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A NOTE ON THE CATEGORICAL NOTIONS OF NORMAL
SUBOBJECT AND OF EQUIVALENCE CLASS

DOMINIQUE BOURN AND GIUSEPPE METERE

A tribute to Bob Rosebrugh

Nothing makes the earth seem so
spacious as to have friends at a
distance. They make the latitudes
and longitudes.

H. D. Thoreau

Abstract. In a non-pointed category E, a subobject which is normal to an equivalence
relation is not necessarily an equivalence class. We elaborate this categorical distinction,
with a special attention to the Mal’tsev context. Moreover, we introduce the notion of
fibrant equipment, and we use it to establish some conditions ensuring the uniqueness of
an equivalence relation to which a given subobject is normal, and to give a description
of such a relation.

Introduction

It is unnecessary to insist on the importance in Algebra of the notion of normal subgroup.
And it is well known that any normal subgroup U � X is actually the equivalence class
of the identity element with respect to the equivalence relation RU on the group X defined
by: xRUy ⇐⇒ x.y−1 ∈ U , that this equivalence relation is internal to the category Gp
of groups (namely, a congruence), and that, moreover, it is the unique congruence R on
X such that 1̄R = U .

Categorically speaking, this can be expressed in the category Gp by the following two
conditions:
1) the equivalence relation on U obtained by restriction of RU coincides with the indiscrete
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equivalence relation ∇U , which means that U is included in the equivalence class 1̄;
2) the induced morphism of equivalence relations:

U × U // ũ //

pU0
��

pU1
��

RU

d0

��
d1

��
U //

u
//

sU0

OO

X

s0

OO

is a fibrant morphism between equivalence relations (i.e. the downward square indexed by
0 is a pullback, which implies that any commutative square in the previous diagram is a
pullback), which means that U coincides with 1̄.

This is the way how, in [2], the categorical notion of a subobject u normal to an
equivalence relation R is defined in any category E.

It was already clear that, in the category Set of sets, the empty set ∅ is then normal
to any equivalence relation R, and that this categorical notion of normal subobject char-
acterized an equivalence class of the equivalence relation R in Set if and only if we have
moreover U 6= ∅.

So, let us introduce now the following precision:

0.1. Definition. We say that a morphism f : X → Y in a category E is a plain
morphism when there is some commutative diagram:

X
f //

g
!! !!

Y

h~~
W

where g is an extremal epimorphism.

So, any strong epimorphism and any split monomorphism is a plain morphism. When
the ground category E is regular [1], saying that f is a plain morphism is equivalent
to saying that the objects X and Y have same supports, namely that the canonical
decompositions of their terminal maps factorize through the same subobject J of the
terminal object 1:

X
f //

    

