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LATENT FIBRATIONS:
FIBRATIONS FOR CATEGORIES OF PARTIAL MAPS

ROBIN COCKETT, GEOFF CRUTTWELL, JONATHAN GALLAGHER, AND
DORETTE PRONK

Abstract. Latent fibrations are an adaptation, appropriate for categories of partial
maps (as presented by restriction categories), of the usual notion of fibration. This paper
initiates the development of the basic theory of latent fibrations and explores some key
examples. Latent fibrations cover a wide variety of examples, some of which are partial
versions of standard fibrations, and some of which are particular to partial map categories
(particularly those that arise in computational settings). Latent fibrations with various
special properties are identified: hyperconnected latent fibrations, in particular, are
shown to support the construction of a fibrational dual – important to reverse differential
programming and, more generally, in the theory of lenses.
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1. Introduction

Fibrations play a fundamental role in categorical logic: in particular, they provide models
of type theories [15] used in the semantics of logical and computational systems. The
purpose of this paper is to develop the analog of fibrations for settings – such as those
describing computation – which are based on partial maps. Because categories of partial
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maps admit an abstract and completely algebraic description as restriction categories , it is
more general and, indeed, more convenient to develop a theory of fibrations for restriction
categories. As the structure of a restriction category is more nuanced than that of a mere
category – due to the necessity to support the partiality of maps – the restriction analogue
of a fibration, which is called a latent fibration, is a necessarily more subtle notion. The
purpose of this paper is to initiate a careful development of the theory of latent fibrations.

There are many reasons why an abstract theory of fibrations, into which partiality of
maps has been baked, might be useful. Recalling that computation is fundamentally partial,
there is an obvious motive to consider such settings in the semantics of computation and,
in particular, to have partiality built into type theories describing computation. Notably
the first use of latent fibrations was in Chad Nester’s MSc. thesis [21], where they were
used in the study of realizability. More recently the desire to understand the semantics of
differential programming, which has received increased attention due to its connection to
machine learning 1, has further stimulated the development of a general theory of partiality
in fibrations.

In differential programming one needs to calculate the derivative of partially-defined
smooth functions (that is, smooth functions defined on some open subset of their domain).
The categorical structure of the so-called (total) “forward” derivative was developed in [3]:
this characterized the operation which takes a smooth map f : Rn −→ Rm and produces
the map

D[f ] : Rn ×Rn −→ R
m

whose value at a pair (x, v) is J(f)(x) · v: the Jacobian of f , at x, in the direction v. The
structure of differentials for partially defined smooth functions is described in [4] which
introduced differential restriction categories. In this case, the structure is axiomatized
by an operation which still takes a map f : A −→ B and produces a map D[f ] : A × A
−→ B, but now with additional axioms relating the partiality of D[f ] to that of f : in
particular, one asks that D[f ] = f × 1, so that the partiality of D[f ] is entirely determined
by the partiality of f . This structure, while being interesting in its own right, is also of
key importance in understanding how one can build differential manifolds at this level of
generality [6, Section 6].

Differentials are tightly linked to fibrations because the derivative, both in the total
and the restriction case, can be regarded as a section of the “simple fibration” over X.
The simple fibration over X is given by the category whose objects are pairs (Σ, A), to be
thought of as an object A in the context Σ, with a map from (Σ, A) to (Σ′, B) consisting
of a pair of maps

f : Σ −→ Σ′ and g : Σ× A −→ B

where the second component g uses the context. Then, given a map f : Σ −→ Σ′ in the base
category, the pair (f,D[f ]) gives a map in the simple slice category, and the functoriality
of this operation is precisely the chain rule.

1For example, Facebook’s Chief AI scientist has argued that deep learning be renamed differential
programming (see [19]) and Tesla’s director of AI has mirrored this sentiment (see [17]).
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In the restriction case, the construction of the ordinary simple fibration does not inherit
a restriction structure; however, a restriction structure is inherited when we require pairs
(f, g) such that g = f × 1. This new construction does not provide an ordinary fibration
over X, and, indeed, there is no way to obtain an ordinary fibration. However, what
it does provide is a latent fibration, which is, of course, the main subject of this paper.
Intriguingly, sections of these latent simple fibrations recapture the additional axioms of
differential restriction categories because the equation D[f ] = f × 1 is then forced.

There is an important addendum to this story: the backpropagation algorithm, which
is widely used in machine learning, is based on computing the reverse differential [9] as
computationally this can be much more efficient. The reverse derivative takes a smooth
map f : Rn −→ Rm and produces the map

R[f ] : Rn ×Rm −→ R
n

whose value at a pair (x, v) is JT (f)(x) · v, the transpose of the Jacobian of f , at x, in
the direction v (note its difference in type from the forward derivative D[f ] : Rn × Rn

−→ Rm). Understanding the abstract properties of the reverse differential allows one to
apply these machine learning techniques to different settings: for example, they have
already been used to develop machine-learning algorithms for Boolean circuits [24]. Abadi
and Plotkin introduced a simple differential programming language whose main feature is
the introduction of a language primitive for computing reverse derivatives [1]. Reverse
differential restriction categories were introduced in [12] and shown to provide a categorical
model for the operational semantics of Abadi and Plotkin’s language.

When we look at the fibrational structure of the reverse derivative operation, it can
also be seen as giving a section to a fibration, but instead of being a section of the simple
slice over X, now it is a section of the fibrational dual of the simple slice over X. The
fibrational dual can be defined for any ordinary fibration by taking the opposite category
in each fibre. For the simple fibration, its dual is the category whose objects are pairs
(A,A′) as before, but now a map from (A,A′) to (B,B′) consists of a pair of maps

f : A −→ B, f ∗ : A×B′ −→ A′.

Fibrational duals have also received renewed interest due to their role in the theory of
lenses. Lenses were originally developed for database theory [16] but are now used more
widely in learning systems, and elsewhere [14, 22]. The research in this paper opens the
door to the formal study of partial lenses.

Thus, not only is it useful for the theory of reverse differential restriction categories to
be able to form the fibrational dual of a latent fibration, but they are also, more generally,
important in the theory of partial lenses. However, in general, it is simply not the case
that a latent fibration will have a fibrational dual! This is basically because the opposite
of a restriction category is not generally a restriction category. Thus, taking the “opposite
in each fibre” of a latent fibration will not necessarily produce a latent fibration. However,
in the particular cases of interest, which use the simple latent fibration 3.3.2 and the
codomain latent fibration 3.5.1, it is clear that it is possible to define a suitable fibrational
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dual. Thus, one of the goals of this paper is to develop the theory of latent fibrations
sufficiently so that the circumstances under which it is possible to define the fibrational
dual of a latent fibration are fully understood.

Of course, aside from the aforementioned motivations, latent fibrations are of intrinsic
mathematical interest in their own right. The definition of a latent fibration (Definition
3.2) involves a subtle change of the normal notion of Cartesian map to what, in order to
clearly distinguish the notion, we call a prone map. Latent fibrations first appeared in
[21] and were defined in a more complicated – albeit equivalent – manner: see Definition
A.1 in Appendix A. It is reasonable to wonder whether these definitions are ad hoc.
A theoretically convincing argument that the notion has a solid basis can be found in
Section 6.6 where it is shown that the notion of latent fibration corresponds precisely to
the 2-categorical notion introduced by Street [23] for the (carefully chosen) 2-category of
restriction semi-functors and restriction transformations.

While many results about ordinary fibrations are true of latent fibrations, there are
some subtle aspects to the theory. For example, while prone arrows always compose and
isomorphisms are always prone, one might expect that partial isomorphisms should be
prone as these generalize isomorphisms in a partial setting. However, they are not in
general. This failure, in fact, leads to the investigation of important additional properties
that a latent fibration can satisfy (see Section 4). The first additional property we study
is that of being an admissible latent fibration (see Section 4.1): in admissible latent
fibrations restriction idempotents have prone liftings which are restriction idempotents.
An important consequence of being admissible is that one can split the idempotents to
obtain an r-split latent fibration: these then can be linked to fibrations of partial map
categories and M-categories (see Section 5). The next additional property we consider is
that of being separated (see Section 4.9), which is the requirement that the projection
functor separates restriction idempotents. This turns out to be equivalent to asking that
all restriction idempotents in the domain category be prone. When both these conditions
hold the latent fibration is a hyperfibration (see Section 4.19), and this is in turn equivalent
to asking that the projection functor of the latent fibration be a hyperconnection ([10,
pg. 39]). We provide separating examples for each of these additional requirements, and
develop their properties: in particular, we show that latent hyperfibrations have fibrational
duals.

After developing the basic theory, we turn to obtaining an explicit description of latent
fibrations as categories of partial maps (as M-categories), Section 5. Indeed, we completely
characterize the r-split latent fibrations of partial map categories, showing that they are
equivalent to giving a fibration between the domain categories which is “M -plentiful” –
this is a requirement, that M -maps lift in an appropriate manner. Finally, in the last
section, Section 7, we describe how to define the fibrational dual of a latent hyperfibration.

The authors are grateful for Bob Rosebrugh’s many contributions to the category
theory research community, through his interesting and enlightening talks and papers, his
many years of service with TAC, and, on a personal level, his discussions with each of us.
We hope that the present paper may serve as a continuation of his work on lenses and



LATENT FIBRATIONS: FIBRATIONS FOR CATEGORIES OF PARTIAL MAPS 427

fibrations (e.g., [16]) into settings which involve partial maps.

2. Restriction Categories

In this section we give a brief introduction to restriction categories concentrating on some
of the less well-known aspects that are relevant to this paper. For further details see [5, 8].

2.1. Restriction categories. A restriction category (see [5] for details) is a category
equipped with a restriction combinator which given a map f : A −→ B, returns an
endomorphism on the domain f : A −→ A which satisfies just four identities2:

[R.1] ff = f [R.2] f g = g f [R.3] f g = fg [R.4] fg = fgf

The prototypical restriction category is the category of sets and partial maps, Par. The
restriction of a partial map in Par is the partial identity on the domain which is defined
precisely when the partial map is defined.

In any restriction category f is always an idempotent and any idempotent e = ee with
e = e is called a restriction idempotent. It is not the case that every idempotent need
be a restriction idempotent. The restriction idempotents on an object A form a meet
semi-lattice, with the meet given by composition, which we denote by O(A): the elements
of O(A) may be regarded as distinguished predicates on the object A.

Restriction categories are always full subcategories of partial map categories (see [5,
Proposition 3.3]) and this means that parallel maps in a restriction category can be
partially ordered: the partial order is defined using the restriction by f ≤ g if and only if
fg = f and is called the restriction order, and in fact gives an enrichment.

A map f : A −→ B in a restriction category X is said to be total in case f = 1A. Total
maps compose and include identities and, thus, form a (non-full) subcategory denoted
Total(X). Any category can be endowed with a trivial restriction which takes each map
to the identity on its domain: thus, every category occurs as the total maps of some
restriction category.

A map s : A −→ B in a restriction category is a partial isomorphism if there is a
map s(−1) : B −→ A – the partial inverse of s – with ss(−1) = s and s(−1)s = s(−1) which
we shall often write more succinctly as ŝ := s(−1). The partial inverse of a map is unique.
Partial isomorphisms include all the restriction idempotents and are closed to composition.
A restriction category in which all the maps are partial isomorphisms is called an inverse
category. Inverse categories are to restriction categories what groupoids are to ordinary
categories.

2.2. Restriction (semi)functors and transformations. There are various sorts
of morphisms between restriction categories which can be considered: the most basic is
that of a restriction functor, F : X −→ Y, which is a functor between the categories
which in addition preserves the restriction structure, that is F (f) = F (f). Restriction

2Composition is written in diagrammatic order in this paper.
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functors so defined preserve total maps, restriction idempotents, and partial isomorphisms.
As we shall see, the re-indexing or substitution functors for a latent fibration generally
only satisfy the conditions for the slightly weaker notion of a restriction semi functor;
thus, it will be important to briefly review these and the related notion of a restriction
transformation between restriction semifunctors.

2.3. Definition. Let X and Y be restriction categories.

• A restriction semifunctor F from X to Y is a semifunctor from X −→ Y (that is,
a map on objects and arrows which preserves domains, codomains, and composition,
but not necessarily identities) which preserves restrictions. Note that for a restriction
semifunctor, while F (1X) is not the identity, it is still a restriction idempotent since

F (1X) = F (1X) = F (1X).

• If F,G : X −→ Y are restriction semifunctors, a restriction transformation
α : F ⇒ G is a natural transformation from F to G such that for each X ∈ X,
αX = F (1X).

Restriction functors and transformations organize themselves into a 2-category. Sim-
ilarly, restriction semifunctors and their transformations organize themselves into a 2-
category, which we will denote SRest.

2.4. M-categories and r-split restriction categories. A restriction category is
r-split if all its restriction idempotents split. Given an arbitrary restriction category, X,
one may always split its restriction idempotents to obtain Splitr(X), an r-split restriction
category. The 2-category of r-split restriction categories, restriction functors, and total
natural transformations is 2-equivalent to the 2-category of M-categories [5]. M-categories
are categories with a system of monics which is closed to composition and pullbacks along
any map. Functors between M-categories must not only preserve the M-maps but also
the pullbacks along M-maps. Natural transformations between M-functors are natural
transformations which, in addition, are Cartesian (or tight) for transformations between
M-maps – that is the naturality squares for M-maps are pullbacks. The 2-equivalence is
given on the one hand, by moving from an M-category (X,MX) to its partial map category
Par(X,MX) and on the other hand by moving to the M-category consisting of the total
map category of the r-split restriction category, Total(E), with the restriction monics,
Monic(E), (Total(E),Monic(E)). The restriction monics can be variously described as
partial isomorphisms which are total, restriction sections, or, more interestingly, as left
adjoints with respect to the partial order enrichment.

2.5. Precise diagrams. In a restriction category, we shall call a commuting diagram
(viewed as a morphism from a directed graph) precise in case the restriction of the overall
map that the diagram describes is equal to the restriction of every map leaving the start
node.
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2.6. Definition. In a restriction category, a commuting triangle

A
g

��
k
��
B

f
// C

is precise in case g = k. We refer to k as the left factor (and f the right factor) of the
triangle.

The following are some useful observations on precise triangles:

2.7. Lemma. In any restriction category:

(i) A commuting triangle
A

g

��
k
��
B

f
// C

is precise if and only if kf = k.

(ii) A commuting triangle with right factor a restriction idempotent

A
g

��
k
��
B

e=e
// C

is precise if and only if g = k.

(iii) A commuting triangle with right factor a partial isomorphism

A
g

��
k
��
B α

// C

is precise if and only if k = gα(−1).

(iv) The commuting triangle
A

f
��

f

��
A

f
// B

is precise.
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Proof.

(i) We have the calculations:

(⇒) If g = k then as g = kf we have kf = kfk = gk = kk = k.

(⇐) If kf = k then g = kf = kf = k.

(ii) We shall use (i) above: when the triangle is precise we have g = ke = ke = k.
Conversely, if k = g then ke = ke = k so the triangle is precise.

(iii) Again we use (i) above: when the triangle is precise we have gα(−1) = kαα(−1) =
kα = k. Conversely, if k = gα(−1) we have

kα = kαk = gα(−1)αk = gα(−1)k = gα(−1)k = kk = k

showing the triangle is precise.

(iv) ff = f is precise with left factor f because f = f .

2.8. Cartesian restriction categories. Cartesian restriction categories are described
in [8]. They are restriction categories with a restriction terminal object and restriction
products. A restriction terminal object in a restriction category, X, is an object 1 ∈ X
such that for every object X ∈ X there is a unique total map !X : X −→ 1 such that every
map f : X −→ 1 has f = f !X . Given two objects X, Y ∈ X a restriction product of X
and Y is an object X × Y together with two projections π0 : X × Y −→ X and π1 : X × Y
−→ Y which are total and are such that given any other object Z with two maps a : Z
−→ X and b : Z −→ Y there is a unique map 〈a, b〉 : Z −→ X × Y such that 〈a, b〉π0 = ba
and 〈a, b〉π1 = ab.

2.9. Latent pullbacks. The notion of a latent pullback in a restriction category was
introduced in [11, pg. 459]; here we give a slight modification of the original definition:

2.10. Definition. A commuting square in a restriction category

A′

a
��

f ′ // B′

b
��

A
f
// B

is a latent pullback in case f ′b = f ′ and af = a (that is, it is precise) and given any
e-commuting square (where e = e is a restriction idempotent)

X

x1
��

x0 //

=e

B′

b
��

A
f
// B
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that is ex1f = ex0b, where e ≤ x1f and e ≤ x0b there is a unique map k : X −→ A′

X
x0

≤
((

x1
≥

��

k
  
A′

a
��

f ′
// B′

b
��

A
f
// B

such that k = e, kf ′ ≤ x0, ka ≤ x1, and kf ′ = ka = k.

The original definition asked that for any (ordinary) commuting square x0b = x1f there
was a unique k with the same requirements above, except that k = x1f = x0b instead
of k = e. It is readily seen that the two definitions are equivalent, as if e is a restriction
idempotent on X such that e ≤ x1f and e ≤ x0b, then e = ex1f = ex0b.

We recall some basic properties of latent pullbacks:

2.11. Lemma.

(i) The two commuting squares

A′

a
��

f ′ // B′

b
��

A
f
// B

and

Z

z
��

y // B′

b
��

A
f
// B

are latent pullbacks if and only if there is a unique mediating partial isomorphism
α : A′ −→ Z with αz = a , αy = f ′, α = a = f ′, and α(−1) = z = y and one of the
squares is a latent pullback.

(ii) If the two smaller squares below are latent pullbacks

A′

a
��

f ′ // B′

b
��

g′ // C ′

c
��

A
f
// B g

// C

then the outer square is a latent pullback. Furthermore, if the right square is a latent
pullback and the perimeter is a latent pullback then the left square is a latent pullback.

