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CLOSED DENDROIDAL SETS AND UNITAL OPERADS

IEKE MOERDIJK

To Bob Rosebrugh, in gratitude for all his work for the journal

Abstract. We discuss a variant of the category of dendroidal sets, the so-called closed
dendroidal sets which are indexed by trees without leaves. This category carries a Quillen
model structure which behaves better than the one on general dendroidal sets, mainly
because it satisfies the pushout-product property, hence induces a symmetric monoidal
structure on its homotopy category. We also study complete Segal style model structures
on closed dendroidal spaces, and various Quillen adjunctions to model categories on (all)
dendroidal sets or spaces. As a consequence, we deduce a Quillen equivalence from closed
dendroidal sets to the category of unital simplicial operads, as well as to that of simplicial
operads which are unital up-to-homotopy. The proofs exhibit several new combinatorial
features of categories of closed trees.

Introduction

A simplicial or topological operad P is called unital [22] if its space P (0) of nullary
operations or “constants” consists of a single point. More generally, one says that a
coloured operad is unital if this condition is satisfied for each colour. Many operads
arising in algebraic topology, such as the various models for En operads [22, 6] and their
variations and extensions [15, 27] have this property. The goal of this paper is to describe
a combinatorial model for these unital coloured operads by means of dendroidal sets.

Recall that the category dSets of dendroidal sets is the category of presheaves of sets
on a category Ω of trees. This category is an extension of that of simplicial sets, which
are presheaves of sets on the subcategory ∆ of Ω consisting of linear trees. Among the
main results of [9, 10, 11], we recall that there is a so-called “operadic” Quillen model
structure on this category dSets, which is Quillen equivalent to a Dwyer-Kan style model
structure on simplicial coloured operads in which the weak equivalences are the morphisms
of operads which are essentially surjective and fully faithful in the appropriate homotopical
sense. The fibrant objects in this model structure are the operads all of whose spaces of
operations are fibrant (i.e., Kan complexes), and for this reason we also refer to this model
structure as the projective one. The Quillen equivalence is given by an explicit Quillen
pair, obtained by Kan extension of the functor from Ω to simplicial operads which views
a tree as an operad and then takes its Boardman-Vogt resolution; see loc. cit. for details.

Received by the editors 2020-06-15 and, in final form, 2021-01-16.
Published on 2021-03-01 in the Rosebrugh Festschrift.
2020 Mathematics Subject Classification: 18M75, 18N70, 18N40.
Key words and phrases: unital operad, dendroidal set, dendroidal space, Quillen equivalence.
© Ieke Moerdijk, 2021. Permission to copy for private use granted.

118



CLOSED DENDROIDAL SETS AND UNITAL OPERADS 119

When a tree is viewed as a coloured operad, this operad is unital iff the tree has no
leaves, i.e. is closed. Therefore, it is natural to try and model unital operads by “closed”
dendroidal sets, presheaves of the category of closed trees. This is indeed possible, and we
will establish a theorem of the following form (see Theorems 10.4 and 12.1 for a precise
formulation).

Theorem. There are Quillen model structures on the categories of closed dendroidal sets
and of unital simplicial coloured operads, respectively, between which a suitable adaptation
of the Boardman-Vogt resolution induces a Quillen equivalence.

Motivated by this theorem, and because unitality of an operad has little to do with
the units of the operad, we will also refer to unital operads as “closed operads”. These
are to be contrasted with “open operads” for which the space(s) of constants, one for
each colour, are all empty. It is an easy consequence of the results of [9, 10, 11] that the
Quillen equivalence between all dendroidal sets and all simplicial operads restricts to one
between open dendroidal sets (presheaves on open trees, trees without stumps) and open
simplicial operads.