Y

~~~~
J // // 1

which, in the case of the category Set, exactly means: Y 6= ∅ ⇒ X 6= ∅. Therefore, in
a regular category E, plain morphisms are stable under pullbacks along regular epimor-
phirms.

In order to better understand the notion of plain map, let us briefly present another
example. We just noticed that in Set, when Y 6= ∅, there is only one morphism with
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codomain Y which is not plain, namely the initial map αY : ∅ � Y . In the topos Set2

of ordered pairs of sets, when Y 6= ∅ and Y ′ 6= ∅, there are infinitely many, namely any
(αY , f

′) and any (f, αY ′), provided the codomain of f is Y and the codomain of f ′ is Y ′.
Clearly, when the ground category E is pointed, any morphism is a plain one.

0.2. Definition. Given any subobject u : U � X and any equivalence relation R on X
in a category E, we say that u is an equivalence class of R when:
1) u is normal to R;
2) u is plain monomorphism.

So, any point γ : 1 → X is an equivalence class of ∆X , the discrete equivalence
relation on X (i.e. the smallest one), and 1X : X → X the only equivalence class of
∇X the undiscrete equivalence relation on X (i.e. the largest one). Recall that, when
the ground category E is protomodular [3], a monomorphism u is normal to at most one
equivalence relation R, see [2], and then, in this context, the fact to be a normal subobject
or an equivalence class becomes a property.

Inspired by some recent results of [23] and [10], the aim of this work is to investigate the
properties of the normal subobjects and of the equivalence classes in a non-protomodular
context, namely when the uniqueness of the equivalence relation R is no longer ensured.
A special attention will be given to the Mal’tsev context [16] [17] which is strictly laxer
than the protomodular one, see [3]. We shall be specially interested in specifying further
conditions implying the uniqueness of R and in understanding how they disappear in
the protomodular case. This will lead, among other things, to an explicit description
of the (unique) equivalence relation to which a split equivalence class is normal in the
protomodular context (see Proposition 5.2). In the pointed case, some aspects of the
relationship between split equivalence class and direct product decompositions will be
involved, as already observed in [13], but with another kind of tools. On the way, we shall
produce a remarkable situation: a monad (T, λ, µ) such that the canonical comparison
functor KlT → AlgT between the Kleisli category of this monad [22] and its category of
algebras is an equivalence of categories, see Section 1.18.

The article is organized along the following lines:
Section 1 is devoted to notations and to basic properties of normal subobjects and equiv-
alence classes. We investigate three emblematic situations, the first and the second one
being very elementary. The third one is based on the introduction of the notion of fibrant
equipment of a map f : X → Y which makes explicit many hidden aspects (see Section
1.20) of the notion of connected pairs of equivalence relations in the Mal’tsev context, as
defined in [11].
Section 2 is devoted to the unital context and briefly describes a first example of a further
condition ensuring the uniqueness of the equivalence relation associated with an equiva-
lence class.
Sections 3 and 4 give other examples of such conditions in the Mal’tsev and the pointed
Mal’tsev contexts.
Section 5 is devoted to the same question in the protomodular context, and in a context
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strictly located between the Mal’tsev and protomodular ones, namely that of categories
which are protomodular on the only class of split monomorphisms [9].
Section 6 is devoted to the naturally Mal’tsev context and to the related non-pointed
additive ones.
Section 7 deals with the case when monomorphisms in the base category admit cocartesian
liftings along the underlying-object functor ( )0: EquE→ E . This feature is used to char-
acterize those monomorphisms (called normalizing) for which there exists an equivalence
relation to which they are normal.

1. Notations and elementary properties

1.1. Notations. Any category E will be supposed finitely complete. Recall that an
internal relation S on an object X is a subobject of the product X ×X:

S //
(dS0 ,d

S
1 )
// X ×X

We shall often use the simplicial notation for describing internal equivalence relations:

S

dS1 //

dS0

//
XsS0

oo

We denote by EquE the category of internal equivalence relations in E whose mor-
phisms are given by the pairs (f, f̄) making the following diagram commute:

S

dS0

��

dS1

��

f̄ // R

dR0

��

dR1

��
X

OO

f
// Y

OO

We denote by ( )0 : EquE → E the forgetful functor associating with any equivalence
relation its ground object; since E has finite limits, this functor ( )0 is a fibration whose
cartesian maps are given by the inverse images along the ground morphisms in E. Each
fibre of this fibration is a preorder, which is equivalent to the fact that the functor ( )0 is
faithful. It is clear that any internal equivalence relation S on an object X determines an
equivalence relation on any hom-set HomE(Z,X) defined by kSh if and only if the pair
(k, h) factorizes through the subobject S:

Z //

(k,h) ##

S{{

(dS0 ,d
S
1 ){{

X ×X
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We denote by ∆X the discrete equivalence on the object X (i.e. the smallest one) and
by ∇X the undiscrete equivalence relation (i.e. the largest one). The kernel equivalence
relation R[f ] of a map f : X → Y is then the domain of the cartesian map above f with
codomain ∆Y , it is given by the following pullback in EquE:

R[f ]
��

(df0 ,d
f
1 )
��

f̃Y // ∆Y
��
(1Y ,1Y )
��

∇X ∇f
// ∇Y

An equivalence relation R on X is said to be effective when there is some map f : X → Y
such that R = R[f ].

Let us recall that fibrant morphisms and cartesian maps are stable under pullback
along any morphism in EquE.

For two equivalence relations R and S on a common object X, let us consider the
pullback square:

R×X S
p1 //

p0

��

S

dS0
��

R
dR1

// X

A connector [11] between R and S is a map p:R ×X S → X internally satisfying the
following identities

1) : xSp(x, y, z) 2) : p(x, x, y) = y 3) : p(x, y, p(y, u, v)) = p(x, u, v)

1′) : p(x, y, z)Rz 2′) : p(x, y, y) = x 3′) : p(p(x, y, u), u, v) = p(x, y, v)

In presence of a connector, the pullback above determines a cartesian double relation on
the pair (R, S), i.e. a double relation such that all the commuting squares in the following
diagram are pullbacks:

R×X S
(dR0 .p0,p)

//

p1 //

p0

��

(p,dS1 .p1)

��

S

dS0

��

dS1

��

oo

R
dR1 //

dR0

//

OO

X

OO

oo

We say that the connector p presents R and S as a connected pair of equivalence re-
lations and we write [R, S]p = 0. Of course, one has [R, S]p = 0 ⇐⇒ [S,R]pop = 0,
where pop:S ×X R → X is defined by pop(x, y, z) = p(z, y, x). Recall also the following
straigtforward:
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1.2. Lemma. Let (f, f̄) : S → R be any fibrant morphism between equivalence relations.
Then:
1) we have R[f ] ∩ S = ∆X ,
2) the left hand part of following diagram produces a cartesian double equivalence relation:

R[f̄ ]
df̄0

//

df̄1 //

R(dS0 )

��

R(dS1 )

��

S

dS0

��

dS1

��

oo f̄ // R

dR0

��

dR1

��
R[f ]

df1 //

df0

//

OO

X

OO

oo
f

// Y

OO

where the three maps between the kernel pairs R[f ] and R[f̄ ] are those induced by univer-

sality. Accordingly, the map p = dS1 .d
f̄
0 produces a connector for the pair (R[f ], S) and we

get [R[f ], S]p = 0.

Internal Mal’tsev operations, internal group structures

Given any object X, recall that an internal Mal’tsev operation on X is an internal
ternary operation p : X × X × X → X satisfying 2) and 2’). It is right (resp. left)
associative when it satisfies 3) (resp. 3’), and it is associative when both 3) and 3’)
hold. Accordingly we get [∇X ,∇X ]p = 0 if and only if the object X is endowed with an
associative Mal’tsev operation p. An internal group structure on X is just a pointed (by
a point 0 : 1→ X) associative Mal’tsev operation p on X. Denote by Rp the relation on
X ×X in E defined by:

(x, y)Rp(t, z) ⇐⇒ t = p(x, y, z)

It is called the Chasles relation associated with p. Then Rp is reflexive as soon as p is a
Mal’tsev operation, and an equivalence relation as soon as p is moreover left associative.
In this last case the diagonal s0 : X � X × X is an equivalence class of the Chasles
relation Rp.

1.3. Elementary properties. The first very elementary observation about the normal
subobjects and the equivalence classes is the following:

1.4. Lemma. Suppose the subobject j : U � X normal to the equivalence relation R.
Given any equivalence relation S on X such that j−1(S) = ∇U and S ⊂ R, the monomor-
phism j is normal to S as well. So, given any S such that j−1(S) = ∇U , the monomor-
phism j is normal to R ∩ S . In particular, if j is normal to R and S, it is normal to
R ∩ S. The same observations hold when j is an equivalence class.
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Proof. The conditions on S produce the following diagram:

U × U //
j̃′

//
// j̃ //

pU0
��

pU1
��

S // ι
//

d0

��
d1

��

R

d0

��
d1

��
U //

j
//

sU0

OO

X

s0

OO

X

s0

OO

Since j is normal to R, the commutative rectangles are pullbacks. Now, since ι is a
monomorphism, so are the commutative left hand side squares. Accordingly j is normal
to S.

1.5. Proposition. Given any map f : X → Y in E, if the monomorphism k : V � Y is
normal to the equivalence relation S, then f−1(k) : U � X is normal to the equivalence
relation f−1(S):

f−1(S) //

d0

��
d1

��

S

d0

��
d1

��
X

s0

OO

f
// Y

s0

OO

U
::

f−1(k)

::

// V
;;

k

;;

In a regular category E, the equivalence classes are stable under pullbacks along regular
epimorphisms.

Proof. Consider the following right hand side pullback in EquE which produces the
inverse image of S:

∇U

��

//
(f−1(k),f̃−1(k̃))

//
//

∇f−1(k) //
f−1(S)

(f,f̃)

��

// // ∇X

∇f
��

∇V
// (k,k̃) //
//

∇k
//

S // // ∇Y

The whole rectangle is a pullback as well, so that the lower factorization (k, k̃) produces
the upper one, and makes the left hand side square a pullback. Therefore, since (k, k̃) is
fibrant, so is (f−1(k), f̃−1(k̃)), which means that f−1(k) : U � X is normal to f−1(S).
Finally, we already noticed that in a regular category, the plain monomorphims are stable
