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INTRINSIC SCHREIER SPECIAL OBJECTS

ANDREA MONTOLI, DIANA RODELO, AND TIM VAN DER LINDEN

ABSTRACT. Motivated by the categorical-algebraic analysis of split epimorphisms of
monoids, we study the concept of a special object induced by the intrinsic Schreier
split epimorphisms in the context of a regular unital category with binary coproducts,
comonadic covers and a natural imaginary splitting in the sense of our article [21]. In
this context, each object comes naturally equipped with an imaginary magma structure.
We analyse the intrinsic Schreier split epimorphisms in this setting, showing that their
properties improve when the imaginary magma structures happen to be associative.
We compare the intrinsic Schreier special objects with the protomodular objects, and
characterise them in terms of the imaginary magma structure. We furthermore relate
them to the Engel property in the case of groups and Lie algebras.

1. Introduction

Recently, two different categorical approaches have been developed which aim to describe
the homological properties of monoids, mainly in comparison with the properties groups
have. The first one started with the observation that an important class of split epimorph-
isms of monoids, called Schreier split epimorphisms, satisfies the convenient properties of
split epimorphisms of groups [8, 9]. The idea of considering Schreier split epimorphisms
originated from the fact that these split epimorphisms correspond to monoid actions in
the usual sense [22, 19]. Although the category of monoids is not protomodular, Schreier
split epimorphisms satisfy the properties that are typical for split epimorphisms in a pro-
tomodular category. This led to the notion of an .#-protomodular category, with respect
to a chosen class . of points—i.e., split epimorphisms with fixed section [10]. In an
Z-protomodular category, it is always possible to identify a full subcategory which is
protomodular [2], called in [9] the protomodular core with respect to the class .. The
objects of this subcategory are the .-special objects, namely those objects X for which
the split epimorphism X x X = X, given by the second product projection and the
diagonal morphism, belongs to .. The category of monoids is not protomodular but
it is -protomodular with respect to the class of Schreier split epimorphisms, and its
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protomodular core is the category of groups.

The second approach consists in considering, in a pointed category with finite limits,
a suitable class of objects, called protomodular objects |20]. These are the objects Y such
that every split epimorphism with codomain Y is stably strong. A split epimorphism
with a given section is strongly split if its kernel and its section are jointly extremal-
epimorphic. It is stably strong if every pullback of it along any morphism is a strongly
split epimorphism. As proved in [20], in the category of monoids the protomodular objects
are precisely the groups.

The notion of protomodular object makes sense in every (pointed) category with finite
limits, while Schreier special objects can apparently be considered only in the context of
a Jonsson—Tarski variety [15], because the notion of Schreier split epimorphism depends
on the existence of a function, which is not a morphism in general, called the Schreier
retraction. In order to study this from a categorical perspective, we introduced in [21]
the concept of intrinsic Schreier split epimorphism, in the context of a regular unital
category [3] equipped with a comonadic cover (in the sense we recall in Subsection 2.3).
This approach is inspired by the notion of imaginary morphism [5]: indeed, the Schreier
retraction we need is such an imaginary morphism. We showed in [21] that these categories
are .-protomodular with respect to the class of intrinsic Schreier split epimorphisms,
and we obtained an intrinsic version of the so-called Schreier special objects. It is shown
in [21] that the concepts of intrinsic Schreier special object and protomodular object are
independent. Since, however, the two coincide in the category of monoids, the question
of understanding when the two notions are related arises naturally.

One of the goals of the present paper is to give an answer to this question. An im-
portant ingredient here is the observation that, when considering the Kleisli category
associated with the comonad involved in the definition of an intrinsic Schreier split epi-
morphism, the definition itself simplifies greatly (Section 5). Also, each object admits a
canonical imaginary magma structure whose operation (called imaginary addition in the
text) depends on a choice of a natural imaginary splitting, which is part of our initial
setting (Section 4). It turns out that an object is intrinsic Schreier special precisely when
its imaginary magma structure is a one-sided loop structure (Theorem 8.2). Under the
assumption that the imaginary addition is associative (Section 6) we are able to extend
several stability properties and homological lemmas which hold for Schreier extensions of
monoids [8] to our intrinsic context (Section 7). Moreover, we prove that every intrinsic
Schreier special object is a protomodular object (Corollary 10.4).

It was shown in [21] that there are only two possible choices for the natural imaginary
splitting in the category of monoids, which leads to only two possible imaginary additions.
This is no longer true for the category of groups or Lie algebras, where many options are
available. Therefore, we focus on studying intrinsic Schreier special objects with respect
to all natural imaginary additions in these categories. We prove that 2-Engel groups
are intrinsic Schreier special with respect to all possible imaginary additions (Proposi-
tion 11.12). A similar result also holds for Lie algebras (Proposition 12.1).
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2. Imaginary morphisms

In this section we recall the concept of an imaginary morphism which is of crucial im-
portance in our work. We fix a particular setting where these imaginary morphisms can
be defined.

2.1. IMAGINARY MORPHISMS |7|. We take X to be the functor category Set®” >, where
C is an arbitrary (small) category. Consider functors home and A: C°® x C — Set and a
natural transformation ov: homc = A. If @ is monomorphic, then all sets A(X,Y") contain
(an isomorphic copy of) homc(X,Y). So, we may think of A(X,Y’) as an extension of
homc(X,Y), and indeed in [7] the triple (C, A, o) was called an extended category. The
elements of A(X,Y )\ homc(X,Y) will be called imaginary morphisms. Sometimes it
will be convenient to call a morphism in homc(X,Y) a real morphism to emphasise
that it is an actual morphism in C.
We use arrows of the type
X--3Y

to represent an element of A(X,Y’), which could be an imaginary morphism or not. To
distinguish those which are not, i.e., the elements of A(X,Y) corresponding to a real
morphism, say f: X — Y, we tag the dashed arrow with the name of that real morphism
overlined (instead of ax y (f)):

x-Lsv

It is possible to define an extended composition, denoted by o, between real and
imaginary morphisms as follows:

X-*>Y —=V, where voa=A(lx,v)(a)

-~

voa

and
U—>X-=:Y, where aou=A(u,1ly)(a).

~ —

aou

If a corresponds to a real morphism, i.e., a = f = axy(f: X — YY), then the same is
true for v o @ and a o u. Indeed, by the naturality of a we have

A(lx,v)(axy(f)) = axv(vf),

so that v o f =vf(=axy(vf)) corresponds to the real morphism vf. Similarly, f ou =
fu(= ayy(fu)) corresponds to the real morphism fu. In particular, we obtain identity

properties voly = ¥ and 1xou = u. There is also an associativity property, which follows
from the fact that A is a functor:

(voa)ou= A(u,1y)(A(lx,v)(a)) = A(u,v)(a)
= A(ly,v)(A(u, 1y)(a)) = vo (aou).



INTRINSIC SCHREIER SPECIAL OBJECTS ol7

2.2. DEFINITION. We say that a real morphism f: X — 'Y admits an tmaginary split-
ting when there exists an imaginary morphism s such that the following diagram commutes

voisx-Lovy
fos—Ty

2.3. COMONADIC COVERS. We assume that C is a regular category equipped with a
comonad (P, d,¢) whose counit ¢ is a regular epimorphism. Then for each object X in C,
the morphism ex: P(X) — X is a (comonadically) chosen cover of X in C, which for
us means that we have a regular epimorphism €y with codomain X, determined by the
given comonad.

Note that for any morphism f: X — Y in C

fex = ey P(f) (1)
and
P*(f)ox = 6y P(f), (2)
where P? = PP. Also
epx)0x = lpx) = Plex)ix (3)
and
P(6x)0x = dpx)dx, (4)

for any object X in C.

2.4. EXAMPLE. If V is a variety of universal algebras, then we may consider the free
algebra comonad (P, d,¢). For any algebra X, we have

ex: P(X) —» X: [z] » 2 and 6x: P(X) — P*X): [z] — [[2]],

where [x] denotes the one letter word z; such words are the generators of P(X). In this
case, any function f: X — Y between algebras X and Y extends uniquely to a morphism
P(X)—>Y: [x] » f(x)in V.

2.5. IMAGINARY MORPHISMS INDUCED FROM COMONADIC COVERS. The idea behind
functions extending to real morphisms in Example 2.4 can be captured through the notion
of imaginary morphism: it is like a function (not a morphism) X --» Y of algebras X
and Y that extends to an actual morphism of algebras P(X) — Y. More precisely, given
a regular category C with comonadic covers we define the functor

A:CPxC — Set,
(X,Y) — homc(P(X),Y)
utlo I A(u,v)
(U, V) +— homc(P(U),V)
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where A(u,v) = homc(P(u),v). So, A is just the functor homc (P x 1¢).
The components of a: homc = A are defined, for all objects X, Y by

axy: home(X,Y) = home(P(X),Y): (X L V) > (P(X) 3 x L v).

