
Theory and Applications of Categories, Vol. 36, No. 17, 2021, pp. 492–513.

PRESENTATIONS OF CLUSTERS
AND STRICT FREE-COCOMPLETIONS

ERWAN BEURIER, DOMINIQUE PASTOR AND RENÉ GUITART

Abstract. The clusters considered in this paper are seen as morphisms between small
arbitrary diagrams in a given locally small category C . They have initially been intro-
duced to extend to all small diagrams the results for filtered diagrams, by exhibiting a
very basic presentation of the formula used in the definition of the category Ind(C ) of
ind-objects in C . They constitute a category Clu (C ) which contains Ind(C ). We study
these clusters, their construction and composition. Thus we provide any user with the
means to generate clusters and perform calculations with them. So we can give a simple
proof of the fact that Clu (C ) is a strict free cocompletion of C for all small diagrams,
determined up to isomorphism. We compare it to some other cocompletion problems.

1. Introduction

The purpose of this article is to consider the strict free cocompletion problem (as pre-
cisely introduced here in Definition 4.1, making a clear distinction between the strict case
and the loose case), and its specific solution (ESFC) i.e. Theorem 4.4 [A. Ehresmann,
1981]), constructed with the notion of cluster (Definition 3.1). We will give details for the
construction and proof, and its relationship to some other cocompletion processes.

In the preliminary Section 2, standard material is provided as a language to carry out
the constructions in a way that emphasizes the role of the ”connected component functor”
π0 in relation with the so called flows (Definition 2.2). For this purpose, we introduce
the discrete cofibration ΞP,Q universally associated with two diagrams P and Q. Thus it
would be useful to characterize the notion of cluster by starting from the basic datum π0

only, because this prepares future works where the functor π0 will be replaced by another
functor.

In Section 3, we introduce the central notion in this article, that of a cluster, in Defini-
tion 3.1. We indicate how to generate clusters from flows (Lemma 3.6), which is necessary
to compose clusters, or if we need to know whether or not there is a cluster between two
diagrams P and Q. Moreover, Lemma 3.6 may be useful in the application of clusters to
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the representation of ”emergence” in evolutive systems, as introduced in [Ehresmann &
Vanbremeersch, 1987], [Ehresmann & Vanbremeersch, 2007].

Thanks to the notion of precluster (Definition 3.1), we construct the elementary pre-
sentation of the category Clu (C ), with its simple relation to the category of flows. We
introduce two actions, namely parallelization in Lemma 3.7 and binding in Lemma 3.10,
which will be useful in Section 4 to establish Theorem 4.4.

Then, we show that clusters satisfy the Lim-Colim formula, and so are related to
some natural transformations. This shows that the category Clu (C ) is isomorphic to
an extension of Grothendieck’s construction of Ind(C ), the category of ind-objects in C ,
to non-necessarily filtered diagrams. Via this extension, denoted LClu (C ) in Proposi-
tion 3.13, Clu (C ) ”contains” Ind(C ).

In Section 4, we propose a complete and elementary proof of Theorem 4.4. From this
theorem, we can deduce Grothendieck’s result on Ind(C ).

In the concluding Section 5, we compare the construction of Clu (C ) with some other
cocompletions. In short, among the several ways to cocomplete categories, strictly or
loosely, the cocompletion of C that yields Clu (C ) seems to be one of the most efficient,
for instance for explicit constructions of colimits.

2. Notation: comma categories, flows, connected components

Throughout this article, the category of sets is Set, the category of small categories is
Cat, C is a fixed locally small category, P, Q, . . . , are always small categories and
P : P → C , Q : Q → C , . . . , are always small diagrams.

In this preliminary Section 2, we recall the definition of a comma category (P ↓ Q),
and we introduce the notion of flow, the functor KP,Q which exhibits Q-(co)shapes for
objects P (p); then come into play connected components, the functors π0 and CCP,Q,
and the associated split cofibration ΞP,Q, which informally express the action of π0 on
Q-(co)shapes for objects P (p). It should also be noted that for explicit calculations, the
notation [g]p given in 2.8 will then be very convenient and frequently used.

2.1. Definition. [The comma category (P ↓ Q)] [Lawvere, 1963] The comma category
of two small diagrams P : P → C , Q : Q → C in a locally small category C , is
the small category denoted by (P ↓ Q) defined as follows. Its objects are the triples
(p, g, q) — also denoted here g : p ⇀ q — such that p ∈ Ob (P), q ∈ Ob (Q), and
g : P (p) // Q(q) ∈ Mor (C ). A morphism (p, g, q) // (p′, g′, q′) is a pair (a, b), where
a : p // p′ ∈P and b : q // q′ ∈ Q make the following square commute:

P (p) P (p′)

=

Q (q) Q (q′)

P (a)

g g′

Q(b)
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We also consider the ”source” functor SP,Q with values on objects and arrows given by

SP,Q : (P ↓ Q)→P : (p, g, q) 7→ SP,Q(p, g, q) = p, (a, b) 7→ SP,Q(a, b) = a.

2.2. Definition. [Ord-category of flows] A flow G : P → Q is the datum of a set G of
objects of (P ↓ Q). Given two flows G : P → Q and H : Q→ R, their composition is

H ◦G = {m : p ⇀ r | ∃q ∈ Ob (Q) ,∃g : p ⇀ q ∈ G,∃h : q ⇀ r ∈ H (m = hg)} .

We denote by Flow(C ) the category enriched in ordered sets which, as a 2-category, has
as objects small diagrams in C , as 1-morphisms flows with the composition law ◦, and
as 2-morphisms from G : P → Q to G′ : P → Q inclusions G ⊂ G′. Its category of
1-morphisms is denoted by Flow (C ), and the set HomFlow(C )(P,Q) is simply denoted by
Flow (C ) (P,Q).

2.3. Remark. For any object C in C , we consider the diagram

uC
C : {C} −→ C : C 7→ uC

C(C) = C

and the comma category
(
uC
C ↓ Q

)
is shortly denoted (C ↓ Q). For f : C → C ′, we

have the flow uC
f = {f : C ⇀ C ′}. So an arrow f in C ”is” a flow, namely uC

f . Hence,
as a set of morphisms, a flow is trivially a generalisation of a morphism, and we have an
embedding

uC : C ↪→ Flow (C ) .