(iii) If α : X −→ Y is a partial isomorphism and f : Z −→ Y is any map, then

Z
fα(−1)

//

fα(−1)

��

Z

f
��

X α
// Y

is a latent pullback.
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(iv) If the latent pullback square

A′

a
��

f ′ // B′

b
��

A
f
// B

has f a partial isomorphism then f ′ is a partial isomorphism.

The last part of the lemma follows by combining parts (i) and (iii).

3. Latent Fibrations

We begin with the definition of a latent fibration before looking at examples and developing
some of their basic properties.

3.1. The definition.

3.2. Definition. Let E and B be restriction categories and p : E −→ B a restriction
semifunctor.

(i) An arrow f ′ : X ′ −→ X in E is p-prone in case whenever we have g : Y −→ X in E
and h : p(Y ) −→ p(X ′) in X such that hp(f ′) = p(g) is a precise triangle (Definition

2.6) then there is a unique lifting of h to h̃ : Y −→ X ′ so that p(h̃) = h and h̃f ′ = g
is a precise triangle:

Y

h̃
��

g

��
7→

p(Y )

h
��

p(g)

##
X ′

f ′
// X p(X ′)

p(f ′)
// p(X)

(ii) p : E −→ B is a latent fibration if for each X ∈ E and each f : A −→ p(X) in B
such that f = fp(1X), there is a p-prone map f ′ : X ′ −→ X sitting over f (that is,
p(f ′) = f).

Note that if p is a restriction functor (so that p preserves identities) then the condition
f = fp(1X) is vacuous. However, if p is a genuine semifunctor, then that condition is
necessary, as if there is an f ′ : X ′ −→ X sitting over f , then since f ′ = f ′1X , p(f ′) =
p(f ′)p(1X); i.e., f must satisfy f = fp(1X).

Most of our examples of latent fibrations will be restriction functors; however, there is
at least one important example of a latent fibration which is a genuine semifunctor (the
forgetful functor from the restriction idempotent splitting of X to itself: see Proposition
3.12).

More importantly, however, the main reason we have chosen to work with restriction
semifunctors is that latent fibrations are precisely fibrations in the 2-category SRest of
restriction categories, semifunctors, and restriction transformations: see Section 6.
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3.3. Examples of latent fibrations. It is clear that, for any restriction category X,
the identity functor is a latent fibration. Furthermore, for any restriction categories X and
Y, the projection π1 : X×Y −→ Y is a latent fibration. Moreover, there are a variety of
other examples of latent fibrations: some are immediately seen to be restriction versions
of a normal fibration counterpart; others are particular, however, to restriction categories.
We present an overview of some of the basic examples before going into a more detailed
description of them.

(3.2.1) For any restriction category X, the identity functor 1X : X −→ X and projections
π1 : Y ×X −→ X are a latent fibrations.

(3.2.2) If X is a Cartesian restriction category, there are two latent versions of the simple
slice fibration: the “lax” simple slice X(X) and the “strict” simple slice X[X]
mentioned in the Introduction. See Definition 3.4 and Proposition 3.5.

(3.2.3) If X is a restriction category with latent pullbacks, there are strict and lax versions
of the codomain fibration: see Definition 3.6 and Proposition 3.7.

(3.2.4) For any functor F : X −→ Set one may form the category of elements as a (normal)
discrete fibration ∂F : Elt(F ) −→ X. If X is a restriction category then Elt(F ) is
also a restriction category and ∂F is a latent fibration: see Section 3.7.1.

(3.2.5) For any restriction category X, there is a latent fibration of “propositions” (re-
striction idempotents) over X: see Definition 3.8 and Proposition 3.9.

(3.2.6) For any restriction functor F : A −→ X, there is a latent fibration of “assemblies”,
denoted Asm(F ): see Definition 3.10 and 3.11.

(3.2.7) For any restriction category X, the forgetful functor from the restriction idempo-
tent splitting of X to itself, Splitr(X) −→ X is a latent fibration which is a genuine
semifunctor: see Proposition 3.12.

3.3.1. Identity and projection functors. Clearly identity functors and projections
are latent fibrations. The prone map over a map for the identity functor is just itself.
For a projection π1 : Y ×X −→ X the prone map over a map f : X −→ X ′ at (Y,X ′) is
(1, f) : (Y,X) −→ (Y,X ′).

3.3.2. Simple latent fibrations. We consider simple fibrations for Cartesian restriction
categories:

3.4. Definition. If X is a Cartesian restriction category, the domain category of the lax
simple fibration, X(X), is described as follows:

Objects: Pairs of objects, (Σ, X), of X, where Σ is called the “context”;

Maps: (f, f ′) : (Σ, X) −→ (Σ′, X ′) where f : Σ −→ Σ′ and f ′ : Σ ×X −→ X ′ are maps in
X such that π0f ≥ f ′;
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Composition: Identities are (1Σ, π1) : (Σ, X) −→ (Σ, X) and given (f, f ′) : (Σ, X) −→
(Σ′, X ′) and (g, g′) : (Σ′, X ′) −→ (Σ′′, X ′′) the composite is the map (f, f ′)(g, g′) :=
(fg, 〈π0f, f

′〉g′);

Restriction: (f, f ′) := (f, f ′π1).

The strict simple fibration is the subcategory X[X] determined by the maps (f, f ′) for
which π0f = f ′.

The strict simple fibration was discussed in the introduction with respect to the
differential of smooth partial maps as this differential may be seen as a section of the strict
simple fibration.

3.5. Proposition. If X is a Cartesian restriction category, then X(X) and X[X] are
Cartesian restriction categories, and the obvious projections to X are latent fibrations.

Proof. We begin by showing that X(X) is a Cartesian restriction category. For identity
maps to be well-defined we need π01 ≥ π1, which is obviously true as both sides are
restrictions of total maps. To show composition is well defined consider (f, f ′)(g, g′) =
(fg, 〈π0f, f

′〉g′): we must show π0fg ≥ 〈π0f, f ′〉g′ which is so by:

〈π0f, f ′〉g′ ≤ 〈π0f, f ′〉π0g = f ′π0fg = f ′π0fπ0fg = π0fπ0fg = π0fg.

For the restriction product structure, set (Σ, X)× (Σ′, X ′) := (Σ× Σ′, X ×X ′),

π0 := (π0, π1π0) : (Σ, X)×(Σ′, X ′) −→ (Σ, X), π1 := (π1, π1π1) : (Σ, X)×(Σ′, X ′) −→ (Σ′, X ′)

and
〈(f, f ′), (g, g′)〉 := (〈f, g〉, 〈〈π0π0f, π1π0〉f ′, 〈π0π1g, π1π1〉g′〉).

We leave the remaining details of checking this is a Cartesian restriction category to the
reader.

There is an obvious restriction functor

π : X(X) −→ X;

(Σ, X)

(f,f ′)
��

7→

Σ

f

��
(Σ′, X ′) Σ′

We set the prone arrow of f : Σ −→ Σ′ at (Σ′, X) to be (f, π0fπ1) : (Σ, X) −→ (Σ′, X); the
lifting property is given by

(Γ, Y )

h̃:=(h,g′)
��

(g,g′)

&&
7→

Γ
g

""
h

��
(Σ, X)

(f,π0fπ1)

// (Σ′, X) Σ
f
// Σ′
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The lifting h̃ is well-defined as g′ ≤ π0g = π0h since the base triangle is precise. The
top triangle commutes since

(h, g′)(f, π0fπ1)

= (hf, 〈π0h, g
′〉π0fπ1)

= (g, 〈π0h, g′〉π0f〈π0h, g
′〉π1)

= (g, g′π0hfπ0hg
′)

= (g, g′π0gπ0hg
′)

= (g, g′) (since g′ ≤ π0g = π0h)

The top triangle is precise since the bottom triangle is. The uniqueness of h̃ follows from
a similar calculation to showing the top triangle commutes. Thus, the lax slice X(X) is a
latent fibration, and the result for the strict slice X[X] follows similarly.

3.5.1. Codomain latent fibrations. When X has latent pullbacks, restriction variants
of the codomain fibration form another source of examples. In fact, just as in the ordinary
case (for example, see [15]), a restriction category has latent pullbacks if and only if the
underlying functor from the (strict) arrow category is a latent fibration.

3.6. Definition. For any restriction category X, the restriction category X is defined
as follows:

Objects: are maps a : A′ −→ A of X;

Maps: are pairs of maps (f, f ′) : a −→ b such that f ′b ≤ af and f ′b = f ′:

A′

≥a
��

f ′ // B′

b
��

A
f
// B

we will refer to such lax squares as being semi-precise;

Composition: if (f, f ′) : a −→ b and (g, g′) : b −→ c then the composite is (fg, f ′g′) : a
−→ c;

Restriction: the restriction of (f, f ′) : a −→ b is (f, f ′) : a −→ a.

The restriction category X→ has the same definition except that the maps require the
squares commute (and are still semi-precise). Thus there is an embedding X→ ⊆ X which
is the identity on objects but, in general, a strict inclusion on maps.
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We define the functor ∂ by

∂ : X −→ X;

a

(f,f ′)
��
7→

A

f
��

b B

it is clearly a restriction functor. The restriction functor ∂→ : X→ −→ X is defined similarly.

3.7. Proposition. For any restriction category, X, the categories X and X→ are
restriction categories, and the restriction functors, ∂ : X −→ X and ∂ : X→ −→ X are
latent fibrations if and only if X has latent pullbacks.

Proof. In X , composites are well-defined as

afg ≥ f ′bg ≥ f ′g′c and f ′g′c = f ′(g′c) = f ′g′

and restrictions are well-defined as

af = afa ≥ f ′ba = f ′ba = f ′a and f ′ a = f ′b a = f ′b a = f ′b af a = f ′b af = f ′b = f ′

Similarly composites and restrictions are well-defined in X→.
First we show that, when X has latent pullbacks, we have ∂-prone liftings, making it a

latent fibration.
Latent pullback gives a prone arrow in X by considering

C ′

c

��

g′

''
w̃   

P

a′

��

f ′
// A′

a

��

C

≥

g

''
w   

B
f
// A

where the back face is a lax semi-precise square (so cg ≥ g′a), the bottom triangle is
precise (so w = g and it commutes) and the square with apex P is a latent pullback. The
back face g′a = g′-commutes so there is a unique w̃ with w̃ = g′, w̃f ′ ≤ g′, w̃a′ ≤ cw. The
top triangle is now clearly precise as w̃f ′ = g′ since w̃ = w̃f ′ = g′. Finally, we must show
the left square is semi-precise:

w̃a′ = w̃a′w̃ = w̃a′fw̃ = w̃a′fw̃ = w̃f ′aw̃ = w̃f ′aw̃ = w̃f ′w̃ = w̃f ′w̃ = w̃w̃ = w̃.

This shows that latent pullbacks are prone arrows; thus, if X has latent pullbacks ∂ : X 

−→ X is a latent fibration.
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We need to show that X→ also has prone liftings given by the latent pullback. For this
we need to show that if the back square is an equality the front must also be an equality.
This is given by the following calculation:

ŵa′ = ŵ = g′ = g′a = cg = cg = cw = cw

Conversely, suppose ∂ : X −→ X is a latent fibration and we have a cospan

f : B −→ A, a : A′ −→ A.

Then we get a prone lift of f ; that is, is a semi-precise square

P
f ′ //

≥a′

��

A′

a
��

B
f
// A

We can then modify a′ by the idempotent f ′ = f ′a to get a precise square

P
f ′ //

=f ′a′

��

A′

a
��

B
f
// A

and we claim this is a latent pullback of f and a. Indeed, if we have an e-commuting
square

Z
z0 //

z1
��

A′

a
��

B
f
// A

Then we can make a lax semi-precise square

Z
ez0 //

z1
��
≥

A′

a
��

B
f
// A

and then the universal property of the prone lift of f gives a unique map from Z to P
which one can check satisfies the required properties to make the precise square a latent
pullback.
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If ∂ : X→ −→ X is a latent fibration, then the existence of latent pullbacks follows
similarly to above, except that last lax semi-precise square above is replaced by the
semi-precise square

Z
ez0 //

ez1
��

=

A′

a
��

B
f
// A

and one uses the universal property of the prone lift of f relative to this square instead.

If X has latent pullbacks, it is not hard to see that the (strict/lax) simple latent
fibration can be embedded into the (strict/lax) codomain latent fibration in a manner
analogous to that for ordinary fibrations:

X(X)

π

��
→

X 

∂
��

X X

;

(Σ, X)

(f,f ′)
��

7→

Σ×X
〈π0f,f ′〉

��
≥

π0 // Σ

f

��
(Σ′, X ′) Σ′ ×X ′ π0 // Σ′

3.7.1. Discrete latent fibrations. LetX be a restriction category and F : Xop −→ Set
any functor (which ignores the restriction structure), then we may form the category of
elements of F , Elt(F ):

Objects: (X, x) where X is an object of X and x is an element of F (X);

Maps: f : (X, x) −→ (Y, y) where f : X −→ Y in X and x = F (f)(y).

The functor ∂F : Elt(F ) −→ X has ∂F (X, x) = X and ∂F (f) = f is a discrete fibration in
the usual sense. It is also a discrete latent fibration, in the sense that all the fibres are
discrete.

The restrictions in Elt(X) are just the restrictions in X. We must check that this is
well-defined; that is, that if f : (X, x) −→ (Y, y) that f : (X, x) −→ (X, x) is a map of Elt(F ).
For this we need F (f)(x) = x which follows as F (f)(x) = F (f)(F (f)(y)) = F (ff)(y) =
F (f)(y) = x. The restriction identities are then immediate.

This is a latent fibration as one can easily check that the prone map above f : X −→ Y
at (Y, y) is the usual Cartesian map, namely, f : (X,F (f)(y)) −→ (Y, y).

3.7.2. Latent fibrations of propositions. One way in which restriction idempotents
can be used to construct a discrete latent fibration is as follows:

3.8. Definition. Let X be a restriction category, and define the restriction category O(X)
by:

Objects: pairs (X, e) where X is an object of X, and e ∈ O(X) is a restriction idempotent
on X.
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Maps: f : (X, e) −→ (X ′, e′) are maps f : X −→ X ′ of X such that e ≤ fe′, or equivalently
e = efe′.

Composition: is composition in X. This is well-defined since if

(X, e)
f−−→ (X ′, e′)

f ′−−→ (X ′′, e′′)

are maps of O(X) given by f : X −→ X ′ and f ′ : X ′ −→ X ′′ in X, then we have

eff ′e′′ = efe′ff ′e′′ = efe′ff ′e′′ = efe′f ′e′′ = efe′f ′e′′ = efe′ = e

so that ff ′ gives a map (X, e) −→ (X ′′, e′′) in O(X).

Identities: as in X. That is, 1(X,e) = 1X : this is well-defined as e = e1Xe.

Restriction: also as in X, with f : (X, e) −→ (X, e) for f : (X, e) −→ (X ′, e′) given by
f : X −→ X. This is well-defined as

e = efe′ = effe′ = eeffe′ = efefe′ = ef efe′ = efe

3.9. Proposition. The canonical map pO : O(X) −→ X is a latent fibration.

We refer to pO as the latent fibration of propositions.

Proof. Associativity of composition, the restriction combinator axioms, and the require-
ments on identity maps all hold in O(X) immediately since they hold in X.

There is an obvious restriction functor

pO : O(X) −→ X;

(X, e)

f

��
7→

X

f

��
(Y, d) Y

Suppose f : X ′ −→ X in X and let (X, e) be an object of O(X). Then (X ′, fe) is also

an object of O(X), and f : (X ′, fe) −→ (X, e) is a map in O(X) since fe = fefe. We shall
show that this map is prone over f . To that end, suppose that g : (Y, e′) −→ (X, e) and
h : Y −→ X ′ are maps in O(X) and X respectively such that

Y
g

  
h
��
X ′

f
// X

is precise in X, then h : (Y, e′) −→ (X ′, fe) is a map in O(X) since hfe = hfe = ge ≥ e′.
Furthermore this gives a precise triangle in O(X) showing f : (X ′, fe) −→ (X, e) is prone.
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3.9.1. Assembly categories. Another example comes from [21] and is constructed from
a category of assemblies, Asm(F ), associated to a restriction functor, F : A −→ X, from
any restriction category, A, called the category of realizers, into a Cartesian restriction
category, X, the base.

3.10. Definition. The category of assemblies, Asm(F ), is defined as follows:

Objects: ϕ ∈ O(F (A)×X) for all objects A ∈ A and X ∈ X.

Maps: f : ϕ −→ ϕ′, where ϕ ∈ O(F (A) × X)and ϕ′ ∈ O(F (A′) × X ′), are maps f : X
−→ X ′ for which there is a “tracking” map γ : A −→ A′ in A satisfying:

[Tk.1] ϕ(F (γ)× f) = ϕ(F (γ)× f)ϕ′

[Tk.2] ϕ(1× f) = ϕ(F (γ)× f)

Restriction: As in X.

The proof that Asm(F ) is a restriction category – and, indeed, when A is a Cartesian
restriction category and F preserves this Cartesian structure, then Asm(F ) is a Cartesian
restriction category – may be found in [21, Prop. 5.2 and 5.3].

If X is a Cartesian restriction category and F : A −→ X is a restriction functor, the
forgetful functor p : Asm(F ) −→ X is a latent fibration. Specifically, if ϕ ∈ O(F (A)×X),
ψ ∈ O(F (B) × Y ), and f : ϕ −→ ψ a map in Asm(F ), then p(f) is f : X −→ Y , the
underlying map in X. Clearly p is a Cartesian restriction functor.

3.11. Proposition. p : AsmF −→ X as defined above is a latent fibration.

Proof. Suppose f : X −→ Y is a map in X, and let ψ ∈ O(F (B) × Y ) be an assembly.
Then (1× f)ψ ∈ O(F (B)×X) is also an assembly, and f can be viewed as a map (1× f)ψ
−→ ψ in Asm(F ) which is readily seen to be prone.