Note that «vis indeed a natural transformation because € is (see (1)). Also, the components
axy are injective, for all objects X,Y, since ex is a regular epimorphism. Since the
elements of A(X,Y) = homc(P(X), Y) are actual morphisms in C, an arrow of the type
X --»Y corresponds to a morphism P(X) — Y. According to Subsection 2.1:

o if X Lyis real, then X A, Y corresponds to P(X) Iex Y,so f = fex;

e an imaginary morphism X -2 Y is a (real) morphism P(X) % Y which is not of

the form a = fex, for some real morphism X ER Y

e the composition of a real morphism with an imaginary one is defined by

X:3>Y%V: where voa =va: P(X) -V,

- —

U—>X-2>Y, whereaou=aP(u): P(U)—>Y.
\\\_ _ 7

aou

2.6. CONVENTION. From now on, we only consider imaginary morphisms that are induced
from comonadic covers.

2.7. REMARK. It is clear that in this setting the existence of an imaginary splitting
(Definition 2.2) for a morphism f implies that f is a regular epimorphism (f o s = 1y
implies that fs = ey, which is a regular epimorphism). The converse holds when the
values of P are projective objects in C. If f: X — Y is a regular epimorphism, then f
admits an imaginary splitting because P(Y') is projective

2 |
4
3

X ——Y

P(Y)
i

thus fs = ey. So the existence of imaginary splittings characterises regular epimorphisms
in this setting. Moreover, P(f) is a split epimorphism since

P(f)P(s)0y = P(ey)dy 2 1py.
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composition o composition in C
Xz*>Y——=V P(X)—">Y >V
X-%sY-T5V PX) 2 pr(x) P piyy s vy

Rt (3) NP a
€3]
P(X)
Ut>X-“5Y PU) 2" p(x) 45y

aou

U-ZsXx-%sy PO 2% o) 2 py
~ _Z

~

aou (3)

P pxy sy

Table 1: Composition in the Kleisli category

3. The Kleisli category

Let C be a regular category with comonadic covers. We denote by K the Kleisli cat-
egory associated to the comonad (P,d,¢). Its objects are those of C and homk(X,Y) =
homc(P(X),Y). The morphisms of K are the imaginary morphisms together with those
of the type f: X --» Y, for some real morphism f: X — Y (Subsection 2.5).

The composition in K will also be denoted by o (as in Subsections 2.5 and 2.1)

A-2s>B-tsc
~ _7
boa

where b o a corresponds to the morphism in C

P(a)

P(A) 245 p2(A) — p(B) -2 C.

3.1. REMARK. If any of the morphisms in a composite in K corresponds to a real morph-
ism, then this composite coincides with the one defined in Subsections 2.5 and 2.1—See
Table 1.

The comonad (P, d,¢) gives rise to an adjunction K 2 C, where the right adjoint is
the embedding

I CoK X oy o x-toy

Consequently, K has a limit for every finite diagram in C, which is just the limit of that
diagram in C, embedded into K.
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4. Imaginary addition in unital categories

In this section we define an imaginary addition on each object X of a unital category with
comonadic covers, i.e., an imaginary morphism pX: X x X --+ X such that u~ o(1x,0) =
1x and pX 0{0,1x) = 1yx. Such an imaginary addition provides one of the tools needed
to define intrinsic Schreier split epimorphisms in Section 5.

4.1. UNITAL CATEGORIES [3]. A pointed and finitely complete category is called unital
when, for all objects A, B,

14,0) 0,1y
% %

A Ax B B

is a jointly extremal-epimorphic pair.

4.2. EXAMPLE. As shown in [1], a variety of universal algebras V is unital if and only if
it is a Jonsson—Tarski variety [15]. Recall that a Jonsson—Tarski variety is such that
its theory contains a unique constant 0 and a binary operation + satisfying the identities
xr+0=x=04x So an algebra is a unitary magma, possibly equipped with additional
operations.

A pointed finitely complete category C is unital if and only if for any punctual span

A<j C——=15, fs=1u, gt =1p, ft=0, gs=0

in C, the induced morphism {f, g): C — A x B is a strong epimorphism (Theorem 1.2.12
in [1]). Consequently, a pointed regular category with binary coproducts is unital if and
only if for all objects A, B, the comparison morphism

TABZ[l(f‘l?B]:A+B—»A><B

is a regular epimorphism.

4.3. NATURAL IMAGINARY SPLITTINGS [21]. If C is a regular unital category with binary
coproducts and comonadic covers, then for all objects A, B, the comparison morphism
rap = (¢ ) A+ B - A x B is a regular epimorphism. When P(4 x B) is a
projective object, as in the varietal case, there exists a (not necessarily unique) morphism
tap: P(Ax B) > A+ B such that

rABlAB = €AxB (5)

(see Remark 2.7). That is to say, there exists an imaginary splitting ¢4 g for the regular
epimorphism 74 p.
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4.4. EXAMPLE. Let V be a Jonsson—Tarski variety. For any pair of algebras (A4, B) in V,
we can make the following choices of an imaginary splitting for r4 p: the direct imaginary
splitting tjfLB

[(a,0)] —>a+b

which sends a generator [(a, b)] € P(Ax B) to the sum of @ = ¢;(a) with b = 15(b) in A + B
(where ¢; and ¢y are the coproduct inclusions); and the twisted imaginary splitting UA B

[(a,0)] > b+a

which does the same, but in the opposite order. Note that both of those choices t4 p are
natural in A and in B, so that they each determine a natural transformation

t=(tap: P(Ax B) > A+ B)apec

such that rt = ¢ as natural transformations.

It was shown in [21] that when V is the category Mon of monoids, then the above
choices of natural imaginary splittings (direct and twisted) are the only options. This is
far from being true in general: if A and B are groups then we can also send [(a,b)] to
—a + b+ a + a, for instance. See the end of Section 10 for further examples.

We make the existence of a natural ¢ into an axiom. Let C be a pointed regular (unital)
category C with binary coproducts and comonadic covers. Suppose also that there exist
ta p such that (5) holds and that they are the components of a natural transformation ¢,
where rt = ¢. Then all r4 g are necessarily regular epimorphisms (because the €445 are)
and, consequently, C is a unital category. In [21] such a natural transformation ¢ was
called a natural imaginary splitting.

4.5. REMARK. Any natural imaginary splitting ¢ = (tap: A X B --» A+ B)4 pec has
the following properties:

1. t4 can be identified with €4, up to canonical isomorphisms, as follows:

/| L Ny P — |

| |

|
I ! |

P(A % 0) =% A+ 0% A %0,
\—/

EAX0

P

—~

for all objects A in C;

2. the naturality of ¢ gives the commutative diagram

P(Ax B) -2 A1 B

P(uxv)l luﬂ) (6)
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forallu: A—C,v: B— D in C;

3. from (5), we deduce

1
[1,4 O]tA,B:WAgAxB (:) €AP(7TA) (7)
and
1
(0 15)tap = TBEaxB W epP(mp) (8)
for all objects A and B in C;

4. using properties 1. and 2. above, we obtain the (regular epimorphism, monomorph-
ism) factorisations

P({14,0))
— s

P(A) P(AxB)—2" A+ B

(9)
€A N A L1

and

(10)

for all objects A and B in C.

4.6. IMAGINARY ADDITION. Let C be a regular unital category with binary coproducts,
comonadic covers and a natural imaginary splitting ¢. For every object X, we consider
the imaginary morphism pu*: X x X --+ X given by

PX x X) —2X 5 x4 x X (11)

We call 4 an imaginary addition on X since

X
X0 X x - osx (12)
JX oLy 09—Tx
and
X
X0 v x - o X (13)

X o(0,1x)=Tx

Indeed, ¥ o {1x,05 = (Ix Lx)txxP({1x,00) € (1x 1x)uex = ex = Iy and p¥ o
0,1%) = (Ix L)ty xP0,1x)) 2 (1y 1x)wex = ex = Ix. We adapt Definition 3.15
in [7] to the unital context and call the family

o= (/LXI XxX--» X)XGC
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a natural addition. Here “natural” means that for any morphism f: X — Y the diagram

XxX-"sX
fol lf (14)
Y XY -5V

o

commutes. Indeed,

fop™ = fllx Ix)txx = (Iy Iy)(f + fixx © Ly W)tyy P(f x f)y=p" o (f x f).

5. Intrinsic Schreier split extensions

In this section we recall the notion of a Schreier split epimorphism of monoids and its
extended categorical version, the notion of an intrinsic Schreier split epimorphism. We
actually give a simplified version of the intrinsic definition by using the direct composition
of imaginary morphisms, which is simply the composition in the Kleisli category associated
with the comonad of the comonadic covers.

5.1. SCHREIER SPLIT EXTENSIONS OF MONOIDS |8, 9]. We recall the definition and the
main properties concerning Schreier split epimorphisms.
A split epimorphism of monoids f with chosen section s and kernel k

Kr— (X, 1))=Y (15)

is called a Schreier split epimorphism if, for every = € X, there exists a unique
element a € K such that z = k(a) - sf(x). Equivalently, if there exists a unique function
q: X --» K such that © = kq(z) - sf(x) for all z € X. We emphasise the fact that ¢ is
just a function (not necessarily a morphism of monoids) by using an arrow of type --».

The uniqueness property may be replaced |9, Proposition 2.4| by an extra condition
on ¢: the couple (f,s) as in (15) is a Schreier split epimorphism if and only if there exists
a ¢, as above, such that

(S1) z = kq(x) - sf(x), for all x € X;
(S2) q(k(a)-s(y)) =a,forallae K, yeY.

5.2. REMARK. Recall from [8] that Schreier split epimorphisms are also called right ho-
mogenous split epimorphisms. A split epimorphism as in (15) is called left homogenous
if, for every x € X, there exists a unique element a € K such that z = sf(z) - k(a).
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5.3. PROPOSITION. [8, Proposition 2.1.5] Given a Schreier split epimorphism as in (15),
the following hold:

(S3) qk = 1[(,’
(S4) ¢s =0;
(85) Q(l) =1;

(S6) kq(s(y) - k(a))-s(y) =s(y)-k(a), forallae K, yeY;

(S7) q(z-2') = q(z) - q(sf(x) - kq(z)), for all x, 2’ € X.