The theorem stated above has been expected to hold since the start of the development
of the theory of dendroidal sets (at least by the author of this paper). However, its proof is
more involved than one would perhaps expect. Indeed, unlike the case of open dendroidal
sets, the model structure on dendroidal sets does not restrict in an obvious way to closed
dendroidal sets. Instead, it seems one has to construct a new model structure from scratch.
The fibrant objects in this model category deserve the name “unital infinity operads”
.This model structure on closed dendroidal sets does have one important feature that it
shares with open dendroidal sets (cf. [16]) but which fails for general dendroidal sets;
namely, it satisfies the pushout-product property for cofibrations and trivial cofibrations,
hence induces a well-defined symmetric monoidal structure on its homotopy category
(Corollary 8.4 below). For this model category of closed dendroidal sets, we will also
describe a Quillen equivalent dendroidal complete Segal version, a localization of either
the projective or the Reedy model structure on closed dendroidal spaces, i.e. simplicial
presheaves on the category of closed trees. These closed dendroidal spaces play a role, for
example, in the study by Boavida and Weiss of mapping spaces between operads, cf. [7].

For this model structure on closed dendroidal sets, the Boardman-Vogt resolution is
not left Quillen, nor does it produce unital or closed operads. (It yields operads which are
weakly unital, in the sense of having weakly contractible spaces of constants.) For this
reason, we both have to modify the Boardman-Vogt resolution, and have to change the
“projective” model category structure on closed operads to a Reedy type model structure
with more cofibrations. Once these model structures and the Quillen pair induced by
a modified Boardman-Vogt resolution have been put in place, it is possible to deduce
the fact that this Quillen pair is in fact a Quillen equivalence from the corresponding
statement for open operads and open dendroidal sets, by passing through the various
complete Segal space versions of these model categories.

Using these complete Segal model categories, it is also possible to show that the cate-
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gory of closed dendroidal sets is equivalent to a left Bousfield localization of the category
of all dendroidal sets, see Corollary 13.3 below for a precise formulation. This has as a
consequence that the homotopy category of unital operads is equivalent to that of weakly
unital operads, a fact that has been suspected to be true but for which I am unaware of
a proof in the literature. (The referee pointed out that a related result, viz. that (in the
uncoloured case) the inclusion of unital operads into all operads is homotopically fully
faithful, has been proved independently by Fresse et al, see [14].)

The plan of this paper, then, is as follows. In the first section, we review the definitions
of the categories of coloured simplicial operads and their closed and open variants, the
model structures these carry, and the adjoint Quillen functors that exist between these.
In Section 2, we introduce the model category structures on open and closed operads
with a fixed set of colours. For closed operads, these are the projective and Reedy style
model structures, which can be viewed as induced by transfer from the standard model
category structure on collections (i.e., simplicial presheaves on the category of finite sets
and bijections), and the generalized Reedy model structure [4] on the category of sim-
plicial presheaves on the category of finite sets and injections, respectively. The first
model structure was already considered by [8] in the more general context of operads in
a monoidal model category, and the second was already considered by [13] in the more
restrictive monochromatic case (operads with a single colour). In a third section, we ex-
tend these model structures to model structures on operads with arbitrary sets of colours
and morphisms that can change colours, in which the Dwyer-Kan style weak equivalences
only need to be surjective on colours up to equivalence

In Sections 4-8, we discuss the category of closed dendroidal sets and its model struc-
ture. Compared to [9, 10, 11], the set of inner horns and its saturation of inner anodyne
morphisms will have to be replaced by the set of “very inner horns” the saturation of which
we will refer to as very inner anodyne (“via”) morphisms. This model category has all the
properties of a monoidal model category, except for the fact that the monoidal structure
is only associative up to via morphisms, see Theorem 8.2 for a precise formulation.

In Section 9, we will compare this model structure on closed dendroidal sets to model
structures on open dendroidal sets and arbitrary dendroidal sets through various Quillen
pairs. These Quillen pairs will all play a role in the proof of the main theorem. The
proofs in Sections 4-9 involve several rather delicate combinatorial arguments for closed
trees which haven’t occurred in the literature before; cf. Lemmas 6.5 and 9.5, for an
example.

