T 1q in 3-EqpXq. The
category 3-EqpXq is again a regular Mal'tsev category. In particular, limits in 3-EqpXq
are levelwise limits in X and regular epimorphisms in 3-EqpXq are determined by regular
epimorphisms f : X Ñ X 1 in X such that fpRq � R1, fpSq � S 1 and fpT q � T 1.
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4.11. Proposition. Let X be an exact Mal'tsev category with binary coproducts. For
any regular epimorphism pf, fR, fS, fT q : pX,R, S, T q Ñ pY,R1, S1, T 1q in 3-EqpXq, the in-
duced morphism f∆ : ∆pR, S, T q Ñ ∆pR1, S1, T 1q is a regular epimorphism as well, so that
fp∆pR, S, T qq � ∆pfpRq, fpSq, fpT qq.

Proof. This combines Proposition 4.8 with Proposition 3.22.

5. Triples of centralising relations

5.1. Ternary Bulatov centrality in varieties of universal algebra. We
recall from [1, 11, 26] the de�nition of Bulatov centrality for triples of equivalence relations
on a common object in a variety of universal algebras based on the so-called term condition
(Proposition 5.3):

5.2. Definition. In a variety of universal algebras V, let X be an algebra and let R, S
and T be congruences on X. We say that R, S centralise T and we write CpR, S;T q
when for every pk � n � lq-ary term t in the theory of V and for all vectors a0, b0 P X

k,
a1, b1 P X

n, and a2, b2 P X
l such that a0Rb0, a1Sb1 and a2Tb2, if the condition

tpx0, x1, a2q � tpx0, x1, b2q

holds for all px0, x1q P
�
ta0, b0u � ta1, b1u

�
ztpb0, b1qu, then tpb0, b1, a2q � tpb0, b1, b2q.

We are going to reinterpret this in terms of ∆pR, S, T q. We �rst write MpR, S, T q for
the set of all three-dimensional matrices

m � pmIqI�3 P lpR, S, T q

such that mI � tpx0, x1, x2q where

xi �

#
ai if i P I

bi if i R I.

Then the following characterisation follows immediately from De�nition 5.2:

5.3. Proposition. R, S centralise T when for every m P MpR, S, T q, the condition
mIYt2u � mI for all H � I � 2 implies mt2u � mH.

The following now clari�es the link with the previous section.

5.4. Theorem. In a Mal'tsev variety, let R, S and T be congruences on a common object.
Then MpR, S, T q � ∆pR, S, T q.

Proof.We view both as congruences onMpR, Sq � ∆pR, Sq: forMpR, S, T q this follows
from Lemma 3.4 (iii) in [26], which also shows that the generators of ∆pR, S, T q are in
MpR, S, T q. It is clear that also MpR, S, T q ¤ ∆pR, S, T q, because the generators of
MpR, S, T q are all contained in ∆pR, S, T q�see Example 4.4.

An alternative proof follows from a result in [25], which shows that in a congruence
modular variety, ∆pR, S, T q is the transitive closure ofMpR, S, T q. This closure operation
is not necessary in the Mal'tsev context.
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5.5. Remark. Note how the symmetry in the variables R, S, T in the three-fold relation
∆pR, S, T q established in Proposition 4.9 implies that in any Mal'tsev variety, also the
condition CpR, S;T q and the one in Proposition 5.3 must be symmetric in those variables.
When this condition holds, we may say that R, S and T centralise each other.

Theorem 5.4 is a �rst step towards a purely categorical approach to Bulatov centrality.
The categorical interpretation of the relation MpR, S, T q now being clear, we next aim to
express the condition that appears in Proposition 5.3 in categorical terms. In particular,
we wish to characterise Bulatov centrality in two equivalent ways: (1) through the concept
of a centralising three-fold equivalence relation and (2) via the existence of some kind of
three-dimensional connector (cf. 3.12 for the two-dimensional case).

5.6. Seven out of eight. In a Mal'tsev variety, triples of equivalence relations that
centralise each other may be characterised as follows.

5.7. Lemma. In a Mal'tsev variety, let R, S and T be equivalence relations on an al-
gebra X such that R, S centralise T in the sense of De�nition 5.2. If q and r are both in
∆pR, S, T q and qI � rI for all H � I � 3, then qH � rH.

Proof. This follows form Proposition 5.3. Let p be a Mal'tsev operation. In the matrix
m P ∆pR, S, T q de�ned by m � ppq, r, sq where sI � rIzt2u, we have mH � ppqH, rH, rHq �
qH while mt2u � ppqt2u, rt2u, rHq � rH and

mIYt2u � ppqIYt2u, rIYt2u, sIYt2uq � ppqIYt2u, rIYt2u, rIq

� rI � ppqI , rI , rIq � ppqI , rI , sIq � mI

for all H � I � 2.

This naturally leads to the object ∆� IpR, S, T q � dI∆pR, S, T q of �three-dimensional
matrices x P ∆pR, S, T q where the entry xI is removed�.

Let R, S and T be equivalence relations on an object X of a �nitely cocomplete
regular Mal'tsev category X. Any choice of a subset I � 3, for 3 � t0, 1, 2u corresponds
to one of the commutative three-cubes which appear in the three-fold equivalence relation
∆pR, S, T q; namely the three-fold extension denoted by ∆pR, S, T qI and displayed as in
Figure 11. The projections are determined by the characteristic function δI de�ned on
page 383. Let us consider the three-fold extension ∆pR, S, T qI , remove its top object
∆pR, S, T qI3 � ∆pR, S, T q, then take the limit Lp∆pR, S, T qIq of the remaining diagram
as in 2.4. It consists of an object dI∆pR, S, T q with projections as in Figure 12.