A split epimorphism as in (15) is said to be strong when (k, s) is a jointly extremal-
epimorphic pair. It is stably strong if every pullback of it along any morphism is strong.
Any Schreier split epimorphism is (stably) strong (see [8], Lemma 2.1.6 and Proposition
2.3.4), thus f is the cokernel of its kernel k. So, viewed as a split short exact sequence,
such a split epimorphism in fact forms a Schreier split extension.

As shown in [18], the definition of a Schreier split epimorphism makes sense also in
the wider context of Jonsson—Tarski varieties.

5.4. INTRINSIC SCHREIER SPLIT EXTENSIONS [21]. We recall our approach to Schreier
extensions. Here C will denote a regular unital category with binary coproducts, comon-
adic covers and a natural imaginary splitting ¢.

5.5. DEFINITION. A split epimorphism f with chosen section s and kernel k

KwT»Xi%;K (16)

is called an intrinsic Schreier split epimorphism (with respect to t) if there exists an
imaginary morphism q: X --» K (i.e., a morphism q: P(X) — K ), called the imaginary
(Schreier) retraction, such that

(iS1) X olkoq,sf) = 1x, i.c., the diagram

x &0 v x

N |
17\\ I
X \&\y

X

X

commautes;

(iS2) gop* o (k x s) = 7g, i.e., the diagram

KXY%XXX—5{>X

~

~

s}

|
-~ |
=~ |
=~
TK ~ -

v
*K

commutes.
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The original definition in [21] expressed the above axioms through their corresponding
morphisms and equalities in C. However, using the composition in the Kleisli category K,
as above, gives a better understanding of the link with (S1) and (S2).

The imaginary retraction of an intrinsic Schreier split epimorphism is necessarily
unique (see |21, Proposition 5.3]) and we also have (by |21, Proposition 5.4]):

(iS3) K%X —/i/ > K, ie., qP(k) = ex;

qok=1g

(i84) ¥V —— -X‘—/% > K, ie., qP(s) = 0;

Y

qos=0

(iS5) O%X— g/;K Le., ¢P(0x)(= ¢0p(x)) = Ok;

qo0x =0k

(kogouXo(sxk),5myy

(iS6) Y xK--—--=--2-=~ >X x X
|
sxk :,uX
v
Xx Xoommm o o --sX,
I

ie., p¥odkogop™ o(sxk),smy)=p*o(sxk)

In order to obtain an intrinsic version of (S7), we will need a further assumption,
which will be discussed in the next section.

If we apply this intrinsic definition to the category Mon of monoids, we regain the ori-
ginal definition of a Schreier split epimorphism (= right homogeneous split epimorphism).
Also, left homogeneous split epimorphisms (see Remark 5.2) fit the picture. Indeed:

5.6. THEOREM. [21, Theorem 5.10] In the case of monoids, the intrinsic Schreier split
epimorphisms with respect to the direct imaginary splitting t* are precisely the Schreier
split epimorphisms. Similarly, the intrinsic Schreier split epimorphisms with respect to
the twisted imaginary splitting t* are the left homogeneous split epimorphisms.

This result extends to Jonsson—Tarski varieties [21].

5.7. /-PROTOMODULAR CATEGORIES [8]. We now recall the definition of an .#-proto-
modular category, with respect to a class . of points (i.e., of split epimorphisms with a
fixed section) in a pointed category C with finite limits.

We denote by Pt(C) the category of points in C, whose morphisms are pairs of morph-
isms which form commutative squares with both the split epimorphisms and their sections.
The functor cod: Pt(C) — C associates with every split epimorphism its codomain. It is
a fibration, usually called the fibration of points. For each object Y of C, we denote
by Pty (C) the fibre of this fibration, whose objects are the points with codomain Y.
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Let . be a class of points in C which is stable under pullbacks along any morphism.
If we look at it as a full subcategory .-Pt(C) of Pt(C), then it gives rise to a subfibration
#-cod of the fibration of points.

5.8. DEFINITION. /8, Definition 8.1.1] Let C be a pointed finitely complete category, and
< a pullback-stable class of points. We say that C is . -protomodular when:

1. every point in -Pt(C) is a strong point;
2. /-Pt(C) is closed under finite limits in Pt(C).

As shown in [10], .-protomodular categories satisfy, relatively to the class ., many
of the properties of protomodular categories [2]. In particular, a relative version of the
Split Short Five Lemma holds: given a morphism of .#-split extensions, i.e., a diagram

!
/ K / i /
Kot X eosy

ol g h
k, S
Kt s x<——v,

such that the two rows are .#-split extensions (points in . with their kernel) and the
three squares involving, respectively, the split epimorphisms, the kernels, and the sections
commute, g is an isomorphism if and only if both v and h are isomorphisms. In Section 7
we will show that, when .% is the class of intrinsic Schreier split extensions, a stronger
version of this lemma holds. Moreover, we will discuss the validity of other homological
lemmas.

The following list of examples is given in chronological order; each one is a special case
of the next one.

5.9. EXAMPLE. |8] The category Mon of monoids is .#-protomodular with respect to the
class . of Schreier split epimorphisms.

5.10. EXAMPLE. [18] Every Jonsson—Tarski variety is an .-protomodular category with
respect to the class . of Schreier split epimorphisms.

5.11. EXAMPLE. [21] Every regular unital category with binary coproducts, equipped
with comonadic covers and a natural imaginary splitting, is .-protomodular with re-
spect to the class .# of intrinsic Schreier split epimorphisms. Consequently, such a split
epimorphism, together with a chosen kernel, forms an intrinsic Schreier split extension.

The reader may find several other examples in [11].
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6. The associativity axiom

In order to improve the behaviour of the intrinsic Schreier split extensions, it is use-
ful to consider an additional assumption, concerning the associativity of the imaginary
addition p*~.

Let C be a regular unital category with binary coproducts, comonadic covers and a
natural imaginary splitting t. Suppose that, for every object X, the imaginary addition
wX satisfies the associativity axiom p* o (u* x 1x) = u¥ o (Ix x p¥), i.e., the diagram

Xxi
Xx X x X2 v« x
| |

— |
TxxpX | B

commutes. This means that, for arbitrary imaginary morphisms a, b, ¢c: A --» X, we get

p o (i oda, by, ¢) = i o a, p o (b, c)). (17)

6.1. EXAMPLE. In Gp and in Mon, the direct and twisted imaginary splittings induce
associative imaginary additions.

Among the properties, listed in the previous section, of Schreier split epimorphisms of
monoids, there is one, namely the property given by (S7), which uses the associativity of
the monoid operation (for X). Hence it is not so surprising that we may prove its intrinsic
version when we assume the associativity axiom.

6.2. PROPOSITION. Suppose that the natural addition (u~: X x X --+ X)xec s asso-

ciative. Given an intrinsic Schreier split extension (16) with imaginary retraction q, the

following diagram commutes
{gom1,sfm1,kogoma)

(iS7) X x X —=-"=-"—== SKxXxX—-—-——2=2- >K x K
' |

,uX| I/‘K
M \
Xom - - > K

i.c., p o (T x (qo ™)) o (gom, sfm ko gom) = qo ™,
PRrROOF. Using LLemma 6.3 below, it suffices to prove that

X olkop® o(Tg x (qgop™))olgom,sfr, kogqom),sfou™
=pXolkogop™ sfop®)

which, by (iS1), is the same as

pXolkop™ ol x (qop™))olgom,sfm,kogqomy,sfopuy=p~.
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We have

p¥olkop™ ok x (gop™))olgom,sfm,kogomy,sfou™)

2 X o o (k x k) o dgom,qo p¥ o 5Tm ko qom)), it o (5f x 5F))

= ¥ ol{utolkogom,kogopolsfm,kogomy),u*o(sf xsf))
D X o (ko qom it olkoqo ™ olsfmkoqomyu o (5] x sP
_ MXo<koqom,ﬂxo<koqo,/<o<ﬁ,koqom>,ﬂo<m,ﬁ>>>
17 Mxo<koqom,,ﬁo<uxo<koqo,/<o<ﬁ,koqow2>,m>,ﬁ>>
— X olkogom, X o (X olkogouXo(sx k) o(Fr,qom),

57y o (fm, g om)), sfma))

= Xolkogom,

pX ot olkogopu o(sx k),5my)o{fm,qom),sfra))
prolkogom, ™ olut o (s x k)o(fm,qomy, sfr))
= p*olkogom,u olu* o{sfm,koqomy,sfr))
= pXolkogqom,ut olsfmy,p* olkoqgom,sfm)))

is1 =\ (T sfm), 73
2 polkoqom, ut o(sfm, T2 = prout olkogom,sfm), T

X

iS1 S
2 K ommy = wt.

6.3. LEMMA. Let (16) be a split epimorphism with an imaginary morphism q such that
(iS2) holds. If
prolkoa,soby=p* olkoc, sod),

where a, ¢c: A --+ K and b, d: A --+Y are imaginary morphisms, then a = c.
PROOF. X o{koa,soby = pu* o{koc,sod)implies
qo X o{koa,s0by = qo X o(koc,sod)
= qopXo(kxs)ola,by=qopu*o(kxs)olcd
(iS2)

= ﬁO<aab>:ﬁo<cvd>

so that a = c. m
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6.4. REMARK. Of course in the situation of Lemma 6.3, we also have b = d—independ-
ently of whether (iS2) holds. Indeed, f o uX o{(koa,soby=pu¥ o(fokoa,fosob)=
uY 0{0,by = b, and by a similar argument we see that fou* o(koa,sod)=d.