3.11.1. Idempotent splitting. We end these examples with a latent fibration which is
a genuine semifunctor.

3.12. Proposition. For any restriction category X, the forgetful functor from the re-
striction idempotent splitting of X back to X, U : Splitr(X) −→ X, is a latent fibration.

Proof. Recall that in Splitr(X):

• an object is a pair (X, e) with e a restriction idempotent on X;

• a map f : (X, e) −→ (X ′, e′) is a map f : X −→ X ′ such that efe′ = f ;

• composition and restriction are as in X;

• the identity of (X, e) is e itself.
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Thus in general the forgetful functor U : Splitr(X) −→ X is a genuine semifunctor (that is,
it preserves composition and restriction but not necessarily identities).

To see that it is a latent fibration, suppose (X, e) is an object of Splitr(X), and f : X ′

−→ p(X) in X is such that f = fU(1(X,e)) = fe. We want to show that f : (X ′, fe)
−→ (X, e) is a prone lift of f . Indeed, f is well-defined since

fef = fee = fe = f

If we have a precise factorization hf = g, then h is the unique lift:

(X ′′, e′)

h
��

g

$$
7→

X ′′

h
��

g

��
(X ′, fe)

f
// (X, e) X ′

f
// X

It is well-defined since

e′′hfe = e′′hfeh = e′′geh = gh = hh = h,

and is clearly unique.

3.13. Basic theory of latent fibrations and prone arrows. A simple observation
is that a latent fibration reduces to an ordinary fibration when it is between total map
categories. To see this note that (i) a restriction semifunctor between such categories must
be an ordinary functor, and (ii) the requirement of preciseness is automatically satisfied
by total maps and so the condition of having enough prone maps reduces to the definition
of a Cartesian arrow in an ordinary fibration.

3.14. Lemma. A latent fibration between restriction categories in which all maps are total
is a fibration.

Just as for ordinary fibrations we can define morphisms of latent fibrations:

3.15. Definition. A morphism of latent fibrations

F = (F1, F0) : (p : E −→ B) −→ (p′ : E′ −→ B
′)

is a pair of restriction semifunctors, between the domain categories F1 : E −→ E′, and the
codomain categories F0 : B −→ B′, making

E
F1 //

p

��

E′

q
��

B
F0

// B′

commute, and such that F1 preserves prone maps.

Transformations of fibrations are “pillows” of restriction transformations (α, β) : (F1, F0)
−→ (G1, G0) with αq = pβ.

Many results for Cartesian arrows for an ordinary functor have a restriction analogue
for prone arrows for a restriction functor. For example:
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3.16. Lemma. For any restriction semifunctor, p : E −→ B, composites of p-prone arrows
in E are p-prone and identity maps are p-prone.

Proof. Suppose f1 and f2 are prone in E and kp(f1f2) = p(g) is a precise triangle. Then
(kp(f1))p(f2) is also precise as:

kp(f1)p(f2) = kp(f1f2)kp(f1) = kp(f1f2)kp(f1) = kkp(f1) = kp(f1)

Now as f2 is prone we have a unique k̃p(f1) sitting above making k̃p(f1)f2 precise. But

then as kp(f1) = p(k̃p(f1)) is precise this gives a unique k̃ with k̃f1 = k̃p(f1) precise.

This certainly means k̃(f1f2) = k̃p(f1)f2 = g but also this is precise as k̃ = k̃p(f1) as

k̃f1 = k̃p(f1) precisely commutes, and k̃p(f1) = g as k̃p(f1)f2 = g precisely commutes, so

k̃ = g showing k̃(f1f2) = g precisely commutes.

Finally k̃ is unique as supposing h was an alternate then (hf1)f2 = g precisely commutes

with p(hf1) = kp(f1) making hf1 = k̃p(f1) but then by similar reasoning h = k̃.
Identity maps are clearly always prone when p is a restriction functor, but this is not

completely immediate if p is only a semifunctor. However, it still works in this case as if
we have

Y

��

g

��
7→

p(Y )

h
��

p(g)

##
X

1X
// X p(X)

p(1X)
// p(X)

with the base triangle precise, then since p(1X) is a restriction idempotent, by Lemma
2.7.ii, h = p(g). Thus g is the unique fill-in for the triangle in E.

As we shall see, however, restriction idempotents are not always prone: see Section
4 for details, and Proposition 4.13 for a characterization of which semifunctors have all
restriction idempotents prone.

In the total case, it is well-known that any two Cartesian arrows over the same arrow
(with a common codomain) have a unique mediating isomorphism. For prone arrows we
now show that the analogous situation induces a mediating partial isomorphism.

3.17. Definition. In a restriction category, a mediating map between two maps f
and f ′ with a common codomain, is a partial isomorphism, α, such that αf ′ = f and
α(−1)f = f ′ are both precise.

3.18. Lemma. If p : E −→ B is a restriction semifunctor, then:

(i) If f : X −→ Y and f ′ : X ′ −→ Y are p-prone maps of E with p(f) = p(f ′) then there is
a unique mediating partial isomorphism α : X −→ X ′ (so that p(α) = p(f), αf ′ = f ,

and α = f , α(−1)f = f ′, and α(−1) = f ′).
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(ii) If α is a mediating partial isomorphism in E between f and f ′ (so that αf ′ = f , and

α = f , α(−1)f = f ′, and α(−1) = f ′ as above) then, if either f or f ′ is p-prone, then
both f and f ′ are p-prone.

(iii) If e, e′ : X −→ X are both prone restriction idempotents in E such that p(e) = p(e′),
then e = e′.

Proof.

(i) Let α, α′ be the liftings for the precise triangle p(f)p(f) = p(f) (recalling p(f) =
p(f ′)):

X

α
��

f

  
X ′

f ′
// Y

X ′

α′

��

f ′

  
X

f
// Y

The fact that they are precise triangles implies immediately that α = f and α′ =
f ′. The composite of these precise triangles sits over the same precise triangle,
p(f)p(f) = p(f), and so, using Lemma 2.7.iv, αα′ = f and α′α = f ′ making them
partial inverses.

(ii) Suppose f and f ′ are mediated by α, then the precise triangles on f are in bijective
correspondence to those on f ′, as a precise kf = g is carried to a precise (kα)f ′ = g
from which the result is immediate.

(iii) By (i), there is a mediating partial isomorphism α : X −→ X between e and e′. In
particular, αe = e′ is precise. But then by Lemma 2.7.ii, this means α = e′, and
similarly α(−1) = e. But then α is a restriction idempotent, so its partial inverse is
itself, so we have e = α(−1) = α = e′.

As noted above, restriction idempotents are not always prone. However, isomorphisms,
and, more generally, restriction retractions are:

3.19. Lemma. If p : E −→ B is a restriction semifunctor, then:

(i) Isomorphisms are always p-prone and, if f is total and p-prone with p(f) an isomor-
phism and p a restriction functor, then f is itself an isomorphism.

(ii) All restriction retractions in E are p-prone.

(iii) If f = rf ′ is p-prone in E and r is a restriction retraction, then f ′ is p-prone.

(iv) If p is a restriction functor, and f is a p-prone map such that f splits, then p(f) is
a restriction retraction if and only if f is a restriction retraction.
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Proof.

(i) That isomorphisms are prone is immediate (and follows for example from part (ii),
see below). Suppose f : E ′ −→ E is total, prone, and p(f) is an isomorphism with p
a restriction functor, then p(f)−1 lifts:

E

p̃(f)−1

��
7→

p(E)

p(f)−1

��
E ′

f
// E p(E ′)

p(f)
// p(E)

and then we have

E ′

f

��
f p̃(f)−1

��
7→

p(E)
f

##
E ′

f
// E p(E ′)

p(f)
// p(E)

showing f p̃(f)−1 is a lifting of the identity map. However, an alternate lifting is

the identity map so f p̃(f)−1 = 1E′ , showing f is an isomorphism. This is the same
argument for why Cartesian arrows above isomorphisms are isomorphisms in an
ordinary fibration.

(ii) A restriction retraction, r, is a partial isomorphism whose inverse is a section
m, thus rm = r and mr = 1. Suppose p(g) = hp(r) then, by Lemma 2.7.iii,
h = p(g)p(m) = p(gm) so that gm is a possible lifting and will necessarily be so
provided gmr = g but this is the case as gmr = g1 = g.

(iii) Suppose the restriction retraction r : Y −→ X ′ has section m : X ′ −→ Y , so rm = r
and mr = 1X′ . Suppose that there is a g : Z −→ X so that hp(f ′) = p(g) is precise.
Then we claim that there is a lifting h̃ over hp(m) via the prone-ness of f :

Z
g

��
h̃
��

7→
p(Z)

p(g)

##
hp(m)

��
Y

f
// X p(Y )

p(f)
// p(X)

For this, we need to check that the base triangle is precise. (It obviously commutes
by definition of f). For preciseness, note that since hp(f ′) = p(g) is precise,

h = hp(f ′) = hp(1X′f ′) = hp(1X′)p(f ′) ≤ hp(1X′),

but we always have the opposite inequality, so h = hp(1X′). Thus the base triangle
above is precise since

hp(m) = hp(m) = hp(1X′) = h = p(g).
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We now claim that h̃r : Z −→ X ′ is the unique lift for h, demonstrating the prone-ness
of f ′. The triangle commutes since h̃rf ′ = h̃f = g, is precise since

h̃rf ′ = h̃rf ′h̃r = h̃f h̃r = h̃h̃r = h̃r,

and is over h since

p(h̃r) = hp(m)p(r) = hp(mr) = hp(1X′) = h

with the final equality proven above.

Finally, suppose we have some other k : Z −→ X ′ so that kf ′ = g, k = g, and p(k) = h.
Then km is a precise lifting of hp(m) as

p(km) = p(k)p(m) = hp(m), kmf = kmrf ′ = kf ′ = g,

and
kmf = kmfkm = gkm = kkm = km.

Thus km = h̃, so kmr = h̃r, so k = h̃r. Thus f ′ is indeed p-prone.

(iv) If f is a restriction retraction then p(f) is certainly a restriction retraction since p is
a restriction functor. For the converse, suppose f : Y −→ X is p-prone with p(f) a
restriction retraction, so that there is an m : p(X) −→ p(Y ) with mp(f) = 1p(X) and

p(f) = p(f)m. Then f is a retraction with m̃ its section:

X

m̃
��

7→
p(X)

m

��
Y

f
// X p(Y )

p(f)
// p(X)

so this means, by splitting f , that f can be factorized into rf ′ where r : Y −→ Y ′

is the coequalizer of f and 1Y and lies over the equalizer of p(f) and 1p(X) which
means f ′ is prone over an isomorphism. However, f ′ is also total as using the fact

that r is epic we have rf ′ = rf ′r = fr = r = r1Y ′ . It follows that p̃(f)−1f ′ = 1X
and so f ′ is an isomorphism from part (i). This means, in turn, that f = rf ′ is a
restriction retraction.

In the case when p is a restriction functor and all restriction idempotents in E split,
Cartesian arrows give prone arrows:

3.20. Lemma. Suppose that p : E −→ B is a restriction functor, and all restriction
idempotents in E split. If f : X −→ Y a total map in E which is Cartesian for the functor
Total(p) : Total(E) −→ Total(B), then f is p-prone.
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Proof. Suppose we have

Z
g

��
7→

p(Z)

h
��

p(g)

##
X

f
// Y p(X)

p(f)
// p(Y )

with the triangle in B precise, so h = p(g). Let m : Z ′ −→ Z, r : Z −→ Z ′ be a splitting of
g, so rm = g and mr = 1. Then in particular mg : Z ′ −→ Y is total. Moreover, the pair
(p(m), p(r)) gives a splitting of p(g) and hence of h, so p(m)h is also total. Thus, we have
diagrams in Total(E) and Total(B), and hence get a unique total h′ : Z ′ −→ X:

Z ′

h′

��

mg

��
7→

p(Z)

p(m)h

��

p(m)p(g)

##
X

f
// Y p(X)

p(f)
// p(Y )

We now claim that the composite

Z
r−→ Z ′

h′−−→ X

gives the required unique arrow in the first triangle. Indeed, we have

rh′f = rmg = gg = g,

and since h′ is total,
rh′ = r = g,

and
p(rh′) = p(r)p(m)h = p(rm)h = p(g)h = p(g)h = hh = h,

so rh′ has all the required properties. Moreover, if there is some other k : Z −→ X with
these properties, then mk is total (as mk = mg = mg = 1) and has the same other
properties as h′, so h′ = mk. Thus, rh′ = rmk = gk = kk = k, so rh′ is unique.

It follows from the general theory of fibrations of 2-categories that latent fibrations
behave well with respect to composition and pullback. However, it is still helpful to see
how this behaviour works out concretely.

3.21. Lemma. If q : F −→ E and p : E −→ B are restriction semifunctors, f ′ is p-prone
over f , and f ′′ is q-prone over f ′, then f ′′ is qp-prone over f .

Proof. This is given by a straightforward two step lifting:

F
g

��
˜̃
h
��

7→
q(F )

q(g)

##
h̃
��

7→
p(q(F ))

p(q(g))

&&
h
��

B
f ′′
// F q(B)

f ′
// q(F ′) p(q(B))

f
// p(q(F ′))



LATENT FIBRATIONS: FIBRATIONS FOR CATEGORIES OF PARTIAL MAPS 447

3.22. Corollary. Latent fibrations are closed under composition.

Unfortunately, it is not the case that splitting the idempotents of a latent fibration p : E
−→ B, to obtain Splitr(p) : Splitr(E) −→ Splitr(B), will yield in general a latent fibration.
However, it is the case that splitting the idempotents of the domain category will yield a
latent fibration over the same base, Up : Splitr(E) −→ B, as we may precompose with the
latent fibration U : Splitr(E) −→ E of subsection 3.11.1. Shortly we shall see that Splitr(p)
is a latent fibration when p is an admissible latent fibration (see Proposition 5.23).

Pullbacks in the category of restriction categories and restriction functors are described
in [5], and work similarly for restriction semifunctors:

3.23. Definition. If p : E −→ B and F : X −→ B are restriction semifunctors, then their
pullback is

W
p1 //

p0
��

E

p
��

X
F
// B

in which the category W is defined by

Objects: are pairs (X,E) where X and E are objects of X and E respectively which
satisfy F (X) = p(E).

Maps: of type (X,E) −→ (X ′, E ′) are pairs (f, g) where f and g are maps of X and E
respectively which satisfy F (f) = p(g).

Composition and identities: are defined pointwise.

Restriction: is given by (f, g) = (f, g), which is well defined since, if F (f) = p(g), then
F (f) = F (f) = p(g) = p(g).

and the pullback maps p0, p1 are the first and second projections.

3.24. Lemma. If p : E −→ B and F : X −→ B are restriction semifunctors and W is their
pullback as defined above, then (f, g) : (X,E) −→ (X ′, E ′) in W is p0-prone if and only if
g is p-prone.

Proof. Suppose we have

(X ′′, E ′′)
(f ′,g′)

''
7→

X ′′

h

��

f ′

##
(X,E)

(f,g)
// (X ′, E ′) X

f
// X ′
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then since g is p-prone and F (f) = p(g), F (f ′) = p(g′), etc., we also have

E ′′

g′

##
h̃
��

7→
F (X ′′)

F (h)
��

F (f ′)

&&
E g

// X ′ F (X)
F (f)

// F (X ′)

so (h, h̃) uniquely fills in the first triangle. Thus, (f, g) is p0-prone; a similar proof shows
the converse.

3.25. Corollary. The pullback of a latent fibration along any restriction semifunctor is
a latent fibration.

Recall that in an ordinary fibration, any map in the domain category can be factored
as a vertical map followed by a Cartesian map, and this factorization is unique up to a
unique vertical isomorphism. A similar result holds for latent fibrations, with vertical
replaced by subvertical:

3.26. Definition. If p : E −→ B is a restriction semifunctor, then a map v : X −→ Y in
E is said to be subvertical if p(v) is a restriction idempotent.

3.27. Proposition. If p : E −→ B is a latent fibration, then for any map f : X −→ Y in
E, there is a subvertical map v : X −→ X ′ and a prone map c : X ′ −→ Y such that

X

v
��

f

  
X ′ c

// Y

is a precise triangle, and, moreover, p(c) = p(v). Such a factorization is unique up to
unique subvertical partial isomorphism.

Proof. For existence, let c : X ′ −→ Y be a prone arrow over p(f) : p(X) −→ p(Y ), and let
v be the induced unique map

X

v

��

f

��
7→

p(X)

p(f)
��

p(f)

##
X ′ c

// Y p(X ′)
p(f)

// p(Y )

This satisfies all the required conditions; uniqueness follows from using Lemma 3.18.i.



LATENT FIBRATIONS: FIBRATIONS FOR CATEGORIES OF PARTIAL MAPS 449

3.28. Substitution semifunctors. Analogous to the fiber of an object in a fibration,
is the notion of a strand of an object in a latent fibration.

3.29. Definition. Given a restriction functor p : E −→ B, the strand of B ∈ B, written
p(−1)(B), is the category whose objects are objects E of E such that p(E) = B, and whose
maps are the f of E such that p(f) ≤ 1B (i.e. p(f) ∈ O(B)); that is, each f is subvertical.

A latent fibration may be cloven in the same sense as for ordinary fibrations:

3.30. Definition. A latent fibration has a cleavage (or is cloven) in case there is a
chosen prone arrow f ∗E : f ∗(E) −→ E over each f : A −→ p(E) for each E ∈ E.

We now construct, for a cloven latent fibration, the analogue of a reindexing or
substitution functor. In general, the substitution functors we obtain between the strands
of a latent fibration will only be restriction semifunctors.