5.8. Lemma. Given any equivalence relations R, S and T on an object X of a �nitely
cocomplete exact Mal'tsev category, for each choice of I, J � 3 we have

dI∆pR, S, T q � Lp∆pR, S, T qIq � Lp∆pR, S, T qJq � dJ∆pR, S, T q.

Proof. This follows immediately from the symmetry of the equivalence relations of which
the three-fold equivalence relation ∆pR, S, T q consists.
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∆pR, S, T q
d

∆pS,T q
δI p0q ,2

d
∆pR,Sq
δI p2q

�	

d
∆pR,T q
δI p1q

��

∆pS, T q

dS
δI p2q

�	

dT
δI p1q

��

∆pR, Sq
dS
δI p0q ,2

dR
δI p1q

��

S

sδI p1q

��

∆pR, T q

dR
δI p2q

�	

dT
δI p0q ,2 T

tδI p2q

�	
R rδI p0q

,2 X

Figure 11: A choice of projections determined by I � 3 in the three-fold equivalence
relation ∆pR, S, T q

dI∆pR, S, T q
πdST ,2

πdRS

�	

πdRT

��

∆pS, T q

dS
δI p2q

�	

dT
δI p1q

��

∆pR, Sq
dS
δI p0q ,2

dR
δI p1q

��

S

sδI p1q

��

∆pR, T q

dR
δI p2q

�	

dT
δI p0q ,2 T

tδI p2q

�	
R rδI p0q

,2 X

Figure 12: The three-fold extension ∆� IpR, S, T q for I � 3
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This symmetry allows us to �x a choice of I � 3 once and for all, and thus make our
notations somewhat less heavy. We choose I � H and write ∆� pR, S, T q for dH∆pR, S, T q.

5.9. Proposition. In any Mal'tsev variety, let R, S and T be congruences on an al-
gebra X. For a P ∆� pR, S, T q as on the left,

a �

y x

t z

v u

w

y x

t z

v u

t3paq w

we write t3paq � ppppx, y, zq, t, ppu, v, wqq, where ppx, y, zq � mpy, x, zq andm is a Mal'tsev
term. Then the 2� 2� 2 matrix on the right is an element of ∆pR, S, T q.

Proof. First, let us observe that the term t3 satis�es the equations

t3px, y, z, t, x, y, zq � ppppx, y, zq, t, ppx, y, zqq � t,

t3px, x, z, z, u, u, wq � ppppx, x, zq, z, ppu, u, wqq � ppz, z, wq � w,

t3px, y, x, y, u, v, uq � ppppx, y, xq, y, ppu, v, uqq � ppy, y, vq � v.

In view of Remark 4.5, it is not di�cult to prove that the matrices A�G in the dia-
gram of Figure 13 are all in ∆pR, S, T q. Since ∆pR, S, T q is an algebra, it follows that
t3pA,B,C,D,E, F,Gq is an element of ∆pR, S, T q. It is, however, easy to see that this
element is equal to the the 2� 2� 2 matrix on the right in the statement of the proposi-
tion.

So in a Mal'tsev variety, each element of ∆� pR, S, T q may be completed to an element
of ∆pR, S, T q, and when R, S and T centralise each other, this element is uniquely de-
termined. In other words, the cube in Figure 11 given by the choice of projections I � H
does actually coincide with the cube in Figure 12. That is to say, it is a limit cube. This
property happens to be characteristic of triples of centralising relations, and naturally
leads to the following de�nitions.

5.10. Definition. In an exact Mal'tsev category with binary coproducts, consider equi-
valence relations R, S and T on an object X. A three-fold equivalence relation C on R,
S and T is a three-fold ∆-equivalence relation, when the sub�two-fold equivalence
relation of C determined by the relations R and S (respectively R and T , or S and T ) is
∆pR, Sq (respectively ∆pR, T q, or ∆pS, T q)�see Figure 1.

A three-fold ∆-equivalence relation C on R, S and T is a centralising three-fold
∆-equivalence relation when for all I � 3, the three-fold extension consisting of the pro-
jections determined by the set I is a limit cube.

We say that R, S and T centralise each other when they admit a centralising
three-fold ∆-equivalence relation.
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F �

y x

y x

v u

v u

E �

x x

x x

u u

u u

A �

x x

x x

x x

x x

B �

y x

y x

y x

y x

G �

x x

z z

u u

w w

C �

x x

z z

x x

z z

D �

y x

t z

y x

t z

Figure 13: 2� 2� 2 matrices

5.11. Remark. Note that we may reason as in Lemma 5.8 to show that when any of the
cubes, obtained from C by choosing projections determined by a set I � 3, is a limit,
then all of them are such. In particular, we may always choose I � H.

5.12. Proposition. In an exact Mal'tsev category with binary coproducts, whenever three
equivalence relations R, S and T on an object X centralise each other, the three-fold ∆-
equivalence relation ∆pR, S, T q on R, S and T is centralising.

Proof. Let C be a centralising three-fold ∆-equivalence relation on R, S and T . Then
the comparison morphism ∆pR, S, T q Ñ C3 � ∆� pR, S, T q is a regular epimorphism, since
the cube of projections determined byH is a three-fold extension. The result then follows,
because as equivalence relations on ∆pR, Sq, we have ∆pR, S, T q ¤ C3.