6.5. REMARK. As an immediate consequence of Lemma 6.3, we obtain the uniqueness
of the imaginary retraction for any intrinsic Schreier split extension (16) (which was
already known from |21, Proposition 5.3]). Given two possible imaginary retractions g,
¢: X --» K, (iS1) gives

prolkogsf)=Tx=p" olkod,sf);
consequently, ¢ = ¢'.

6.6. REMARK. The referee suggested that we could replace the associativity condition by
a weaker requirement adapted from Definition 1.4 in [13]. We checked that this would
indeed work for Proposition 6.2, but chose to keep the current, less general approach for
the sake of simplicity.

7. Stability properties and homological lemmas

In this section we prove that certain stability properties for Schreier extensions of monoids
shown in [8] still hold for intrinsic Schreier extensions in our context: C will denote a
regular unital category with binary coproducts, comonadic covers and a natural imaginary
splitting ¢. Moreover, we will observe that some of these stability properties allow to
extend the validity of some classical homological lemmas to our intrinsic context.

Wherever we extend a proof in [8] which uses the associativity of the monoid opera-
tions, we assume the associativity axiom holds. This is the case, in particular, of the first
stability property we consider:

7.1. PROPOSITION. (See |8, Proposition 2.3.2|) Suppose that the natural addition
(™ X x X ——» X)xec

s associative. Then the intrinsic Schreier split extensions are stable under composition.

PROOF. Suppose that

q s g
Ki-~-sX<——vY and L§—Z——Yé—f—;Z
k l

are intrinsic Schreier extensions. We want to prove that

st
MDTX:JC>Z
g
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is an intrinsic Schreier extension, where m is the kernel of gf. Consider the following
diagram where both squares are pullbacks:

0——Z.

We must provide an imaginary retraction ¢: X --» M. The imaginary morphism p*
(kogs,sloggof): X --» X is such that composing with gf gives the following equalities
in C:

9f(lx 1x)tx x P((kqy, slgaP(f)))dx
= gf(x 1x)tx xP(kqs x slqaP(f))P({1px), Lpcx)))0x

2 g1 (1x 1x)(kas + slagP(f)tpx)pe0 PCLeceos 1o ))dx
= (9fkqy nglqu(f)JtP(X),P(X)P(<1P(X , 1p(x)))ox = 0.

This gives a unique ¢: P(X) — M in C, i.e., an imaginary morphism ¢: X --+ M, such
that moq = pX o{koqs,slog,o f). We prove that this ¢ is the imaginary retraction for
the split epimorphism gf. We start with (iS1) as in

Yolmog,stgfy=p* olu¥ olkogy,slogyo [, stgf)

17 e
DX (koqp, X o(slogyo f,stgf))

= pX olkogs,p* o(sxs)ollogytgyof)
14 rpe 1.
DX o (kogps o’ ollogtgyo f)=Tx,

where in the last step we use (iS1) for g and then (iS1) for f.
Finally, we prove that m o q o u* o (m x st) = m o7 and use the fact that m is a
monomorphism, to conclude (iS2). We start with

moqopu~ o(m x st)
= ¥ olkogp,sloggo fyop™ o(mx st)

=pu* olkogsou™o(mxst),slogyofou”o(mxst)
(1:4),uxo<koqfo,uxo(m><st7sloqgo,u o(f x f)o(mxst))
= p* olkogsop®of (fm x fst))
b

( o(lf

Fo (

=p~olkoqrou™o(mxst),slog,op” o(lf xt))

)

) Y

m x st),slog,op’ o

) Y

:,uXo<k:oqfolu o (m x st), Sloqgo,uyolxt) o(f' x1z))
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- X X — ’
=p* olkogpop™ o(mxst),slomo(f x1z)),

where in the last equality we use (iS2) for g. Now we use sl o7 o (f' x 1) = sfmmy
and (iS7) applied to f. This gives
moqopu~ o(m x st)
— 1% o (o o (Tic  (gg © 1) o gy © T, 5771, b o gy 0 ma) o (m x st), 5 Fmman)
=~ olkop® olgromo(m xst),qrou™olsfr,koqsomyo(m x st)),sfmmy).

Note that a part of the composite above is

qr o~ olsfm,koqsom)yo(m x st)

14 —
S o (qr % qr) o 5T, ko qp o msy o (m x st)

= pf olgposfm o(m x st),qrokoqsom(m x st))
(iS:3)ILLK o{gfosfm o(m x st),qs o stmy) 59 ),

Thus,

moqopu” o(m x st) = pJXo<k‘o,uKo<1K,0>oqfomWM,SmeM>

(12 ok o qyp, sfy oMy (iszl)EomwM = m oTyy.

7.2. PROPOSITION. (See [8, Proposition 2.3.2|) Consider split epimorphisms

s t

X Y A
I g

in C. If (gf, st) is an intrinsic Schreier split extension, then so is (g,t).

PrROOF. We use the same notation as in Proposition 7.1. We claim that the needed
imaginary retraction for g is ¢, = f'ogos: Y --» L. From (iS1) for gf, we have

pXolmogstgfy=Tx = fouSolmog,stgfy=7
L emoq gl =T.
Then
1 o {logytg) = p¥ ollf oqos, gy =pu" ol{fmogos,tgfs)
= o(mogigfyos=Tos =Ty,

which proves (iS1) for g. As for (iS2) for g, we have

ggop  o(lxt)=flogosou’ o(lxt)
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W o g0 o (sl x )
= foqop® o(ms x st)
:f’oqouxo(mxst)o(s’xlz)

where we use (iS2) for gf in the fifth equality. n

7.3. LEMMA. Suppose that the values of P are projective objects in C. Let a, b: A --+ X
be imaginary morphisms and z: Z — A a reqular epimorphism. If a oz = bo z, then

a=b.

PROOF. a o z = b o z corresponds to the equality aP(z) = bP(z) in C. Then a = b, since
P(z) is a split epimorphism (see Remark 2.7). "

In the following Eq(f) denotes the kernel pair of a morphism f.

7.4. PROPOSITION. (See |8, Proposition 2.3.5| and |11, Proposition 4.8]). Suppose that
the values of P are projective objects in C. Consider the following commutative diagram

P o
Eq(y) £ ==5Falg) == Eq(h)

!

Kg-——--< X <——=Y
> >
k/ f/
v g h
4 R M
<~ —
Kr— > X<———% V.

Note that, by the commutativity of limits, k is the kernel of p. If the top two rows are
intrinsic Schreier split extensions and g and h are regular epimorphisms, then the bottom
row s also an intrinsic Schreier split extension.

PROOF. C is an .“-protomodular category (Example 5.11), thus it is an .#-Mal’tsev
category [11, Theorem 5.4]. By Proposition 3.2 in [11], 7y is a regular epimorphism.

Since P(X) is a projective object and g is a regular epimorphism, ¢ admits an ima-
ginary splitting ¢: X --» X', so that got = 1x (see Remark 2.7). We claim that
qg=7v0oq ot: X --» K is the needed imaginary retraction for the bottom row. We must
prove (iS1):

prodkogsfy=pu"olkyod ot,sf)
=X olgk'oq ot,sfogot)
=X olgk'loq ot,gos'flot)
= o(gxg)olk og.s'f)ot
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DyouX o od, 5Pyt
~goTyot=Tx.

where we use (iS1) applied to the second row in the next to last equality.
For (iS2), we precompose the equality we wish to prove with the regular epimorphism
v x h
k~y x sh)
gk' x gs')
g x g)(K' x s')

qop~o(kxs)(yxh)=voqdotop™o
=yoq otou™
:fyoq’oto,uXo

(
(5)7oq'otogouxlo(/{;'><s')

oyoq o o (W x §') =y o =T o (v x h),

o

(
(

where we use (iS2) for the second row in the next to last equality. Then (iS2) follows
from Lemma 7.3.

To finish, we just need to prove the equality yoq'otog © ~vogq'. Actually, we prove this
equality in C (not in K) and to do so, we use the compatibility of the first two rows with
respect to the imaginary retractions |21, Proposition 5.7]: vp = ¢ P(g;), for i € {1,2}.
We have

v P(t)5x P(g) 2 7' P(t) P2(9)dx: = ¢ P(tP(9))dxs = 74 P(g1{tP(g), /)0,

where (tP(g),ex/) is the unique morphism making the following diagram commutative
P(X")

(tPlg).ex)

tP(g)

Using the compatibility mentioned earlier,

4 P(t)ox P(g) =4 P(g1)P({tP(9), ex1))dx
=1pP((tP(g),ex))dx
=772pP((EP(g), ex7))0x
=74 P(g2) P((tP(g), ex7))dx/

3
=7 P(ex)ox £ q.
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Figure 1: Equi-consistency

7.5. COROLLARY. (See [8, Corollary 2.3.6]) Suppose that the values of P are projective
objects in C. Consider the diagram

X Y’

l s l

X

ﬁy

KH

Kpr——-

where the three squares involving, respectively, the split epimorphism, the kernels, and the
sections commute. If the top row is an intrinsic Schreier split extension, then so is the
bottom row.