under pullbacks along regular epimorphisms.

Whence the following classical observations:
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1.6. Corollary. Given any morphism f : X → Y in E and any point γ : 1 � Y of the
object Y , the inclusion w : f−1(γ) � X of the fibre of f above the point γ is normal to
the kernel equivalence relation R[f ]. Accordingly:
1) in any regular category E, when f is a regular epimorphism, the inclusion w : f−1(γ) �
X is an equivalence class of R[f ]
2) in any pointed category E, the kernel kf : Kerf � X of any map f : X → Y is the
only equivalence class of its kernel equivalence relation R[f ].

Proof. Apply the previous proposition to following diagram:

f−1(γ) // w //

τ

��

X

f

��
1 // γ

// Y

Since γ is a normal subobject of ∆Y , the subobject w is a normal subobject of f−1(∆Y ) =
R[f ]. Whence the first assertion and the point 1).

Suppose now E pointed, and denote by 0Y : 1 � Y the initial map associated with Y .
Then Kerf = f−1(0Y ) is the equivalence class of 0X with respect to R[f ]. If j : U � X
is normal to R[f ], then consider the following diagram:

U //
0U×1U

//

��

// j //
U × U //

j̃

//

pU0

��
pU1

��

R[f ]
df1

//

df0
��

df1
��

X

f

��
1 //

0U
// U //

j
//

sU0

OO

X

sf0

OO

f
// Y

Each square indexed by 0 being a pullback, the whole rectangle is a pullback and j is a
kernel of f .

1.7. Three emblematic situations. 1) For an equivalence relation R on an object X
and a point γ : 1 � X of X, we consider the subobject of X defined by the upper arrow
obtained by the following left hand side pullback:

[γ]R

��

//
w
//

// γ̄R //
R

dR0

��

dR1

// X

1 // γ
// X

1.8. Lemma. Given any equivalence relation R on X and any point γ : 1 � X of the
object X in E, the subobject γ̄R : [γ]R � X is an equivalence class of R, called the
equivalence class of γ modulo R.
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Proof. Since dR0 is a split epimorphism, so is the terminal map of [γ]R, which ensures
that γ̄R is a plain monomorphism. Let us show that it is normal to R. To this end, let
us consider the following diagram:

[γ]R × [γ]R //
R(w) //

p0

��

p1

��

R[dR0 ]

d
d0
0

��
d
d0
1

��

d
d0
2 // R

dR0

��

dR1

��
[γ]R

τ

��

//
w

//

s0

OO

R

s
d0
0

OO

dR1

//

dR0

��

X

sR0

OO

1 // γ
// X

where dd0
2 (xRy, xRz) = yRz. The morphism of equivalence relations on the left is fibrant

by Corollary 1.6, the one on the right is fibrant by construction, the pasting of the two
makes dR1 .w = γ̄R normal to R.

When C is pointed, the construction above defines the normalization functor:

EquE nor //

( )0

��

MonE

cod

��
E E

Where MonE is the category whose objects are the monomorphisms and whose maps are
the commutative squares between them. It is defined by norR = ᾱRX , where αX : 1 � X
is the initial map. The normalization functor is left exact and respects the cartesian maps
of the two vertical fibrations. One easily checks that, if the monomorphism n : U � X
is normal to an equivalence relation R on X, then n is isomorphic to norR : NorR � X.
More generally we get:

1.9. Lemma. Let E be any pointed category and R any equivalence relation on X. Given
any monomorphism u : U � X such that u−1(R) = ∇U , we get U ⊂ NorR.

Proof. Consider the following diagram:

U // 0U×1U //
��

θu

��

((

U × U
��

ũ

��

pU1 // U
��

u

��
NorR

��

//
w

// R
dR1

//

dR0
��

X

1 // αX
// X

The lower square and the left hand side vertical rectangle being pullbacks, there is a
factorization θu making the upper left hand side square a pullback. Moreover the upper
horizontal composition is 1U , while the middle one is norR.
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2) Consider now a split epimorphism (f, s) : X � Y :

1.10. Lemma. [13] Let (f, s) be a split epimorphism in a category E and S an equivalence
relation on X such that S ∩ R[f ] = ∆X . Then the monomorphism s is an equivalence
class of S if and only if we have s−1(S) = ∇Y .

Proof. The monomorphism s, being split, is an equivalence class of S if and only if it
is normal to S, and in this case we trivially get s−1(S) = ∇Y . Any assumption being of
left exact nature, by the Yoneda embedding, it is enough to check the converse in Set.
Let us show that the following square of split epimorphisms (where the factorization s̃
characterizes the equality s−1(S) = ∇Y ):

Y × Y // s̃ //

pY0
��

S

dS0
��

Y //
s

//

sY0

OO

X

sS0

OO

is a pullback. Suppose s(y)Sx. By s−1(S) = ∇Y , we have s(y)Ssf(x) as well; whence
xSsf(x). But we have also xR[f ]sf(x), whence x = sf(x) by S ∩R[f ] = ∆X .

3) Let us now introduce the third point:

1.11. Definition. Let f : X → Y be any morphism in a category E. We say that a map
ψ : X × Y → X is a fibrant equipment for f , when we have:
(1) ψ.(1X , f) = 1X , (2) f.ψ = pY1 : X × Y → Y and (3) ψ.(ψ × Y ) = ψ.(X × pY1 ). If, in
addition, f is split by s, we say that it is a fibrant equipment for the split epimorphism
(f, s), when moreover we have (4) ψ.(s× Y ) = s.pY1 .

Set-theoretically: (1) ψ(x, f(x)) = x, (2) f(ψ(x, y)) = y, (3) ψ(ψ(x, y), y′) = ψ(x, y′)
and (4) is ψ(s(y), y′) = s(y′). The previous terminology is justified by the following
proposition which makes explicit the diagrammatic representations of the axioms:

1.12. Proposition. Axiom (1) makes the vertical left hand side part of the following
diagram a reflexive graph:

X × Y f×Y //

pX0
��

ψ

��

Y × Y

pY0
��

pY1
��

X

(1,f)

OO

f
// Y

sY0

OO

Axiom (2) makes it a relation Σψ on X which is reflexive and such that we have Σψ ∩
R[f ] = ∆X as soon as we have (1). In this case, the hereabove diagram becomes a
morphism of reflexive relations. Then Σψ is an equivalence relation on X if and only if
we have (3), which makes our diagram a fibrant morphism between equivalence relations.
Accordingly we have [R[f ],Σψ]pψ = 0, with pψ = ψ.(df0 × Y ).
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Proof. We have (2) if and only if the following diagram commute:

X × Y
(pX0 ,ψ)

//

(pX0 ,p
Y
1 )

X ×X

X×f
yy

X × Y

So, (2) implies that (pX0 , ψ) is jointly monomorphic and produces a relation. This relation
Σψ can be made explicit in set-theoretical terms by xΣψx

′ if and only if ψ(x, f(x′)) = x′

from which it is clear that Σψ ∩ R[f ] = ∆X , by x′ = ψ(x, f(x′)) = ψ(x, f(x)) = x when
(1) holds. A reflexive relation S is an equivalence relation if and only if xSx′ and xSx”
imply x′Sx”, which, when it is translated here, from x′ = ψ(x, y′) and x” = ψ(x, y”) gives
us ψ(ψ(x, y′), y”) = ψ(x, y”), namely (3). Then the hereabove morphism of equivalence
relations is fibrant and the last assertion is a straightforward consequence of Lemma 1.2.

The relation Σψ will be called the Chasles relation induced by the fibrant equipment ψ,
since, as we shall see in Corollary 1.22, any left associative Mal’sev operation on an object
X is nothing but a fibrant equipment ψ for the projection pX1 : X ×X → X and since, in
this case, the equivalence relation Σψ coincides with the Chasles equivalence relation Rp

of the end of Section 1.1. Here is our third emblematic situation:

1.13. Proposition. Let ψ be a fibrant equipment for f . When moreover f is split by a
monomorphism s : Y � X, this monomorphism s is an equivalence class of the Chasles
equivalence relation Σψ if and only if we have (4) ψ.(s×Y ) = s.pY1 , namely ψ is a fibrant
equipment for (f, s).

Proof. When f is split by s, consider the following diagram:

Y × Y // s×Y //

pY0
��

pY1
��

X × Y f×Y //

pX0
��

ψ

��

Y × Y

pY0
��

pY1
��

Y //
s

//

sY0

OO

X

(1,f)

OO

f
// Y

sY0

OO

Axiom (4) holds if and only if the left hand side part of the diagram is a morphism of
equivalence relations, which means that s−1(Σψ) = ∇Y . According to Lemma 1.10 and
Proposition 1.12, this is equivalent to the fact that the split monomorphism s is normal
to Σψ.

1.14. Proposition. Let ψ be a fibrant equipment for f and j : U � X any equivalence
class of the Chasles relation Σψ. Then any of the following conditions makes f.j an
isomorphism and produces, up to isomorphism, a splitting to f :
1) E is a regular category and f is a regular epimorphism,
2) E is a pointed category.
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Proof. 1) Suppose E regular. Consider the following diagram where J is the common
support of U and X

U × U // j̃ //

p0

��
p1

��

X × Y f×Y //

pX

��
ψ

��

Y × Y
p0

��
p1

��
U //

j
//

����

s0

OO

X
f

//

(1,f)

OO

Y

s0

OO

����
J J

Since f is a regular epimorphism, the support of Y is J as well. The upper rows produce
a composable pair of fibrant morphisms. The map U � J being a regular epimorphism,
the Barr-Kock theorem (see [15]) makes the lower rectangle a pullback. So the map
f.j : U → Y an isomorphism.
2) Suppose E pointed. The same proof holds with J = 1.

Examples
1) the unique fibrant equipment of the terminal map τX : X → 1 is 1X and Σ1X = ∆X ,
2) the unique fibrant equipment of 1X is pX1 : X ×X → X and ΣpX1

= ∇X .
3) Another example of fibrant equipment is given by the following:

1.15. Proposition. Given any category E and any projection pY1 : X × Y → Y , there
is a bijection between:
1) the fibrant equipments ψ of this projection,
2) the maps p : X × Y × Y → X such that p(x, u, u) = x
and p(p(x, u, v), v, w) = p(x, u, w).
Then we shall denote by Σp the Chasles relation associated with ψ. Accordingly we get
R[pY1 ] ∩ Σp = ∆X×Y and an induced connected pair [R[pY1 ],Σp] = 0. Given any map
γ : Y → X, the monomorphism (γ, 1) : Y � X×Y is an equivalence class of the Chasles
relation Σp if and only if p(γ(u), u, v) = γ(v).

Proof. Let ψ : X × Y × Y → X × Y be a fibrant equipment for pY1 , then axiom (2)
means ψ(x, u, v) = (p(x, u, v), v). Then (1) is equivalent to p(x, u, u) = x and (3) to
p(p(x, u, v), v, w) = p(x, u, w). Finally (4) is equivalent to p(γ(u), u, v) = γ(v). The last
assertion follows from Proposition 1.13.

1.16. The monad of fibrant equipments. The notion of fibrant equipment comes
from [8]. The functor dom : E/Y → E has a right adjoint G : E → E/Y associating
with any object X the product projection pY1 : X × Y → Y ; this adjunction produces the
following monad (T, λ, µ) on the slice category E/Y :

X // (1X ,f)//

f

��

X × Y

pY1
��

X × Y × Y

pY2
��

X×pY1oo

Y Y Y
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1.17. Proposition. An algebra for the monad (T, λ, µ) on an object f : X → Y coin-
cides with a fibrant equipment for f .

Proof. Straightforward checking.