5.13. Lemma. In an exact Mal'tsev category with binary coproducts, let R, S and T be
equivalence relations on an object X. Then the following are equivalent:

(i) ∆pR, Sq and ∆pR, T q admit a centralising double equivalence relation, as relations
on R;

(ii) S and T admit a centralising double equivalence relation, as relations on X.
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Proof.We must prove that in the diagram below, the left hand side vertical square is a
pullback if and only if so is the middle one.

∆pR, S, T q
d

∆pR,Sq
1

s{ s{

,2,2

d
∆pR,T q
2

����

∆pS, T q

dT2

����

q∆∆ ,2,2

dS1

s{ s{

Q∆∆

s{ s{

����

∆pR, Sq ,2,2

dR2

����

S

s2

����

qSR ,2,2 QSR

����

∆pR, T q
dR1

s{ s{

,2,2 T

t1

s{ s{

qTR ,2,2 QTR

s{ s{
R ,2,2 X qR

,2,2 QR

One implication is immediate from Lemma 3.26; if the left hand side vertical square is a
pullback, then so is the middle one.

Now assume that the middle vertical square is a pullback. Then, by Lemma 3.26
again, the right hand side vertical square is a pullback. The result now follows, since
kernel pairs commute with pullbacks.

5.14. Proposition. In an exact Mal'tsev category with binary coproducts, let R, S and T
be equivalence relations on an object X. If S and T centralise each other, then so do R,
S and T .

Proof. Use Lemma 5.13: in the diagram of the proof, when the left vertical square is a
pullback, the cubes on the left are limit cubes.

5.15. Example. The discrete equivalence relation ∆X centralises any pair of equivalence
relations S, T , because S and ∆X centralise each other.

5.16. Three-dimensional connectors. The projections in Figure 12 are split epi-
morphisms, and come with canonical splittings induced by the ones expressing the re�ex-
ivity of the relations present in the diagram. They are denoted

σd
RS : ∆pR, Sq Ñ ∆� pR, S, T q, σd

RT : ∆pR, T q Ñ ∆� pR, S, T q

and σd
ST : ∆pS, T q Ñ ∆� pR, S, T q as in Figure 14.

5.17. Proposition. Given any equivalence relations R, S and T on an object X of a �-
nitely cocomplete exact Mal'tsev category, the inclusions σd

RS and σd
RT are jointly extremal-

epimorphic. In particular, so are the three canonical inclusions de�ned above.

Proof. This is a consequence of Proposition 3.30 combined with Proposition 4.8.
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∆� pR, S, T q

θ

��

∆pS, T q

dS2

�	

σdSTlr

dT2

��

∆pR, Sq
dS2

,2

σdRS

@I

dR2

��

S

s2

��

∆pR, T q

dR2

�	

σdRT

LR

dT2 ,2 T

t2

�	
R r2

,2 X

Figure 14: The diagram CubeHpR, S, T q: the dotted morphism exists when R, S and T
are Bulatov connected

5.18. Definition. Consider equivalence relations R, S and T on an object X of a �-
nitely cocomplete exact Mal'tsev category. They are said to be (Bulatov) connected if
a morphism θ : ∆� pR, S, T q Ñ X exists for which the diagram in Figure 14 commutes.
When such a θ exists, it is necessarily unique (by Proposition 5.17) and called a (three-
dimensional) connector on R, S and T .

Commutativity of the diagram in Figure 14 means that the squares induced by the
construction of ∆pR, Sq, ∆pR, T q and ∆pS, T q commute and the morphism θ is such that
θ�σd

RS � r2�d
R
2 , θ�σ

d
RT � t2�d

T
2 and θ�σd

ST � s2�d
S
2 .

Note that the projections here are second projections, whereas ∆� pR, S, T q was com-
puted as a limit from the diagram of �rst projections.

Generalising the construction in Figure 14, in what follows, we write CubeIpDq for the
diagram ∆� 3zID in which the initial object and the arrows pointing towards it are replaced
by the ones of the limit ∆� ID.

5.19. Theorem. In an exact Mal'tsev category with binary coproducts, consider equival-
ence relations R, S and T on an object X. The following conditions are equivalent:

(i) R, S and T are Bulatov connected (De�nition 5.18);

(ii) R, S and T centralise each other (De�nition 5.10).

Proof. (i) ñ (ii) Let θ : ∆� pR, S, T q Ñ X be a connector between R, S and T . Let us
consider ∆� pR, S, T q as the re�exive relation

∆� pR, S, T q
πdRT ,2

p∆pR,T q

,2 ∆pR, T qlr



ON THE TERNARY COMMUTATOR, I 409

on ∆pR, T q where πdRT is one of the projections induced by the limit, together with its
canonical splitting, and p∆pR,T q is the morphism de�ned by

a �

a1 a0

a3 a2

a5 a4

a6

ÞÑ

a3 a2

θpaq a6.

Similarly, we view ∆� pR, S, T q as an equivalence relation on ∆pR, Sq and ∆pS, T q. This
makes it into a centralising three-fold ∆-equivalence relation on R, S and T .

(ii) ñ (i) If there exists a centralising three-fold ∆-equivalence relation C on R, S
and T , then the composite of second projections

r2�d
R
2 �d

∆pR,Sq
2 : ∆� pR, S, T q � C3 Ñ X

is a connector on R, S and T .