PROOF. Take the kernel pairs of the regular epimorphisms 1x, g and h. This gives a 3 x 3
diagram whose top row is an intrinsic Schreier split extension, since these extensions are
closed under arbitrary pullbacks (see [21, Proposition 6.1]). Applying Proposition 7.4 to
this 3 x 3 diagram, we conclude that (f, s) is an intrinsic Schreier split extension. n

In order to get the validity, in our context, of one of the classical homological lemmas,
namely the 3 x 3-Lemma, we need another stability property of the class of intrinsic
Schreier split epimorphisms. This property was called equi-consistency in |11]:

7.6. DEFINITION. [11, Definition 6.3] Let .7 be a pullback-stable class of points. Consider
any commutative diagram as in Figure 1, where {ri,roy: R — X x X and {s1,s2y: S —
Y x Y are equivalence relations, (f,s) and (f',s') are split epimorphisms, (f",s") is the
induced split epimorphism between the kernels of i and s1, and the diagram is completed

by taking kernels and the induced dotted morphisms. . is equi-consistent if, whenever
the points (f,s), (r1,egr), and (f",s") belong to 7, then (f',s') is in .7, too.

7.7. PROPOSITION. (See |11, Proposition 6.4|) Suppose that the natural addition (u*: X x
X --+» X)xec is associative. Then the class of intrinsic Schreier split extensions is equi-
consistent.
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PROOF. Consider the commutative diagram in Figure 1. Suppose that (f, s), (r1,eg), and
(f",s") are intrinsic Schreier split epimorphisms, and denote by ¢, ¢”, and x the imaginary
retractions for (f,s), (f”,s"), and (1, egr), respectively. In particular, we have

tiwoq" = qoru, i€{l,2}. (18)

We consider the imaginary morphism o = pft o (s'f'uo y,egkoqor;): R --» R. We
have

7’1o,uRo<s'f'uox,eRk:oqor1>(1:4) o (ry x ) ods' fluox,egkoqor)
e X o0, kogory = pX 00, 1x)okogon 2 kogon
and

roopfols fluox, erkogor)

= o (rg x o) o (s’ fluoy,egkoqor)

"B X osfrauox,kogor;

thus we obtain the commutativity of the following diagram:

X
7
koqog/ Trl
RZIZ-%__sR (19)

Next, we consider 3 = uf o{egkoqorsoa,s fluox): R--+ R. We have

riopufolegkoqgoryoa, s fluoy)

() p* o (ry xr)olegkogqoryoa,s fluoy)
Fig. 1 pr olkogoryoa,0)

= MXO<1X,O>OkOqOTQOOé

(12)

=" kogorsoa
and

ry ot olegkoqoryoa,s fluoy)

(14) p* o (ry x ra) olegkogoryoa,s flucy)

(19),Fig. lMX olkoqouXolsfrouoy,koqor),sfrauox)
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= X olkoqou®o(sxk)olfrauox,qor), sfrouox)
= MXo<koqo,uXo(s ><k)o<fr2uox7qor1>,s7ryo<fr2uox,qor1>>

= X olkoqou®o(sxk),smyyolfraucy,qor)

(i86) o (s x k)o(frauox,qor) = p~ olsfrauox,kogor);

this gives the commutativity of the following diagram:

X
« -
I o(sf’r‘guox,lioq/orp/ -
Rz - ———- >R —in—>R
DR r o
kogorgoar™ ~ — _
> X.

Now we consider v = pff o (uk” o ¢" o x,egk o qorsoa): R --+ R. We have

riopu’ouk”oq"ox. epkogor,oq)
2 X o (m x ) o Cuk” o g o x,epk o gory o a)
Ml X o0, kogoryoa)

= X o0,1x)okogoroa

W kogoryoa

and

r2OLLRO<u/€”Oq/,OX7€RkOqOT2Oa>
W X o (ry x 13) 0 (uk” 0 ¢" o x,erk o gors 0 a)

UOZE L X o (ktaw o ¢ o x, ko go p¥ o (sfrauc x, kogor))

= pro(kxk)oltawoq ox,qop™ olsfraucx,kogory)

= IuXo(k’Xk)o<qor2uox,qo,uxo<sfr2uox7koqorl>>

= kopfo(lx x (gop™))olgorauox,{sfraucx,kogor))

= ko™ o(Ix x (qgopu™))olgom olrauox, ),
(sfmiodrouox, Ty, koqomyoryuoy,Fiy))

= kop"o(lg x(gopu”))olgom,(sfm,koqomy)olruox, )

= koqop™olryuoy, )

= koqop™ olryuoy,ryoerrry

= koqoﬂxo(rz><7"2)O<UOX76R7’1>
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= koqorQOuRo<uOX,m>
5 kogon,

where the last (iS1) is with respect to the intrinsic Schreier extension (rq,eg); then the
diagram

X
kogorsox 7
q 2/ - Trl
~
- Y
R I~~~ > R (21)
~ ro
kogora >
A
X

commutes.

Next we use the fact that R is transitive together with (19), (20) and (21) to deduce
the existence of an imaginary morphism 0: R --» R such that the following diagram
commutes

X
7
k:ogoy}/ Trl
~
-7 s
R=--=-- >R

R-——__,
BN T~
\ \q’ ~
oD N
N , N
\ Kl k S
\
\ !K’ f
N\ \

Ss0)— 8.

Note that s;f'0d = friod = fkogor; =0,i€ {1,2}, from which we get f' o = 0.
To finish we must prove (iS1) and (iS2) for (f’,s’). To obtain the equality for (iS1)

REXIIR R

we prove that 7,0 ufto (k' o ¢/, s'f')y = r; 01 =75, i € {1, 2}, by using (iS1) for (f, s).
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To obtain the equality for (iS2)

K'xS* pypr-*"oR
~ |

~ _ I,
~ 1 4

7TKI ~ - - v
BN ‘[(/7
we prove that r;o k' o ¢ o ufto (K" x 8') = ry o k' oTxr, i € {1,2}, which uses (iS2) for
(fa S)' ]
We say that a morphism f: X — Y is an intrinsic Schreier special morphism
f2
if the split epimorphism (f1, es) is intrinsic Schreier, where Eq(f)<¢/= X is the kernel
f1

pair of f. This is equivalent to asking that the split epimorphism (f2,ey) is intrinsic
Schreier. If this intrinsic Schreier special morphism is a regular epimorphism, then it is
automatically the cokernel of its kernel, thus it gives rise to an extension (Proposition
5.6 in [11]). Thanks to the stability properties we proved in this section, we can apply
Proposition 6.2 and Theorem 6.7 in [11] and get the following version of the 3 x 3-Lemma:

7.8. THEOREM. Consider the commutative diagram

K" K" X /" Y
v v v
w’ u/ v’
K'v — X ! > Y’
w u v

\4 4
K——sX——Y,

where the three columns and the middle row are intrinsic Schreier special extensions. The
upper row is an intrinsic Schreier special extension if and only if the lower one is.

We conclude this section by proving the stronger version of the Split Short Five Lemma
we mentioned in Section 5.

7.9. PROPOSITION. (See [8, Proposition 2.3.10|) Suppose that the values of P are pro-
jective objects in C. Consider the diagram

q s’
l<— 2 — _ vt ’
K§e s X s Y

Y g h
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where both rows are intrinsic Schreier split extensions and the three squares involving,
respectively, the split epimorphism, the kernels, and the sections commute. Then

1. g s a regular epimorphism if and only if v and h are reqular epimorphisms;

2. g is a monomorphism if and only if v and h are monomorphisms.

PROOF. 1. If g is a regular epimorphism, then so is h, from the commutativity of the
diagram. Moreover, the compatibility for the imaginary retractions gives v¢' = ¢P(g).
Then -y is a regular epimorphism since so are ¢ and P(g) (by (iS2) and Remark 2.7).

Conversely, suppose that v and h are regular epimorphisms. We take the (regular
epimorphisms, monomorphism) factorisation g = me, and prove that m is an isomorph-
ism. Since the bottom row is an intrinsic Schreier split extension, we know that (k,s)
is a jointly extremal-epimorphic pair (see Subsection 5.4). Since ¢ and hey: are regular
epimorphisms, then (kq, shey+) is also a jointly extremal-epimorphic pair. In C, it is easy
to check the commutativity of

M

c Mp(ek')ap% I wes')

P(X) P,

kq sheyr

where o is a splitting of the split epimorphism P(v) (Remark 2.7). Thus, m is an iso-
morphism and ¢ is a regular epimorphism.

2. If g is a monomorphism, then so are v and h, from the commutativity of the diagram.
For the converse, suppose that a,b: U — X' are morphisms such that ga = gb. Then,
fga = fgb, from which we get f'a = f'b (since fg = hf’" and h is a monomorphism). On
the other hand, we deduce kqP(g)P(a) = kqP(g)P(b) and kvyq¢' P(a) = kvyq P(b), from the
compatibility for imaginary retractions (|21, Proposition 5.7]). This gives ¢'P(a) = ¢'P(b),
since k7 is a monomorphism. Thus ¢’ o a = ¢’ o b, as imaginary morphisms. Then

a 21_X/Oa(iil) MX/ o<k'oq',s’_f’>oa _ ,UXI o<k’oq'oa,—s’f’a>
=1 oK o ob, Ty = X o (K o FFyob = Tob=b.

8. Intrinsic Schreier special objects

Let C be a pointed and finitely complete category and .¥ a class of points in C which is
stable under pullbacks along arbitrary morphisms. Recall from |10] that an object Y is
called an .-special object when the split epimorphism

(y,ly)
Y o Y xY % Y (22)



040 ANDREA MONTOLI, DIANA RODELO, AND TIM VAN DER LINDEN

(or, equivalently, the split epimorphism (my,{ly, 1ly))) belongs to the class .. If C is
an .-protomodular category, then the full subcategory formed by the .-special objects
is protomodular ([10], Proposition 6.2), and it is called the protomodular core of C
with respect to the class .. When C is the category of monoids, and .% is either the
class of Schreier split epimorphisms or the one of left homogeneous split epimorphisms,
the protomodular core is the category of groups. More generally, when V is a Jonsson—
Tarski variety, an algebra in V is a Schreier special object if and only if it has a right loop
structure |21, Proposition 7.5] (see Subsection 8.1 for the right loop axioms). Similarly,
an algebra in V is special with respect to the class of left homogeneous split epimorphisms
(see Remark 5.2) if and only if it has a left loop structure (see Subsection 8.1 for the left
loop axioms).