Let p : E −→ B be a cloven latent fibration, and let u : A −→ B be a map in B. We
define the substitution semifunctor u∗ : p(−1)(B) −→ p(−1)(A), from the strand above B to
the strand above A as follows: on arrows f : X −→ Y in p(−1)(B), u∗(f) is the arrow u∗(X)
−→ u∗(Y ) in p(−1)(A) given by the lifting

in E u∗(X)

u∗(f)=ũp(f)

��

u∗X

""
X

f

��
u∗(Y )

u∗Y

// Y

in X A

up(f)

��

u

��
B

p(f)

  
A u

// B

where u∗(X) is the domain of the prone map above u with codomain X. Furthermore, if
u ≤ v then there is for each X ∈ p(−1)(B) a map (u ≤ v)∗X : u∗(X) −→ v∗(X) given by:

u∗(X)

(u≤v)∗X
��

u∗

""
7→

p(u∗(X)) = A

u
��

u

((
v∗(X)

v∗
// X p(v∗(X)) = A v

// p(X) = B

We then have:

3.31. Proposition. If p : E −→ B is a latent fibration with a cleavage and u : A −→ B is
a map in X, then u∗ : p(−1)(B) −→ p(−1)(A) as defined above is a restriction semifunctor.
Furthermore, the assignment ( )∗ : Bop −→ SRest is a pseudofunctor where we regard B as
a 2-category whose 2-cells are given by the restriction ordering of maps.

Recall that a pseudofunctor P : Bop −→ SRest associates to each map (1-cell) f : A
−→ B in B a functor (1-cell) P (f) : P (B) −→ P (A) in SRest such that there are (2-cell)
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natural isomorphisms αf,g : P (g)P (f) −→ P (fg) and αX : 1P (X) −→ P (1X) satisfying:

P (f)
P (f)αY // P (f)P (1Y )

αf,1x

��
P (f)

P (f)
αXP (f) // P (1X)P (f)

αf,1x

��
P (f)

P (h)P (g)P (f)

P (h)αf,g

��

αg,hP (f)
// P (gh)P (f)

αf,gh

��
P (h)P (fg) αh,fg

// P (fgh)

Similarly if (f ≤ g) : f −→ g is a 2-cell in B then P (f ≤ g) : P (f) −→ P (g) must be
a 2-cell (or transformation) in SRest. This assignment must preserve the vertical (2-
cell) composition, in the sense that P (f ≤ g)P (g ≤ h) = P (f ≤ h), and for the 1-cell
composition we require

P (g);P (f)

P (g≤h);P (f≤k)

��

αf,g // P (fg)

P (fg≤hk)

��
P (h);P (k) αh,k

// P (hk)

where the semicolon emphasizes that we are using the horizontal composition in SRest.
Thus, for P : Bop −→ SRest the inequalities (which are covariant) become transforma-

tions between semifunctors whose composites must be preserved.

Proof. We must first show that u∗ is a semifunctor, that is u∗(f) = u∗(f) and u∗(fg) =
u∗(f)u∗(g).

First, suppose f : X −→ Y is a map in p(−1)(B). Then u∗(f) is defined as the lifting of

up(f). However, u∗X(f) also makes the triangle precise and p(u∗X(f)) = p(u∗X(f)) = up(f)

so u∗(f) = u∗(f) and, thus u∗ preserves the restriction.
Next, suppose f : X −→ Y and g : Y −→ Z are maps of p−1(B). Then u∗(fg) is defined

as the lifting of up(fg) = up(f)p(g) while u∗(f)u∗(g) is the lifting of p(u∗(f)u∗(g)) =

p(u∗(f))p(u∗(g)) = up(f) up(g) = up(f)up(g) = up(f)p(g) = up(f)p(g) so that they are
equal. Thus u∗ preserves composition, and is therefore a restriction semifunctor.

To show that ( )∗ is a pseudo functor we use the fact that composites of prone maps
are unique up to a unique mediating partial isomorphism (combine Lemma 3.16 with
Lemma 3.18) and the unit data is provided by the fact that the identity map 1X is prone
so there is a mediating map X −→ 1∗p(X)(X).

We must show (u ≤ v)∗X = u∗(1X) and that the transformation is natural; that is,
u∗(f)(u ≤ v)∗Y = (u ≤ v)∗Xv

∗(f) (so (u ≤ v)∗f is the identity). The first requirement

is immediate from the preciseness of the triangle defining (u ≤ v)∗X as u∗(1X) = u∗X =

(u ≤ v)∗X . Suppose for the second that f : X −→ Y in the strand over B then p(u∗(f)(u ≤
v)∗Y ) = up(f) u = up(f) and p((u ≤ v)Xv

∗(f)) = u vp(f) = uvp(f) = up(f) so both
arrows sit above up(f) ∈ B. As all the components are precise liftings their composites are
as well; thus, they are equal. This shows that the transformation is natural as required.
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The assignment is immediately functorial with respect to the restriction preorder as
the components of the transformations lift restriction idempotents which compose.

The coherence properties with the associator are similarly straightforward to prove.

We will see that in an r-split latent fibration p : E −→ B, whenever f is total, there
is a total prone map above it (see Lemma 5.3). If the cleavage is such that, for every X,
f ∗X is total whenever f is total, then substitution semifunctors along total maps become
restriction functors.

3.32. Proposition. If p : E −→ B is a latent fibration with a cleavage which preserves
total maps then f ∗ : p(−1)(B) −→ p(−1)(A) is a restriction functor whenever f is total.

Proof. We have already shown that f ∗ is a restriction semifunctor. Since the cleavage of
p preserves total maps, we have that f ∗X : u∗(X) −→ X is total, when f is. This gives

f ∗(1X) = f ∗(1X) = f ∗(1X) = f ∗(1X)f ∗X

= f ∗(1X)f ∗X = f ∗X = 1f∗(X)

and so f ∗ is a restriction functor.

4. Types of Latent Fibrations

In the previous section we described some properties of latent fibrations. However, it is
important to note two things that do not hold in an arbitrary latent fibration p : E −→ B.
Both involve the behaviour of restriction idempotents.

The first is that a restriction idempotent in the base need not lift: that is, given a
restriction idempotent e : A −→ A in B and an object X over A in E, there need not be
a prone restriction idempotent e′ : X −→ X over e. For an example of this, consider the
latent fibration of propositions of a restriction category X (Example 3.8). Suppose e : A
−→ A is a restriction idempotent in X, and (A, e′) is an object in O(X) over A. Since the
projection in this case simply sends a map to itself, a restriction idempotent over e must
be e itself; thus, we would need e to be a map from (X, e′) to (X, e′) in O(X). But this
would mean that e = e′e, which requires e ≤ e′. Thus, for any restriction idempotent e′

which is not ≥ e, this is not possible. Of course, being a latent fibration, there is a lift of
e: as per Proposition 3.9, it is the map

(X, ee′)
e−→ (X, e′),

it is just that this map is not a restriction idempotent in O(X). In fact, just as for ordinary
fibrations, it is not even guaranteed to be an endomorphism.

Thus, in this case, there isn’t even a restriction idempotent over e (let alone a prone
restriction idempotent). As we shall see, however, the ability to lift restriction idempotents
to prone restriction idempotents is useful, and is true for most latent fibrations. Thus, in
the next section we consider such latent fibrations; we term these admissible.
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The second issue is the behaviour of restriction idempotents in the domain category of
a latent fibration. In particular, while identities are always prone, restriction idempotents
(i.e., “partial identities”) need not be. To see the problem in general, suppose e : X −→ X
is a restriction idempotent in E, and suppose we have g : Y −→ X in E and h : B −→ A in
B such that hp(e) = p(g):

Y

��

g

  
7→

A
p(g)

��
h
��

X e
// X A

p(e)
// A

If e were the identity, we could obviously choose g as the unique lift. However, if e is
partial, there is no obvious lift that will make the triangle in E commute.

However, note that we do have some control given that the commutativity of the
bottom triangle tells us something about how defined g is relative to e. Thus, if the
restriction idempotents in E were closely related to those in B, then we could hope to
have a lift. In fact, this is the case in the “strict” versions of the simple and codomain
fibrations. In these examples, one can check that restriction idempotents are prone (while
they are not generally in the “lax” versions).

Thus, restriction idempotents being prone is clearly an important condition that is
true in some latent fibrations but not all. We shall see that this condition is equivalent to
p being monic on restriction idempotents, or separated. Thus, in Section 4.9 we consider
the theory and examples of separated latent fibrations.

Many examples (including the motivating example of the strict simple fibration) are
both admissible and separated. The combination of these conditions has some very
useful consequences (for example, see Proposition 4.23). Moreover, we will see that the
combination of the admissible and separated conditions is equivalent to the restriction
semifunctor p being hyperconnected ; that is, p is a bijection on restriction idempotents.

Thus, in the next few sections, we consider the theory and examples of admissible,
separated, and hyperconnected latent fibrations.

4.1. Admissible latent fibrations.

4.2. Definition. A restriction semifunctor p : E −→ B is admissible if for every X ∈ E
and every restriction idempotent, e on p(X) in the base such that ep(1X) = e, there is a
prone restriction idempotent e∗ on X over e; that is, with p(e∗) = e.

4.3. Example. Most of the classes of latent fibrations we have met are admissible:

(i) The identity 1X : X −→ X is admissible.

(ii) The lax and strict simple fibrations are admissible, as the prone lifting given in
Proposition 3.5 is a restriction idempotent.

(iii) The lax and strict codomain fibrations are admissible; for proof, see the result below.
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(iv) The product latent fibration is admissible; the prone lifting (1, e) of a restriction
idempotent e is again a restriction idempotent.

(v) The assemblies fibration is admissible: given a restriction idempotent e : X −→ X
and an assembly φ over X, it is easy to check that e (with identity tracking map) is
prone in the assemblies category.

(vi) The splitting fibration Splitr(X) −→ X is admissible. If we are given an object (X, e′)
in Splitr(X) and a restriction idempotent e : X −→ X such that e = ep(1(X,e′)) = ee′,
then

(X, e′)
e−→ (X, e′)

is a well-defined map in Splitr(X), and it is straightforward to check that it is prone
(since this fibration is separated, this also follows from Proposition 4.13).

(vii) As noted in the introduction to this section, the latent fibration of propositions is
not generally admissible. Nor is a discrete fibration in general admissible: the prone
arrow above a restriction idempotent is not necessarily an endomorphism unless the
point is fixed by the function induced by the idempotent.

4.4. Proposition. For any restriction category X with latent pullbacks, the latent fibra-
tions X and X→ are admissible.

Proof. Given a restriction idempotent e : Y −→ Y and a map f : X −→ Y in X, we need
to define a prone lifting of e to X which is also a restriction idempotent. We claim that
the pair (fe, e) does this. Indeed, consider the diagram

C ′

c

��

g′

((
w̃   

X

f

��

fe

// X

f

��

C

≥

g

((
w

  
Y e

// Y

Since g = we is precise, by Lemma 2.7.iii, g = w. Similarly, for the top triangle to be
precise, we must have w̃ = g′. It remains to check that w̃ = g′ satisfies the required
conditions.

Indeed, it gives a lax square since the outer square is lax by assumption:

g′f ≤ cg = cwe = cw,

and the top triangle commutes since

g′fe = g′feg′ = cheeg′ = cheg′ = g′f = g′f = g′
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with the last equality holding since the outer square is assumed precise.
Thus (fe, e) is prone, and so X is admissible; a similar proof shows that X→ is

admissible.

The definition of admissible only asks for the existence of a prone restriction idempotent
over a restriction idempotent in the base. However, by Lemma 3.18.iii, such a restriction
idempotent is unique; thus, one in fact gets a section:

4.5. Lemma. If p : E −→ B is an admissible latent fibration, then the semilattice map

p|O(X) : O(X) −→ {e ∈ O(p(X)) : e ≤ p(1X)}

has a section ( )∗, where e∗ is the (unique) prone restriction idempotent above e at X.
Furthermore, for any d ∈ O(X), d ≤ p(d)∗, so that the prone arrows are a reflective
subposet of O(X).

Proof. Note that (e1e2)∗ = e∗1e
∗
2, as both are prone over e1e2, and p(1X)∗ = 1X , as 1X is

trivially prone. Thus, the section is also a semilattice morphism. Moreover, p(d)p(d) = p(d)
is a trivial precise triangle with dp(d)∗ = e precise above it: but this implies d ≤ p(d)∗ as
required.

The following are useful properties of admissible latent fibrations:

4.6. Lemma. If p : E −→ B is an admissible latent fibration:

(i) If m : E ′ −→ E is prone over a restriction monic, then m is a partial isomorphism;

(ii) If r : B −→ p(E) is a restriction retraction, then there is a (prone) restriction
retraction r′ : E ′ −→ E with p(r′) = r.

Proof.

(i) If m : E ′ −→ E is over a restriction monic, then there is a map r : p(E) −→ p(E ′) such
that rp(m) = r and p(m)r = 1p(E′). By admissibility, there is a prone restriction
idempotent r∗ : E −→ E over r. Let r′ be defined as the unique lift

E

r′

��

r∗

��
7→

p(E)

r

��

r

##
E ′ m

// E p(E ′)
p(m)

// p(E)

Thus, r′m = r∗ = r∗ = r′. Thus, r′ satisfies one half of being a partial inverse to m;
we also need mr′ = m.

For this, first, since r∗ is itself prone, we have some unique k : E ′ −→ E such that

E ′

k

��

m

��
7→

p(E ′)

p(m)
��

p(m)

##
E

r∗
// E p(E)

r
// p(E)
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However, by Lemma 2.7.ii, k = m. Thus, in particular, since the top triangle is
precise, we have mr∗ = m, so mr′m = mr∗ = m. Thus we have the triangle

E ′

mr′

��

m

��
7→

p(E ′)

1
��

p(m)

##
E ′ m

// E p(E ′)
p(m)

// p(E)

But m also fits precisely into the top triangle in place of mr′ (and is over 1 since
p(m) is total), so since m is prone, mr′ = m. Thus m is a partial isomorphism with
partial inverse r′.

(ii) Suppose r : B −→ p(E) is a restriction retraction so there is an s with sr = 1p(E)

and rs = r. There are prone arrows r∗ : E1 −→ E with p(r∗) = r and s∗ : E2 −→ E1

with p(s∗) = s – by (i) we know s∗ is a partial isomorphism. The composite s∗r∗ is
then prone over the identity map so there is a partial isomorphism α : E −→ E2 with
α = 1E, α̂ = s∗r∗ and αs∗r∗ = 1E.

We have α(−1) = s∗r∗ so (s∗)(−1)α(−1) = (s∗)(−1)s∗r∗ = ŝ∗r∗ so r′ := ŝ∗r∗ is a partial
isomorphism with αs∗r′ = αs∗ŝ∗r∗ = αs∗r∗ = 1E. So r′ is a restriction retraction
– which is automatically prone by virtue of being a restriction retraction – which,
furthermore, lies over r as p(r′) = p((s∗)(−1)s∗r∗) = s(−1)sr = rsr = r.

4.7. Lemma. If p : E −→ B is an admissible latent fibration then any mediating partial
isomorphism α between two p-prone maps f ′ and f over the same map such that f = p(f)

∗

is itself prone .

Proof. Consider maps f and f ′ which are both p-prone above the same map, p(f) = p(f ′).
Let α be the mediating map between f and f ′ so in particular p(α) = p(f). Now consider
g : C −→ B with p(g) = hp(f). By Lemma 2.7.ii, it follows that h = p(g). We wish to

show that there is a lifting h̃ so that h̃α = g is precise, however, the best we can do is to
lift h, using the fact that f is prone, making h̃f ′ = gf :

C

g
��

h̃ // B′

α

��

f ′

��
7→

p(C)

p(g) ##

h // p(B)

p(α)=p(f)
��

p(f)

##
B

f
// A p(B)

p(f)
// p(A)

Now we observe that h̃α sits over p(g) as p(h̃α) = p(h̃)p(α) = hp(f) = p(g); furthermore,

h̃αf = h̃f ′ = gf and h̃αf = h̃α so the triangle (h̃α)f = (h̃f ′) is precise. However, as

gf = gp(f)
∗

as p(g) = p(g)p(f), the triangle gf = (h̃f ′) is precise. So we may conclude

that g = h̃α and, as h̃α = h̃f ′, it is precise. The triangle is, furthermore, unique as α is a
partial isomorphism, and thus α is prone.
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4.8. Proposition. Admissible latent fibrations are closed under composition and pullback.

Proof. This follows from Lemma 3.21 and Lemma 3.24.

Perhaps the most useful property of admissible latent fibrations is that they can be
r-split; we prove this in Proposition 5.23.

4.9. Separated latent fibrations. We now consider a different property a restriction
semifunctor can have.

4.10. Definition. A restriction semifunctor p : E −→ B is said to be separated if for
any object X ∈ E and restriction idempotents e, e′ on X, if p(e) = p(e′) then e = e′.

4.11. Example.

(i) The identity fibration 1X : X −→ X is separated.

(ii) The strict simple fibration X[X] is separated: since the restriction of a map in X[X]
is entirely determined by its restriction in the base, the functor ∂ : X[X] −→ X is
separated.

(iii) Conversely, in general the lax simple fibration X(X) is not separated, as the inequality
allowed in the definition of an arrow permits multiple possible restriction idempotents
over a fixed one in the base. Thus, this is an example of a latent fibration which is
admissible but not separated.

(iv) For any restriction category X with latent pullbacks, X→ −→ X is separated: if

X
e′ //

f
��

X

f
��

Y e
// Y

is a restriction idempotent in X→, then since the square must strictly commute and
be precise, we have

e′ = e′ = e′f = e′f = fe.

Thus, the restriction idempotent (e′, e) is entirely determined by e, and so the functor
∂ : X→ −→ X is a separated.

(v) By lemma 2.11.ii, one may be tempted to think that X is separated; however, for
this to be the case partially inverting the top and bottom arrows of a latent pullback
would have to produce a semi-precise square: this is not the case in general.

(vi) The propositions fibration is clearly separated, as in this case p(e) = e. Thus, this is
an example of a latent fibration which is separated but not admissible.
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(vii) For assemblies, notice that all restriction idempotents e ∈ X are tracked by iden-
tity realizers and so every restriction idempotent is tracked. This means that the
restriction idempotents in Asm(F ) are the same as those in X making p separated.