5.20. Example. In the context of a Mal'tsev variety, similarly to the presentation of
∆pR, S, T q in Example 4.4, the object ∆� pR, S, T q is generated as a subalgebra of X7 by
elements of the form

b R a

Tb a

b a
S

a

c R c

Td d

c c
S

d

e R e

Te e

f f
S

f

Thus, given a morphism of algebras θ : ∆� pR, S, T q Ñ X, the commutativity of the diagram
in De�nition 5.18 can be reformulated element-wise by asking that for any

x �

x1 x0

x3 x2

x5 x4

x6

P ∆� pR, S, T q

the equalities

θpx0, x1, x2, x3, x0, x1, x2q � x3

θpx0, x1, x0, x1, x4, x5, x4q � x5

θpx0, x0, x2, x2, x4, x4, x6q � x6

hold.
For instance, t3paq � ppppx, y, zq, t, ppu, v, wqq, for ppx, y, zq � mpy, x, zq where m is a

Mal'tsev term, satis�es these equalities.
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5.21. Theorem. In any Mal'tsev variety V, De�nition 5.2 and De�nition 5.18 are equi-
valent.

Proof. Assume that R and S centralise T as in Proposition 5.3. We must then prove
that the map θ � t3 : ∆� pR, S, T q Ñ X is a homomorphism of algebras. Let t be an l-ary
term in the theory of V and let xi for i � 1, . . . , l be elements of ∆� pR, S, T q. Without loss
of generality, we may assume that l � 2 and that x1 and x2 are respectively given by the
cubes

x1
1 x1

0

x1
3 x1

2

x1
5 x1

4

x1
6

and

x2
1 x2

0

x2
3 x2

2

x2
5 x2

4

x2
6

The element tpx1, x2q, which also belongs to ∆� pR, S, T q, is the matrix on the left below.

tpx1
1, x

2
1q tpx1

0, x
2
0q

tpx1
3, x

2
3q tpx1

2, x
2
2q

tpx1
5, x

2
5q tpx1

4, x
2
4q

tpx1
6, x

2
6q

tpx1
1, x

2
1q tpx1

0, x
2
0q

tpx1
3, x

2
3q tpx1

2, x
2
2q

tpx1
5, x

2
5q tpx1

4, x
2
4q

θptpx1, x2qq tpx1
6, x

2
6q

Proposition 5.9 tells us that the matrix on the right, which we shall call q, is in ∆pR, S, T q.
When we apply again Proposition 5.9 to x1 and x2, it follows that the elements x̄1 and
x̄2 given respectively by the cubes

x1
1 x1

0

x1
3 x1

2

x1
5 x1

4

θpx1q x1
6

and

x2
1 x2

0

x2
3 x2

2

x2
5 x2

4

θpx2q x2
6

are in ∆pR, S, T q. So, the element r � tpx̄1, x̄2q is then also an element of ∆pR, S, T q,
because ∆pR, S, T q is an algebra.

Now, q and r are elements of ∆pR, S, T q such that qI � rI for all H � I � 3 and
qH � θptpx1, x2qq and rH � tpθpx1q, θpx2qq. Since R and S centralise T , it follows by
Lemma 5.7 that qH � rH. Therefore θptpx

1, x2qq � tpθpx1q, θpx2qq.
For the converse, we assume that R, S and T are Bulatov connected, so that we have

a morphism of algebras θ : ∆� pR, S, T q Ñ X. Let m be an element of ∆pR, S, T q such
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that mIYt2u � mI for all H � I � 2. We must then show that mH equals mt2u. Since
∆pR, S, T q �MpR, S, T q, it follows that m can be written in the form

m �

tpb0, a1, a2q tpa0, a1, a2q

tpb0, b1, a2q tpa0, b1, a2q

tpb0, a1, b2q tpa0, a1, b2q

tpb0, b1, b2q tpa0, b1, b2q

for some pk � n � lq-ary term t in the theory of V and for all vectors a0, b0 P X
k, a1,

b1 P X
n, and a2, b2 P X

l such that a0Rb0, a1Sb1 and a2Tb2. Hence

tpb0, b1, b2q � t

�
����θ

�
����

b0 a0

b0 a0

b0 a0

a0

�
���, θ

�
���

a1 a1

b1 b1

a1 a1

b1

�
��, θ

�
���

a2 a2

a2 a2

b2 b2

b2

�
��
�
���

� θ

�
����t
�
����

b0 a0

b0 a0

b0 a0

a0

,

a1 a1

b1 b1

a1 a1

b1

,

a2 a2

a2 a2

b2 b2

b2

�
���
�
���

� θ

�
������������

tpb0, a1, a2q tpa0, a1, a2q

tpb0, b1, a2q tpa0, b1, a2q

tpb0, a1, b2q tpa0, a1, b2q

tpa0, b1, b2q

�
�����������

which is equal to tpb0, b1, a2q by the identities of a three-dimensional connector and the
fact that mIYt2u � mI for all H � I � 2.

5.22. Stability properties.We extend the stability properties of ∆pR, Sq to the three-
fold equivalence relation ∆pR, S, T q. We �rst need to recall a well-known technical result:
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5.23. Lemma. [18] In a regular Mal'tsev category, consider the diagram

W �D C

s{

v ,2

k

��

Y �B A

s{

h

��

C c ,2,2

g

��

A

f

��
W

s{

w ,2,2

j

LR

Y

s{

i

LR

D
d

,2,2

t

LR

B

s

LR

where c, d and w are regular epimorphisms and the downward pointing arrows are split
epimorphisms, with upward-pointing splittings. Then the comparison morphism v is a
regular epimorphism and both front and back faces are regular pushouts.