2.4. Example. [Binary relations as flows]

1. If we restrict our diagrams to discrete diagrams, i.e. families of objects in C , P :
I → C , and if, moreover, we consider the case when C = 1, then, thus restricted,
Flow (C ) just becomes Rel(Set), the category of binary relations between sets.

2. Let us consider the case C = Set. Given two sets E and F , we consider the diagrams
αE : E → Set : x 7→ {x} and αF : F → Set : x 7→ {x}. Then a binary relation R
from E to F is exactly a flow α(R) from αE to αF , and so we have an embedding

α : Rel(Set) ↪→ Flow(Set).

2.5. Definition. [The functor KP,Q] For each object p ∈ P, we consider the comma
category

(
P | p ↓ Q

)
where the diagram P | p : {p} //C is defined by setting P | p(p) = P (p).

It is the subcategory of (P ↓ Q) whose objects are the g : p ⇀ q or triples of the form
(p, g, q) and morphisms are pairs (idp, b) with b a morphism in Q. We introduce also the
dual

KP,Q(p) =
(
P | p ↓ Q

)op
,

and this determines a functor KP,Q : Pop −→ Cat, with, for a : p′ → p, KP,Q(a)(g) =
gP (a).
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2.6. Remark. With the notion of cofibration as in [Grothendieck, 1971], we recover the
comma category from this KP,Q by taking the split cofibration qKP,Q :

∫
KP,Q −→ Pop

associated to KP,Q, which is the dual of the source projection SP,Q (see Definition 2.1).

2.7. Definition. [The connected component functor π0] Let X be a small category. We
define an equivalence relation ∼X on its set of objects by X ∼X X ′ iff there is a finite
”zigzag” of morphisms, in ”alternate” directions, connecting X to X ′:

X −→ X1 ←− X2 −→ · · · ←− Xn−2 −→ Xn−1 ←− X ′.

The equivalence class of X for this relation will be denoted by [X]X and named the con-
nected component of X. The connected component functor π0 : Cat → Set is given
by

π0(X ) = {[X]X | X⊂ Ob (X )} , π0(F : X →X ′) : [X]X 7→ [F (X)]X ′ .

Given a set E, let Dis(E) be the discrete category with objects the elements of E and
morphisms the identities on these objects. Then, it is well known that the construction
Dis is left adjoint to Ob, and π0 is left adjoint to Dis:

HomCat (Dis(E),X ) ' HomSet (E,Ob (X )) ,

HomSet (π0(X ), E) ' HomCat (X ,Dis(E)) .

The unit of the second adjunction is the quotient map

κX : X −→ Dis(π0(X )) : X 7→ κX = [X]X .

Thence this map is the unit of a monad Dis ◦π0 on Cat of which algebras are sets.

2.8. Notation. [[g]p] The connected component of g : p ⇀ q in
(
P | p ↓ Q

)
, that is to

say κ(P | p ↓ Q)(g : p ⇀ q) = [g](P | p ↓ Q), will be shortly denoted by [g]p, without necessarily

specifying P and Q when there is no risk of confusion from the context.

2.9. Remark. Two objects g : p ⇀ q and g′ : p ⇀ q′ in
(
P | p ↓ Q

)
that are connected in

(P ↓ Q) may or may not be connected in
(
P | p ↓ Q

)
, because the zigzags in

(
P | p ↓ Q

)
must have idp as components in P. This is illustrated by the following easy example,
which intuitively underpins the figure in Lemma 3.6 and is used in the proof of Lemma 3.7.

With sources P = {p a−→ p′}, and Q = {q1
b1−→ q0

b2←− q2}, we consider two diagrams
P : P → C and Q : Q → C in a category C , as below, where we suppose that the two
arrows Q(b1)g1 and Q(b2)g2 are different, but that

Q(b1)g1P (a) = Q(b2)g2P (a).
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P (p)

P (p′)

Q(q1) Q(q2)

Q(q0)

P (a)

g1P (a) g2P (a)

g1 g2

Q(b1) Q(b2)

More precisely, in this case, we have two different connected components of
(
P | p′ ↓ Q

)
that are included in the same connected component of (P ↓ Q). Indeed,

(
P | p ↓ Q

)
is

connected, consisting of the shorter zigzag:

g1P (a)→ Q(b1)g1P (a) = Q(b2)g2(P (a)← g2P (a),

but
(
P | p′ ↓ Q

)
is not connected, consisting of two isolated arrows, extracted from

(P ↓ Q):
Q(b1)g1 ← g1 and g2 → Q(b2)g2.

The two previous components are welded and the comma category (P ↓ Q) is connected.
It is actually a zigzag of 6 arrows between 7 objects :

Q(b1)g1 ← g1 ← g1P (a)→ Q(b1)g1P (a) = Q(b2)g2P (a)← g2P (a)→ g2 → Q(b2)g2.

We conclude this section by introducing two functors that will be instrumental to
make obvious the Lim-Colim formula in Proposition 3.11.

2.10. Definition. [The functor CCP,Q and the associated split cofibration ΞP,Q] We
introduce the functor

CCP,Q = π0 ◦KP,Q : Pop → Cat :


p 7→ CCP,Q(p) = π0

(
P | p ↓ Q

)
a : p′ // p 7→

{
CCP,Q (p) −→ CCP,Q (p′)

[g]p 7−→ [gP (a)]p′

that associates to p ∈P the set of ”connected components at p” (CC) in
(
P | p ↓ Q

)
.

The split cofibration associated to CCP,Q (see [Beurier, 2020]) is denoted by

ΞP,Q : ((P ↓ Q)op)
coarse −→Pop.

Its source is the ”coarsened” category ((P ↓ Q)op)
coarse

of P and Q, where an object

is a labelled connected component
(
p, [g]p

)
, [g]p ∈ π0(P | p ↓ Q), p ∈ P; and an arrow
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p, [g]p

)
//
(
p′, [g′]p′

)
is a pair

(
a, [g]p

)
, a : p′ // p ∈P such that [g′]p′ = [gP (a)]p′.