The bijection of Proposition 1.15 associates the map p : X × Y × Y → X
defined by p(x, u, v) = x (namely the projection on X) with the fibrant equipment given
by the free algebra µf on the object pY1 : X × Y → Y of E/Y . The adjoint pair (G, dom)
enters in a larger table. Consider the left hand side commutative downward square:

Y/E cod //

Ḡ

��

E

G

��

AlgT̄

U T̄

��

W̃ // AlgT

UT

��
PtYE W

//

spl

OO

E/Y

dom

OO

PtYE W
// E/Y

where PtYE is the category of split epimorphisms above Y , Y/E the coslice category
of maps with domain Y , W the functor forgetting the monomorphic part of a split
epimorphism (f, s) and spl the functor forgetting its epimorphic part. This last func-
tor has a right adjoint Ḡ associating with a map γ : Y → X the split epimorphism
(pY1 , (γ, 1Y )) : X × Y → Y .
1) This downward square is a pullback.
2) The left hand side upward square commutes as well.
3) The monad (T̄ , λ, µ) induced by the left hand side adjunction is given by the following
diagram:

X // (1,f)//

f

��

X × Y

pY1
��

X × Y × Y

pY2
��

X×pY1oo

Y

s

OO

Y

(s,1Y )

OO

Y

(s,sY0 )

OO

4) The hereabove right hand side commutative square of functors at the level of the
categories of algebras, is a pullback as well. This means that any T -algebra on f in E/Y
becomes a T̄ -algebra for any splitting s of f . In other words, a T̄ -algebra is characterized
by the first three axioms of Definition 1.11; a T̄ -algebra satisfying axiom 4) is called a
special T̄ -algebra in [8].

1.18. Fibrant equipment and direct product decomposition. When the cate-
gory E is pointed or exact, the fibrant equipments are strongly related with the direct
product decompositions. However we shall see that in the Mal’tsev context, this notion
of fibrant equipment has a lower degree of classification power:

1.19. Proposition. When the category E is pointed or exact, the only morphisms which
have a fibrant equipment are the product projections, and this equipment is the free one.
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Proof. Let f : X → Y be a map endowed with a fibrant equipment ψ.
1) Suppose E pointed. Then fψ(x, 0) = 0; so that we get a map g = X → Kerf such
that (ker f).g = ψ.(1X , 0). Now (g, f) : X → Kerf × Y is a monomorphism since, for
any pair (x, x′) such that (g, f)(x) = (g, f)(x′) we get: x′ = ψ(x′, f(x′)) = ψ(x′, f(x)) =
ψ(ψ(x′, 0), f(x)) = ψ(ψ(x, 0), f(x)) = ψ(x, f(x)) = x. We have also the restriction
φ = ψ.(kf × Y ) : Kerf × Y → X of ψ. Moreover gφ(k, y) = ψ(ψ(k, y), 0) = ψ(k, 0) =
ψ(k, f(k)) = k and fφ(k, y) = fψ(k, y) = y; so that φ is a right inverse of the monomor-
phism (g, f) : X → Kerf×Y which is consequently an isomorphism which makes f ' pY1 .
2) Let E be exact. Denote by q : X � Q the quotient of the Chasles equivalence relation
Σψ and consider the following diagram:

X × Y f×Y //

pX

��
ψ

��

Y × Y

pX0
��

p1

��
X

q

����

f
//

(1,f)

OO

Y

s0

OO

��
Q // 1

Since the upper squares are pullbacks, so is the lower one by the Barr-Kock theorem;
therefore (q, f) : X → Q× Y is an isomorphism which makes f ' pY1 .

In both cases, the induced fibrant equipment is the free one. In first case, the transfert
by isomorphism of the equipment ψ is given by:
χ((k, y), y′) = (g, f).ψ(ψ(k, y), y′) = (g, f).ψ(k, y′) = (k, y′)
while in the second one, we get: χ((x̄, y), y′) = (q, f).ψ(ψ(x, y), y′)
= (q, f).ψ(x, y′)) = (ψ(x, y′), y′) = (x̄, y′).

Accordingly, the previous proposition provides us with a remarkable situation: here,
the monad (T, λ, µ) on E/Y of the last section is such that the canonical comparison
functor KlT → AlgT from the Kleisli category of this monad [22] to its category of
algebras is an equivalence of categories, this comparison functor being, in any case, fully
faithful.

1.20. Fibrant equipment and connected pair of relations. The following sec-
tion investigates the relationship between fibrant equipment and connected pair of equiv-
alence relations:

1.21. Proposition. Given any category E and any equivalence relation R on X, there
is bijection between:
1) the fibrant equipment ψ of the split epimorphism (dR1 , s

R
0 ) : R � X

2) the maps π : R×X → X such that: i) π(xRy, z)Rz,
ii) π(xRy, y) = x, iii) π(π(xRy, z)Rz, t) = π(xRy, t) and iv) π(xRx, y) = y.
When any of these two conditions holds, we shall call Chasles relation of π and denote
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by Σπ the equivalence relation on R associated with this fibrant equipment ψ. Now, the
subdiagonal sR0 : X � R is an equivalence class of this Chasles relation Σπ.

Such a map π produces a connected pair [R,∇X ]π = 0 for R if and only if we have
moreover: (v) π(xRy, π(yRu, t)) = π(xRu, t).

In this case, we shall say that the split epimorphism (dR1 , s
R
0 ) is endowed with an

associative equipment. So, a connector for the pair (R,∇X) is exactly an associative
equipment π for the split epimorphism (dR1 , s

R
0 ).

Proof. Starting with a fibrant equipment ψ, we set π(xRy, z) = dR0 (ψ(xRy, z)). Con-
dition (2) on the fibrant equipment ψ : R × X → R makes necessarily ψ(xRy, z) =
π(xRy, z)Rz. Condition (1) is then equivalent to π(xRy, y) = x, Condition (3) to
π(π(xRy, z)Rz, t) = π(xRy, t), and Condition (4) to π(xRx, y) = y. Then the map
π : R×X → X satisfies all the axioms of a connector, except the axiom (3) which is (v).

In this way, we can enlighten a previous observation:

1.22. Corollary. Given any category E and any object X, there is bijection between:
1) the fibrant equipments of the split epimorphism (pX1 , s

X
0 ) : X ×X � X

2) the ternary operations p : X ×X ×X → X on X such that

p(x, z, z) = x, p(p(x, z, v), v, w) = p(x, z, w) and p(x, x, z) = z

namely the left associative Mal’tsev operations.
The Chasles equivalence relation Σp on X ×X is defined by (x, y)Σp(t, z) if and only

if t = p(x, y, z) and we know that the diagonal sX0 : X � X ×X is an equivalence class
of Σp.

Accordingly, a fibrant equipment p for (pX1 , s
X
0 ) is an associative one (or equivalently

gives rise to a connected pair [∇X ,∇X ]p = 0) if and only if the left associative Mal’tsev
operation p on X is right associative as well, and therefore if and only is p is an associative
Mal’tsev operation.

1.23. Remark. Suppose moreover E exact. Section 1.18 asserts that an equipment of the
previous kind is isomorphic to the canonical equipment for the projection pX1 : Q×X → X,
where Q is the quotient of the Chasles equivalence relation. The isomorphism χ : X×X →
Q×X is defined by χ(u, v) = (uv, v) with χ−1(uv, t) = p(u, v, t).

From the previous corollary, we recover the following well known observation:

1.24. Corollary. Given any internal group object (X, ◦, 0) in E, the map p defined by
p(x, y, z) = x ◦ y−1 ◦ z produces an associative equipment p : X × X × X → X for the
split epimorphism (pX1 , s

X
0 ); so the diagonal sX0 : X � X ×X is an equivalence class of

the Chasles equivalence relation Σp on X ×X which coincides with the kernel equivalence
relation R[d], where d : X ×X → X is the ”division” map defined by d(x, y) = x ◦ y−1.

Given any category E, suppose now that the monomorphism j : U � X is normal to
an equivalence relation R on the object X, and that moreover we have a connected pair
[∇X , R]p = 0. Then consider the following diagram of equivalence relations where the
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right hand side fibrant morphism is produced by the connector p, and the total rectangle
is a fibrant morphism as well since j is normal to R:

U × U //
(j,1)×U

//
// j̃ //

pU0
��

pU1
��

X × U × U

X×pU0
��

(p.(X×j̃),pU1 )

��

//
X×j̃

// X ×R

X×dR0
��

(p,dR1 .p
R
1 )

��

(pX0 ,p)
// R

dR0
��

dR1
��

U // (j,1) //
//

j
//

sU0

OO

X × U

X×sU0

OO

// X×j // X ×X

X×sR0

OO

pX0 // X

sR0

OO

So, the two other morphisms of equivalence relations are fibrant as well. From that we
get:

1.25. Theorem. Given any monomorphism j normal to an equivalence relation R en-
dowed with a connector p such that [∇X , R]p = 0:
1) the monomorphism (j, 1) is an equivalence class of the vertical equivalence relation ΣU

p

on X × U
2) this diagram produces a fibrant morphism of equivalence relations (pX0 , p̄

X
0 ) : ΣU

p → R
and therefore we get ΣU

p ∩R[pX0 ] = ∆X×U and [R[pX0 ],ΣU
p ] = 0 in a canonical way

3) the equivalence relation ΣU
p comes from the fibrant equipment on the split epimorphism

(pU1 , (j, 1)) produced (according to Proposition 1.15) by the map p.(X×j̃) : X×U×U → X;
accordingly we have R[pU1 ] ∩ ΣU

p = ∆X×U and [R[pU1 ],ΣU
p ] = 0

4) the restriction of this map to U , given by the map p.(j× j̃) : U×U×U → X, factorizes
through U and gives it an internal associative Mal’tsev operation pU .

Proof. The whole rectangle is a fibrant morphism since j is normal to R. The vertical
diagram above X × U produces a subequivalence relation ΣU

p of the equivalence relation
R×X on X ×X, and the central part of the diagram is fibrant since the square indexed
by 0 is clearly a pullback, again since j is normal to R. Accordingly, 1) the morphism
(pX0 , p̄

X
0 ) : ΣU

p → R is fibrant, and 2) so is the left and side morphism of equivalence
relations, which means that the monomorphism (j, 1) is an equivalence class of ΣU

p . In
set-theoretical terms we have (x, u)ΣU

p (z, v) if and only if z = p(x, j(u)Rj(v)). The third
point is a straightforward checking.

Now we have p(j(u), j(v)Rj(w))Rj(u) by definition of p, and since j is normal to R,
we have p(j(u), j(v), j(w)) ∈ j(U), whence a unique pU(u, v, w) such that j(pU(u, v, w)) =
p(j(u), j(v)Rj(w)). This restriction map clearly gives U an associative Mal’tsev operation.

When the equivalence relation R is a Chasles equivalence relation Σψ, we have a kind
of converse:

1.26. Corollary. Let ψ be a fibrant equipment for the split epimorphism (f, s) : X � Y
in E. If the object Y is endowed with an associative Mal’tsev operation pY , then the
Chasles equivalence relation Σψ is such that [∇X ,Σψ]p = 0, by the connector p : X ×X ×
Y → X with p = ψ.(pX0 , pY .(f × f × Y )).
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Proof. Set p = ψ.(pX0 , pY .(f × f × Y )) : X × X × Y → Y , namely p(x, z, y) =
ψ(x, pY (f(x), f(z), y)). Checking that it gives rise to a connector for the Chasles equiv-
alence relation Σψ is straightforward. Moreover, this connector p is such that we get
fp(x, z, y) = pY (f(x), f(z), y).

1.27. Stability properties of fibrant equipments.

1.28. Proposition. In any category E, the fibrant equipments of morphisms (resp. split