5.24. Proposition. In an an exact Mal'tsev category with binary coproducts, consider
a regular epimorphism f : X Ñ Y . Then for equivalence relations R, S and T on X,
the comparison morphism f∆� pR,S,T q : ∆� pR, S, T q Ñ ∆� pfpRq, fpSq, fpT qq is a regular epi-
morphism.

Proof. By Proposition 3.22, the regular epimorphism f induces regular epimorphisms
f∆pR,Sq : ∆pR, Sq Ñ ∆pfpRq, fpSqq, f∆pR,T q : ∆pR, T q Ñ ∆pfpRq, fpT qq and

f∆pS,T q : ∆pS, T q Ñ ∆pfpSq, fpT qq.

By Lemma 5.23, the morphism

dp∆pR, Sq,∆pR, T qq Ñ dp∆pfpRq, fpSqq,∆pfpRq, fpT qqq

is a regular epimorphism. We may now use Lemma 5.23 on the diagram

∆� pR, S, T q

qx qx

f∆� pR,S,T q ,2

����

∆� pfpRq, fpSq, fpT qq

qx qx

����

∆pS, T q
f∆pS,T q ,2,2

����

∆pfpSq, fpT qq

����

dp∆pR, Sq,∆pR, T qq

qx

,2,2 dp∆pfpRq, fpSqq,∆pfpRq, fpT qqq

qx
dpS, T q

fd
,2,2

18

dpfpSq, fpT qq

18

to see that f∆� pR,S,T q is a regular epimorphism as well.
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5.25. Lemma. In an exact Mal'tsev category with binary coproducts, let C be a three-fold
∆-equivalence relation on equivalence relations R, S and T on an object X, let f : X Ñ Y
be a regular epimorphism, and let D be a three-fold ∆-equivalence relation on fpRq, fpSq
and fpT q such that f : C Ñ D is a (levelwise) regular epimorphism.

If CH is a limit cube, then so is DH. Moreover, if C is a centralising three-fold
∆-equivalence relation, then so is D.

Proof. The four-fold arrow fH : CH Ñ DH is a four-fold extension, as a regular epi-
morphism of three-fold split epimorphisms. Hence the comparison morphism

C3
,2,2

f3

qx qx

����

∆pS, T q

����

f∆pR,Sqqx qx

lr

D3
,2,2

����

∆pfpSq, fpT qqlr

����

dp∆pR, Sq,∆pR, T qq ,2,2

fdqx qx

dpS, T qlr

fdqx qx
d
�
∆pfpRq, fpSqq,∆pfpRq, fpT qq

�
,2,2 dpfpSq, fpT qqlr

is a three-fold extension. By Lemma 3.26, if the left-hand square is a pullback, then the
right-hand square is also a pullback.

5.26. Proposition. In an exact Mal'tsev category with binary coproducts, consider equi-
valence relations R, S and T on an object X and f : X Ñ Y a regular epimorphism. If
R, S and T are Bulatov connected, then fpRq, fpSq and fpT q are Bulatov connected.

Proof. Use Theorem 5.19 and Lemma 5.25.

5.27. Proposition. In an exact Mal'tsev category with binary coproducts, let R, S, T
and T 1 be equivalence relations on an object X. The following are equivalent:

(i) R, S and T are Bulatov connected, and R, S and T 1 are Bulatov connected;

(ii) R, S and T _ T 1 are Bulatov connected.

Proof. We consider two copies of Figure 10, one induced by T , and another induced
by T 1. In each case, we view the three-fold equivalence relation as a down-left pointing
equivalence relation of double equivalence relations, which a coequaliser we shall denote q
and q1, respectively. Choosing �rst projections in q and q1, we now see them as three-fold
extensions with a common domain. We �rst take their pushout, then the pullback of the
induced square. Since the pushout of q and q1 is a four-fold extension as a double split
epimorphism of double extensions (pushouts of regular epimorphisms in an exact Mal'tsev
category), the comparison

∆pR, Sq ,2,2

qx qx

����

Q∆pR,Sq∆pS,T 1q

����

qx qx
Q∆pR,Sq∆pS,T q

,2,2

����

Q∆pR,Sq∆pS,T q �∆pR,Sq Q∆pR,Sq∆pS,T 1q

����

dpR, Sq ,2,2

qx qx

dpQR,T 1 , QS,T 1q

qx qx
dpQRT , QST q ,2,2 dpQRT �R QR,T 1 , QS,T �S QST 1q
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∆� pR, S, T q

ϕ

�'

∆pS, T q

s{

z�

σdSTlr

��

∆pR, Sq

)0

��

,2

σdRS

:D

S

��

pw
cpR, S, T q

∆pR, T q

07

,2

LR

z�

T

z�

ip

R ,2

3;

X

ψ

]g

Figure 15: De�nition of the Bulatov commutator

to the pullback is a three-fold extension.
If we assume that the assertion (i) holds, then the left-hand square and the back square

are pullbacks. According to Lemma 3.26, the vertical faces of the cube are pullbacks, so
that the right hand square of the diagram

∆pR, S, T _ T 1q ,2,2

����

∆pR, Sq ,2,2

����

Q∆pR,Sq∆pS,T q �∆pR,Sq Q∆pR,Sq∆pS,T 1q

����

dp∆pR, T _ T 1q,∆pS, T _ T 1qq ,2,2 dpR, Sq ,2,2 dpQRT �R QR,T 1 , QS,T �S QST 1q

is also a pullback. Conversely, if we assume (ii), then both squares in the left-hand
side of the above diagram are pullbacks, hence the right-hand side will also be a pullback.
According to Lemma 3.25, the left and the back square of the above cube will be pullbacks,
so that (i) holds.