The composition of consecutive arrows
(
a, [g]p

)
: [g]p

// [g′]p′ and
(
a′, [g′]p′

)
: [g′]p′

// [g′′]p′′

is
(
a′a, [g]p

)
: [g]p

// [g′′]p′′. And given an arrow
(
a, [g]p

)
we have ΞP,Q

(
a, [g]p

)
= a.

This ΞP,Q is the free discrete cofibration generated by Sop
P,Q (see Definition 2.1, Remark 2.6).

3. From the category of flows to the category of clusters, via preclusters

From now on, we will add conditions of naturality and connectedness to flows: this is
necessary to properly describe cocompletions. We use the notations of Section 2 and in
particular those of Notation 2.8.

We construct the category of clusters Clu (C ) via the operation (−)σ introduced below
in Lemma 3.6, as an extension of a subcategory PreClu(C ) of Flow(C ), the obvious
category of flows (Definition 2.2).

So we start with the main definition in this article (Definition 3.1), with the rather
technical notion of precluster and the effective notion of cluster. With the operator (−)σ

(Proposition 3.5) we can finish the elementary description of Clu (C ), its elements and its
composition, that is to say, Theorem 3.9.

In this movement, we isolate two lemmas that will be useful later: ”parallelization”
3.7 and ”binding” 3.10. In Example 3.3, we also consider the case of a cluster generated
by a morphism of diagrams, which will be useful in Section 5.

Afterwards, we show that clusters admit a Lim-Colim formula (Proposition 3.11), we
establish the link between Clu (C ) and the Grothendieck construction with presheaves by
exhibiting the category LClu (C ).

3.1. Definition. [Flow, preclusters and clusters] [A. Ehresmann, 1981], [Ehresmann &
Vanbremeersch, 1987] Let P and Q be two small diagrams in a locally small category C .
With a flow G ⊂ Ob (P ↓ Q) (cf. Definition 2.2), we define G(p) as the subset of G
consisting of all the arrows in G starting with label p, that is to say:

G(p) = {g : p ⇀ q | g ∈ G} = G ∩Ob
(
P | p ↓ Q

)
, G =

⊎
p∈Ob(P)

G(p).

A precluster from P to Q is a flow G that verifies the conditions (CLU-1), (CLU-2),
(CLU-3) given below:

(CLU-1) for all p ∈P, there exists g : p ⇀ q ∈ G for some q ∈ Q i.e. G(p) 6= ∅.

(CLU-2) for all p ∈ P, if g : p ⇀ q ∈ G and g′ : p ⇀ q′ ∈ G, then they are connected
in the comma category

(
P | p ↓ Q

)
, i.e. [g]p = [g′]p

(CLU-3) if a : p′ // p ∈ P and g : p ⇀ q ∈ G(p), then gP (a) : p′ ⇀ q ∈ G(p′), i.e.
{gP (a) | g ∈ G, a : p′ // p} ⊂ G(p′)
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A cluster from P to Q is a maximal precluster, that is, a precluster verifying (CLU-4):

(CLU-4) G is maximal for inclusion ⊆ among the preclusters from P to Q

The set of preclusters from P to Q is denoted by PreClu(C )(P,Q), and the set of clusters
from P to Q is denoted by Clu (C ) (P,Q).

3.2. Example. (Functions) Given two maps between sets (seen as discrete categories),
f : X → E and g : Y → E, then a cluster from f to g over E is exactly a map m : X → Y
with f = g ◦m.

3.3. Example. (Arrows, cocones, morphisms of diagrams) An arrow f in a category ”is”
a cluster, when seen as uC

f in the definition of flows.
More generally, with P a diagram in C , and with α = (αp : P (p) // A)p∈Ob(P) a

family of morphisms in C , we introduce a flow α̂ = {(p, αp, A) | p ∈P}. Then α̂(p) =
{(p, αp, A)} = [αp]p and α is a cocone if and only if α̂ is a cluster α̂ : P // uC

A. This
cluster α̂ is said to be generated by the cocone α.

Given P and Q two diagrams, a morphism of diagrams from P to Q is a pair (F, f)
with F : P → Q and a natural transformation f : P ⇒ Q ◦ F . To such a datum we
associate a cluster [F, f ] from P to Q with [F, f ](p) = [fp]p.

Our next Proposition 3.4 explains how to identify our basic elementary notion of
clusters (Definition 3.1) with sections of ΞP,Q, which will make the Lim-Colim formula
obvious (Proposition 3.11).

3.4. Proposition. [Clusters as ”pw-atomic” subfunctors of CCP,Q or sections of ΞP,Q]
A flow G ⊂ Ob (P ↓ Q) is a cluster if and only if G verifies (CLU-3) and each G(p) is
a connected component of

(
P | p ↓ Q

)
, i.e. G(p) ∈ CCP,Q(p).

In other words, it is a datum G(−) such that p 7→ {G(p)} is on Pop a subfunctor
of p 7→ CCP,Q(p) (see Definition 2.10). Hence its value for each a : p′ // p is ([g]p 7→
[gP (a)]p′). Such a sub-functor will be called ”pw-atomic” (pw = pointwise) since its values,
which are parts of CCP,Q(p), are atoms (singletons). Of course it is a datum equivalent
to a section of ΞP,Q (cf. Definition 2.10).

Proof. A detailed proof is given in [Beurier, 2020, Proposition 4.4.4., page 121].

3.5. Proposition. [Saturation of flows] Let G : P //Q be any flow. We define :

GΣ(p) = {[gP (a)]p | p′ ∈ Ob (P) , a : p→ p′, (g : p′ ⇀ q) ∈ G(p′), q ∈ Ob (Q)} ,

We denote by Gσ the saturation of G, defined by:

Gσ(p) =
⋃

C∈GΣ(p)

C.