epimorphisms) are stable under products and pullbacks. Moreover, with the notations of
the diagram below, we have Σψ′ = g−1(Σψ).

Proof. The stability under products is straightforward. Now consider the following
pullback in E:

X ′
g //

f ′

��

X

f

��
Y ′

h
//

s′

OO

Y

s

OO

such that ψ : X×Y → X is a fibrant equipment for f . We get: f.ψ.(g×h) = pY1 .(g×h) =
h.pY

′
1 , whence a unique factorization ψ′ : X ′ × Y ′ → X ′ such that g.ψ′ = ψ.(g × h) and

f ′.ψ′ = pY
′

1 (=Axiom (2)). Axioms (1) and (3) easily follow. When f is split by s, there
is an induced splitting s′. Once again Axiom (4) for (f ′, s′) easily follows.

Now we get (x, u)Σψ′(z, v) if and only if (z, v) = ψ′((x, u), v) = (ψ(x, h(v)), v), namely
if and only if z = ψ(x, h(v)) = ψ(x, f(z)), which is xΣψz. Whence the last assertion.

1.29. Proposition. Given any category E and any split epimorphism (f, s) endowed
with a fibrant equipment ψ, consider the following pullback:

Y ′
h //

��

s′

��

Y
��

s

��
X ′ g

// X

f

OO

Then the monomorphism s′ : Y ′ � X ′ is normal to the equivalence relation S = g−1(Σψ)
on X ′ which is such that S ∩R[f.g] = R[g].

Proof. As an inverse image of s along g, the monomorphism s′ is normal to S = g−1(Σψ).
From Σψ ∩ R[f ] = ∆X , we get S ∩ R[f.g] = R[g] (which implies that S does not come
from a fibrant equipment on f.g). This equivalence relation S � X ′ ×X ′ is obtained as
the equalizer of g.pX

′
1 and ψ.(g × f.g), namely, in set-theoretical term s: aSb if and only

if g(b) = ψ(g(a), fg(b)).
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1.30. Corollary. Given any commutative triangle in a category E:

X
f //

g   

Y

h~~
Z

if (dh1 , s
h
0) : R[h] � Y has a fibrant equipment, the subobject R[f ] � R[g] is an equivalence

class of an equivalence relation S on R[g] such that S ∩R[f.dg1] = R[R(f)], where R(f) :
R[g]→ R[h] is the factorization induced by f thanks to the commutation of the triangle.

Accordingly, given any map f : X → Y , the subobject R[f ] � X×X is an equivalence
class of an equivalence relation Σ on X ×X such that Σ∩R[f.pX1 ] = R[f × f ] as soon as
the object Y is endowed with an internal left associative Mal’tsev operation p.

Proof. Apply the previous proposition and Proposition 1.21 to the following pullback:

R[f ]
φ //

��

��

Y
��

sh0

��
R[g]

R(f)
// R[h]

dh1

OO

Then observe that the subobject in question:

R[f ] // //

df0 ""

R[g]
dg0

||
Z

sg0

<<sf0

bb

is a plain subobject.

2. Unital context

Recall that a category E is unital [4], when it is pointed and such that for any pair (X, Y )
of objects the following canonical injections are jointly strongly epic:

X //
jX0 =(1X ,0)

// X × Y Yoo
jY1 =(0,1Y )
oo

The main examples of such categories are the categories UMag of unitaty magmas, and
the category Mon of monoids.

Given two maps f : X → Z and g : Y → Z, we say that they commute when there
exists a (necessarily unique) morphism ϕ : X×Y → Z such that ϕ.jX0 = f and ϕ.jY1 = g.
The uniqueness of this map makes the commutation a property inside the unital category
E. This map ϕ is then called the cooperator of f and g. A map f : X → Z is said to be
central when it commute with 1Z .

So, the pair (1X , 1X) commutes if and only if there is a binary operation m : X×X →
X on the object X which gives it a (unique) internal commutative monoid structure; we
then say that the object X is commutative in E.
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2.1. Proposition. When E is a unital category and (R, S) a connected pair of equiva-
lence relations on the object X, the pair of normalizations (norR, norS) does commute in
E.

Proof. Let p be the connector of the pair (R, S). Then define the cooperator ϕ : norR×
norS → X by ϕ(u, v) = p(u, 0, v).

It is clear that jX0 is the kernel of pY1 : X ×Y → Y , and that accordingly jX0 is normal
to R[pY1 ].

2.2. Proposition. In a unital category E, the equivalence relation R[pY1 ] is the smallest
one to which the monomorphism jX0 is normal.

Proof. Let Σ be another equivalence relation to which jX0 is normal. Consider S =
R[pY1 ] ∩ Σ to which jX0 is normal as well. We have to show that S = R[pY1 ]. For that
consider the following diagram:

X ×X //
j̃

//
//

jX×X0 //

pX0

��
pX1

��

S // ι
//

dS0

��
dS1

��

R[pY1 ] = X ×X × Y

pX0 ×Y
��

pX1 ×Y
��

X //
jX0

//

sX0

OO

X × Y

sS0

OO

X × Y

sX0 ×Y

OO

We have (sX0 × Y ).jY1 = jY1 : Y � X ×X × Y . Accordingly the factorizations through ι
of the two injections jX×X0 and jY1 make ι an isomorphism in the unital category E.

2.3. Corollary. In a unital category E, the equivalence relation R[pY1 ] is the unique
equivalence relation S on X × Y with jX0 normal to S and S ∩R[pX0 ] = ∆X×Y .

Proof. By the previous proposition, jX0 normal to S implies R[pY1 ] ⊂ S. From that
we get (x, y)S(x′, y). Suppose (x, y)S(x′, y′). So, we get (x′, y)S(x′, y′). Then, from
S ∩R[pX0 ] = ∆X×Y , we get y = y′ and S ⊂ R[pY1 ].

Let us now make explicit an example of an equivalence relation Σ on X ×Y of which,
on the one hand, jX0 is the normalized equivalence class and which, on the other hand,
is strictly larger than R[pY1 ]. Actually we shall give it in the strictly stronger context
of a pointed Mal’tsev category, namely a category in which any reflexive relation is an
equivalence relation, see [16] and [17].

Define Malo∗ as the variety of pointed Mal’tsev operations, namely ternary operations
p : X ×X ×X → X satisfying the Mal’tsev identities p(x, y, y) = x = p(y, y, x).

Let us consider the set W = {0, a, b} endowed with the Mal’tsev operation defined by
the following 12 equalities, besides the 15 other ones demanded by a Mal’tsev operation:

p(0,a,0)=a p(0,b,0)=b p(a,0,a)=a p(b,0,b)=b
p(a,0,b)=a p(b,0,a)=b p(a,b,0)=0 p(0,a,b)=0
p(b,a,0)=0 p(0,b,a)=0 p(a,b,a)=b p(b,a,b)=a
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Denote by Wa the subalgebra defined on {0, a}, and by ta : Wa � W the inclusion
homomorphism. We get a retraction homomorphism ga : W � Wa as well, defined by
g(a) = a = g(b). The point, here, is that we get Kerga = {0}.

Accordingly, given any other algebra M in Malo∗, the canonical injection jM0 : M �
M×W is the kernel of ga.p

W
1 as well, and is consequently the normalized equivalence class

of Σ = R[ga.p
W
1 ] which is strictly larger than R[pW1 ].

3. Mal’tsev context

We shall investigate now the case where the ground category E is a Mal’tsev category,
namely, as we just recalled, a category in which any reflexive relation is an equivalence
relation [16], [17].

Denote by PtE the category whose objects are the split epimorphisms in E and whose
morphisms are the commutative squares between such data. Let ¶E : PtE → E be the
functor associating with any split epimorphism its codomain. It is a fibration called the
fibration of (generalized) pointed objects whose cartesian maps are the pullbacks of split
epimorphisms. It is shown in [4] that the category E is a Mal’tsev one if and only if the
(pointed) fibers of this fibration are unital.

This last property implies that, given any pair (R, S) of equivalence relations on an
object X, we get [11] that:
1) there is at most one map p : R×X S → X satisfying axioms 2) and 2’) of a connector;
2) when there is such a p, it necessarily satisfies the four other axioms;
3) so, being connected becomes a property denoted by [R, S] = 0; we shall then speak
of centralizing double relation on the pair (R, S) instead of cartesian double relation; we
shall also say that the equivalence relations R and S centralize each other;
4) R ∩ S = ∆X implies [R, S] = 0;
5) an object X is called affine when we get: [∇X ,∇X ] = 0; in this case the associated
associative Mal’tsev operation p is necessarily commutative, namely such that p(x, y, z) =
p(z, y, x).

In fact, connected equivalence relations in a Mal’tsev category are characterized, in the
unital fibers of ¶E, in terms of commuting subobjects. More precisely, (R, S) is a connected
pair of equivalence relations in E if and only if the split epimorphisms (dR1 , s

R
0 ) : R � X

and (dS1 , s
S
0 ) : S � X commute as subobjects of (pX1 , s

X
0 ) : X ×X � X in PtXE.

Finally, recall that we gave in the previous section an example which can be seen as a
split monomorphism (0, τW) : 1 � W in the Mal’tsev variety Malo of Mal’tsev operations
which is both normal to R[ga] and to ∆W. So that in a Mal’tsev category, there exist
subobjects which are equivalence classes of two distinct equivalence relations.

We shall now give specifications in the Mal’tsev context of some results of the first
section. Let us begin by Lemma 1.2:
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3.1. Lemma. Suppose given any split epimorphism of equivalence relations in a category
E as on the left hand side:

RX
Rf

//

dX1
��

dX0
��

RY

dY1
��

dY0
��

Rsoo RX
Rf

// RY
Rsoo

X
f

//

OO

Y

OO

soo X

sX0

OO

f
// Y

sY0

OO

soo

then the following two conditions are equivalent:
i) the upward right hand side diagram is a pullback of split epimorphisms
ii) we have RX ∩R[f ] = ∆X

and they hold whenever we have:
iii) (f,Rf ) is a fibrant morphism of equivalence relations.
When E is a Mal’tsev category, the three conditions are equivalent.

Proof. In any category E, the domain of the pullback of sY0 along Rf is nothing but
RX ∩ R[f ]. So that i) ⇐⇒ ii) holds in any category. Obviously if (f,Rf ) is fibrant,
the upward square with s0 is a pullback and we get i). Conversely, consider the following
diagram where the lower square is a pullback of split epimorphisms:

RX

dX0

((

Rf

!!
φ

��
P

πX
��

πf //
RY

dY0
��

σ
oo

aa

X
f //

sX0

99

OO

Y

sY0

OO

s
oo

Let φ be the natural factorization. Thanks to the Yoneda embedding, it is easy to check
that, in any category E, RX ∩R[f ] = ∆X (namely ii)) implies that φ is a monomorphism.
When, in addition, the category E is a Mal’tsev category, the factorization φ, being
involved in a pullback of split epimorphisms, is necessarily a strong epimorphism, since
the fibre PtYE is unital. Accordingly φ is an isomorphism and the morphism (f,Rf ) is
fibrant.

Now, let us specify the second emblematic situation:

3.2. Proposition. Suppose E is a Mal’tsev category. Given any split monomorphism
(s, f), there is at most one equivalence relation S on its codomain X such that s−1(S) =
∇Y and S ∩R[f ] = ∆X . When such an equivalence relation S does exists:
1) the split monomorphism s is an equivalence class of S
2) S is the smallest equivalence relation R on X such that s−1(R) = ∇Y .