(viii) The splitting fibration Splitr(X) −→ X is clearly separated, as in this case p(e) = e.
Similarly, a discrete fibration is always separated.

An immediate property of a separated semifunctor is the following:

4.12. Lemma. If p : E −→ B is separated, then p(f) total implies f is total.

Proof. If we have such an f , then we also have

1p(X) = p(f) = p(f) = p(1X)p(f) ≤ p(1X),

but we always have the opposite inequality, so p(1X) = 1p(X). Then p(f) = 1p(X) = p(1X),

so since p is separated, f = 1X . Thus f is total.

More importantly, however, being separated is precisely the right condition to assure
that all restriction idempotents (and, more generally, partial isomorphisms) are prone.

4.13. Proposition. For any restriction semifunctor p : E −→ B, the following are equiv-
alent:

(i) p is separated;

(ii) all partial isomorphisms in E are p-prone;

(iii) all restriction idempotents in E are p-prone.

Proof. For (i)⇒ (ii), suppose that p is separated. Suppose we have a partial isomorphism
f : X −→ Y (with partial inverse f (−1)) and a map g : Z −→ Y such that hp(f) = p(g) is
precise:

Z

��

g

��
7→

p(Z)

h
��

p(g)

##
X

f
// Y p(X)

p(f)
// p(Y )

We want to show that gf (−1) precisely fits in the left triangle (it is the only possible choice
by Lemma 2.7.iii). First, note that

p(gf (−1)) = hp(f)p(f (−1)) = hp(f) = p(g) = p(g)

so since p is separated, gf (−1) = g. Then the triangle commutes since

gf (−1)f = gf (−1) = gf (−1)g = gg,
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and is precise. Moreover, gf (−1) is over h since

p(gf (−1)) = hp(f)p(f (−1)) = hp(f) = h

since hp(f) = p(g) is precise.

(ii) ⇒ (iii) is immediate, since restriction idempotents are partial isomorphisms.

For (iii) ⇒ (i), if all restriction idempotents are prone, then p is separated by Lemma
3.18.iii.

When a restriction semifunctor is separated, the prone condition is a bit simpler to
check:

4.14. Lemma. If p : E −→ B is separated, then an arrow f : X −→ X ′ in E is prone if and
only if for any g : Y −→ X ′ and any h : p(Y ) −→ p(X) such that hp(f) = p(g) is precise,
there is a unique h′ : Y −→ X such that h′f = g.

Proof. The only change in the ordinary definition is the requirement that the triangle in
E be precise. However, if h′f = g, then p(h′) = h = p(g), so since p is separated, h′ = g is
guaranteed.

These functors also have a useful factorization property of prone arrows:

4.15. Lemma. Suppose p : E −→ B is separated. If

X
f

!!
f1
��
X ′

f2
// X ′′

is a precise triangle in E and f and f2 are prone, then f1 is prone.

Proof. Throughout this proof we will use the fact that when looking at whether an arrow
is prone for a separated semifunctor, we don’t need to consider precise-ness of the top
triangle (see Lemma 4.14).

Thus, we need to show that for g : Y −→ X ′ with h : p(Y ) −→ p(X) such that hp(f1) =
p(g) is precise, we have a unique fill-in h′ : Y −→ X. Consider this diagram, extended to
the right by post-composing with f2:

Y

h′

��

g

��

gf2

��
7→

p(Y )
p(g)

$$
h
��

p(gf2)

##
X

f1
// X ′

f2
// X ′′ p(X)

p(f1)
// p(X ′)

p(f2)
// p(X ′)
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Now, the outer triangle in the base is also precise since

p(gf2) = hp(f1)p(f2) = hp(f1) = p(g) = h

where we have used the fact that f = f1f2 is precise to give f1f2 = f1.
Thus, since f = f1f2 is prone, there is a unique h′ : Y −→ X such that h′ = gf2 and

h′f1f2 = gf2. We need to show that h′ makes the inner triangle commute; that is, we need
h′f = g.

However, p(h′f1) = hp(f1) = p(g), so since we have h′f1f2 = gf2 and f2 is prone,
h′f = g. Uniqueness of h′ then follows by uniqueness of factorizations for f1f2.

4.16. Corollary. If p : E −→ B is separated, then any restriction monic in E is prone.

Proof. Suppose we have a restriction monic m : X −→ Y in E. Then by assumption there
is a restriction retraction r : Y −→ X so that mr = 1; thus,

X
1

  
m
��
Y r

// X

is a precise triangle. By Lemma 3.19, identities and restriction retractions are always
prone, so by the previous result, m is also prone.

Separated latent fibrations have the useful property that one can take the latent
pullback of a prone arrow along a subvertical arrow:

4.17. Lemma. Suppose p : E −→ B is a separated latent fibration. Then every cospan

B
c−→ C

v←−− A

with v subvertical and c prone has a corresponding latent pullback:

U c′ // //

w
��

A

v
��

B c
//// C

where w is subvertical and c′ is prone.

Proof. Since v is subvertical, p(A) = p(C), and so the composite

p(B)
p(c)−−−→ p(A)

p(v)−−−→ p(C)

is well-defined; we take c′ : U −→ A to be a prone lift of this map to A.
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Then let w : U −→ B be the unique arrow from the universal property of c:

U

w

��

c′v

��
7→

p(U)
p(c′v)

##
p(c)p(v)

��
B c

// C p(B)
p(c)
// p(C)

(Note that the triangle in B is precise since p(c′v) = p(c)p(v)p(v) = p(c)p(v).)
Thus, w as above exists, and has the property that w = c′v. Moreover, since p(w) =

p(c)p(v) = p(c′), w = c′ as p is separated. Thus, the square is a potential candidate to be
a latent pullback.

We will check that the original definition (see [11, pg. 460]) of latent pullback holds,
as it involves one fewer piece of data. So, assume we have a : X −→ A and b : X −→ B so
that av = bc. We need to find a unique b′ as indicated:

X
a

≤
  

b
≥

��

b′

  
U

w
��

c′
// A

v
��

B c
// C

with the additional properties that b′ = bc = av and b′w = b′c′ = b′.
Let b′ be the unique arrow arising from the universal property of c′:

X

b′

��

av

��
7→

p(X)
p(av)

##
p(b)p(w)

��
U

c′
// A p(U)

p(c)p(v)
// p(C)

Note that p(b)p(w) is well-defined since w is subvertical. The triangle in B commutes since

p(b)p(w)p(c)p(v) = p(b)p(c)p(v)p(c)p(v) = p(b)p(c)p(v) = p(a)p(v)p(v) = p(a)p(v) = p(av)

and is precise since

p(b)p(w) = p(b)p(c)p(v) = p(b)p(c)p(v) = p(a)p(v)p(v) = p(a)p(v).

Thus, such a b′ does exist, and has the property that b′ = av = av.
It immediately satisfies many of the required properties:

b′c′ = av ≤ a,

and
b′ = av
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and
b′c′ = b′c′b′ = avb′ = b′b′ = b′.

However, checking that b′w ≤ b, that is, b′wb = b′w, takes a bit more work. For this,
we will use the cancellation property of the prone map c: if b′wbc = b′wc, p(b′wb) = p(b′w),
and the relevant triangle in the base is precise, then b′wb = b′w follows.

For the first requirement, b′wc = b′c′v = avv = av while b′wbc = b′wav. However, we
also have

p(b′w) = p(b′)p(w) = p(b)p(w)p(w) = p(b)p(w) = p(a)p(v)

by above; thus since p is separated we get b′wav = avav = av. For the second requirement,

p(b′wb) = p(b)p(w)p(b) = p(b)p(w) = p(b)p(w)p(w) = p(b′w).

For preciseness of the triangle in the base,

p(b′w) = p(b)p(w) = p(a)p(v)

by above. Thus, by proneness of c, b′wb = b′w, and so b′w ≤ b.
Thus b′ satisfies all the required properties; it remains to show that it is unique. Thus,

suppose we have
X

a

≤
  

b
≥

��

d
  
U

w
��

c′
// A

v
��

B c
// C

with d = bc = av and d = dc′ = dw.
We want to show that d = b′; we will use the universal property of c′. Thus, we need

to show that dc′ = b′c′, p(d) = p(b′), and the relevant triangle in the base is precise. For
the first requirement, since dc′ ≤ a,

dc′ = dc′a = da = ava = av = b′c′.

For the second requirement, since d = dw, and dw ≤ b,

p(d) = p(dw)p(w) = p(dwb)p(w) = p(bcb)p(w) = p(bc)p(w) = p(b)p(w) = p(b′),

with the second-last equality since wc = w. Finally, since d = av, the relevant triangle in
E and hence in B is precise.

Thus, proneness of c′ gives d = b′, and we have completed the proof that the square is
a latent pullback.

4.18. Proposition. Separated latent fibrations are closed under composition and pullback.

Proof. This follows from Lemma 3.21 and Lemma 3.24.
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4.19. Hyperconnected latent fibrations.

4.20. Definition. A restriction semifunctor p : E −→ B is said to be hyperconnected
(and p is said to be a hyperconnection) if for any X ∈ E, the map

p|O(X) : O(X) −→ {d ∈ O(p(X)) : dp(1X) = d}

sending e ∈ O(X) to p(e) is an isomorphism. We say that a latent fibration p is a
hyperfibration if p is a hyperconnection.

This is a generalization of the definition of hyperconnection (see [10, pg. 39]) to
restriction semi functors.

Before looking at examples, it will be useful to know the following:

4.21. Proposition. A restriction semifunctor p : E −→ B is hyperconnected if and only
if it is separated and admissible.

Proof. If p is hyperconnected, then it is monic on restriction idempotents, and so is
separated. Moreover, if e : p(X) −→ p(X) is a restriction idempotent in B, then there is a
restriction idempotent e′ : X −→ X over it (since p is hyperconnected), and this is prone
by Proposition 4.13.

Conversely, if p is separated and admissible, then for any X, the map

p|O(X) : O(X) −→ {d ∈ O(p(X)) : dp(1X) = e}

is monic and has a section (by Lemma 4.5) thus is an isomorphism.

Thus, by the results of the previous two sections, we have the following examples (and
non-examples) of hyperfibrations:

4.22. Example.

(i) The identity fibration 1X : X −→ X is a hyperfibration.

(ii) The strict simple fibration X[X] is a hyperfibration, while in general the lax simple
fibration X(X) is not.

(iii) For any restriction category X with latent pullbacks, X→ −→ X is a hyperfibration,
while in general X −→ X is not.

(iv) The assemblies fibration is a hyperfibration.

(v) The splitting fibration Splitr(X) −→ X is a hyperfibration.

(vi) Neither the propositions fibration nor the discrete fibrations are hyperfibrations (in
general) as they are not admissible.
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Restriction semifunctor Restriction Functor Admissible Separated Hyperfibration
Splitr(X) −→ X × X X X
X×Y −→ X X X × ×

(lax) X(X) −→ X X X × ×
(strict) X[X] −→ X X X X X

(lax) X −→ X X X × ×
(strict) X→ −→ X X X X X

O(X) −→ X X × X ×
Elt(F ) −→ X X × X ×

Asm(F ) −→ X X X X X

Table 1: Properties of latent fibrations

Table 1 presents an overview of the examples of latent fibrations we have considered
with their properties.

Hyperconnections are particularly well-behaved when looking at prone arrows. For a
general restriction semifunctor, there can be prone maps over total maps or restriction
monics which are themselves neither total nor restriction monic. However, for a hyper-
connection this is no longer the case, as all prone maps above a total map are total, and,
similarly, all maps prone above a restriction monic are restriction monics. In addition,
any prone maps above a restriction retraction is a restriction retraction:

4.23. Proposition. If p : E −→ B is a hyperconnection, then:

(i) p reflects total maps;

(ii) if α in E is prone over a partial isomorphism, then α is itself a partial isomorphism;

(iii) if s in E is prone over a restriction monic then s is itself a restriction monic;

(iv) if r in E is prone over a restriction retraction, then r is itself a restriction retraction;

(v) if p is a hyperfibration, then the total maps and restriction monics of the domain
and codomain restriction categories of p each determine a subfibration of p.

Proof.

(i) We saw in Lemma 4.12 that separated semifunctors reflect total maps.

(ii) By Proposition 4.21, p is admissible, so there is a prone restriction idempotent e over

p̂(α) = p(α)(−1). Let α′ : X −→ Y be the lift of p(α)(−1):

X

e

��
α′

��
7→

p(X)
p̂(α)

##
p(α)(−1)

��
Y α

// X p(Y )
p(α)

// p(X)
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Thus α′α = e = e = α′ since the triangle is precise. We want to show that α′ is the
partial inverse of α, and so we also need αα′ = α.

By definition, e and α are prone, so by Lemma 4.15, α′ is also prone, so by Lemma
3.16, αα′ is prone. Thus αα′ and α are prone over the same map (p(α)), and so by
Lemma 3.18.i, there is a mediating partial isomorphism β : Y −→ Y

Y
β //

α   

Y

αα′

��
Y

with β = α and β(−1) = αα′. But then we have

β = ββ(−1)β = ββ(−1) = βαα′ = α.

So β is a restriction idempotent, and so its partial inverse β(−1) is itself, namely α.
Thus αα(−1) = β(−1)α = α, as required.

(iii) Suppose s : Y −→ X is prone over a restriction monic p(s). Then in particular s is
prone over a partial isomorphism, so by (ii), it has a partial inverse r, so that sr = s
and rs = r. But since p(s) is a restriction monic, it is total, so by (i), s is total, and
thus sr = s = 1. Thus s is a restriction monic.

(iv) Similar proof to (iii).

(v) Extracting the total maps from the fibration turns the latent fibration into an ordinary
fibration. Prone maps become Cartesian: so, in particular, restriction monics, being
partial isomorphisms and therefore prone, are Cartesian.

Given any admissible latent fibration p : E −→ B we may always extract a latent
hyperfibration p̂ : Ê −→ B by restricting the restriction idempotents to the prone restriction
idempotents and the maps to those which pullback prone restrictions to prone restrictions:
that is, f ∈ Ê in case for every prone restriction idempotent, e on the codomain of f , fe
is a prone restriction idempotent (recall from Lemma 4.5 that the prone restrictions for an
admissible semifunctor form a (reflective) subsemilattice). We then have:

4.24. Proposition. If p : E −→ B is an admissible latent fibration then

Ê

p̂   

// // E

p
��

B

p̂ is a hyperfibration which is a latent subfibration of p.

Proof. p̂ is clearly still admissible, and by definition, all restriction idempotents in it are
prone. Thus, by Proposition 4.13 and Proposition 4.21, p̂ is a hyperfibration.
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4.25. Proposition. Hyperconnected latent fibrations are closed under composition and
pullback.

Proof. Follows from Lemma 3.21 and Lemma 3.24.

Another key property of a hyperfibration (see Section 7) is that one can construct its
fibrational dual.

5. M-category Fibrations

The purpose of this section is to provide a series of results describing the relation between
fibrations of M-categories and latent fibrations. In particular, we completely characterize,
as an M-category, a certain type of latent fibration which we call r-split (see Definition
5.2). This allows us to similarly characterize r-split admissible latent fibrations and r-split
hyperfibrations.

Another key result in this story is that admissible latent fibrations are stable under
the process of splitting restriction idempotents: this means that any admissible latent
fibration can be embedded into an r-split latent fibration and hence into a latent fibration
between the partial map categories of M-categories. In general, it is not the case that,
when one splits the restriction idempotents of a latent fibration, one gets a latent fibration:
necessary and sufficient conditions for this will be provided in Proposition 6.4.

In this section we shall use restriction functors rather than semifunctors. In particular,
we shall need functors which preserve the total maps in order to access the equivalence
between r-split restriction categories and M-categories.

5.1. r-split latent fibrations. In this section we will focus on restriction functors
between r-split restriction categories, and demand that the fibres of these functors behave
well with respect to splitting.

5.2. Definition. Let p : E −→ B be a restriction functor.

• p is said to be well-fibred if for all B in B, whenever a restriction idempotent in
the fibre3 p−1(B) splits in E, it also splits in p−1(B).

• p is said to be r-split in case the restriction categories E and B are r-split, and p is
well-fibred.

One reason to ask that the projection functor be well-fibred is the following result:

5.3. Lemma. If p : E −→ B is a restriction functor in which E is r-split, then every total
map, f : B −→ p(E), having a prone map f ′ : E ′ −→ E above it whose idempotent f ′ splits
in p−1(B), has a prone map, which is total, above f at E.

3Note that we reserve the notation p−1(B) for the classical fibre, containing only arrows that are
mapped to 1B by p, whereas p(−1)(B) is used for the strand containing all arrows that are mapped to a
restriction idempotent on B.
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Proof. Suppose f : B −→ p(E) is total in B with an f ′ : E ′ −→ E which is prone above it.
Note that f ′ ∈ p−1(B) as p(f ′) = p(f ′) = f = 1B. Thus, since p is well-fibred, there is a
splitting m : E ′′ −→ E, r : E ′ −→ E ′′ of f ′ with both m and r in p−1(B) also. Let f ′′ = fm′;
we claim that f ′′ is the required total prone map over f .

First, since m ∈ p−1(B),

p(f ′′) = p(m)p(f ′) = 1Bf = f,

so f ′′ is over f . Next,

f ′′ = mf ′ = mf ′ = mrm = m = 1E′′ ,

so f ′′ is total. Finally, we have f ′ = f ′f ′ = rmf = rf ′′, so since f ′ is prone and r is a
restriction retraction, f ′′ is itself prone by Lemma 3.19.iii.

When p : E −→ B is an r-split latent fibration the total maps form a fibration because,
as observed previously, prone maps in a category in which all maps are total, are just
Cartesian maps. Thus, we have the important observation:

5.4. Corollary. The total maps of an r-split latent fibration form a fibration.

5.5. Latent fibrations and M-categories. Next, it will be helpful to understand
precise triangles and prone maps in a partial map category.