Such a GΣ is a subfunctor of CCP,Q, and conversely any subfunctor S of CCP,Q is of
the form S = GΣ for G(p) =

⋃
C∈S(p) C.
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The consideration of arbitrary subfunctors of CCP,Q — instead of only pw-atomic ones
as in Proposition 3.4 — is a convenient way to generate clusters from some flows G, by
”saturation” Gσ satisfying a functoriality condition (at the level of connected components)
(Proposition 3.5), as explained without its straightforward proof in the next Lemma 3.6.
This lemma is the natural tool to exhibit all examples of clusters and see some flows G
as presentations of clusters as their saturation Gσ. The composition in the category of
clusters is achieved by simply saturating preclusters.

Item 4 of Lemma 3.6 formally expresses that a given cluster is completely defined by
any ”sub-flow” picking out one element of each connected component. Thus (CLU-3)
is satisfied ”up to connected components”. Such a choice will be useful for instance to
describe the functor LC in Proposition 3.12.

3.6. Lemma. [Cluster generation] Given any flow G : P // Q and Gσ as in Proposi-
tion 3.5 we have:

1. Gσ is a cluster if and only if GΣ is a pw-atomic subfunctor of CCP,Q (see Propo-

sition 3.4). This condition is equivalent to saying that for all spans p1
a1← p

a2→ p2

in P, and for all g1 : p1 ⇀ q1 and g2 : p2 ⇀ q2 in G, we have the functoriality
condition:

[g1P (a1)]p = [g2P (a2)]p

P (p)

P (p1)

P (a1)

g1

Q(q1)

P (a2)

P (p2)

g2

Q(q2)

==

2. For G = (gp)p ∈
∏

p∈Ob(P)

Ob
(
P | p ↓ Q

)
, Gσ is a cluster iff it verifies the functori-

ality condition of Item 1, that is to say for gp1 : p1 ⇀ qp1 and gp2 : p2 ⇀ qp2 in G

[gp1P (a1)]p1
= [gp2P (a2)]p2

3. If G is a precluster, then Gσ is the unique cluster containing it, and for any g ∈ G(p)
we have Gσ(p) = [g]p.

4. If G is a cluster, then for all Γ ∈
∏

p∈Ob(P)

G(p), Γσ = G.
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3.7. Lemma. (Parallelization by elongation) Let G be a flow from P to Q. We consider
g : p ⇀ q and g′ : p′ ⇀ q′ in G. If G is a precluster, and if p and p′ are connected in P,
then g and g′ are connected in (P ↓ Q). But conversely this last property does not imply
that G is a precluster.

Proof. Let (pi)i∈I be the objects of a zigzag connecting p′ and p in P. By (CLU-1),
we associate a gi ∈ G(pi) to each pi, gi : P (pi) → Q(qi). For each arrow a : pi // pj of
the zigzag, gjP (a) ∈ G(pi) by (CLU-3). Since gi ∈ G(pi) as well, it follows from (CLU2)
that gi and gjP (a) are connected in

(
P | pi ↓ Q

)
, and notably we get a zigzag from qi to

qj. By adding a convenient number of identities on pi we get a zigzag from pi to pj with
the same length as the zigzag from qi to qj, and consequently connecting in this way each
zigzag in

(
P | pi ↓ Q

)
by means of the arrows of the initial zigzag in P, we obtain a new

zigzag in (P ↓ Q), called parallelization of the initial one in P.
The converse is false because — see Remark 2.9 — connectedness in (P ↓ Q) does

not imply connectedness in (P | p ↓ Q) and thus (CLU-2).

3.8. Proposition. (Category of preclusters) Given two preclusters G : P → Q and
H : Q → R, we consider their composition H ◦ G as flows over C , that is to say, as in
Proposition 2.2:

(H ◦G)(p) =
⋃

q∈Ob(Q)

{hg : p ⇀ r | g : p ⇀ q, h : q ⇀ r, g ∈ G, h ∈ H} .

Then, H◦G is itself a precluster. Consequently, we get the category PreClu (C ) of preclus-
ters over C , as a subcategory of Flow (C ), hence an inclusion functor:

inc : PreClu (C ) ↪→ Flow (C ) .

Proof. Clearly H ◦ G satisfies (CLU-1) and (CLU-3), as G and H do. For (CLU-2),
we have a connection from g : p ⇀ q to g′ : p ⇀ q′ in

(
P | p ↓ Q

)
, hence a connection

from q to q′ in Q; with this last one, and the datum h, h′, we apply the parallelization
Lemma 3.7 to obtain a connection in (Q ↓ R) from h to h′, which can be composed with
the first connection between g and g′, in order to connect hg to h′g′.

Now, using Proposition 3.5 and Lemma 3.6 for the saturation operation Gσ, especially
in the case of preclusters, we have the following theorem.

3.9. Theorem. [Category of clusters] We use Propositions 3.5 and 3.8.

1. We define the composition of clusters by

H �G = (H ◦G)σ.

With G(p) = [g]p and H(q) = [h]q, g : p ⇀ q, h : q ⇀ r, we obtain, with hg : p ⇀ r:

(H �G)(p) = [h]q � [g]p = [hg]p.

This composition is associative and we get the category Clu (C ) of clusters over C .
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2. We have an embedding
IC : C → Clu (C ) .

3. We have an inclusion of sets Clu (C ) ⊂ Flow (C ) , but, unlike PreClu (C ), Clu (C )
is not a subcategory of Flow (C ).

4. For preclusters we have
Hσ �Gσ = (H ◦G)σ,

and so the operation (−)σ determines a canonical functor

(−)σ : PreClu (C )→ Clu (C ) ,

and the relationship between flows and clusters via preclusters is visualised by the
span

Flow(C )
inc←↩ PreClu (C )

(−)σ→ Clu (C ) .

Proof. Considering three clusters G : P → Q, H : Q → R and L : R → S, we have
((L ◦ H)σ ◦ G)σ = (L ◦ (H ◦ G)σ)σ. This formula comes from the unicity in Item 3 of
Lemma 3.6. Explicitly, we have

L ◦ (H ◦G) ⊂ L ◦ (H ◦G)σ ⊂ (L ◦ (H ◦G)σ)σ = L� (H �G),

and similarly (L ◦ H) ◦ G ⊂ (L � H) � G. As L ◦ (H ◦ G) = (L ◦ H) ◦ G is a unique
precluster, then the two clusters containing it are equal.