Accordingly any split monomorphism (s, f) is the equivalence class of most one equivalence
relation S such that S ∩R[f ] = ∆X .
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Proof. Suppose s−1(S) = ∇Y . Then consider the following diagram:

Y × Y // s̃ //

pY1
��

pY0
��

S

dS1
��

dS0
��

(f.dS0 ,f.d
S
1 )
// Y × Y

pY1
��

pY0
��

Y //
s

//

OO

X

OO

f
// Y

OO

So, we get a split epimorphism of equivalence relations S � ∇Y . If, in addition, we have
S ∩ R[f ] = ∆X and E is a Mal’tsev category, S → ∇Y is a fibrant morphism according
to the previous lemma, and this is also the case of its splitting ∇Y � S. This last point
means that s is normal to S.

On the other hand, the pair (sS0 , s̃) is jointly strongly epic since any of the downward
right hand side squares is a pullback. If R is another equivalence on X such that s−1(R) =
∇Y , then s−1(R ∩ S) = ∇Y , consider the following factorizations:

R ∩ S
��

j
��

X //
sS0

//
::

sR∩S0

::

S Y × Yoo
s̃

oo
ff

s̃R∩S
ff

they show that j is an isomorphism and S ⊂ R. Accordingly S is the smallest among
the equivalence relations R on X such that s−1(R) = ∇Y . Whence its uniqueness as an
equivalence relation to which s is normal.

The following proposition gives us the description of this unique equivalence relation
S and makes an explicit relationship with the third emblematic situation:

3.3. Proposition. Suppose E is a Mal’tsev category. Given any split monomorphism
(s, f), the following conditions are equivalent:
1) the split monomorphism s is normal to a (unique) equivalence relation S such that
S ∩R[f ] = ∆X

2) there is a (unique) map ψ : X × Y → X satisfying: (1) ψ.(1, f) = 1X and (4)
ψ.(s× Y ) = s.pY1 which actually produces a fibrant equipment for (f, s).
Accordingly this unique equivalence relation S is nothing but the Chasles equivalence re-
lation Σψ.

Proof. Suppose we have such an equivalence relation S, and consider the following
commutative diagram:

Y × Y //
s̃

//
// s×Y //

pY0
��

pY1
��

S
(dS0 ,f.d

S
1 )
//

dS0
��

dS1
��

X × Y

pX0
��

Y //
s

//

sY0

OO

X

sS0

OO

X

(1,f)

OO



A NOTE ON THE CATEGORICAL NOTIONS OF NORMAL SUBOBJECT. . . 87

We have S∩R[f ] = ∆X if and only if the map (dS0 , f.d
S
1 ) : S → X×Y is a monomorphism.

Since the following leftward square is a pullback of split epimorphisms and E is a Mal’tsev
category:

Y × Y
// s×Y //

pY0
��

X × Y
f×Y
oo

pX0
��

Y
// s //

sY0

OO

X

(1,f)

OO

f
oo

the pair (s×Y, (1, f)) is jointly extremally epic, and the factorizations s̃ and sS0 make the
monomorphism (dS0 , f.d

S
1 ) an isomorphism. Let us denote γ its inverse. Then the map

ψ = dS1 .γ : X × Y → X satisfies axioms (1) and (4).
Conversely these two conditions are sufficient to get a fibrant equipment for (f, s):

indeed, from them, we get: f.ψ.(1, f) = f = pY1 .(1, f) and f.ψ.(s × Y ) = f.s.pY1 = pY1 =
pY1 .(s × Y ); now since, once again, the pair (s × Y, (1, f)) is jointly extremally epic, we
conclude f.ψ = pY1 , namely (2), which implies that Σψ is a reflexive relation, and, E being
a Mal’tsev category, an equivalence relation, whence (3). By Proposition 1.12 we have
Σψ ∩R[f ] = ∆X and by Proposition 1.13, s is normal to Σψ.

3.4. Corollary. Given any Mal’tsev category E, and any equivalence relation R on X,
the following conditions are equivalent:
1) the split monomorphism (sR0 , d

R
1 ) : X � R is an equivalence class of a (unique) equiv-

alence relation S such that S ∩R[dR1 ] = ∆R

2) the split epimorphism (dR1 , s
R
0 ) has a fibrant equipment

3) the split epimorphism (dR1 , s
R
0 ) has an associative equipment

4) the equivalence relation R is central, namely we get [R,∇X ] = 0.
In particular, the following conditions are equivalent:

1) the split monomorphism (sX0 , p
X
1 ) : X � X ×X is the equivalence class of a (unique)

equivalence relation S such that S ∩R[pX1 ] = ∆X×X
2) the object X is endowed with a (unique) Mal’tsev operation p
3) we get [∇X ,∇X ] = 0 or equivalently the object X is affine.

Proof. The four equivalences are consequences of Proposition 1.21 and the previous
proposition.

3.5. Corollary. Given any commutative triangle in a Mal’tsev category E:

X
f //

g   

Y

h~~
Z

if the equivalence relation R[h] is central, the subobject R[f ] � R[g] is the equivalence
class of an equivalence relation S on R[g] such that S ∩R[f.dg1] = R[R(f)], where R(f) :
R[g]→ R[h] is the factorization induced by f .
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Accordingly, given any map f : X → Y , the subobject R[f ] � X×X is the equivalence
class of an equivalence relation Σ on X ×X such that Σ∩R[f.pX1 ] = R[f × f ] as soon as
the object Y is affine.

Proof. Apply Corollary 1.30 in the Mal’tsev context.

3.6. Regular Mal’tsev context. When E is a regular category and f : X � Y a
regular epimorphism, the direct image of an equivalence relation S on X, i.e. the canonical
decomposition of (f × f).(dS0 , d

S
1 ):

S
f̌ // //

��

(dS0 ,d
S
1 )

��

f(S)
��
(δ0,δ1)

��
X ×X

f×f
// // Y × Y

only produces a reflexive relation on Y . In a regular Mal’tsev one, it is necessarily an
equivalence relation. So, we get direct images of equivalence relations. Any Mal’tsev
variety V being an exact category is a fortiori a regular Mal’tsev category. The category
TopMalo of topological Mal’tsev operations is an example of a regular Mal’tsev category
which is not exact, see [21].

So, let us recall from [7], the following important:

3.7. Proposition. Let E be a regular Mal’tsev category. Given any regular epimorphism
f : X � Y , if u : U � X is normal to an equivalence relation S, then the direct image
f(u) : f(U) � Y is normal to the direct image f(S).

and from [11] the other important:

3.8. Proposition. Let E be a regular Mal’tsev category. Given any regular epimorphism
f : X � Y and any pair (R, S) of equivalence relations on X, if we have [R, S] = 0, then
we get [f(R), f(S)] = 0.

The regular Mal’tsev context ensures the uniqueness of the result described in Theorem
1.25:

3.9. Theorem. Let E be a regular Mal’tsev category and j : U � X be a plain monomor-
phism. The following conditions are equivalent:
1) the plain monomorphism j is the equivalence class of a (necessarily unique) central
equivalence relation R on X
2) the split monomorphism (j, 1) : U � X × U is the equivalence class of a (necessarily
unique) equivalence relation S on X × U such that S ∩R[pU1 ] = ∆X×U

Proof. Suppose 1). Thanks to Theorem 1.25 the split epimorphism (pU1 , (j, 1)) : X×U �
U has a fibrant equipment which produces an equivalence relation S on X ×U such that
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S ∩ R[pU1 ] = ∆X×U and makes fibrant morphisms the two following ones, the left hand
side part meaning that (j, 1) is normal to S:

U × U //
˜(j,1) //

pU0
��

pU1
��

S
p̃X0 //

dS0
��

dS1
��

R

dR0
��

dR1
��

U //
(j,1)

//

sU0

OO

X × U

sS0

OO

pX0

// X

sR0

OO

Since E is a Mal’tsev category, this equivalence relation S is unique.
Conversely suppose 2). We know that this S is unique and determined by a fibrant

equipment for the split epimorphism (pU1 , (j, 1)). On the other hand, since j is a plain
monomorphism, the projection pX0 : X×U → X is a regular epimorphism as the pullback
of the regular epimorphism U � J defining the common support J of U and X. Now
consider the following diagram, where the vertical central part is S and the right hand
side part is the direct image of S along the regular epimorphism pX0 :

U × U // (j,1)×U//

pU0

��
pU1

��

X × U × U

pX×U0

��
ψ

��

p̄X0 // pX0 (S)

δ0

��
δ1

��
U //

(j,1)
//

sU0

OO

X × U

(1,pU1 )

OO

pX0

// X

σ0

OO

Since (j, 1) is normal to S, its direct image pX0 (j, 1) = j is normal to pX0 (S). Since we
have S ∩ R[pU1 ] = ∆X×U , and consequently [S,R[pU1 ]] = 0 because we are in a Mal’tsev
category, we get 0 = [pX0 (S), pX0 (R[pU1 ])] = [pX0 (S),∇X ]. Accordingly pX0 (S) is central.
This is the unique central equivalence relation to which j is normal: if there is some other
similar R, the diagram of our first part implies that p̃X0 is a regular epimorphism since
the morphism S → R is a fibrant one. Accordingly we get R = pX0 (S).

Similarly, we can ensure the uniqueness in the following results:

3.10. Proposition. Let E be a regular Mal’tsev category, (f, s) a split epimorphism and
g : X ′ � X a regular epimorphism. Consider the following pullback:

Y ′
h // //

��

σ

��

Y
��

s

��
X ′ g

// // X

f

OO

the following conditions are equivalent:
1) the monomorphism σ is the equivalence class of an equivalence relation S on X ′ such
that S ∩ R[f.g] = R[g], which is then the unique equivalence relation satisfying this con-
dition
2) the monomorphism s is the equivalence class of a (unique) equivalence relation Σ on
X such that Σ ∩R[f ] = ∆X .
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Proof. We know that 2) implies 1) by Proposition 1.29. Conversely suppose 1) and
consider the previous pullback. Since g is a regular epimorphism, so is h, which makes s
the direct image of σ along g. Since σ is normal to S, the monomorphism s is normal to
the direct image g(S). Since both S and R[f.g] contain R[g], their direct images along
g preserve their intersection, so that g(S) ∩ R[f ] = ∆X . Then, according to Proposition
3.3, the monomorphism s satisfies Condition (2), so that g(S) = Σψ. On the other hand,
R[g] ⊂ S implies S = g−1(g(S)) = g−1(Σψ), and consequently S is unique.

3.11. Corollary. Let be given any commutative triangle in a regular Mal’tsev category
E:

X
f // //

g   

Y

h~~
Z

where f is regular epimorphism. The following conditions are equivalent:
1) the equivalence relation R[h] is central
2) the subobject R[f ] � R[g] is the equivalence class of a (unique) equivalence relation S
on R[g] such that S ∩ R[f.dg1] = R[R(f)], where R(f) : R[g] → R[h] is the factorization
induced by f .

Accordingly, given any regular epimorphism f : X � Y , the subobject R[f ] � X×X is
the equivalence class of a (unique) equivalence relation Σ on X×X such that Σ∩R[f.pX1 ] =
R[f × f ] if and only if the object Y is affine.

Proof. We know that 1) implies 2) by Corollary 3.5. Conversely suppose 2). Apply
Proposition 3.10 to the following pullback:

R[f ]
��

��

// // Y
��

sh0

��
R[g]

R(f)
// // R[h]

dh1

OO

where the factorization R(f) is a regular epimorphism, since so is f .

4. Pointed Mal’tsev context

In the pointed Mal’tsev context some of our observations become more radical:

4.1. Proposition. Given any pointed Mal’tsev category E and any split epimorphism