6. The ternary Bulatov commutator

In a �nitely cocomplete exact Mal'tsev category, consider equivalence relations R, S
and T on a common object X. In Figure 15, we construct the colimit cpR, S, T q of the
outer part of the diagram of De�nition 5.18. By Proposition 5.17, the inclusions into
∆� pR, S, T q are jointly extremal-epimorphic. This implies that the comparison morph-
ism ψ : X Ñ cpR, S, T q is always an extremal (= regular) epimorphism, since it can be
computed as in the pushout

∆pR, Sq �∆pR, T q �∆pS, T q
ζ ,2

υ

����
p�q

X

ψ

����

∆� pR, S, T q ϕ
,2 cpR, S, T q



ON THE TERNARY COMMUTATOR, I 415

in the category in X, where the morphisms

ζ � pr2�d
R
2 , s2�d

S
2 , t2�d

T
2 q : ∆pR, Sq �∆pR, T q �∆pS, T q Ñ X

and
υ � pσd

RS, σ
d
RT , σ

d
ST q : ∆pR, Sq �∆pR, T q �∆pS, T q Ñ ∆� pR, S, T q

are induced by the universal property of coproducts. Moreover, the morphism υ is a
strong epimorphism (= regular epimorphism) since the family pσd

RS, σ
d
RT , σ

d
ST q is a jointly

strongly epimorphic family�see Proposition 5.17.
In fact, if we compute the object cpR, S, T q as in the colimit of Figure 15 and we

assume that a : ∆� pR, S, T q Ñ Z and b : X Ñ Z are morphisms such that a�υ � b�ζ, then
b�r2�d

R
2 � a�σd

RS, b�s2�d
S
2 � a�σd

ST and b�t2�d
T
2 � a�σd

RT , so that we obtain a cocone

∆� pR, S, T q

a

�'

∆pS, T q

s{

z�

σdSTlr

��

∆pR, Sq

)0

��

,2

σdRS

:D

S

��

pwZ

∆pR, T q

07

,2

LR

z�

T

z�

ip

R ,2

3;

X

b

]g

By the universal property of the colimit, a unique morphism φ : c pR, S, T q Ñ Z exists
such that φ�ϕ � a and φ�ψ � b. This proves that p�q is a pushout square.

Conversely, if we assume that the object cpR, S, T q is computed as in the pushout p�q,
then the equality ϕ�υ � ψ�ζ gives a cocone as in Figure 15. If we further assume that
there is another cocone over an object Z as above, then the universal property of pushout
will induce a unique morphism φ : c pR, S, T q Ñ Z making everything commutative.

6.1. Definition. In an exact Mal'tsev category with binary coproducts, let R, S and T
be equivalence relations on an object X. The ternary Bulatov commutator rR, S, T sB

of R, S and T is the kernel pair Eqpψq of the morphism ψ.

6.2. Proposition. In an exact Mal'tsev category with binary coproducts, let R, S and
T be equivalence relations on an object X. The following conditions are equivalent:

(i) pR, S, T q are Bulatov connected (De�nition 5.18);

(ii) rR, S, T sB � ∆X .

Proof. First note that rR, S, T sB � ∆X if and only if the arrow ψ constructed above is
an isomorphism.
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To see that (i) implies (ii), assume that R, S and T are Bulatov connected. Then
there is θ : ∆� pR, S, T q Ñ X which makes the diagram

∆pR, Sq �∆pR, T q �∆pS, T q ,2

����

X

ψ

����

∆� pR, S, T q ϕ
,2

θ
*0

cpR, S, T q

λ

$,
X

of solid arrows commute. Since the square is a pushout, we have the dotted arrow λ in
the diagram. Hence ψ is an isomorphism and rR, S, T sB � ∆X .

(ii) implies (i) because if ψ is an isomorphism, then the composite

∆� pR, S, T q Ñ cpR, S, T q � X

is a (three-dimensional) connector on R, S and T .

6.3. Lemma. In an exact Mal'tsev category with binary coproducts, let R, S and T be
equivalence relations on an object X. The regular images ψpRq, ψpSq and ψpT q under the
morphism ψ are Bulatov connected.

Proof. By Lemma 5.24 the factorisation ψ∆� : ∆� pR, S, T q Ñ ∆� pψpRq, ψpSq, ψpT qq is a
regular epimorphism. It easily follows that ϕ factors through ∆� pψpRq, ψpSq, ψpT qq to
produce a connector θ : ∆� pψpRq, ψpSq, ψpT qq Ñ cpR, S, T q.

6.4. Theorem. In an exact Mal'tsev category with binary coproducts, let R, S and T be
equivalence relations on an object X. The induced map ψ is an extremal epimorphism,
universal for making the equivalence relations ψpRq, ψpSq and ψpT q connected.

Proof. This follows immediately from the universal property of colimits and the above
Lemma 6.3.

By 3-ConnpXq we denote the category whose objects are quadruples pX,R, S, T q,
where X is an object of X and R, S and T are equivalence relations on X such that
pR, S, T q are Bulatov connected. 3-ConnpXq is a full and replete subcategory of the cat-
egory 3-EqpXq de�ned on page 401.