5.6. Lemma. Suppose that

X
m←−− X ′

f−−→ Y, X
m′←−− X ′′

f ′−−→ Z, Y
n←−− Y ′

g−−→ Z

are representatives of maps in a partial map category Par(X,M). Then the triangle

X
(m′,f ′)

  
(m,f)

��
Y

(n,g)
// Z

precisely commutes in Par(X,M) if and only if there is a map k : X ′′ −→ Y ′ such that
kg = f ′ and (m, f) ∼= (m′, kn).

Proof. First, suppose that the triangle precisely commutes. Then (m, f) ∼= (m′, f ′), so
there is an isomorphism α : X ′′ −→ X ′ such that αm = m′. Let (am, bg) be a representative
of (m, f) ◦ (n, g):

P
a

~~
b

  
X ′

m

~~

f

  

Y ′

n

~~

g

  
X Y Z
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then since (m, f)◦ (n, g) ∼= (m′, f ′), there is an isomorphism β : X ′′ −→ P such that βam =
m′ and βbg = f ′. Let k = βb, so we have kg = f ′. Moreover, we claim that α witnesses
(m, f) ∼= (m′, kn). Indeed, we have αm = m′. We also need αf = kn = βbn = βaf , so it
suffices to show α = βa. But αm = m′ = βam, so since m is monic, α = βa, as required.

Conversely, suppose that we have such a k, and an α : X ′′ −→ X that witnesses
(m, f) ∼= (m′, kn). Then, by definition, α witnesses (m, f) ∼= (m′, f ′). Moreover,

X ′′ k //

α
��

Y ′

n
��

X ′
f
// Y

commutes by assumption, and it is straightforward to check that it is a pullback since α is
an isomorphism and n is monic. Thus

X ′′

α

}}

k

!!
X ′

m

~~

f

!!

Y ′

n

}}

g

  
X Y Z

is a representative of (m, f) ◦ (n, g), and equals (m′, f ′) by assumption on α and k.

The following result allows us to build prone maps in a partial map category from
Cartesian maps in the original category:

5.7. Lemma. Suppose p : (E,ME) −→ (B,MB) is an M-category functor. If f : X ′ −→ Y is
p-Cartesian in E, then for any m : X −→ X ′ in ME, (the equivalence class of) (m, f) is
Par(p)-prone in the restriction category Par(E,ME).

Proof. Suppose Z
n←−− Z ′

g−→ Y is a map from Z to Y :

Z
(n,g)

  
X

(m,f)
// Y

Then by the previous lemma, to have a precise triangle with p(m, f) : X −→ Y in the
base means that there is an h : Z ′ −→ p(X ′) with hp(g) = p(f), with the triangle of the
form

p(Z)
(p(n),p(g))

&&
(p(n),hp(m)

��
p(X)

(p(m),p(f))
// p(Y )
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Then since f is p-Cartesian, there is a unique h̃ : Z ′ −→ X ′ in E such that h̃f = g and
p(h̃) = h. Then by the previous lemma, (n, h̃m) is a precise fill-in for the first triangle:

Z
(n,g)

  
(n,h̃m)

��
X

(m,f)
// Y

and is over (p(n), h̃p(m)) by definition.
It remains to show it is unique. If we have another precise fill-in, by the previous lemma

we can take it to be of the form (n, km) for some k : Z ′ −→ X ′ such that kf = g. Since it
must be over (p(n), hp(m)), we must have some isomorphism α : p(Z ′) −→ p(Z ′) such that
p(n) = αp(n) and p(k)p(m) = αhp(m). But since p(n) is monic, the first equality means
α = 1; then since p(m) is monic the second equality gives p(k) = h. Thus we have kf = g
and p(k) = h, so since h̃ was unique with these properties, k = h̃. So (n, h̃m) is unique.

Thus, having an M-category functor p : (E,ME) −→ (B,MB) being an ordinary fibration
is close to Par(p) : Par(E,ME) −→ Par(B,MB) being a latent fibration. However, something
is missing: if we are given a span

Y ′

m

��

f

""
Y p(X)

in Par(B,MB), then by the above result, we can lift f to a Cartesian arrow; however, there
is no reason why there should be an ME monic over m in E. Thus, we make the following
definitions.

5.8. Definition. Let p : (E,ME) −→ (B,MB) be an M-category functor.

• p is said to be M-plentiful in case for every object X ∈ E and MB-map m : p(X)
−→ Y there is an ME-map n : X −→ X ′ in E with p(n) = m.

• p is said to be an M-fibration if it is a fibration (in the ordinary sense) and it is
M-plentiful.

This is enough to get an (r-split) latent fibration:

5.9. Lemma. If p : (E,ME) −→ (B,MB) is an M-fibration then Par(p) : Par(E,ME) −→
Par(B,MB) is an r-split latent fibration.

Proof. Let (m, f) : Y −→ p(X) be a map in Par(B,MB); i.e., a span:

Y
m←−− Y ′

f−−→ p(X)
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We lift this to
Y0

n←−− Y ′1
f∗−−→ X

where f ∗ is a Cartesian arrow above f and n is any ME-map above m, the existence of
which is guaranteed by the plentiful requirement. Then by Lemma 5.7, (n, f ∗) is prone in
Par(T,MT).

We also need to show that Par(p) is well-fibred. An idempotent is a span (m,m) where
m : X ′ −→ X is in ME: its splitting (as an equalizer with the identity) is (m, 1X′). Now
(m,m) could have (p(m), p(m)) = (1X , 1X) and yet p(X ′) 6= p(X) although, as both are
limits of the trivial equalizer, they must be isomorphic, say by γ : p(X ′) −→ p(X). But that
means there is a Cartesian arrow above γ−1, (γ−1)∗ : X0 −→ X ′ which is an isomorphism
and has p(X0) = p(X). This means that (γ−1)∗m : X0 −→ X is also a splitting and it is
now in the fibre over p(X).

Conversely we have:

5.10. Lemma. If p : E −→ B is an r-split latent fibration, then the induced functor between
the total map categories, with their restriction monics, Total(p) : (Total(E),Monic(E))
−→ (Total(B),Monic(B)), is an M-fibration.

Proof. The fact that p is a latent fibration ensures that Total(p) is a fibration as discussed
in Corollary 5.4. It remains, therefore, to show that Total(p) is M-plentiful. Toward
this end let m : p(E) −→ X be a restriction monic in B, so that by definition there is a
restriction retraction r : X −→ p(E) such that mr = 1p(E) and rm = r. Let r′ : X ′ −→ E
be a prone arrow over r. Then since E is r-split, we can use Lemma 3.19.iv to get that r′

is itself a restriction retraction. Thus, there is a restriction monic m′ : E −→ X ′ which is
its partial inverse. Since restriction functors preserve partial inverses, we have

p(m′) = p(r′(−1)) = p(r′)(−1) = r(−1) = m,

showing that p is M-plentiful.

As a consequence we now have:

5.11. Theorem. r-split latent fibrations, in the equivalence between r-split restriction
categories and M-categories, correspond precisely to M-fibrations.

This gives us a further source of examples of latent fibrations. Any category with finite
limits X is an M-category with respect to all its monics. The arrow category gives the
standard fibration over X, ∂ : X→ −→ X. Then moving to Par(∂) always gives a latent
fibration as above any monic m : X −→ Y in X and any object x : X ′ −→ X in X→ lies the
map (which is a square):

X ′

x
��

X ′

xm
��

X m
// Y
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which is clearly monic. Note when m is an isomorphism this is an isomorphism in X→ and
thus this ∂ is M-conservative. This means the functor Par(∂) is M-plentiful and the Par(∂)
is a latent fibration – and in a few moments we will see, because pullbacks of monics along
any map are monic, that this is an admissible latent fibration. Furthermore, it is not
hard to see that this is actually the full subfibration of Par(X,Monic) −→ Par(X,Monic)
determined by the objects a : A′ −→ A ∈ E such that a is total. This means, in particular,
that it is not hyperconnected.

It is worth noting that this is not the only choice of M-maps possible for the domain
category X→, as we could have chosen squares which are pullbacks. These are clearly
monics in X→ and still give an M-plentiful fibration using the codomain map as the above
square for demonstrating M-plentitude is a pullback. It is not hard then to see that passing
to the partial map categories for this fibration gives a subfibration of the strict codomain
fibration, Par(X,Monic)→ −→ Par(X,Monic) determined by objects a which are total maps.

5.12. Admissible, separated, and hyperconnected M-fibrations. In this section
we characterize the admissible, separated, and hyperconnected latent fibrations between
partial map categories.

5.13. Definition. An M-fibration q : (T,MT) −→ (S,MS) is an admissible M-fibration
if Cartesian maps over M-maps are themselves M-maps.

We can immediately observe:

5.14. Lemma. If p : (E,ME) −→ (B,MB) is an admissible M-fibration then Par(p) : Par(E,ME)
−→ Par(B,MB) is an admissible r-split latent fibration.

Proof. We must show that there is a prone restriction idempotent above every restriction
idempotent. A restriction idempotent as a partial map is a span (m,m). Thus, if we let
m∗ be a Cartesian map above m, by assumption m∗ is in ME, and by Lemma 5.7, (m∗,m∗)
is prone over (m,m).

Conversely, we also have:

5.15. Lemma. If p : E −→ B is an admissible r-split latent fibration, then

Total(p) : (Total(E),Monic(E)) −→ (Total(B),Monic(B))

is an admissible M-fibration.

Proof. We already know by Lemma 5.10 that Total(p) is an M-fibration; thus, it remains
to show the M-admissible property. Suppose that m : X ′ −→ X is a Cartesian map in
Total(E) such that p(m) is a restriction monic in B. By Lemma 3.20, m is prone in E.
Then by Lemma 4.6, m is a partial isomorphism, so there is an r : X −→ X ′ so that rm = r
and mr = m = 1. That is, m is a restriction monic.
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5.16. Theorem. Admissible r-split latent fibrations, in the equivalence between r-split
restriction categories and M-categories, correspond precisely to admissible M-fibrations.

We next turn to characterizing separated latent fibrations between partial map cate-
gories.

5.17. Definition. An M-fibration q : (T,MT) −→ (S,MS) is a separated M-fibration
if all MT-maps are Cartesian.

5.18. Lemma. If q : (T,MT) −→ (S,MS) is a separated M-fibration then

Par(q) : Par(T,MT) −→ Par(S,MS)

is a separated r-split latent fibration.

Proof. By Proposition 4.13, it suffices to show that restriction idempotents are prone, so
suppose that (m,m) is a restriction idempotent in Par(T,MT). Then by assumption m is
Cartesian, so by Lemma 5.7, (m,m) is prone.

5.19. Lemma. If p : E −→ B is a separated r-split latent fibration, then

Total(p) : (Total(E),Monic(E)) −→ (Total(B),Monic(B))

is a separated M-fibration.

Proof. Suppose m : X −→ Y is a restriction monic in E. Then by Corollary 4.16, m is
prone, and by definition it is total, hence it is Cartesian in Total(E).

5.20. Theorem. Separated r-split latent fibrations, in the equivalence between r-split
restriction categories and M-categories, correspond precisely to separated M-fibrations.

By Proposition 4.21, we now also have a characterization of r-split latent hyperfibrations:

5.21. Corollary. r-split latent hyperfibrations, in the equivalence between r-split restric-
tion categories and M-categories, correspond precisely to M-fibrations which are admissible
and separated.

5.22. r-splitting a latent fibration. Next, we turn to the question of what happens
when we split the restriction idempotents of a latent fibration. Unfortunately, in general,
this will not again be a latent fibration. To see the issue, suppose we have a latent fibration
p : E −→ B and a map f : (Y, e0) −→ (p(X), p(e)) in Splitr(B). As a mere map in B, we can
lift it to a p-prone map f ∗ : X ′ −→ X in E. However, we need it to be a map in Splitr(E),
and in particular we need a restriction idempotent e′ over e to serve as the domain for f ∗

as a map in Splitr(E). As we have seen earlier (specifically, in the introduction to section
4), this need not always exist. Moreover, we will need this idempotent e′ to itself be prone,
so that when we compose it with f ∗ the result will again be prone.

Of course, asking for a prone restriction idempotent in E over a restriction idempotent
in B is precisely what we demand of an admissible latent fibration. This property turns
out to be sufficient to ensure that splitting the restriction idempotents of a latent fibration
is still a latent fibration.
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5.23. Proposition. If p : E −→ B is an admissible latent fibration then Splitr(p) : Splitr(E)
−→ Splitr(B) is an admissible latent fibration.

Proof. It is easy to see that splitting idempotents always results in a well-fibred restriction
functor: suppose e = e is an object of Splitr(B) and e0 : e1 −→ e1 is in p−1(e), so p(e1) = e
and p(e0) = e, then a splitting of the map e0 is given by e1

e0−−→ e0
e0−−→ e1 and this is all

in p−1(e).
Now suppose f : e0 −→ p(e) is a map in Splitr(B), with e a restriction idempotent

in E; we must show that there is a prone lifting to some map in Splitr(E). As a mere
map, f : B −→ p(E) in B has a prone arrow over it f ′ : E ′ −→ E but also e0 has a, prone,
restriction idempotent e∗0 on E ′ over it (as p is an admissible latent fibration): we claim
that e∗0f

′e : e′0 −→ e is prone over f : e0 −→ p(e): it is certainly over f . Suppose now that
g : e1 −→ e in E and p(g) = hf is precise with h : p(e1) −→ e0 then there is a lifting of h,

h̃, in E to give a precise triangle h̃(e∗0f
′) = g. The preciseness means h̃ = g ≤ e1 so it

starts at the idempotent e1 as desired. It also ends at e∗0 as he0 = h so h̃e∗0 = h̃. Finally

we have h̃e∗0f
′e = h̃f ′e = ge = g. Thus e∗0f

′e : e∗0 −→ e is prone over f : e0 −→ p(e) and
Splitr(p) : Splitr(E) −→ Splitr(B) is a latent fibration.

Finally we must show that above each restriction idempotent e on p(e′), in Splitr(B),
which means e ≤ p(e′) in B, there is a prone restriction idempotent on e′: it is of course
e∗e′, which is prone by the argument above, and less than or equal to e′.

The property of being separated (thus, hyperconnected) is also preserved under this
process:

5.24. Corollary. If p : E −→ B is a latent hyperfibration then Splitr(p) : Splitr(E) −→
Splitr(B) is a latent hyperfibration.

Proof. Partial isomorphisms in Splitr(E) are partial isomorphisms in E so are prone
there and this easily means they are prone in Splitr(E). The result thus follows from
Proposition 4.13 and Proposition 4.21.

6. Latent fibrations as fibrations in SRest

The main result in this section shows that latent fibrations are fibrations in the 2-category
SRest of restriction categories, restriction semifunctors, and transformations. This gives,
from a 2-categorical perspective, a further justification of how latent fibrations are defined.
Before proving this we describe another characterization of latent fibrations, which is
also useful in obtaining the main result of the section: namely that p : E −→ B is
a latent fibration if and only if the induced functor Total(Split(p)) : Total(Spit(E)) −→
Total(Split(B)) is an ordinary fibration. Regarding maps in Total(Splitr(X)) as latent total
maps in X, one then has, in support of the nomenclature, that a latent fibration is a
fibration between latent total maps. This, characterization, in particular, allows a precise
characterization of when r-splitting a latent fibration is a latent fibration.
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6.1. The ordinary fibration of latent total maps. We start with a key obser-
vation, which justifies the term “latent” fibration, as we show that a latent fibration is
precisely an ordinary fibration between the categories of latent total maps:

6.2. Proposition. p : E −→ B is a latent fibration if and only if

Total(Splitr(p)) : Total(Splitr(E)) −→ Total(Splitr(B))

is an ordinary fibration.

Proof.

(⇒) Suppose p is a latent fibration, we must show that, for any total map f
f−−→ p(e),

there is a Cartesian arrow f ∗
f∗−−→ e lying over it. Since f is a map in Splitr(B), we

have fp(e) = f , so f has a prone map f ∗ over it. It is straightforward to check that
viewing this as a a total map satisfies all the Cartesian requirements. In particular,

g

h̃
��

g

%%

7→

p(g)

h
��

p(g)

''
f ∗

f∗
// e f

f
// p(e)

when the right triangle is precise then there is a unique precise lifting to h̃ with

h̃ = g and so the desired diagram of total maps is obtained.

(⇐) Suppose now that we know that Total(Splitr(p)) is an ordinary fibration, then we
must show there is a prone map above f : B −→ p(E). Of course, we may turn f
into a total map f : f −→ 1p(E) in Splitr(X) and, by assumption this has a Cartesian
map f ∗ : e′ −→ 1E over it. However, this means p(f ∗) = f and so we have that f ∗ is
certainly a map over f . To show it is prone we must show we have a lift h̃ over any
h making the right-hand triangle precise.

Z

h̃
��

g

%%

7→

p(Z)

h

��

p(g)

''
A

f∗
// E B

f
// p(E)

The preciseness of the right-hand diagram, however, gives the triangle of total maps
in the first part of the proof which gives the commuting triangle over the Cartesian
arrow, which unwinds to give the left-hand precise diagram above.
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As a corollary of this we have:

6.3. Corollary. For any restriction category X, the semifunctor u : Total(Splitr(X))
−→ X (where u(f) = f and for an object e : X −→ X, u(e) = X) is a latent fibration.

Proof. This is so if and only if u′ = Total(Splitr(u)) is a fibration: however, it is not
hard to see that u′ is an equivalence of categories with a section v with action on objects
v(e) = e

e−→ e with unit ηe : e −→ u(v(e)) = id. In general an equivalence is not a fibration;
however, when its unit at the base is the identity – as it is in this case – then it is a
fibration.