(f, s) : X � Y , if s is the equivalence class of an equivalence relation S on X such
that S ∩ R[f ] = ∆X , then there is a canonical isomorphism γ : X ' Kerf × Y making
(f, s) ' (pY1 , j

Y
1 ).
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Proof. The Mal’tsev category being pointed is unital. In this context, the map ψ deter-
mined by the equivalence relation S of Proposition 3.3 produces a pair (φ = ψ.jX0 , σ =
ψ.jY1 ) of commutative maps: φ : X → X, σ : Y → X.

The axiom (4) ψ.(s × Y ) = s.pY1 gives us σ = s and φ.s = 0, while the axiom (2)
f.ψ = pY1 gives us f.φ = 0. From (3), we get ψ.(φ × Y ) = ψ, whence φ2 = φ, and
ψ.(φ, f) = 1X , so that the pair (φ, f) is jointly monic.

Denote by t : T � X the equalizer of the pair (1X , φ). Since (φ, f) is jointly monic,
it coincides with Kerf . Denote by g : X → T = Kerf its canonical retraction such
that t.g = φ. From φ.s = 0, we get g.s = 0; while from f.φ = 0, we get f.t = 0.
On the other hand, since (φ, f) = (t.g, f) is jointly monic, so is (g, f) : X → T × Y .
Now the factorization t and s through X of the extremal epimorphic (jT0 , j

Y
1 ) makes the

monomorphism (g, f) an isomorphism.

Here, the assertion of the uniqueness of the equivalence relation S given by Proposition
3.3 brings some precision to Theorem 4.3 of [13] which asserts the same result with a quite
different proof.

4.2. Corollary. Let E be a regular pointed Mal’tsev category and R an equivalence
relation on X. The following conditions are equivalent:
1) the equivalence relation R is central
2) its normalization j : norR = KerdR0 � X is central.

Proof. Since E is pointed any monomorphism is a plain one. Suppose (1). Then Theorem
3.9 implies that the split monomorphism (j, 1) : KerdR0 � X × KerdR0 is normal. So the

cooperating map X ×KerdR0
X×jK1−→ X ×KerdR0 ×KerdR0

p→ X makes the monomorphism j
a central one, where p is the fibrant equipment for the split epimorphism (j, 1) given by
Propositions 3.3 and 1.15.

Conversely suppose j is a central monomorphism and φ : X × KerdR0 → X is the
associated cooperator. By composition with KerdR0 × j, this cooperator gives KerdR0 a
structure of abelian object in E. Then consider the map p : X × KerdR0 × KerdR0 → X
defined by p(x, k, k′) = φ(x, k′−k). It gives a fibrant equipment for the split epimorphism
(j, 1), making (j, 1) a normal monomorphism. Then by Theorem 3.9, the equivalence
relation R is central.

This result was already established in the semi-abelian context in [18]. Here we get
rid of the exactness and of the protomodularity. We can even say that we get rid of the
zero object if we refer to the non-pointed version given by Theorem 3.9 where the result
relies upon the fact that in a regular Mal’tsev category the direct image of equivalence
relations along regular epimorphisms preserves the centralization of the pairs.

5. Protomodular and related contexts

A category E is protomodular [3] when the fibration of points ¶E is such that any base-
change functor is conservative. The major examples are the categories Gp of groups and
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K-Lie of K Lie algebras. In a protomodular category a monomorphism is normal to at
most one equivalence relation [2].

Any protomodular category is a Mal’tsev one. So any of the previous results valid in a
Mal’tsev category are still valid in a protomodular one. Actually some of them will bring
many precisions about already known results in the protomodular setting, see Proposition
5.2. Rather than giving them immediately we prefer first to set them in an intermediate
context located between Mal’tsev and protomodular and defined in [9]:

5.1. Definition. Given any category E and any class J of morphisms in E, this category
will be said protomodular on the class J when the base-change functor with respect to the
fibration of points ¶E along any map in J is conservative.

It is clear that:
1) a pointed category is protomodular if and only if it is protomodular on the class SpM
of split monomorphisms
2) a category is protomodular on the class SpM of split monomorphisms if and only if
any fibre PtYE is protomodular
3) any category E is protomodular on the class SpE of split epimorphisms
4) any regular category E is protomodular on the class Reg of regular epimorphisms
6) accordingly a regular category E is protomodular if and only if it is protomodular on
the class M of monomorphisms.

Examples. 1) Let us denote by LAM the subvariety of the variety Malo whose Mal’tsev
operations are the left associative ones. Then LAM is protomodular on SpM without
being protomodular.

Proof. Clearly the empty set prevents LAM from being protomodular. Now consider
the following pullback in LAM with Y ′ 6= ∅ (when Y ′ = ∅, the map t being necessarily
an isomorphism):

X ′ //
k //

f ′
��

X

f
��

Y ′ //
t //

s′

OO

Y

s

OO

g
oo

Then X ′ is the subobject of the elements x of X satisfying f(x) = tgf(x). Given any x in
X, we have f(p(x, sf(x), stgf(x))) = p(f(x), f(x), tgf(x)) = tgf(x). Consequently the
element p(x, sf(x), stgf(x)) belongs to X ′. Now let X̄ be any subobject of X containing
X ′ and s(Y ). Then we have: x= p(p(x, sf(x), stgf(x)), stgf(x), sf(x)); therefore x is in
X̄ since any of the three terms belongs to X̄. Accordingly X̄ = X and the base-change
along t is conservative. When Y ′ = ∅, the other sets in the diagram are empty, and t
becomes an isomorphism; so the base-change t∗ is trivially conservative.

2) given any left exact conservative functor U : E→ E′, if the category E′ is protomodular
on SpM, so is the category E
3) accordingly any left associative Mal’tsev variety V, namely whose theory contains a
left associative Mal’tsev operation, is protomodular on SpM.
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Proof. Take the forgetful functor U : V→ LAM .

4) the notion of category protomodular on SpM is clearly (by the above observation 2))
stable under slicing and coslicing.

5.2. Proposition. Suppose E is protomodular on the class SpM of split monomorphisms.
Then: 1) E is a Mal’tsev category,
2) a split monomorphism (s, f) : Y � X is normal to at most one equivalence relation
S which is necessarily such that S ∩R[f ] = ∆X ; so, being an equivalence class for a split
monomorphism becomes a property,
3) the following conditions are equivalent:
i) the split monomorphism s is normal to S
ii) there is a fibrant equipment for (f, s) and S is the associated Chasles equivalence
relation.

When E is protomodular on the class M of monomorphisms, then it is a Mal’tsev
category, any monomorphism is normal to at most one equivalence relation. So, being
normal or an equivalence class for a monomorphism becomes a property.

Proof. The proofs of the two first assertions are the same as the ones given for any
protomodular categories in [2], since the only base-change functors which is used in the
proof of Mal’tsevness is the base-change along the split monomorphism sS0 : X → S, when
S is a reflexive relation and the only base-change functors which is used in the proof of
the uniqueness of the equivalence relation S to which a monomorphism u is normal is the
base-change along the monomorphism u. It remains to check that S ∩ R[f ] = ∆X . For
that consider the following diagram:

Y × Y //
s̃

//
// s×Y //

pY0
��

pY1
��

S
(dS0 ,f.d

S
1 )
//

dS0
��

dS1
��

X × Y

pX0
��

Y //
s

//

sY0

OO

X

sS0

OO

X

(1,f)

OO

Since the left hand side square and the whole rectangle are pullback of split epimorphisms,
we get s∗((dS0 , f.d

S
1 )) = 1Y×Y , namely an isomorphism; accordingly, since s∗ is conserva-

tive, the map (dS0 , f.d
S
1 ) is an isomorphism as well, which implies that S ∩ R[f ] = ∆X .

Assertion 3) then follows from that fact that any category which is protomodular on SpM
is a Mal’tsev one. The last part concerning the categories which are protomodular on
the class M of monomorphisms is checked in a similar way by using base-change along
monomorphisms instead of base-change along split monomorphisms.

When applied to a protomodular category E, the previous result (and this is new) pro-
duces an explicit description of the unique equivalence relation to which a split monomor-
phism (s, f) could be normal.

5.3. Corollary. Suppose E is protomodular on the class SpM of split monomorphisms.
The object X is affine if and only if the split monomorphism (sX0 , p

X
1 ) : X � X × X is

normal.
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5.4. Proposition. Let E be a protomodular category on SpM, and j : U � X a
monomorphism. If the monomorphism j is normal to a central equivalence relation S
on X, then the split (by pU1 ) monomorphism (j, 1) : U � X × U is normal, which makes
U an affine object.

When, in addition, E is regular and j is a plain monomorphism, then the following
conditions are equivalent:
1) j is an equivalence class of a central equivalence relation S
2) the split monomorphism (j, 1) : U � X × U is an equivalence class.
When such a central equivalence relation S exists, it is unique.

Proof. Apply the Proposition 5.2, Theorem 1.25 and Theorem 3.9.

5.5. Corollary. Let be given commutative triangle in a regular category E which is
protomodular on SpM:

X
f // //

g   

Y

h~~
Z

where f is regular epimorphism. The following conditions are equivalent:
1) the equivalence relation R[h] is central
2) the subobject R[f ] � R[g] is an equivalence class.

Accordingly, given any regular epimorphism f : X � Y , the subobject R[f ] � X ×X
is an equivalence class if and only if the object Y is affine.

Proof. By Proposition 5.2, the category E is a Mal’tsev one, and we can apply Corollary
3.11.

6. Naturally Mal’tsev and related contexts

A naturally Mal’tsev category [20] is a category E where any object X is endowed with
a natural Mal’tsev operation πX . It was shown that is equivalent to demanding that any
fibre PtXE is additive [4], which implies that E is protomodular on SpM and therefore a
Mal’tsev category. Let us recall the following:

6.1. Proposition. Given a pointed category E, the following conditions are equivalent:
1) E is additive
2) any downward pullback of split epimorphism:

Kerf //
ker f //

��

X

f

��
1 // αY

//

OO

Y

s

OO
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is an upward pushout
3) any base-change functor f ∗ : PtYE → PtXE is an equivalence of categories whose
inverse equivalence is given by the pushout of split monomorphisms along the map f
4) E is protomodular and any monomorphism is normal.