With the notation in Remark 2.3, the embedding IC is given by

I = IC : C → Clu (C ) : (f : C // C ′) 7→ I(f) =
(
uC
f : uC

C
// uC
C′

)
For the fourth point, we have to prove (Hσ ◦Gσ)σ ⊂ (H ◦G)σ, as the other inclusion

is clear. So we consider h ∈ Hσ and g ∈ Gσ, and z ∈ [hg]p, with h ∈ [h0]p, g ∈ [g0]p, with
h0 ∈ H, g0 ∈ G. If the target of g0 is a q0, then, given a h0 ∈ H with source this q0, by the
”parallelization lemma” (Lemma 3.7) with a chosen element hq0 with source q0, we get a
zigzag from h0 to hq0 , with respect to the connection between g and g0. This implies that
z ∈ [hq0g0]p i.e. it is an element of (H ◦G)σ.

A corollary of Theorem 3.9, easy but useful in application, is the following:

3.10. Lemma. [Binding for action of preclusters on cocones] Let G : P //Q be a preclus-
ter, Gσ the cluster generated by G, α = (αp : P (p) // A)p∈Ob(P) a colimit cocone, and

β = (βp : Q(q) //B)q∈Ob(Q) a cocone.

With α̂ and β̂ the clusters associated to cocones α and β (Remark 3.3), with the
compositions ◦ and � of Proposition 3.8 and Theorem 3.9, we have

β̂ �Gσ = (β̂ ◦G)σ,



502 ERWAN BEURIER, DOMINIQUE PASTOR AND RENÉ GUITART

and there exists a unique ”binding” morphism bG : A //B, from the peak of α to the peak
of β, such that β̂ �Gσ = bG � α̂ (the cocone generated by (bGαp)p∈P).

For any h : A→ B and any G : P //Q, if h = bG, that is to say if β̂ �Gσ = h� α̂,
then h is determined by the family (hαp)p∈P and for each p there is a g : p ⇀ q ∈ G such
that: hαp = βqg.

G

bGA B

P Q

βα

3.11. Proposition. [Lim-Colim formula] Given two small diagrams P and Q to C and
the set Clu (C )(P,Q) of clusters from P to Q, we have a bijection

Clu (C )(P,Q) ' Lim
p∈P

Colim
q∈Q

HomC (P (p), Q(q)) .

Proof. If X is an object of C , and Q : Q // C a functor, then we have

Colim
q∈Q

HomC (X,Q(q)) '
⊎
q∈Q

HomC (X,Q(q)) / ≡,

where ≡ is the ”zigzag relation”, that is, the equivalence relation generated by x ≡ xQ(q)
for any x : X → Q(b) and b : q // q′. Therefore,

Colim
q∈Q

HomC (X,Q(q)) ' π0 ((X ↓ Q)) .

Hence, for any p in P, we obtain

Colim
q∈Q

HomC (P (p), Q(q)) ' π0

((
P | p ↓ Q

)
)
)

= CCP,Q(p),

Lim
p∈P

Colim
q∈Q

HomC (P (p), Q(q)) ' Lim
p∈P

CCP,Q(p).

An element in this Lim-Colim is a ([g]p)p∈P ∈
∏

p∈P CCP,Q(p) such that for all a : p→ p′

we have CC (a) ([g]p) = [gP (a)]p′ . According to Proposition 3.4 and Definition 3.1, this
element is a cluster.

For any locally small category C , with the Yoneda functor hC : C → SetC op

= Ĉ
given by hC (W ) = HomC (−,W ), Grothendieck in [Grothendieck, 1959] associates to any
small diagram P : P → C , the presheaf LC (P ) : C op → Set given by

LC (P ) = Colim(hC ◦ P ), LC (P )(Z) = ColimpHomC (Z, P (p)) = π0 ((Z ↓ P )) .
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3.12. Proposition. [Natural transformation LC (G) associated to a cluster G] Let P
and Q be two small diagrams to C . To any cluster G : P → Q, there is an associated
natural transformation LC (G) : LC (P )⇒ LC (Q) such that

LC : Clu (C )(P,Q) ' HomĈ

(
LC (P ), LC (Q)

)
is a bijection whose reciprocal is denoted by clu.

Proof. For any cluster G : P → Q, and with any choice Γ = {gp | p ∈P} of arrows
gp ∈ G(p) as in Lemma 3.6, Item 4 — with therefore G = Γσ, we define a natural
transformation θΓ : LC (P )⇒ LC (Q) whose components are:

θΓ(Z) :

{
LC (P )(Z) −→ LC (Q)(Z)
[u](Z ↓ P ) 7−→ [gpu](Z ↓ Q)

So Γ is seen as a presentation of θΓ, and in fact θΓ depends only on G, in such a way
that it could be denoted as θΓ = LC (G), and then the cluster G can be seen as the ”full
or regular presentation” of θΓ, and denoted by G = clu(θΓ).

Conversely, given an arbitrary natural transformation λ : LC (P ) → LC (Q), there
is a unique cluster clu(λ) such that λ = LC (clu(λ)), determined by elements ξp in
ColimqHom(P (p), Q(q)) (see Proposition 3.11), namely ξp = θ−,p, with θX,p the restriction
of θX to Hom(X,P (p)).

3.13. Proposition. With Proposition 3.12 where LC and clu are introduced, the ele-
mentary composition given in Theorem 3.9 by H �G = (H ◦G)σ can be recovered as

H �G = clu
(
LC (H) ◦ LC (G)

)
.