Now we want to study what happens in the intrinsic Schreier setting. So, let C be a
regular unital category with binary coproducts, comonadic covers and a natural imaginary
splitting t. An object Y in C is an intrinsic Schreier special object when the split
epimorphism (22) is an intrinsic Schreier split epimorphism. This means that there exists
an imaginary morphism ¢: Y x Y --» Y such that:

(iSs1) the diagram
{1y ,0p0q,1y Ly ym2)

Y XY -—-—--"—=---"—"~ >Y xY xY xY
- _ |
\\\1\\\\ :MYxY
Y xY \\\ \2
Y xY
commutes;
(iSs2) the diagram
« Y XY
Y><Y\<\1Y70> (rty) Y xY xYxY---"“ -5V xY
———_ |
el la
T - - _ v

commutes.

In this context, we also have:

(i853) ¥ <%y ¥ - L 2Y, ie., gP((ly,0) = &y
e
(iSs4) ¥ U2y x <Y=LV, ie. qP(ly,1y) = 0.

q0<1Y71Y> 0
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right loop axiom “Imaginary” commutative diagram

(z-y)+y=x (iLl)YxY—_@’l@_;yXy

~ IMY

. (u¥ 72)
(z+y) —y==x (iL2) Y xY-=-2Z>Y xY
\\ |
T~ la

RN

ry

Table 2: The right loop axioms and their corresponding diagrams

So, if Y is an intrinsic Schreier special object, then the identities (iSs3) and (iSs4) make
q: Y xY --» Y an imaginary subtraction. Indeed, the identities (iSs3) and (iSs4)
correspond to the varietal axioms for a subtraction, i.e.,

q(z,0) = x, q(z,z) = 0.

8.1. IMAGINARY (ONE-SIDED) LOOPS. Consider an intrinsic Schreier special object Y.
We now show that the imaginary addition given in (11) and the imaginary subtraction
q: Y xY --» Y satisfy the axioms of a (one-sided) loop (like those of a right loop or a
left loop). We say then that Y has the structure of an imaginary one-sided loop.

We must prove the right loop or left loop axioms

(x—y)+y== o r+(—x+y) =y
(r+y)—y=x —r+(x+y)=y

in the imaginary context; we consider the left-hand side axioms. Table 2 gives the right
loop axioms and their corresponding “imaginary” commutative diagrams. The only dif-
ference in the diagrams is that p¥ and g are swapped, just as “+” and “—” are swapped
in the right loop axioms.

The commutativity of (iL1) follows from composing (iSs1) with 7. From (14) we
know that 7 o u¥*¥ = p¥ o (7, x 7). Then, we just have to prove that

(m x 1) o {1y, 0y 0 ¢, {1y, 1y)ma) = {q,T2).
In fact, (m; x m1) 0 {(1y,0) 0 q,{1ly, 1y )ms) corresponds to the real morphism
(m1 x m){{1y, 0)q,(y, Iy )Moy xy) = {q; Toy xy) = {q, T2)-

The commutativity of (iL2) follows from (iSs2). In this case we must show that
py Y o ((1y,0) x {1y, 1y)) = {u¥,T2). The imaginary morphism

P o ((1y,0) x {1y, 1y))
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corresponds to the real morphism

(Iyxy lyxy)tyxyvyxy P({ly,0) x {1y, 1y))

=  (Ay,0) Ay, Iy))tyy = 1y 1y), (0 Iy )tyy
11),(8 _

( ):( ) <MY77T25YxY> = <NY;7T2>-

il

The converse is also true. Indeed, suppose the object Y has the structure of an
imaginary one-sided loop, in the sense that it is equipped with an imaginary morphism
q: Y xY --» Y which, together with the imaginary addition u¥, satisfies (iL.1) and
(iL2). Then q is the imaginary Schreier retraction for the split epimorphism (22). To
show this, we need to show that (iSs1) and (iSs2) hold. (iSs2) follows immediately from
(iL2), because, as we already observed, u¥*¥ o ((1y,0) x {1y, 1y)) = {u¥, 7). In order
to prove (iSsl), we use the previous equality (71 x m1) o ((1y,0y0q,{1ly, ly)me) = {q, 72,
to get

—_— _ ({L1) ___ B
w0 1Y 0 ((1y,0) 0 q,{ly, Lyymay = ¥ 0{q, 73y "= 7 = ™1 0 Ty

also

ma oY o {{1y,0) 0 q,(ly, 1y )ms)

14 —_—

(:) IUY @) (7?2 X 7T2) o) <<1y, O> oq, <1y, 1y>’/T2>

= 1Y olmlly, 0y 0 q, mly, Iyyme) = ¥ 040, 75)

_(13) ___
— MYO<071y>O7T2 (Z) Ty = 7T201Y><Y'

Combining these two equalities we get (iSs1). Hence

8.2. THEOREM. In a reqular unital category with binary coproducts, comonadic covers
and a natural imaginary splitting, an object is an intrinsic Schreier special object if and
only if its canonical imaginary magma structure is a one-sided loop structure.

9. A non-varietal example

In this section we give an example of a non-varietal category for which there exists a nat-
ural imaginary splitting, and we analyse what are the intrinsic Schreier split epimorphisms
and the intrinsic Schreier special objects in that context.

Take C = Set.P, which is a semi-abelian category [14, 4, 1], so it is a regular unital

category with binary coproducts. We consider the power-set monad (P,0d,¢) in Set,,
where:

P(X,x0) = (P(X) = {A < X | w0 € A}, {zo}),

€(X,x0) (l’) = {l’, 330}7
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5(X,x0)({Ai}ieI) = UA“ where each A; € P(X).

iel

The monad (P,d,e) may be seen as a comonad in Set;’. Moreover, it is easy to
check that each P(X,xg) is projective in Set,", so that Set." is equipped with comonadic
projective covers; we are in the conditions of Subsection 4.3. A natural imaginary splitting
in Set,” corresponds to a natural transformation ¢ in Set,. We define, for any pair of
pointed sets (A, ) and (B, *),

tap: (Ax B, (x2) = (P(A+ B) {+}): (a,b) = {a,b, +} (23)

It is easy to check that ¢ is a natural transformation and that it satisfies the opposite of
equality (5), for all pointed sets (A, =) and (B, =), namely the condition that the diagram

(P(A+ B),{~})

ta,B
€A+B

(A x B,(*,*))W(A—FB,*)

commutes in Set,.

An intrinsic Schreier split epimorphism in Set(" corresponds to a split monomorphism
in Set,. The following diagram represents a split monomorphism, given by an injection f,
and its cokernel in Set,

(Kv *)ﬁ(Xv *):;Q(Yﬁ")a

where K = X\Y u {+}, k(y) = » for all y € Y and k(z) = z, for all z € X\Y. It
is an intrinsic Schreier split monomorphism if there exists a morphism of pointed sets
q: (K, %) - (P(X),{+}) such that the opposite of equalities (iS1) and (iS2) hold. Note
that q(z) € P(X), i.e., x € g(z) € X, for all z € X\Y.

The opposite of (iS1) is given by the commutativity of the following diagram (we omit
the fixed points to make it easier to read)

tP(X),P(X)
%

P2(x) "W popx) + P(X)) P(X) x P(X)

5Xl T(qk,a;ﬁ”s)

P(X) X.

EX

The commutativity of the diagram above always holds for any element y € Y. For any
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element x € X\Y, we get

P 1) Tl 1

{Q(x)> {f5($)7 *}7 {*}} < {Q(I)? {fs(x), *}’ {*}} M (Q($)7 {f5($)7 *})

(Sx\l/ /I\<qk75st>

a(2) U {fs(2), 2} = fa,+) _ .

From the equality ¢(z) u {fs(x),*} = {z,+}, and the fact that s(z) € Y and z € X\Y,
we deduce that s(x) = = and ¢q(z) = {z, +}. As a consequence the split monomorphism is
isomorphic to the binary coproduct

(KW U)o e (X

: D3,

(O 0 )« (X 0 ) + Vi) L v

K t2

[t is easy to see that the opposite of equality (iS2) always holds.

We have just proved that in Set”, with respect to the natural imaginary splitting (23),
the only intrinsic Schreier split epimorphisms correspond to binary product projections.
Moreover, a pointed set (Y, *) is an intrinsic Schreier special object if and only if (22) is
a product projection, i.e., if and only if it is the zero object.

Note that we could also apply the same approach to the finite power-set monad in Set,.

10. Intrinsic Schreier special objects vs. protomodular objects

Recall from [20] that an object Y in a finitely complete category is called a protomodular
object when all points over it (f: X — Y, s: Y — X) are stably strong. More precisely,
for any pullback

I xy X —>X

w7z || (12,59 s

Z Y,

the pair ((0,k),{(1z,sg)), where k is the kernel of f, is a jointly extremal-epimorphic
pair. If the point (f,s) is stably strong, then it is strong, i.e., (k, s) is a jointly extremal-
epimorphic pair.