Let us also recall:

6.2. Proposition. Given any category E, the following conditions are equivalent:
1) it is a naturally Mal’tsev category;
2) it is a Mal’tsev category in which any pair (R, S) of equivalence relations centralize
each other;
3) it is a Mal’tsev category in which any equivalence relation S is central;
4) any fibre PtYE is additive;
5) the base-change functor s∗ : PtY → PtXE along any split monomorphism (s, f) : Y �
X is an equivalence of categories (and in particular a conservative functor).

From that we get:

6.3. Proposition. Given any category E the following conditions are equivalent:
1) it is a naturally Mal’tsev category;
2) it is Mal’tsev category such that any split monomorphism (s, f) : Y � X is the
equivalence class of a (unique) equivalence relation S such that S ∩R[f ] = ∆X .
In a regular naturally Mal’tsev category E, any plain monomorphism u : U � X is an
equivalence class of a unique (central) equivalence relation S on X.

Proof. Suppose E is a naturally Mal’tsev category and, given any split monomorphism
(f, s), consider the following diagram:

Y × Y // s×Y //

pY0
��

pY1
��

X × Y

pX0
��

ψ

��
Y // s //

sY0

OO

X

(1,f)

OO

f
oo

with ψ = πX .((1, sf)×s), in set-theoretical terms: ψ(x, y) = πX(x, sf(x), s(y)). It clearly
satisfies the conditions (1) and (4) of Proposition 3.2; accordingly s is normal to the right
hand side equivalence relation S. The uniqueness of this S is ensured by the fact that E
is Mal’tsev category. Actually, here, we have much more: in the additive fibre PtYE, the
downward square indexed by 0 is a pullback along s (namely a kernel) so that the upward
square appears as the pushout of the split monomorphism (sY0 , p

Y
0 ) along s.

Conversely suppose E satisfying condition 2). Then the split epimorphism (sX0 , p
X
1 )

is an equivalence class, and the object X is affine by Corollary 3.4. The fact that the
associated internal Mal’tsev operation is natural is straightforward.

The last assertion is consequence of Theorem 3.9.
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We have a counterexample when the monomorphism u is not plain: consider the
variety AutMalo of autonomous Mal’tsev operations, namely associative and commuta-
tive Mal’tsev operations. It is an exact naturally Mal’tsev category. Then the initial
monomorphism ∅� A to any algebra A is normal to any equivalence relation S on A.

Recall that, in a non-pointed context, there are actually many steps inside the “ad-
ditive” setting. Recall the following table given by decreasing order of generality, see
[6]:

6.4. Definition. A category E is:
1) a naturally Mal’tsev one when any fibre of the fibration ¶C is additive
2) antepenessentially affine when any base-change functor is fully faithful
3) penessentially affine when, in addition, any base-change functor is fibrant on monomor-
phisms
4) essentially affine when any base-change functor is an equivalence of categories.

Clearly we are in a protomodular context as soon as level 2. By Theorem 2.7 in [6]
we can show that, in a penessentially affine category, any monomorphism is normal to a
(unique) central equivalence relation. Let GrdYE be the category of internal groupoids
in E with Y as object of objects.
1) GrdYE is essentially affine as soon as E is additive
2) GrdYE is penessentially affine as soon as E is a Mal’tsev category
3) GrdYE is antepenessentially affine as soon as E is a Gumm category (in the varietal
context, this means that the variety V is congruence modular, see [19] and [14] for more
details).

7. When ( )0 : EquE→ E is a bifibration

In Set, any reflexive relation (dW0 , d
W
1 ) : W � X × X on X generates an equivalence

relation. It is the infimum of the family of the equivalence relations R containing W .
This is a consequence of the fact that, in Set, there no finite restriction to the stability
of the equivalence relations on X under intersection. The same property holds for any
variety.

By existence of “infima of equivalence relations” in E, we mean existence of infima
in any preordered fibre EquXE stable under base-change with respect to the fibration
( )0 : EquE→ E.

7.1. Proposition. [10, Proposition 2.6] Given any finitely complete category E with
infima of equivalence relations, the fibration ( )0 : EquE → E is a cofibration as well.
Therefore, it is a bifibration.

There are other types of sufficient conditions, but of right exact nature, for the fibration
( )0 to be a bifibration or to get some cocartesian maps:

7.2. Proposition. [23] Let E be a regular Mal’tsev category having pushout of split
monomorphism. Then the fibration ( )0 is a bifibration.
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Proof. Start with any map h : X → Y and any equivalence relation R on X. Then the
pushout of the split monomorphism (sR0 , d

R
0 ) along h produces a reflexive graph G on Y .

The category E being regular, take its regular image Rh in Y ×Y ; it is a reflexive relation
on Y , and so, an equivalence relation when E is moreover a Mal’tsev category. From that,
it is straightforward to observe that the induced morphism (h, ȟ):R→ Rh is cocartesian
above h.

7.3. Proposition. [5] Let E be a topos. Then the fibration ( )0 is cofibrational on
monomorphisms, namely it is such that there are cocartesian maps above any monomor-
phism.

Proof. Let u : U � X be any monomorphism and R any equivalence relation on U .
Then the following upward pushout:

R // ũ //

dR0
��

dR1
��

S

dS0
��

dS1
��

U //
u
//

sR0

OO

X

sS0

OO

produces, from R, an equivalence relation S onX by Corollary 3.3 in [5] which, in addition,
is such that the induced morphism (u, ũ) : R � S is a fibrant morphism. By construction,
this morphism is cocartesian above u. When R is ∇U , the codomain of this cocartesian
map above u is called the disconnectedly equivalence relation generated by u.

When ( )0 is a bifibration, any map f : X → Y in E and any equivalence relation
R on X produces a cocartesian image f!(R), namely the codomain of the cocartesian
map above f with domain R. When ( )0 is cofibrational on monomorphisms, given any
subobject u : U � X, we shall be specially interested in the cocartesian lifting above u:

ζu = (u, û) : ∇U � u!(∇U) .

which is necessarily a cartesian morphism as well, since its domain is an undiscrete rela-
tion. So, let us set Geq(u) = u!(∇U). This construction produces a functor making the
following diagram commute:

MonE Geq //

cod

��

EquE

( )0

��
E E

since any commutative square:

U
h̄ //

��

u

��

V
��

v

��
X

h
// Y

produces a map ∇U
∇h̄→ ∇V

ζv→ Geq(v) and a canonical factorization Geq(h, h̄) : Geq(u)→
Geq(v) above h.
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7.4. Proposition. Let E be a pointed category such that the fibration ( )0 is cofibrational
on monomorphisms, the following holds.
1) Geq is left adjoint to the functor nor:

MonE
Geq

//
> EquE

noroo

2) When the category E is pointed protomodular, the co-unit ε : Geq nor � 1EquE of the
adjoint pair is an isomorphism.
3) When E is topos, the pointed category E∗ = Pt1E of pointed objects in E is such that
the unit η : 1MonE � norGeq of the adjoint pair is an isomorphism.

Proof. Starting with any monomorphism u : U � X we get a natural comparison
ηu : U � NorGeq(u) by Lemma 1.9. Since ( )0 is a fibration, we can reduce the proof
about the adjunction in the following way: let be given another equivalence relation S on
X and a map:

U // φ //
  

u   

NorS{{

norS{{
X

It produces a morphism in EquE:

∇U

∇φ // ∇NorS
(norS,ñorS) // S

which induces the desired factorization Geq(u) � S. The point 2) is a consequence of
the Proposition 7.5 below. The point 3) is a consequence of the fact that, in any topos,
the monomorphism u is normal to Geq(u), see Proposition 7.3.

In the protomodular context, let us recall the following useful result from [12]:

7.5. Proposition. When the category E is protomodular, any fibrant morphism of equiv-
alence relations is cocartesian in EquE.

Proof. Let (h, h̃) : R → S be a fibrant morphism in EquE above h. Suppose we have
another morphism (h, h̄) : R → Σ. Then we get the following diagram where the whole
rectangle of split epimorphisms is a pullback by the fibrant morphism, and the left hand
side as well since ι is a monomorphism:

R
h′
//

h̃ //

dR0
��

dR1
��

S ∩ Σ //
ι

//

d0

��
d1

��

S

dS0
��

dS1
��

X
h

//

sU0

OO

Y

s0

OO

Y

sS0

OO

This means that the image of the map ι in the fibre PtYE by the base-change h∗ is
an isomorphism. Since E is protomodular, the map ι is itself an isomorphism. We get
S ∩ Σ = S and S ⊂ Σ; whence the desired factorization.
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We shall call normalizing any monomorphism u such that there exists an equivalence
relation R with u normal to R. Let us denote by NoE the essential image of nor in MonE;
its objects are normalizing monomorphisms.

7.6. Proposition. [23] Whenever the functor ( )0 is a cofibrational on monomorphisms,
a monomorphism u : U � X is normalizing if and only if its cocartesian lifting ∇U �
Geq(u) is a fibrant morphism in EquE.

Proof. The condition is clearly sufficient. Now suppose u normal to R, then we get
Geq(u) ⊂ R, and u normal to Geq(u) by Lemma 1.4.

In universal algebra, it can be convenient to reduce the study of the lattice of con-
gruences in a pointed algebra X to the lattice of their zero classes. Actually, for pointed
protomodular varieties, these lattices are isomorphic. The following proposition estab-
lishes that, even with fewer assumptions on the base category, normalizing subobjects
and equivalence relations are still connected by an adjunction, that becomes an equiva-
lence in the protomodular case.

7.7. Proposition. Let E be a pointed category such that the functor ( )0 is cofibrational
on monomorphisms. Consider the restriction Geq of the functor Geq to NoE. Then the
following holds.
1) Geq is left adjoint to nor:

NoE
Geq

//
> EquE

noroo

2) The unit of the adjunction is an isomorphism, the counit is monomorphic.
3) Geq is fully faithful, so that the essential image of Geq is a mono-coreflective subcate-
gory of EquE.
4) If E is furthermore protomodular, then the pair (Geq, nor) forms an adjoint equiva-
lence.
5) As a consequence, for any object X of E, it determines an isomorphism of posets
between subobjects in the fibers:

[NoXE]

Geq

//
∼= [EquXE]

noroo

Proof. Straightforward from Proposition 7.4
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