Hence Clu (C ) is isomorphic to the category LClu (C ) whose objects are small diagrams P
(and not the corresponding LC (P )), but where morphisms from P to Q are natural trans-

formations from LC (P ) to LC (Q). The category LClu (C ) is only equivalent to Ĉsmall, the
full category of presheaves which are colimits of small diagrams. We have the factorisation

LC : Clu (C ) ' LClu (C ) −→ Ĉsmall =
(
SetC op)

small
→ SetC op

= Ĉ

4. The universal property of Clu (C )

4.1. Definition. [Strict Free Cocompletion] Given a locally small category C , a strict
free cocompletion of C is a universal datum (I,F , λ) where F is a locally small category
which is cocomplete (any small diagram in it admits a colimit cocone), I : C → F is a
functor such that, for every small diagram P : P → C , the diagram I ◦ P = IP has
a colimit λ(IP ) with colimit cocone λP : IP ⇒ λ(IP ) in F . Hence, for every similar
triple (J,G , µ), where J : C → G is a functor toward a cocomplete category G , and such
that for every small diagram P : P → C , the diagram JP admits a colimit µ(JP ) with
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colimit cocone µP : JP ⇒ µ(JP ) in G , there is a unique functor J : F → G such that
we have:

J ◦ I = J and J(λP ) = µP .

If such a universal datum exists, the category F is unique up to an isomorphism.

4.2. Remark. [Strict or Loose Free Cocompletion ?] The property invoked in Defini-
tion 4.1 is said strict. Another problem (said vague or loose) would be to only impose
J to be unique up to an isomorphism of functors. A solution for the strict problem is a
category determined up to an isomorphism, and it is also a solution for the loose problem,
but any solution for this loose problem is a category determined only up to an equivalence.
In both cases, the term ”free” means that the functor I is free to preserve or not certain
colimits or limits that may exist and/or be specified in C .

4.3. Notation.

1. We will use the embedding

I = IC : C → Clu (C )

as described in Remark 2.3 and Item 2 of Theorem 3.9.

Thus, with P : P → C , and IP = I ◦ P , we have a diagram in Clu (C ):

IP : P → Clu (C ) : p 7→ IP (p) : {P (p)} → C : P (p) 7→ P (p).

2. When we consider a small diagram P : P → C as an object of Clu (C ), it will be
denoted by P • (see diagram below) unless no confusion is possible.

3. Of course, we must not confuse IP and P •. We define the cocone

λPC = λP : IP ⇒ P •

by setting

λP = (λp)p∈Ob(P), λp : IP (p)→ P •, λp(P (p)) = [idP (p)]P (p)

Hence, λp is the cluster with λp(P (p)) being the connected component of idP (p) in
(IP (p) ↓ P ).

The following figure summarizes the notations above:
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P

C
Clu (C )

IP
P

I = IC

p

P (p)

IP (p) λP

λp P •

4.4. Theorem. (ESFC) [A. Ehresmann, 1981] With Notation 4.3, for any given locally
small category C , we can explicitly construct, in an ”elementary” way, a strict free co-
completion (cf. Definition 4.1) denoted by

(IC ,Clu (C ) , λC )

and the category of clusters Clu (C ) is called the Elementary Strict Free Cocompletion of
C .

Hence, for any small diagram P : P → C we have

J(P •) = µ(JP ).

Moreover, for any arbitrary small diagram R : R → Clu (C ), we have an isomorphism

J(Colim(R)) ' Colim(J ◦R).

This construction is an extension of the construction of Ind(C ).

4.5. Remark. In fact the theorem was stated in dual form in [A. Ehresmann, 1981,
p. 370-371], with the notion of atlas, dual to the notion of cluster, and the category
Atlas(C ) =

(
Clu(C op)

)op
. The notion named ”clusters” and the associated theorem

are then stated in [Ehresmann & Vanbremeersch, 1987]. Of course, the cocompletion
properties of Clu (C ) in Theorem 4.4 correspond to the completion properties of Atlas(C ).
A final point, in order to appreciate the issues at stake, is the ”elementary” or non-
elementary nature of the explicit solution provided: its elements (the clusters), their mode
of generation, their composition, the category Clu (C ) they form, and also the effective
calculation of the colimits in this category.

We now prove Theorem 4.4, point by point, through propositions and corollaries 4.6
to 4.11.

4.6. Proposition. [Colimits in Clu (C ) for diagrams in C ] Given P : P → C a diagram
in C , then diagram IP from P to Clu (C ) admits the object P • (that is to say P itself)
of Clu (C ) as colimit in Clu (C ), with a colimit cocone

λP : IP → λ(IP ) = P •.
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Proof. For a : p′ → p ∈ P we have a cluster (IP )(a) : (IP )(p′) → (IP )(p) given by
(IP )(a)(P (p′)) = [P (a)]P (p′), the connected component of P (a) in (IP (p′) ↓ IP (p)). For
each p we have the cluster λp : IP (p) → P •. With the composition of clusters given in
Corollary 3.9, these clusters verify, for every a : p′ → p:

λp � (IP )(a) = λp′ ,

as we verify: (λp � (IP )(a)) (P (p′)) = [idP (p)P (a)]P (p′) = [P (a)]P (p′) = λp′(P (p′)).
So (λp)p∈Ob(P) determines a cocone

λP : IP → P •.

Now we verify that this cocone is a colimit in Clu (C ). Let µ be a cocone in Clu (C )
from IP to Q•. We are looking for a cluster G : P • → Q• such that G � λP = µ,
i.e. such that (G � λp)p = µp. Let g : P (p) → Q(q). If (g : p ⇀ q) ∈ G(p), then
(G�λp)(P (p)) = µ(P (p)) is represented by [g idP (p)]P (p) = [g]P (p), and then g ∈ µp(P (p)).
And conversely. So G(p) = µp(P (p)) Since µ is a cocone, for any a : p → p′, we have
µp′ � (IP )(a) = µp. Therefore, if g′ ∈ µp′(P (p′)) then g′P (a) is in µp(P (p)). This
last statement is equivalent to saying that if g′ ∈ G(p′) then g′P (a) is in G(p), i.e.
[g′P (a)]p = [g]p. This proves that G is functorial in that it satisfies (CLU-3).

4.7. Proposition. [Unicity of J ] With the same notation as in Proposition 4.6, given a
functor J : C → G — as in Definition 4.1 — we have a unique J such that

J ◦ I = J and J(λP ) = µP .

Proof. The values of J on objects are:

J(P •) = J(λ(IP )) = µ(JP ).

If G : P • → Q• is a cluster over C , let bJG be the binding of the precluster JG in G (see
Lemma 3.10). We have:

J(G) = bJG : µ(JP )→ µ(JQ).