Alternatively, one may observe directly that given f : A −→ B and e = e : B −→ B such
that fe = f , the prone lift of f is just f : f −→ e ∈ Total(Splitr(X)).

This observation is more delicate than it might seem: it is certainly not the case that
p : Total(X) −→ X is a latent fibration in general. A counter-example is given by the
free restriction category over a directed graph (see [5]) the total map category of such a
category is discrete so finding prone arrows over non-trivial maps is impossible just from
type considerations. One may think that the problem is that the category X does not
have splittings of idempotents but even if restriction idempotents split in X, provided
X has a non-total partial map, p : Total(X) −→ X will not be a latent fibration as there
is no map sitting above any non-total partial map. Thus, the form of the semifunctor
p : Total(Splitr(X)) −→ X was important: semifunctors do not preserve total maps and this
p covers all maps of X, albeit with total maps.

We have already noted that even if p : E −→ B is a latent fibration Splitr(p) need not
be (see Section 5.22). Of course, the functor Total(Splitr(p)) must be an ordinary fibration,
and, in fact, it also is an M-functor with respect to sections of restriction idempotents.
In the previous section we discovered that an M-functor which is a fibration, under the
creation of the partial map category, becomes a latent fibration if and only if it is M-
plentiful. The partial map construction on Total(Splitr(X)), for any restriction category X,
just returns Splitr(X). This allows us to conclude that Splitr(p) is a latent fibration when
p is a latent fibration if and only if Total(Splitr(p)) is plentiful for sections of restriction
idempotents.

Explicitly, for Total(Splitr(p)) to be plentiful for restriction sections means that
for every e = e ∈ E and partial isomorphism s : p(e) −→ d with s = p(e) and sd = s
there is a total partial isomorphism s′ : e −→ d′ in E with s′ = e so that p(s′) = s and
p(d′) = d. It is more natural to expect liftings for maps into p(e) and thus it is useful
to re-express these requirements using the partial inverse of s. The requirement then
becomes, equivalently, that for every e = e ∈ E and partial isomorphism r : d −→ p(e) with
r̂ = p(e) there is a partial isomorphism r′ : d′ −→ e with r̂′ = e, p(d′) = d and p(r′) = r.
We shall simply say that p is plentiful in this case. Also, when this condition is satisfied
for a given idempotent e ∈ E and partial isomorphism r : d −→ p(e) with r̂ = p(e), we say
that p is plentiful at r. This allows us to state:

6.4. Proposition. A latent fibration p has Splitr(p) a latent fibration if and only if p is
plentiful.



LATENT FIBRATIONS: FIBRATIONS FOR CATEGORIES OF PARTIAL MAPS 475

Proposition 5.23 established directly that when p is an admissible latent fibration than
Splitr(p) is an admissible latent fibration. However, that proof did not use the plentifulness
of p and, indeed, it is not entirely obvious why an admissible latent fibration p should be
plentiful.

6.5. Corollary. Admissible latent fibrations are plentiful.

To see why an admissible fibrations is plentiful directly, consider r : d −→ p(e), where
e ∈ O(E) and r̂ = p(e), a partial isomorphism in B. We wish to show that at the partial
inverse s := r(−1) the fibration p is plentiful. For this consider the prone liftings of s, r,
and their restriction idempotents:

E1

β

~~

r∗E1

  

r∗E

��

E3 r∗E2

// E2 s∗E1

// E1 r∗E

// E

r̂∗E ��
Eα

dd

This gives α and β mediating partial isomorphisms from the prone lifting of the restriction
idempotents to the two composites of the liftings of s and r so that α = r̂∗E, α̂ = s∗E1

r∗E,

β = r∗E1
and β̂ = r∗E2

s∗E1
. Also note that r∗E = r∗E1

r∗E r̂
∗
E as r∗E ≤ r∗E1

and r̂∗E ≤ r̂∗E by virtue

of Lemma 4.5. For the same reason e ≤ r̂∗E. Set s′ := αs∗E1
β and r′ := β(−1)r∗Ee, then one

can check that these are partial inverses with s′ : e −→ d∗E2
and p(s′) = s, so that s′ is a

witness to p being plentiful at s.

6.6. Fibrations in SRest. The purpose of this section is to prove:

6.7. Theorem. Latent fibrations are precisely fibrations in the 2-category SRest.

Recall that Street [23] provided a general definition of a fibration in a 2-category. The
following is a version of Street’s definition from [20]:

6.8. Definition. A 1-cell p : E −→ B in a 2-category K is a fibration if and only if
K(X, p) is a fibration for all X ∈ K and for all x : Y −→ X ∈ K

K(X,E)

K(X,p)

��

K(x,E)// K(Y,E)

K(Y,p)

��
K(X,B)

K(x,B)
// K(Y,B)

is a fibred functor (in the sense of preserving Cartesian maps).
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Equivalently, and more concretely (as pointed out in [20]), a 1-cell p : E −→ B in a
2-category is a fibration if every 2-cell α : G⇒ F ; p has a lift α∗ : α∗F ⇒ F

X
F //

G

⇒α

  

E

p
��

=

X

G **

F
++

α∗F

⇑α∗ 33 E

p
��

=

B B

which is p-Cartesian in the following sense.
A 2-cell β : H ⇒ F in a 2-category is p-Cartesian if for all 2-cells ξ and γ such that

Y
D //

X   
⇓ξ

E

p
��

=

Y
D //

X
��

⇓γ

E

p
��

X

F

>>

B X

H ))
⇓β
F

55 E p
// B

there is a unique 2-cell, γ̂ : D ⇒ X;H, the Cartesian lift, such that:

Y

X   

D //

⇓γ̂

E

p
��

=

Y

⇓γX
��

D // E

p
��

and

Y

X   

D //

⇓γ̂

E

=

Y

H   

D //

⇓ξ

E

X

H

>>

B X
H
// E p

// B X

H
77

⇓β
F

GG

X

F

>>

There is an alternative perspective we can take on this structure in the 2-category
SRest. Observe that SRest has copowers: this means for any mere category C there is an
equivalence SRest(C •X,Y) ∼= Cat(C, SRest(X,Y)) where C •X is given by the product
C×X of C viewed as a trivial restriction category (i.e. all restrictions are the identity)
with X. When a 2-category has copowers we may re-express the properties of having a lift
and of being a Cartesian arrow more succinctly using copowers as two lifting properties4 –
where the second lifting is required to be unique:

2 •Y

��

2×X // 2 •X
α∗

""
1 •X

∂1•X
��

// E

p
��

3′ •Y
ι
��

// E

p
��

2 •X

α∗
<<

α
//

“lift”

B 3 •Y

γ̂

55

γ
//

“Cartesian lift”

B

Here, 2 is the free living arrow, 3 is the free living composable pair, and 3′ is the category
with two arrows with a common codomain. The functor ι : 3′ −→ 3 is the inclusion and 2

4We are grateful to our referee for drawing our attention to this way of expressing a fibration.
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−→ 3 picks out the second arrow of the composite. One can check that the lifting property
across the lower square is exactly the (parameterized) property of being prone. While
we will not make explicit use of this perspective in the results that follow, it is a useful
alternate viewpoint to keep in mind.

We shall prove the theorem using a series of lemmas. First the easiest step:

6.9. Lemma. If p is a fibration in the 2-category SRest, then p : E −→ B is a latent
fibration.

Proof. Notice that SRest(1,X), where 1 is the final (restriction) category consisting of
one object and one map, is precisely the same as Total(Split(X)). Clearly a functor 1
−→ X corresponds to a restriction idempotent and transformations between such functors
are total maps between the idempotents. Thus, the fact that SRest(1, p) : SRest(1,E)
−→ SRest(1,B) is an ordinary fibration implies by Proposition 6.2 that p is a latent
fibration.

To establish that a latent fibration is a fibration in the 2-category SRest we must show
that SRest(X, p) is an ordinary fibration and that every H : Y −→ X induces a fibred
functor SRest(H, ). As above this can be broken into two steps: showing that for each α
there is a lift, α∗, and showing that the lift α∗ is Cartesian in the 2-categorical sense. This
latter is shown by arguing that α∗ is Cartesian if and only if each component is prone,
and precomposing with a functor does not change this property.

6.10. Lemma. If p : E −→ B is a latent fibration then SRest(X, p) : SRest(X,E) −→
SRest(X,B) for each α : G −→ F ; p has a lift α∗ : α∗F −→ F .

Proof. The proof relies on having a cleavage so at this stage we are assuming the ability
to have or, at least, choose a cleavage for a latent fibration.

We must show that if α : G −→ F ; p is a natural transformation between restriction
semifunctors then there is a lift of this transformation to α∗ : α∗F −→ F which is prone.
The semifunctor α∗F and transformation α∗ are defined as follows:

α∗F (X)

α∗F (g):=Ĝ(g)
��

α∗X // F (X)

F (g)
��

7→

G(X)

G(g)
��

αX // p(F (X))

p(F (g))
��

α∗F (Y )
α∗Y

// F (Y ) G(Y ) αY

// p(F (Y ))

The lifting Ĝ(g) exists as the right-hand square (reduced to a triangle with hypotenuse
αXP (F (g))) is precise as

αXp(F (g)) = G(g)αY = G(g)αY = G(g)G(1Y ) = G(g)

The uniqueness of Ĝ(g) now easily implies that Ĝ(g1g2) = Ĝ(g1)Ĝ(g2) showing α∗F
is a semifunctor. Furthermore, as α∗F (e) = α∗F (e) = α∗F (e)α∗, it follows that α∗F
preserves restrictions and is therefore a restriction semifunctor. Clearly α∗ then becomes a

transformation of restriction semifunctors as α∗X = Ĝ(1X) = α∗F (1X).
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6.11. Lemma. In SRest a 2-cell β : H −→ F : Y −→ X is p-Cartesian if and only if every
component βX : H(X) −→ F (X) is p-prone.

Proof. If β : H −→ F : Y −→ X is p-Cartesian in the 2-categorical sense then we may
probe at an object with X : 1 −→ Y to obtain the component βX which must still be
Cartesian. However, this is Cartesian in SRest if and only if βX is prone.

Conversely, if every component βX is prone then we must show that for any Q : Z −→ Y

that Q; β is p-Cartesian. Towards this end we suppose we have γ : G; p −→ Q;H; p; we
must show there is a unique γ̂ : G −→ Q;H. We immediately have a γ̂Z at each component
which by preciseness has restriction G(1Z) so all we need is that the naturality squares
commute: but this is a straightforward consequence of the uniqueness of the lift.

6.12. Corollary. α∗ as defined in Lemma 6.10 is Cartesian in the 2-categorical sense.

This also completes the proof of the theorem.

7. The Dual of a Latent Hyperfibration

Latent hyperfibrations have the interesting property that one can form their fibred dual.
This process is, for example, important in framing the semantics of reverse differential
programming in which a fibrewise ability to take the dual is required. For an ordinary
fibration, one can construct its fibred dual by using a span construction on the domain
category of the fibration (for example, see [2, pg. 898], [15, Section 1.10.11], and [18]). In
this section, we see how to generalize this construction to any latent hyperfibration. We
begin by investigating certain conditions under which we can form a restriction category
of spans.

7.1. Hyper-opens and spans. Let X be a restriction category and H and Q be two
downclosed systems of maps, that is classes of maps which are downclosed, closed to
composition, and contain the partial isomorphisms, which commute in the sense that for
each h : A −→ B ∈ H and q : C −→ B ∈ Q there is a latent pullback

D
h′

  

q′

��
A

h   

C

q~~
B

such that h′ ∈ H and q′ ∈ Q. Note that if there is one latent pullback with this property
then all latent pullbacks for the cospan (h, q) will have this property as the classes are
certainly closed to mediation.

We shall be particularly interested in the situation in which the maps in H are
hyper-open in the sense that, for each (h : X −→ Y ) ∈ H the map

h∗ : ∃h(1X)/O(Y ) −→ h/O(X) : e 7→ he
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is an isomorphism with inverse

∃h : h/O(X) −→ ∃h(1X)/O(Y ); e 7→ ∃h(e).

Note that any hyper-open map is automatically open (for a map to be open one only requires
the existence of the adjoint, where hyper-open requires the adjoint to be an isomorphism;
see [7]) and so in particular any hyper-open map h : X −→ Y has an associated map ĥ : Y
−→ Y which satisfies the properties of a range combinator.

Given such a commuting pair of classes of maps we can form the span category
Span

X
(H,Q) with the following data:

Objects: Those of X;

Maps: An arrow A −→ B consists of an equivalence class of spans

A′

h

~~

q

  
A B

such that h ∈ H, q ∈ Q with h = q under the equivalence relation that (f, g) ∼ (f ′, g′)
when there is a mediating partial isomorphism α ∈ H such that:

A′

h

��

q

''

α // A′′

h′

ww

q′

  
A B

where αh′ = h and αq′ = q, α−1h = h′ and α−1q = q′, and α−1 = q′ and α = q.

Identities: The identity span A = A = A;

Composition: By latent pullback.

Span
X

(H,Q) is clearly a category but, in general, is not a restriction category. However,

if H is a hyper-open class of maps then it is a restriction category with (h, q) = (ĥ, ĥ).

7.2. Proposition. If H and Q are two commuting classes of maps with H a class of
hyper-opens then Span

X
(H,Q) is a restriction category.

Proof. We will use ◦ to denote composition (still in diagrammatic order) in Span
X

(H,Q).
For [R.1], let

S
h

��

q

��
X Y
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be a representative of an arrow in Span
X

(H,Q). Then since ĥ is a restriction idempotent
(and hence a partial isomorphism), by Lemma 2.11.iii, the composite (h, q) ◦ (h, q) is given
by

S
hĥ

~~

hĥ

��
X

ĥ

~~

ĥ

  

S
h

��

q

��
X X Y

But using the range properties of open maps, we have

(hĥĥ, hĥq) = (h, hq) = (h, qq) = (h, q)

as required. Conditions [R.2] and [R.3] follow similarly.
For [R.4], let (h∗2h1, q

∗
1q2) denote the composite (h1, q1) ◦ (h2, q2):

P
h∗2

��

q∗1

��
S

h1

��

q1

��

T
h2

��

q2

��
X Y Z

(where the diamond is a latent pullback).

Then (h1, q1) ◦ (h2, q2) = (ĥ∗2h1, ĥ∗2h1), so as for [R.1],

(h1, q1) ◦ (h2, q2) ◦ (h1, q1) = (h1ĥ∗2h1, h1ĥ∗2h1q1) = (h1ĥ∗2h1h1, h1ĥ∗2h1q1).

On the other hand, (h1, q1) ◦ (h2, q2) is given by

S
qĥ2

��

q1ĥ2

  
S

h1

��

q1

��

Y
ĥ2

��

ĥ2

��
X Y Z

that is,

(h1, q1) ◦ h2, q2 = (q1ĥ2h1, q1ĥ2) = (q1ĥ2h1, q1ĥ2q1)

Thus, comparing the two expressions, it suffices to prove that

h1ĥ∗2h1 = q1ĥ2.
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Note that these are both restriction idempotents on S. To prove they are equal, since
h∗2 is hyper-open, pulling back along h∗2 is an isomorphism; thus, it suffices to instead prove
that

h∗2h1ĥ∗2h1 = h∗2q1ĥ2.

Indeed,

h∗2h1ĥ∗2h1 = h∗2h1ĥ∗2h1 = h∗2h1

while

h∗2q1ĥ2 = h∗2q1ĥ2 = q∗1h2ĥ2 = q∗1h2 = h∗2q1 = h∗2h1

since q1 = h1.

7.3. The fibrational dual. Our main construction of this section is the following:

7.4. Proposition. Suppose p : E −→ B is a latent hyperfibration. Then there is a
restriction category E∗ whose objects are those of E and whose maps are equivalence
classes of spans

S
v

��

h

��
X Y

where v is subvertical, h is prone, and v = h; the equivalence is up to subvertical partial
isomorphism and as in Proposition 7.2, the restriction of [(v, c)] is [(v̂, v̂)]. Moreover, there
is a restriction functor p∗ : E∗ −→ B which is defined on objects as p∗(A) = p(A) and on
arrows as p∗(v, h) = p(h).

Proof. Using Lemma 4.17, the prones and subverticals in a hyperfibration form a
commuting pair of classes of maps; moreover, the subverticals are hyper-open and the
classes are downclosed systems of maps. Thus Proposition 7.2 tells us we can form a
restriction category from the spans. We will use ◦ to denote composition in E∗.

We need to show that p∗ is a well-defined restriction functor. To start, first note that
for a subvertical partial isomorphism α, αα(−1) = α gives p(α)p(α(−1)) = p(α) = p(α), so
that p(α) ≤ p(α(−1)). The reverse inequality follows similarly, and so p(α) = p(α(−1)). We
will use this to check p∗ is well-defined.

Indeed, suppose that (v1, h1) and (v2, h2) represent the same map in E∗, so that, in

particular, there is a subvertical partial isomorphism α so that h1 = αh2 and α(−1)h2 = h2.
Then

p(h1) = p(α)p(h2) = p(α(−1))p(h2) = p(α(−1))p(h2) = p(α(−1)h2) = p(h2),

so p∗ is well-defined.
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For preservation of composition, suppose that we form the composite of (v1, h1) and
(v2, h2):

S
v∗2

��

h∗1

��
S

v1

��

h1

��

T
v2

��

h2

��
X Y Z

As in the previous lemma, we can choose h∗1 to be the prone arrow over p(h1)p(v2) so
p(h∗1) = p(h1)p(v2). Then we have

p(h∗1h2) = p(h∗1)p(h2) = p(h1)p(v2)p(h2) = p(h1)p(v2)p(h2) = p(h1)p(h2)

since v2 = h2. Thus

p∗[(v1, h1) ◦ (v2, h2)] = p∗[(v∗2v1, h
∗
1h2) = p(h∗1h2) = p(h1)p(h2) = p∗(v1, h1)p∗(v2, h2),

so composition is preserved.
Finally, p∗ is a restriction functor since p(ĥ) = p(h) by definition of ĥ.