6.5. Theorem. Let X be an exact Mal'tsev category with binary coproducts. The category
3-ConnpXq is a re�ective subcategory of 3-EqpXq.

Proof. By Theorem 6.4, the functor F : 3-EqpXq Ñ 3-ConnpXq de�ned by

F pX,R, S, T q � pcpR, S, T q, ψpRq, ψpSq, ψpT qq

is the needed re�ector.
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The following property can be shown directly from the de�nition of the ternary Bulatov
commutator.

6.6. Proposition. In an exact Mal'tsev category with binary coproducts, let R, S and
T be equivalence relations on an object X.

1. For all pR, S, T q and pR1, S1, T 1q such that R ¤ R1 on X, we have

rR, S, T sB ¤ rR1, S, T sB;

2. rR, S, T sB � rR, T, SsB � � � � � rT, S,RsB.

6.7. Proposition. In an exact Mal'tsev category with binary coproducts, let R, S and T
be equivalence relations on an object X. Then rR, S, T sB ¤ R ^ S ^ T .

Proof. Let us show that rR, S, T sB ¤ R. First take the quotient qR : X Ñ X{R
of X by R. Then qRpRq is the discrete relation on the quotient X{R. As in Ex-
ample 5.15, the triple pqRpRq, S

1, T 1q is connected for all equivalence relations S 1, T 1.
In particular, pqRpRq, qRpSq, qRpT qq is connected. By Theorem 6.4, there is a factorisa-
tion qR : F pX,R, S, T q Ñ X{R, so that rR, S, T sB ¤ R.

Recall the construction of the binary Smith-Pedicchio commutator (De�nition 3.14).

6.8. Proposition. In an exact Mal'tsev category with binary coproducts, let R, S, T
and T 1 be equivalence relations on an object X. Then

1. rR, S, T sB ¤ rR, SsS;

2. rR, S, T _ T 1sB � rR, S, T sB _ rR, S, T 1sB.

Proof. 1. According to Proposition 5.14, if rR, Ss � ∆X , then there exists a central-
ising three-fold equivalence relation on R, S and T . By Proposition 6.2, it follows that
rR, S, T sB � ∆X .

2. According to Proposition 6.2 and Proposition 5.27, rR, S, T _ T 1sB � ∆X if and
only if rR, S, T sB _ rR, S, T 1sB � ∆X .

6.9. Proposition. In an exact Mal'tsev category with binary coproducts, consider equi-
valence relations R, S and T on an object X. For every regular epimorphism f : X Ñ Y ,
we have that fprR, S, T sBq � rfpRq, fpSq, fpT qsB.

Proof. By Proposition 4.11 and Proposition 5.24, we have a three-cube in ArrpXq given
by the diagram in Figure 16, where fc : c pR, S, T q Ñ cpfpRq, fpSq, fpT qq is its colimit.
The morphism fpψXq : f Ñ fc in ArrpXq is the commutative square

X
f ,2,2

ψX

����

Y

ψY

����

cpR, S, T q
fc

,2,2 cpfpRq, fpSq, fpT qq
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f∆�

fpϕX q

�'

f∆pS,T q

s{

z�

lr

��

f∆pR,Sq

)0

��

,2

:D

fS

��

pwfc

f∆pR,T q

07

,2

LR

z�

fT

z�

ip

fR ,2

3;

f

fpψX q

]g

Figure 16: Functoriality of the commutator construction

dpEqpfRq,EqpfSq,EqpfT qq
f∆� ,1 ,2

f∆� ,2

,2

πd
EqpfRqEqpfSq

��

∆� pR, S, T q

πdRS
��

f∆� ,2,2σf∆�
lr ∆� pfpRq, fpSq, fpT qq

πd
fpRqfpSq

��
lpEqpfRq,EqpfSqq

f∆pR,Sq,1 ,2

f∆pR,Sq,2

,2

σd
EqpfRqEqpfSq

LR

d
EqpfRq
2

��

∆pR, Sq
f∆pR,Sq

,2,2

σdRS

LR

∆RS
lr

dR2

��

∆pfpRq, fpSqq

σd
fpRqfpSq

LR

d
fpRq
2

��
EqpfRq

fR,1 ,2

fR,2
,2

σEqpfRq

LR

r̄2

��

R
fR

,2,2

∆R

LR

σfRlr

r2

��

fpRq

∆fpRq

LR

r12

��
Eqpfq

f1 ,2

f2

,2

∆Eqpfq

LR

X
f

,2,2

σRX

LR

σflr Y

σ
fpRq
Y

LR

Figure 17: u�ϕX coequalises pf∆� ,1, f∆� ,2q

in X. By Proposition 5.17, the morphisms ψX and ψY are regular epimorphisms, so that
fc is also a regular epimorphism. Hence the above square is a commutative square of
regular epimorphisms. In our context, its remains to prove that it is a pushout square,
so that fprR, S, T sSq � rfpRq, fpSq, fpT qsS by Proposition 3.16. To do so, let us assume
that u : c pR, S, T q Ñ Z and v : Y Ñ Z are morphisms in X such that u�ψX � v�f .