We must prove that for every p we have J(G)µPp = bJGµ
P
p . As G is a cluster, IG is a

precluster from IP to IQ, and, with Proposition 4.6, G = bIG, the binding of IG (see
Lemma 3.10). Hence, G is determined by the family of the GλPp = bIGλ

P
p , and we know

that there is a g : p ⇀ q such that GλPp = bIGλ
P
p = λQq I(g). Then J(G)µPp = J(G)J(λPp ) =

J(GλPp ) = J(λQq I(g)) = J(λQq )J(I(g)) = µQq J(g) = bJGµ
P
p .

To complete the proof of Theorem 4.4, it remains to show Proposition 4.9 below and
its corollaries. Proposition 4.9 gives a detailed proof of the procedure ER indicated in
[A. Ehresmann, 1981, p. 371] and that we now quote, in dual form and with modifications
of her notations, in the next Proposition 4.8.
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4.8. Proposition. [Cocompletion by the procedure ER] For R : R → Clu (C ) with R
small, its colimit is E•R, that is to say the functor ER : ER → C defined as follows: ER
contains as a subcategory the disjoint union of the categories Ir domain of R(r), for each
r, and its other morphisms from i in Ir to i′ in Ir′ are the g which belong to the cluster
R(ρ) for some ρ : r → r′ in R; the functor ER extends the functors R(r) and maps
g : i→ i′ on ρ.

In this procedure, ER is a kind of lax-colimit, analogous to the construction of fibrations
by Grothendieck or of Ehresmann’s categories of hypermorphisms.

Given P : P → C , we see that

EIP 'P, EIP ' P.

Therefore, the simple construction considered in Proposition 4.6 results from that intro-
duced in Proposition 4.8.

In our proof of Theorem 4.4, and as announced above, we are going to demonstrate
Proposition 4.9, which also establishes Proposition 4.8 by considering in detail the suffi-
cient cases of sums and coequalizers.

4.9. Proposition. [Cocompletion] For any locally small category C , the locally small
category Clu (C ) is cocomplete, i.e. admits small colimits.

Proof. With respect to the procedure ER recalled in Proposition 4.8, we explicitly de-
scribe colimits, in the cases of sums and coequalizers (of which of course the general case
follows).

1. Given a set K and a family of diagrams Pk : Pk → C , set S =
∐

k∈K Pk with
canonical injections Ik : Pk → S . The sum in Clu (C ) of the diagrams Pk : Pk → C
is the diagram S : S → C , whose canonical injections are the clusters ik = [Ik, IdPk ]
generated by the morphisms of diagrams (Ik, IdPk) (as in Example 3.3) and given, for any
p ∈Pk, by ik(p) =

[
IdPk(p)

]
p
.

2. Given two diagrams P : P → C and Q : Q → C , and two clusters A,B :
P → Q, the coequalizer of A and B is a cluster Z : Q → W given as follows. W is
a diagram W : W → C , where W is the category whose set of objects is the disjoint
union Ob (P)

∐
Ob (Q) and whose generating morphisms are the copies of morphisms

of P, Q and the elements of A ∪ B, a morphism from p to q being a w : p ⇀ q in
A or in B. The functor W extends P and Q, and maps w : p ⇀ q in A or in B onto
itself. Then, as above in the case of sums, Z is the cluster generated by the inclusion
Q ↪→ W , with values Z(q) = [idQ(q)]q. If H : Q → R satisfies H � A = H � B, then
for any p, with chosen elements a : p ⇀ qa, ha ∈ H(qa), b : p ⇀ qb, hb ∈ H(qb), we
have (H � A)(p) = [haa]p = [hbb]p = (H � B)(p). Thus haa and hbb are connected in(
P | p ↓ R

)
. This means that in

(
W | p ↓ R

)
the same data are connected. Hence H

admits a unique factorization H ′ by Z, given by H ′(q) = [h]q with h ∈ H(q), and at the
same time H ′(p) = [ha]p with a : p ⇀ q ∈ A(p) and thus a ∈ W , and also H ′(p) = [hb]p
with b : p ⇀ q ∈ B(p) and thus b ∈ W .
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4.10. Corollary. In Definition 4.1, for any small diagram R : R → F that is not
necessarily of the form R = IP , we nevertheless have an isomorphism

J(Colim(R)) ' Colim(J ◦R).

Proof. As F is determined up to an isomorphism, it is enough to prove the corollary
in the case of Clu (C ), with R : R → Clu (C ). So let ER : ER // C be its colimit in
Clu (C ). We have ColimR(R) = E•R ' ColimER(IER), and so

J(ColimR(R)) = J(E•R) ' J(ColimER(IER)) ' J(λ(IER)) = µ(JER) ' ColimER(JER).

Also we have for any object r in R (and consequently in ER):

(JR)(r) = J(R(r)) ' J(λ(IR(r)) = µ(JR(r)) ' ColimIr(JR(r)).

In fact the source ER of the colimit ER, as described in Proposition 4.8, is a kind of
lax-colimit, and that allows to have

ColimER(JER) ' ColimR (ColimIrJR(r)) .

4.11. Corollary. The category Ind(C ) is a full subcategory of Clu (C ) — or of LClu (C ).
— and the cocompletion result of Grothendieck is a particular case of Theorem 4.4.

Proof. The corollary follows from two remarks. Firstly, computations of colimits in
Proposition 4.9 depend only on the general process ER (see Proposition 4.8), from which
it is clear that filtered colimits of filtered diagrams are filtered diagrams. Secondly, rather
than working with Clu (C ) it is possible to use LClu (C ).