The following lemma is useful when working with maps in E∗.

7.5. Lemma. Suppose that p : E −→ B is a hyperfibration.

(i) For any [(v, c)] : X −→ Y in E∗ and any c′ : Y −→ Z prone in E,

[(v, c)] ◦ [(c′, c)] = [(cc′v, cc′)].

(ii) For any v : Y −→ X subvertical in E and any [(v′, c)] : Y −→ Z in E∗,

[(v, v)] ◦ [(v′, c)] = [(v′v, v′vc)].

(iii) Any [(v, c)] : X −→ Y in E∗ can be factored as:

(v, c) = (v, v) ◦ (c, c).

Proof. For (i), by Lemma 2.11.iii, (v, c) ◦ (f, f) is given by

S
cf

��

cf

  
S

v

��

c

��

Y
f

��

f

��
X Y Z

Thus, the composite is (v, c) ◦ (f, f) = (cfv, cf); part (ii) follows similarly.
For (iii), by (i), (v, v) ◦ (c, c) = (vcv, vc), which equals (v, c) since v = c.
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7.6. Lemma. If p : E −→ B is a hyperfibration, and f : X −→ Y is prone in E, then (f, f)
is prone in E∗.

Proof. Suppose we are given

Z
(v,c)

��
7→

p(Z)
p∗(v,c)=p(c)

##
h
��

X
(f,f)

// Y p(X)
p(f)

// p(Y )

such that h = p(c). Then we claim that (v, h′) is the required unique fill-in, where h′ is
the unique fill-in from the universal property of f as a prone arrow in E:

S

h′

��

c

��
7→

p(Z)
p(c)

##
h
��

X
f
// Y p(X)

p(f)
// p(Y )

First, (v, h′) is a well-defined arrow in E∗: by Lemma 4.15, h′ is prone in E, and by
definition of h′ and (v, c), h′ = c = v.

Second, (v, h′) does make the triangle commute: using Lemma 7.5.i,

(v, h′) ◦ (f, f) = (h′fv, h′f) = (cv, c) = (v, c)

since c = v.
It remains to show that (v, h′) is unique with these properties. Thus, suppose we have

an arrow (w : T −→ Z, k : T −→ X) in E∗ such that

Z

(w,k)

��

(v,c)

��
7→

p(Z)
p(c)

##
h
��

X
(f,f)

// Y p(X)
p(f)

// p(Y )

Since the triangle commutes, using Lemma 7.5.i, (kfw, kf) = (v, c). Thus, by definition
of arrows in E∗, there is some subvertical partial isomorphism α : S −→ T such that

αkf = c, αkfw = v, α = c, and α(−1) = kf.

We claim that this same α witnesses that (w, k) = (v, h′) in E∗; that is, we claim that

αk = h′, αw = v, α = h′, and α(−1) = w.

Indeed, for the first requirement, we have αkf = c = h′f . However, we also have

p(αk) = p(α)p(k) = p(c)p(k) = hp(k) = hh = h = p(h′),
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so by proneness of f , αk = h′. For the second requirement,

v = αkfw = αkfαw = cαw = ααw = w.

For the third requirement,
α = c = h′.

For the fourth requirement, we use hyperconnectedness:

p(α(−1)) = p(k)p(f) = hp(f) = h = p(k) = p(w),

with the third equality since hp(f) = c is precise. Thus, since p is a hyperconnection,

α(−1) = w.
Thus α witnesses (w, k) = (v, h′) in E∗, and so (f, f) is prone, as required.

7.7. Theorem. If p : E −→ B is a hyperfibration then so is p∗ : E∗ −→ B.

Proof. Given an f : A −→ B in B and a Y over B let f ′ : X −→ Y be its p-prone lift.
Then the previous lemma tells us that (f ′, f ′) is p∗-prone, and so p∗ is a latent fibration.
Moreover, it is immediately admissible as this lift is a restriction idempotent if f is. Finally,
it is easy to check that p∗ is a hyperconnection since p is, so p∗ is a hyperfibration.

Our goal in the rest of this section is to further understand this latent fibration. We
begin by characterizing the subvertical maps:

7.8. Lemma. Let p : E −→ B be a hyperfibration. A map [(v, c)] : X −→ Y is subvertical in
E∗ if and only if c is a partial isomorphism, if and only if [(v, c)] has a unique representative
of the form

Y
v′

~~

v′

  
X Y

Proof. If (v, c) is subvertical, then c is prone and subvertical, so by Proposition 4.23.ii, c
is a partial isomorphism. Then define v′ := c(−1)v. Then the pair (v′, v′) represents the
same map as (v, c) via the subvertical partial isomorphism c; note that since v = c,

v′ = c(−1)v = c(−1)c = c(−1).

Moreover, such a representative is unique. If we have any other equivalent span

Y
w

~~

w

  
X Y

then there is some subvertical partial isomorphism α : Y −→ Y such that (in particular)
αv′ = w, α = v′, and αv = w. But then α ≤ αv′ = w, so α is a restriction idempotent,
and so we have

w = αv′ = αv′ = v′v′ = v′

If we have a map [(v, c)] with such a representative, then it is clearly subvertical.
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Before we look at prone maps, it will be helpful to understand certain partial isomor-
phisms in E∗.

7.9. Lemma. Let p : E −→ B be a hyperfibration. If (v, v) : X −→ S represents a partial
isomorphism in E∗, then v is a partial isomorphism in E.

Proof. Since (v, v) is a subvertical partial isomorphism, its partial inverse is also subver-
tical (and over the same map, p(v)). Then by the previous lemma, its partial inverse can
be taken to be of the form

X
v′

��

v′

  
S X

We want to show that v′ is the partial inverse of v. Since (v′, v′) represents a partial inverse
of (v, v), we have that their composite is equivalent to (v, v) = (v̂, v̂); by Lemma 7.5.ii, we
have that the composite is represented by

(v′v, v′vv′) = (v′v, v′v).

Thus, there is a subvertical partial isomorphism α : X −→ X so that in particular

αv′v = v̂, αv′v = v̂, α = v̂ = v̂.

Then α ≤ αv′v = v̂, so α is a restriction idempotent, and so α = α = v̂. Morever, as noted
above p(v′) = p(v) = p(v̂), so since p is a hyperconnection, v̂ = v′. So then

v′ = v̂ = αv′v = v′v′v = v′v.

The other equality (vv′ = v) follows similarly, and so v is indeed a partial isomorphism.

We now characterize prone maps in E∗:

7.10. Lemma. Let p : E −→ B be a hyperfibration. A map [(v, c)] : X −→ Y is prone in E∗

if and only if v is a partial isomorphism, if and only if [(v, c)] has a unique representative
of the form

X
c′

~~

c′

  
X Y

Proof. By Lemma 7.5.iii,
[(v, c)] = [(v, v)] ◦ [(c, c)].

However, by Lemma 7.6, [(c, c)] is prone, by assumption [(v, c)] is prone, and this factor-
ization is precise since [(v, c)] and [(v, v)] both have restriction [(v̂, v̂)]. Thus by Lemma
4.15, [(v, v)] is also prone. Thus by Proposition 4.23.i, [(v, v)] is a partial isomorphism in
E∗, and so by Lemma 7.9, v is a partial isomorphism.
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Given that v is a partial isomorphism, define c′ : X −→ Y by c′ := v(−1)c. Then it is
straightforward to check that v : S −→ X witnesses that (c′, c′) represents the same map as
[(v, c)]. That this representative is unique is similar to the proof of a similar statement in
Lemma 7.8.

The result that such maps are prone in E∗ was Lemma 7.6.

By Proposition 3.27, any map f : X −→ Y in the domain category of a latent fibration
p : E −→ B has a subvertical/prone factorization, and this factorization is unique up to
vertical partial isomorphism. We will need a slight strengthening of this result in the case
when p is a latent hyperfibration:

7.11. Lemma. Suppose p : E −→ B is a hyperfibration. Then for any f : X −→ Y in E,
there is a factorization

X
v−−→ S

c−→ Y

where c = v̂. Such a factorization is unique up to subvertical partial isomorphism.

Proof. Given such an f , let c : S −→ Y be a prone lift of p(f), and let v : X −→ S be the
induced map over p(f):

X

v

��

f

��
7→

p(X)
p(f)

##
p(f)
��

S c
// Y p(X)

p(f)
// p(Y )

Then we have
p(c) = p(c) = p(f) = p(v) = p(v̂)

(with the last by definition of v̂) and so since p is a hyperconnection, c = v̂. Uniqueness of
such a factorization follows from the uniqueness property of prone arrows.

With the above results in hand, we can now prove a result that can be used to prove
that (E∗)∗ is isomorphic to E, but is useful in its own right.

7.12. Proposition. Suppose that p : X −→ B and q : Y −→ B are hyperfibrations. Then
there is a bijection between morphisms of latent fibrations (i.e., restriction functors which
preserve the projection and prone arrows)

{F : X −→ Y
∗} ∼= {G : X∗ −→ Y}.

Proof. We will sketch the construction and leave most of the details to the reader. Given
a morphism of latent fibrations F : X −→ Y∗, define F̂ : X∗ −→ Y as follows. On objects,
F̂ is defined as F . On a representative arrow

S
v

��

c

��
X Y



LATENT FIBRATIONS: FIBRATIONS FOR CATEGORIES OF PARTIAL MAPS 487

since F is a restriction functor, F (v) is a subvertical inY∗, and so by Lemma 7.8 corresponds
to a unique subvertical arrow which we denote as Fv(v) : FX −→ FS. Similarly since F
preserves prone arrows, F (c) is prone in Y∗, and so by Lemma 7.10, corresponds to a
unique prone arrow Fc(c) : F (S) −→ F (Y ). We then define F̂ ([(v, c)]) to be the composite

F (X)
Fv(v)−−−−→ F (S)

Fc(c)−−−−→ F (Y ).

This is well-defined since if (v, c) is equivalent to some other (v′, c′), then there is a partial
isomorphism taking v to v′ and c to c′; thus F (v) and F (v′) go to the same map under F ,
and so Fv(v) = Fv(v

′) and similarly Fc(c) = Fc(c
′).

Conversely, suppose we have a morphism of latent fibrations G : X∗ −→ Y. We define
Ĝ : X −→ Y∗ on objects as G. For an arrow f : X −→ Y in X, by Lemma 7.11 there is a
factorization

X
v−→ S

c−→ Y

such that v̂ = c (and this factorization is unique up to subvertical partial isomorphism).
Then

X
v

��

v

  
S X

S
c

��

c

��
S Y

are respectively subvertical and prone in X∗. Thus we define Ĝ(f) to be the equivalence
class of the span

G(S)
G([(v,v)])

{{

G([(c,c)])

##
G(X) G(Y )

Note that this has the required restriction property since

[(v, v)] = v̂ = c = ĉ = [(c, c)].

Also note that Ĝ is independent of the choice of factorization since such factorizations are
unique up to subvertical partial isomorphism.

7.13. Corollary. If p : E −→ B is a latent hyperfibration, then E∗∗ is isomorphic to E.

Proof. Using Proposition 7.12, from the identity functor E∗
1−→ E∗ we get a functor E

η−→ E∗∗ and a functor E∗∗
ε−→ E; using the previous results it is straightforward to check

that these are inverse to one another.
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8. Conclusion

Aside from developing the applications of latent fibrations to, for example, restriction
differential categories and partial lenses, there is much theoretical work to be done to bring
the theory of latent fibrations to a state of maturity. We certainly hope to return to this
task in future papers and we also hope that others will join us in this development. While
there are some aspects of this theory for which we already have a partial understanding
there are other aspects which are completely open. For example, traditionally fibrations
are used to model logical features such as existential and universal quantification and as a
semantics of type theories, however, at this stage, we have little idea of what a type theory
corresponding to a latent fibration might look like.

Turning to aspects for which we do have some understanding we have shown above that
every latent fibration has associated re-indexing (or substitution) restriction semi functors.
Nonetheless, we have not here provided a full equivalence of such a collection of such
re-indexing semifunctors to a latent fibration. In other words, we have not provided the
analogue of the normal Grothendieck construction for latent fibrations. In fact, we do have
an understanding of this construction and we hope to publish its description separately.
Notably the construction requires more structure than for the usual Grothendieck con-
struction but, as in the usual case, has the potential of providing a significantly different
and important perspective. The additional structure is actually a “categorification” of the
structure used to define restriction presheaves introduced in [13].

A further, rather separate issue, concerns the behaviour of factorization systems over
latent fibrations. It is well-known that given an ordinary fibration, p : E −→ B, any
orthogonal factorization system in B can be lifted to one in E. A similar result can be
proven for latent fibrations. However, there is some delicacy at the outset of this project,
for defining what is meant by a factorization system for a restriction category has some
unexpected features. This also we hope to return to in future work.

At this stage in the development of the theory of latent fibrations, what we know still
seems dwarfed by what we still do not know. Perhaps the major open issues concern the
understanding of how logical features and, indeed, restriction category features (joins,
meets, discreteness, latent limits, classifiers, etc.) interact with the structure of latent
fibrations and how these, in turn, translate into type theoretic features.
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A. The original definition of prone

The notion of a latent fibration was first introduced in [21] in order to describe the
structures encountered while exploring realizability at the level of restriction categories.
In this paper we have used a more convenient notion of “prone” which is a considerable
simplification of the original definition. The purpose of this appendix is to show that the
original definition of prone from [21] and the one used in this paper are indeed equivalent.

Here is the original definition of prone:

A.1. Definition. Let p : E −→ B be a restriction functor, with E and B restriction
categories. An arrow f : X ′ −→ X in E is p-prone in case whenever we have g : Y −→ X
in E and h : p(Y ) −→ p(X ′) in X such that hp(f) ≥ p(g),

in E Y
g

  
∃h̃
��
X ′

f
//

≥

X

in B p(Y )
p(g)

##
h
��

p(X ′)
p(f)

//
≥

p(X)

there is a lifting h̃ : Y −→ X ′ in X such that

(a) h̃ is a candidate lifting: that is, h̃f ≥ g and p(h̃) ≤ h.

(b) h̃ is the smallest candidate lifting: that is, for any other candidate lifting k : Y −→ X ′

in X, h̃ ≤ k.

Our objective is to show that this notion of a prone map is equivalent to Definition
3.2.i which has been used in this paper. A first step in this direction is to show that the
lifting of h is unique having h̃f ≥ g minimal is precisely to ask for the apparently stronger

requirement that h̃f = g and h̃ = g, in other words that the lifted triangle is precise:

A.2. Lemma. (see [21] Lemma 6.2) For a restriction functor p : E −→ B, if f is a p-prone

arrow (in the sense of Definition A.1) and hp(f) ≥ p(g) then h̃ is the smallest lifting of h

in E A
g

��
h̃
��
B

f
//

≥
C

in B A
p(g)

��
h
��
B

p(f)
//

≥
C

if and only if h̃ is the unique map such that h̃ = g and h̃f = g and p(h̃) ≤ h.

Proof.

(⇒) Note that for the lifting h̃ we have h̃ ≤ h̃f ≤ g and yet gh̃ ≤ h̃ is certainly a

candidate lifting so, as h̃ is the smallest such, gh̃ = h̃, so g ≤ h̃ and, thus, h̃ = g. It

then follows that h̃f ≤ g as h̃fg ≤ h̃g = gg = g and so h̃f = g.
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(⇐) Suppose that h̃ is the unique map such that h̃ = g, h̃f = g, and p(h̃) ≤ h, then
certainly it is a candidate lifting. Suppose also that v is some other candidate lifting,
so that vf ≥ g and p(v) ≤ w, then gv has gv ≥ gvf ≥ gg = g ≥ gv so gv = g, as

vf ≥ g so gvf = g, and p(gv) = p(g)p(v) ≤ h. So gv satisfies the specification of h̃

and so gv = h̃ and, consequently, v ≥ h̃ showing the minimality of h̃.

Of course once one realizes the lifted triangle is always going to be precise then one
can reduce the lax triangle in the base to a precise triangle with h′ = p(g)h (by Lemma
2.7.v). This means:

A.3. Proposition. Definition A.1 of being prone is equivalent to Definition 3.2.

More precisely, if p : E −→ B is a restriction functor, f : B −→ C is p-prone – in the
sense of Definition A.1 – in E if and only if every precise triangle hp(f) = p(g) with left

factor h in B has a unique h̃ with p(h̃) = h making h̃f = g a precise triangle in E:

A

h̃
��

g

��

p7−→

p(A)

p(h̃)=h
��

p(g)

##
B

f
// C p(B)

p(f)
// p(C)

Proof.

(⇒) If f is prone in the sense of Definition A.1, and hp(f) = p(g) is a precise triangle

with left factor h then, by Lemma A.2, h̃f = g is a precise triangle with p(h̃) ≤ h.

However, p(k̃) = p(h̃) = p(g) = p(g) = h so p(h̃) = h.

(⇐) Let hp(f) ≥ p(g) be a lax triangle with lax left factor h, then, by Lemma 2.7.v,
(p(g)h)p(f) = p(g) is a precise triangle and so there is, by assumption, a unique left

factor making a precise triangle (p̃(g)h)f = g with p(p̃(g)h) = p(g)h. This p̃(g)h we
claim satisfies all the requirements of being a lifting of h. It is a candidate lifting as

p̃(g)hf = g ≥ g and p(p̃(g)h) = p(g)h ≤ h.

To show that p̃(g)h is the least candidate lifting, consider another candidate lifting,
k, with kf ≥ g and p(k) ≤ h then kf ≥ g then (gk)f = g is precise as is
(p(g)p(k))p(f) = p(g). Now p(gk) = p(gp(k) ≤ p(g)h as p(k) ≤ h, however, this

inequality is an equality as p(gk) = p(g) = p(g)h so that by the uniqueness of lifting

(under Definition 3.2) we have gk = p̃(g)h so that p̃(g)h = gk ≤ k as required.
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