In the category Mon of monoids the notion of a Schreier special object and the notion
of a protomodular object both coincide with that of a group: a monoid is a Schreier
special object if and only if it is a group [10] if and only if it is a protomodular object [20].
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The question of understanding under which conditions these two notions coincide
arises naturally. In general, neither of these notions implies the other, as we showed in [21].
Indeed, the variety HSLat of Heyting semilattices provides an example of a category where
all objects are protomodular, but not every object is Schreier special (|21], Example 7.7).

On the other hand, the cyclic group Cy = ({0,1},+) gives an example of a Schreier
special object in the Jonsson-Tarski variety of unitary magmas Mag, because it is a right
loop. However, we gave an example of a point X = (5 which is not strong. Consequently,
(5 is not a protomodular object (|21], Example 7.4). Of key importance here is that the
unitary magma (X, +) is non-associative. As we shall prove next in Corollary 10.4, the
presence of the associativity axiom (Section 6) gives a link between intrinsic Schreier
special objects and protomodular objects: then

FEvery intrinsic Schreier special object is a protomodular object.

The proof of this statement follows the same proof for monoids, i.e., that a Schreier
special monoid Y is necessarily a group; the inverse of an element y € Y is given by ¢(0, ),
where ¢ is the imaginary retraction for (22) (see Proposition 3.1.6 of [8]). Also, all points
over a group are necessarily Schreier split epimorphisms (see Corollary 3.1.7 of [§]).

10.1. LEMMA. If (22) satisfies (iSs1), then p* o {qo{0,1y), 1y) = 0:

y (e y sy,

¥ (24)

PROOF. In Subsection 8.1 we saw that (iL1) follows from (iSs1). If we precompose (iL1)
with (0,1y): Y - Y x Y, we get

:uY © <q,7T_2> © <07 1Y> = 7T_1 © <07 1Y> g :uY © <q © <O7 1Y>7E> = 6
| ]

10.2. LEMMA. Suppose that the natural addition (u*: X x X --» X)xec 18 associative.
If Y is an intrinsic Schreier special object, then

y SeeOho) y oy
- , (25)

luY © <E7 qo <07 1Y>> = 6
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PROOF. In Subsection 8.1 we saw that (iL2) follows from (iSs2). If we precompose the
two sides of the equality (iL2) with {u¥ o (1y,q 00,1y ), 1y): Y --» Y x Y, we obtain

qo{u Ty o {ut o Ty, qo{0,1y), Iy) = 7r o (u¥ o Ty, q 040, 1y)), Ty,

which is equivalent to
golp” ol o(Ty,q00,1y)), Ty), Iyy = ¥ o Iy, q 0 {0, 1y))
(17) _ S .
A qo <:uY © <1Y7 :uy © <q © <07 1Y>7 1Y>>7 1Y> = :uY © <1Y7 qo <07 1Y>>

(24) . — —
< qolu o(dy,0),Ty) = p" oIy, q0(0,1y))

< qo<,u,Yo<1y,O>’E> = MY0<E>QO<O;1Y>>
(12) _ _

S qo(ly,Iyy=p" o(1y,qo<0,1y))

e qolly,lyy=p" o(ly,qo<0,1y))
(iSs4) — _

= 0=p" olly,qo{0,1y)).

10.3. PROPOSITION. Suppose that the natural addition (/LXZ X x X --» X)xec is as-
sociative. If Y is an intrinsic Schreier special object, then any split epimorphism (16)
satisfies (iS1).

PROOF. We define an imaginary morphism p: X --+» K through the universal property
of the kernel:

k S
K > %> Y

v AT S
P el xs)o(Ly x (ae(0.Ly D)elLx )
o
Indeed,
fouo(lx xs)o(lx x (g00,1y))) o (Lx, f
(1)

= wo(fxf)oldyx,soqol0,1y)f)

_ — 25) ~
= 1o T qe 0D = w o@y.qo 0 1y)e f 20
Now we must check (iS1) for (16):

IuX o<kop,§> = MX O</JX O<E,SOQO<07 1Y>f>73>

(1D o dx, i olsoqo{0,1y)f, sf))
= p¥ oIy, o (s x8)olqo0,1y), Iy o f)

14 . -
= pX oy, sop” 0lgo0,1y), Tyyo f)

24 —_— 12) ——
e w0 (lx,0) = ¥ o(1x,0) = lx.
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10.4. COROLLARY. Suppose that the natural addition (,uX: X x X --» X)xec 15 associ-
ative. Then every intrinsic Schreier special object is a protomodular object.

PROOF. This follows from Proposition 10.3 and Proposition 5.8 in [21], which states that
any split epimorphism satisfying (iS1) is stably strong. [

10.5. REMARK. Even if the natural addition (u*: X x X --» X)xcc is associative, the
converse of Corollary 10.4 may be false. As mentioned above, the variety HSLat of Heyting
semilattices provides an example of a category where all objects are protomodular, but
not all are Schreier special objects. The natural addition for HSLat, given by the meet, is
associative.

10.6. REMARK. The variety Loop of (left and right) loops gives an example where the
natural addition is non-associative. All loops are intrinsic Schreier special objects (see
Section 8) and they are also all protomodular objects (because Loop is a semi-abelian
category, thus a protomodular category). So, the fact that all intrinsic Schreier special
objects are protomodular objects does not imply that the natural addition is associative.

From the remark above, in Gp all objects are intrinsic Schreier special with respect to
its usual group operation. Also, all objects are protomodular since Gp is a protomodular
category. So the two notions coincide in Gp, just as in the case of Mon. However, in Mon
there are only two possible choices of imaginary splittings (see Subsection 4.3). In Gp there
are countably many possibilities. Given groups X and Y, a natural imaginary splitting
t: P(X xY) — X +Y may be defined by making #([(z,y)]) equal to any combination
of alternating products of x or 2!, and of 7 or 7!, for which the products of the z’s
gives x and the products of the y’s gives y. For example z 'yz? or ayxz 'y lay.

Although these notions are independent in general, as we have already observed, there
are special properties of the category of groups that make the notions coincide. From
Corollary 10.4, we know that the associativity of the group operation implies that all in-
trinsic Schreier special objects are protomodular objects. This associativity is not enough
to guarantee that every protomodular object is intrinsic Schreier special (Remark 10.6).
This leads us to the following question:

What property of Gp guarantees that all protomodular objects are intrinsic
Schreier special ones?

We cannot answer this question now, but we can see that groups lack a certain homogen-
eity, in the sense that the concept of an intrinsic Schreier special object strongly depends
on the chosen natural imaginary splitting. We can eliminate this discrepancy by consid-
ering groups which satisfy the property with respect to all natural imaginary splittings.
Then we find:

11. The variety of 2-Engel groups

The aim of this section is to show that 2-Fngel groups are intrinsic Schreier special objects
with respect to all natural imaginary splittings: Proposition 11.12.
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We begin by recalling the definition and main properties of 2-Engel groups needed in
the sequel, which can be found in [12, 16, 17].

Here we denote the conjugation of an element z by an element y as Yz = yzy~! and
we write [z, y] for zyz~ly™' = Tyy~!. Then

[vy, 2] = ayzy~ o™t = ayzy e e ez

= aly, z]la™ [, 2] = "[y, ][z, 2].
Likewise, [z,yz] = [z, y]?[, z]. Note also that [z,y]™" = [y, z].
11.1. PROPOSITION. For a group E, the following conditions are equivalent:
i [[z,y],y] =1 for all z, y € E;
. [[x,y],x] =1 for all x, y € E;
iii. Yz, x| =1 for all x, y € E.

PROOF. First note that [[z,y],y] = 1 for all z, y € E if and only if [[y, z],z] = 1 for all
r,y € E. Now

1= L] = [[z,y][z,y] " 2] = [z, y]ly. ], 2] = B[y, 2], «][[z, y], 2]
so that [[y,z],z] = 1 if and only if [[x,y],z] = 1, and i. and ii. are equivalent. Finally,
[y, 2], 2] = [Pwa™, 2] = "[27", 2] [, 2] = [z, ],
which shows that [[y, z],z] = 1 if and only if [Yz,z] = 1, and i. and iii. are equivalent. m

11.2. DEFINITION. A group E is called o 2-Engel group if it satisfies any of the equi-
valent conditions of the previous proposition.

11.3. EXAMPLE.
1. Any abelian group is obviously a 2-Engel group.
2. The group of quaternions g is a 2-FEngel group which is not abelian.

3. The smallest non 2-Engel (thus non-abelian) group is the symmetric group S3 (which
is isomorphic to the dihedral group Dg).

4. The dihedral group Dg is 2-Engel, but the dihedral group Djg is not (see Ex-
ample 11.8).

11.4. LEMMA. Let E be a 2-Engel group. Then:
1. [wy,z] = *(ly, 2]l 2]), for all z, y, z € E;
2. [x,yz] = ¥([z,y][x,2]), for all x, y, z € E.

PROOF. 1. [zy, z] = [y, 2][z, z] = =]y ,z]xil[x,z.] ML oy, 2 [, 2]a
2. [w.y2) = [2,y)[x, 2] = [w.ylyle, 2Dy~ "=yl y) [z, 2]y .
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11.5. PROPOSITION. For a group G, the following conditions are equivalent:
i. G is a 2-Engel group;,
. |z, y™] = [z, y]™* for all z, y € G;
. [z y] = [z, y] ! for all z, y € G;

z,y*] = [z,y]¥, for all x, y € G and all k € Z;

0.

|
|
[
[

v. [2%, y] = [z, y]*, for all x, y € G and all k € Z.