5. Conclusion: elements for comparison with other cocompletions

As the construction developed here offers some details of a proof of Andrée Ehres-
mann’s theorem given in 1981, we must compare her initial statement with what was
done at that time and before. The reader will find more references in the bibliography
in [A. Ehresmann, 1981], among which we will mention only a few, in chronological order:
[Grothendieck, 1959], [Isbell, 1960], [Grothendieck & Verdier, (1961) 1972], [Tsalenko,
1963], [Roux, 1964], [Lambek, 1966], [Duskin, 1966], [Trnkova, 1966], [C. Ehresmann,
1967], [Isbell, 1967], [Freyd, 1969], [Gabriel & Ulmer, 1971], [Conduché, 1971], [Prochas-
son, 1972], [Bastiani & Ehresmann, 1972], [Borceux, 1972], [Deleanu & Hilton, 1976],
[Porter, 1979], [Adamek, Herrlich & Strecker, 1979], [Street, 1979], [Adamek & Koubek,
1981], [Kelly, 1982], [Johnstone & Joyal, 1982].

If someone wanted to write a complete history of cocompletions, they would have to
take into consideration all these references, together with those given in [A. Ehresmann,
1981], as well as others in the history of lattice theory, and also of course, additional
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works such as [Velebil & Adámek, 2002], [Day & Lack, 2007], or more recently [P. Perrone
& W. Tholen, 2021]. But this is not our goal here; we only want to extract from the
aforementioned references some salient points to appreciate the construction of clusters.
In this respect, we do not tackle here the question of preserving limits (conservative or
preservative cocompletions), which occurs in almost all the studies referred above. We
are only interested in the very nature of cocompletions, their effectiveness, and the precise
determination of the problem they solve.

Usually, it is considered that the ”best” description of a free cocompletion of a category
C is the category of small presheaves on C , i.e. all small colimits of hom-functors, and
especially the free cocompletion under filtered colimits then consists of small filtered
colimits of hom-functors. Indeed, after Yoneda’s lemma, following [Grothendieck, 1959],
most of the works of the 1960s seem to go in this direction, e.g. [Isbell, 1960], [Lambek,
1966], etc.

This is certainly true if we presuppose two points: that we are interested in cocom-
pletion only up to an equivalence of category (loose cocompletion), and if the question
of the effectiveness of presentations and computations in the said cocompletion remains
secondary (and, in fact, these two points are related).

But in fact the question is intricate, as we already see in the description of the free
cocompletion under filtered colimits as Ind(C ) in [Grothendieck, 1959]. We encounter
the ”natural” Lim-Colim formula, the difficulty of handling the elements, and especially
performing the composition. For applications to Shape Theory, [Deleanu & Hilton, 1976]
succeeded in simplifying this question, and this will be commented by Porter [Porter,
1979], and [Johnstone & Joyal, 1982], at least in the filtered case. Therefore, in this case,
they reach a strict solution to the problem, although they do not seem to notice it since
they explicitly identify their Ind(C ) with the category of small filtered presheaves on C .
It is worth emphasizing that this identification is not an isomorphism but an equivalence.

And now, what about the general case of diagrams that are not necessarily filtered?
The solution proposed by [A. Ehresmann, 1981] seems adequate. The decisive idea is
therefore to replace the Deleanu-Hilton or Johnstone-Joyal description of the filtered case
by the explicit consideration of zigzags and the associated connected components. This
is not a mere obvious and even gratuitous generalization, but the actual way to proceed,
as further detailed in the next paragraphs. Moreover, the idea even originates from
other sources, namely from works on cocompletions in sketch theory [C. Ehresmann,
1966], [C. Ehresmann, 1967], [Bastiani & Ehresmann, 1972], and achievements of Charles
Ehresmann on the categorical treatment of local structures and manifolds [C. Ehresmann,
1952, 1954], [C. Ehresmann, 1958], by introducing the notion of atlas [C. Ehresmann,
1964]. So the notion of cluster (or dually of atlas), as introduced in [A. Ehresmann,
1981], is a unification of two apparently disjoint ideas : the notion of ideal in a lattice,
the notion of atlas for a manifold.

That said, the categories Clu (C ) and Ĉsmall =
(
SetC op)

small
are equivalent but not

isomorphic, via a canonical comparison functor between the strict and loose solutions. It
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is, with the notation LC from Proposition 3.12 and Proposition 3.13):

LC : Clu (C ) −→ Ĉsmall.

The reader can compare the ease of calculating colimits in Clu (C ), for a functor R : R →
Clu (C ) (this colimit being ER : ER → C in Proposition 4.8 and Proposition 4.9, where
ER is simply a lax-colimit) with the fact that in the category

(
SetC op)

small
we have to

resort to a model of Set Theory (the category Set), and then we have to use quotients
(to do the point by point colimits in Set). The same holds for our variant LClu (C )
(Proposition 3.13). In a sense, one can imagine that in Clu (C ), the quotients modulo the
zigzags are encapsulated in the prior fabrication of the morphisms.

Our presentation has emphasized that we can construct cocompletion via the initial
data of π0 only and that the computations are actually feasible with some elementary
material and notation such as [g]p and Gσ, which are definable from π0. Thus, the
compositions of arrows and the calculations of colimits become very easy and effective.
And this is crucial for concrete applications, in the vein of [Ehresmann & Vanbremeersch,
2007] or [Pastor, Beurier, Ehresmann, Waldeck, 2020].
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gie et géométrie différentielle(here [C. Ehresmann, 1980-1984]).https://ehres.
pagesperso-orange.fr/C.E.WORKS_fichiers/Ehresmann_C.-Oeuvres_IV_1.pdf

A. Ehresmann and J. P. Vanbremeersch, Hierarchical evolutive systems: A mathematical
model for complex systems, Bul. Math. Biology 49-1, 13-50, 1987.

A. Ehresmann and J. P. Vanbremeersch, Memory Evolutive Systems; Hierarchy, Emer-
gence, Cognition, 1st ed., ser. Studies in multidisciplinarity, Elsevier, 2007.
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A. Grothendieck, Catégories fibrées et descente, Exposé VI. SGA 1960-61, SLNM 224,
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A. Grothendieck et Verdier, Théorie des topos et cohomologie étale des schémas. SGA
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Tim Van der Linden, Université catholique de Louvain: tim.vanderlinden@uclouvain.be


	Introduction
	Notation: comma categories, flows, connected components
	From the category of flows to the category of clusters, via preclusters
	The universal property of    Clu ( C )  
	Conclusion: elements for comparison with other cocompletions
	References