First we are going to prove that u�ϕX coequalises pf∆� ,1, f∆� ,2q. Here pEqpf∆� q, f∆� ,1, f∆� ,2q
denotes the kernel pair of the morphism f∆� . Let us consider the diagram in Figure 17.
Then

u�ϕX�f∆� ,1�σ
d
EqpfRqEqpfSq

� u�ϕX�σd
RS�f∆pR,Sq,1 � u�ψX�r2�d

R
2 �f∆pR,Sq,1

� v�f �r2�fR,1�d
EqpfRq
2 � v�f �f1�r̄2�d

EqpfRq
2

� v�f �f2�r̄2�d
EqpfRq
2 � u�ψX�r2�fR,2�d

EqpfRq
2

� u�ψX�r2�d
R
2 �f∆pR,Sq,2 � u�ϕX�σd

RS�f∆pR,Sq,2

� u�ϕX�f∆� ,2�σ
d
EqpfRqEqpfSq

.
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By a similar argument

u�ϕX�f∆� ,1�σ
d
EqpfRqEqpfT q

� u�ϕX�f∆� ,2�σ
d
EqpfRqEqpfT q

,

u�ϕX�f∆� ,1�σ
d
EqpfSqEqpfT q

� u�ϕX�f∆� ,2�σ
d
EqpfSqEqpfT q

.

Since by Theorem 3.20, the splittings σd
EqpfRqEqpfSq

, σd
EqpfRqEqpfT q

and σd
EqpfSqEqpfT q

are jointly
extremal-epimorphic, we have the equality u�ϕX�f∆� ,1 � u�ϕX�f∆� ,2.

It follows that there is a unique morphism φ from ∆� pfpRq, fpSq, fpT qq to Z such that
φ�f∆� � u�ϕX .

Now, we are going to use the universal property of the colimit cube in order to get
our result. The morphisms u, v and φ are such that

v�r12�d
fpRq
2 �f∆pR,Sq � v�r12�fR�d

R
2 � v�f �r2�d

R
2 � u�ψX�r2�d

R
2

� u�ϕX�σd
RS � φ�f∆� �σ

d
RS � φ�σd

fpRqfpSq
�f∆pR,Sq.

Since f∆pR,Sq is a regular epimorphism, it follows that v�r12�d
fpRq
2 � φ�σd

fpRqfpSq. Similarly,

v�s12�d
fpSq
2 � φ�σd

fpSqfpT q and v�t
1
2�d

fpT q
2 � φ�σd

fpRqfpT q, so

∆� pfpRq, fpSq, fpT qq

φ

�'

∆pfpSq, fpT qq

s{

z�

lr

��

∆pfpRq, fpSqq

)0

��

,2

:D

fpSq

��

pwZ

∆pfpRq, fpT qq

07

,2

LR

z�

fpT q

z�

ip

fpRq ,2

3;

Y

v

]g

is a cocone. The universal property of the colimit cpfpRq, fpSq, fpT qq tells us that there
is a unique morphism γ : c pfpRq, fpSq, fpT qq Ñ Z such that γ�ϕY � φ and γ�ψY � v.
In order to prove that γ�fc � u, let us consider the cocone

∆� pR, S, T q

φ�f∆�

�'

∆pS, T q

s{

z�

lr

��

∆pR, Sq

)0

��

,2

:D

S

��

pwZ

∆pR, T q

07

,2

LR

z�

T

z�

ip

R ,2

3;

X

v�f

]g

The universal property of the colimit cpR, S, T q gives a unique λ : c pR, S, T q Ñ Z such
that λ�ϕX � φ�f∆� and λ�ψX � v�f . By the above results, u�ϕX � φ�f∆� and u�ψX �
v�f , while pγ�fcq�ϕX � γ�ϕY �f∆� � φ�f∆� and pγ�fcq�ψX � γ�ψY �f � v�f . Hence the
uniqueness of λ implies that u � λ � γ�fc.
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7. Conclusion

The aim of this article is to give a categorical description of the Bulatov commutator in
the context of exact Mal'tsev categories, and to show that it has many of the conveni-
ent properties of its universal-algebraic counterparts. In a forthcoming second article,
we restrict the context to algebraically coherent [13] semi-abelian [21] categories, where
we prove that the commutator introduced here corresponds to the ternary Higgins com-
mutator of M. Hartl and the second author [19], which extends the original de�nition
of [20, 22]. This answers the question, what kind of universal property characterises that
commutator.

It is quite clear that what we do in this article can in principle be done for higher
orders�involving n-fold equivalence relations where n ¥ 4.

Another line of investigation which we are currently pursuing is to generalise the
binary Smith-Pedicchio commutator to a higher-order version, necessarily di�erent from
the Bulatov commutator, which may be used to characterise higher central extensions in
the sense of [14]. This answers a question in [29], namely how to appropriately de�ne
higher-order pregroupoids, in such a way that they can be used in the description of
cohomology groups.

Some open questions remain. First of all, the availability of the commutator in con-
gruence modular varieties [23] suggests that its categorical counterpart might be extended
beyond the exact Mal'tsev context. Doing so would involve replacing certain arguments
which are typical for exact Mal'tsev categories, such as those based on the use of three-fold
extensions, by more general ones which stay valid in, say, exact Gumm categories�a con-
text introduced in [9, 10, 6] which seems suitable for this kind of considerations.

Another open question concerns the relationship between 2-nilpotency de�ned in terms
of the commutator considered here (the condition that r∇X ,∇X ,∇Xs vanishes) and the
2-folded objects of Berger-Bourn [2]. This is related to the main question of [25] on the
relation between so-called supernilpotency (de�ned in terms of a higher-order commutator)
and nilpotency (de�ned in terms of binary commutators).
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