PROOF. It is clear that ii. and iii. are equivalent, as are iv. and v.. It is also clear that ii.
is a special case of iv.. If now i. holds, then by Lemma 11.4 we may deduce

L=[Ly] = [zz "yl ="([z" " yllz.y])
from which it follows that [z7!, y][z,y] = 1, and iii. holds. On the other hand, ii. implies
1. via
[z, 9]yl = [z, ylyle,y~ Ty~ = aya™ly yzy a7y~ = 1.

For positive k, v. follows from i. by induction. The cases £ = 0 and k = 1 being clear,
we assume that [2*,y] = [z, y]|* for some k > 1. Then Lemma 11.4 and Proposition 11.1
together imply

) = [ea® y] = (2", yllz, y]) = ([, y]"[z,9]) = “([z, y]""") = [z, y]""".

If k is negative then we first apply iii.. [

[$k+1

It is known (and in fact not hard to see, using the above results) that the free object
on two generators in the variety Eng,(Gp) of 2-Engel groups is 2-nilpotent. This allows
us to prove the following result.

11.6. LEMMA. In a 2-FEngel group E, consider x, y € E and the subgroup H generated by
{x,y}. Let a,b,ce H. Then:

1. [[a,0], c] = 1;

2. [ab, ] = [b,c][a, ] and [a,bc] = [a,b][a, c];
3. [a™h,0] = [a, 0] = [a,07'];

4. [a¥,b] = [a,b]* = [a,b"], for all k € Z.

PRrROOF. 1. Follows from the fact that the free 2-Engel group on two generators x and y
is necessarily 2-nilpotent. 2. [ab, c] = °[b, ¢][a, c] = a[b, c]la=[a, ¢] £ [b, c][a, c]. The proof
of the second claim is similar. 3. and 4. follow from Proposition 11.5. [
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We now look at a specific natural imaginary splitting in Gp: the one defined by the
function
txy: X xY ——» X +Y: (2,y) — z g2 (26)

for any pair of groups X and Y. It is easy to see that this ¢ is indeed a natural imaginary
splitting. When X =Y, we write

ey =p" (v,y) = Vy(tyy(z,y)) = 2 'ya’.

1 1

It is easy to check that v *1 =2 =1+2x and that v * 27" =1 = 27 = x; however = is not
associative.
A group Y is an intrinsic Schreier special object with respect to (26) if there exists an

imaginary retraction ¢: Y x Y --» Y such that (iSs1) and (iSs2) hold. In this case
(iSs1) means that q(z,y) »y =z, for all z, y € Y, and

(iSs2) means that ¢(z = y,y) =z, for all z, ye Y
—see Section 8.

11.7. PROPOSITION. IfY is a 2-Engel group, then Y is an intrinsic Schreier special object
with respect to the natural imaginary splitting (26).

PROOF. We define the imaginary retraction by ¢(z,y) = x »y~'. Then, for all z, y € Y,
(iSs1) holds:

g, y)ry=(xsy ) xy
= (r7ya?) « y = 2 2yayry~late by e
—1

. L5
1,2 WA 2 2

=2 y[z,yley e
= x’nyflxyx’lxyfle = .

yly ' zley '

As for (iSs2), the equality q(z = y,y) = (v = y) » y~! = z holds by swapping y and y~! in
(iSs1). ]
11.8. EXAMPLE. The dihedral group D;q is generated by elements a and b such that
a® =1, b> = 1 and abab = 1. We have

Dy = {1,a,ad? da® a* b,ab,ab, a’b, a*b},
where the elements b, ..., a’b are all inverses to themselves. We have
e Dy is not a 2-Engel group: [a,ablab = a?, while ab|a, ab] = a*b.

e Dy, is an intrinsic Schreier special object with respect to the natural imaginary
splitting (26). It suffices to build the Cayley table for the product = and observe
that it gives a Latin square. The fact that it is a Latin square guarantees the
existence of a unique element, which is equal to ¢(z,y), satisfying the equality
(iSsl) ¢(z,y) »y = z. The equality (iSs2) follows from the uniqueness of each

q(x, y).
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e D, is not an intrinsic Schreier special object with respect to the natural imaginary
splitting which gives rise to x # y = [z,y]*zy. For example, ¢(1,b) should be the
unique element of Dq such that ¢(1,b) ¥ b = 1. However, all of the elements b, ...,
a*b satisfy this equality.

This example shows that the converse of Proposition 11.7 is false. However, we may
claim the following:

11.9. PROPOSITION. If a group Y is an intrinsic Schreier special object with respect to
the natural imaginary splitting (26) and such that q(x,y) = v =y~ ', then Y is a 2-Engel

group.
PROOF. It suffices we use (iSsl)

@y )y —a
to see that Y is in Eng,(Gp). Indeed, this is equivalent to

2 2

T = (x_ly_le) sy = o 2yryxr ty ety e

_ $_2ny$_1y_1$y_1I2,

1

which may be rewritten as 1 = 2 2yzyr 'y oy 'z, so 1 = v lyzyr 'y oy~ This

gives
yrayaT = ayr Ty
or, equivalently, [y, z] = [z, y] = [y, x]~. The result now follows from Proposition 11.5.
| ]

Next we aim to prove the that a 2-Fngel group Y is an intrinsic Schreier special object
with respect to all natural imaginary splittings t. So, we need to extend Proposition 11.7
to all ¢.

11.10. LEMMA. If t is a natural imaginary splitting in Gp, then for each pair of groups
X,Y and allz e X, yeY we have that txy(z,y) € X +Y may be written as a product

abgt gty
for some meN and kq, ..., ky, L, ..., I, € Z such that
ki=1= > I
1<ism 1<ig<m

PROOF. If X =Y = Z, then tzz(k,l) € Z+ Z must be of the form ﬁE . k_mm, for some
meNand ki, ..., ky, [, ..., I, € Zsuch that 3, _,_ ki =Fkand >, [; =1, for all
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(k,1) € Zx Z (see Subsection 4.3). Consider the group homomorphisms f: Z - X: 1 —x
and g: Z —> Y: 1+ y. The naturality of ¢ gives the commutative diagram (see (6))

Zx7-%5747

from which we conclude that txy(z,y) = txy(f x g)(1,1) = (f + g)tzz(1,1). Suppose
that tz2(1,1) = kily---Kkplp, where > ki =1 =3, l;. We get txy(z,y) =

£klyll .. .gkmylm, as desired. .

11.11. PROPOSITION. If Y 1is a 2-Engel group and t is a natural imaginary splitting in
Gp, then the induced operation x =y = ¥ (z,y) = Vy(tyy(x,y)) may be written as

zry = [z,y]"y
for some k € Z.

PRrROOF. Lemma 11.10 tells us that
way =alyl gty

for some me Nand ki, ..., kp, li, ..., € Zsuch that >, . ki=1=>,_,_ 1l We
rewrite the expression above as

Ty = (xklyll . _kay(lmfl)l,fly())xy’
where the product in brackets is such that the sums of the exponents of the z’s and y’s
are zero. Hence this expression is a commutator word in x and y: it is a product of
(nested) commutators. By Lemma 11.6, all higher-order commutators in this product
vanish; furthermore, the expression is equal to a product of commutators of the form
[z, y] or |y, x] = [z,y]~!. Hence it is of the form [z, y]* for some integer k. "

11.12. PROPOSITION. If Y is a 2-Engel group, then Y 1is intrinsic Schreier special with
respect to all natural imaginary splittings in Gp.

PROOF. The proof is similar to that of Proposition 11.7. We define the imaginary retrac-
tion by q(x,y) = z+y ' =[x,y ']*ry ! (Proposition 11.11). We use Propositions 11.1,
11.5 and Lemma 11.6 to prove that (iSs1) holds:
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([I7 y][[xa y]? y]_k)k[x, y]_kx

As for (iSs2), the equality q(z *y,y) = (z+y) =y ' = z follows from (iSs1) by replacing
y with y~=%. [

It remains an open question whether or not the converse of Proposition 11.12 holds; we
are currently working on this question. Essentially the same result holds for Lie algebras,
as we shall explain now.

12. Lie algebras

Let K be a field, and consider the variety Liex of K-Lie algebras. Recall that a 2-Engel
Lie algebra is a Lie algebra e that satisfies the commutator identity [[z,y],y] = 1 for all
x, y € e. The aim of this section is to relate the variety Eng,(Liex) of 2-Engel Lie algebras
over K to the Schreier special objects with respect to all natural imaginary splittings:
Theorem 12.1. We can actually just follow the pattern of the previous section; since
furthermore things are somewhat simpler here, we will only sketch the basic idea.

We may proceed as in Proposition 11.7, now taking the natural imaginary splitting in
Liex defined by

bey: EXY -1+ (z,y) »z+7+[z,7]

Recall that the free Lie algebra over K on a single generator is K itself, equipped with the
trivial bracket. Mimicking the proof of Lemma 11.10, we see that for any pair of K-Lie
algebras r and y and any x € 1, y € v, necessarily

tL‘)(]j? y) =Z + y + gb(gv y)a

where ¢(x,7) is an expression in terms of Lie brackets of 2’s and 7’s. Now using essentially
the same proof as in groups, we see that if y is 2-Engel, all higher-order brackets vanish,
and we deduce that

tey(2,y) =2+ 7 + K[z, 7]

for some k € K. As in Proposition 11.11, it follows that x =y = x + y + k[x, y]. It is then
again easy to check that (iSs1) and (iSs2) hold.

12.1. PROPOSITION. Any 2-Engel K-Lie algebra is intrinsic Schreier special, with respect
to all natural imaginary splittings in Liek.
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