Towards the proof of the main theorem, we will introduce a modified Boardman-Vogt
resolution in Section 10 and prove that it yields a Quillen adjunction between closed den-
droidal sets and unital or closed operads. Section 11 then describes dendroidal complete
Segal space versions of the model structures on (closed, open and arbitrary) dendroidal
sets, and some special properties of the Quillen pairs of Section 9. With all these prepa-
rations out of the way, we can then prove our main theorem in Section 12.

In a final Section 13, we prove that the model category of closed dendroidal sets can
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be viewed as a localization of that of all dendroidal sets, and prove the equivalence to
weakly unital operads.

For most of this paper, we expect the reader to be familiar with the theory of Quillen
model structures and their left Bousfield localizations [25, 18, 19], as well as with the
basic theory of dendroidal sets. The most accessible source for the latter is probably the
first part of the book [17].

Acknowledgments. This paper obviously builds on earlier and ongoing [17] work
and helpful discussions with Denis-Charles Cisinski, Gijs Heuts and Vladimir Hinich. In
addition, I am grateful to Matija Bašić for his careful reading of the manuscript. I would
also like to thank the referee for his careful reading and useful comments.
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1. Unital simplicial operads

In this paper, the term operad will always mean symmetric coloured simplicial operad.
For such an operad P , we write P = (P,C), where C is the set of “colours” or “objects”
of the operad. For a sequence c1, . . . , cn, c of colours, the corresponding simplicial set
of operations is denoted P (c1, . . . , cn; c). We refer to [3] for a detailed definition and
examples. An operad P is called open if P (c1, . . . , cn; c) = ∅ whenever n = 0, and closed
or unital if P (c1, . . . , cn; c) = ∆[0] = pt whenever n = 0. In the latter case, we will refer
to the unique element of P (−; c) as the constant of colour c. We will denote the category
of coloured operads and its full subcategories of open and closed ones by

Operads, oOperads, cOperads, (1)

respectively. For each of them, and for a fixed set C of colours, the subcategories of
operads with colours C are denoted

OperadsC , oOperadsC , cOperadsC , (2)
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respectively. The morphisms in these subcategories are the identities on the colours,
so these subcategories are not full. The categories in (1) are related by several adjoint
functors. The ones most relevant for us are the functors which we denote by

oOperads

g!
++

g∗

33
cOperads

g∗
oo (3)

For a closed operad Q, the operad g∗(Q) is defined by simply forgetting the nullary
operations, i.e. the constants. Its left adjoint g! maps an open operad P to its ‘closure’
g!(P ) which can most easily be defined in terms of the Boardman-Vogt tensor product
([6]), as

g!(P ) = P ⊗ η. (4)

Here η is the closed operad with one colour, and the identity as only non-nullary operation.
Another way to describe this closure is as the operad with the same set C of colours as
P , and operations defined by the formula

g!(P )(c1, . . . , cn; c) = lim−→
A

P (c1, . . . , cn, A; c) (5)

where A ranges over finite sequences of colours, while the morphisms in the colimit di-
agram are the morphisms in the prop P⊗ associated to P . So, if q = (qb)b∈B : A → B
is such a morphism in P⊗ and p ∈ P (c1, . . . , cn, B; c) then in g!(P )(c1, . . . , cn; c) the ele-
ment p is identified with p ◦B q ∈ P (c1, . . . , cn, A; c). Note that for a fixed colour c and
n = 0, the colimit diagram has a terminal object given by A = {c} and the identity
1c ∈ P (c; c) = P (A; c). So g!(P ) as described by (5) is indeed closed. If is straightforward
to give an explicit description of the composition operations of the operad g!(P ) in terms
of (5), which we will leave to the reader.

The restriction functor g∗ from closed to open operads also has a right adjoint g∗.
For an open operad P , this operad g∗(P ) has the same set C of colours of P , while the
operations are defined by

g∗(P )(c1, . . . , cn; c) =
∏
I

P (cI ; c). (6)

Here the product ranges over all non-empty subsets I ⊆ {1, . . . , n} and cI denotes the
corresponding subsequence (ci : i ∈ I) of (c1, . . . , cn). This is a product over the empty set
if n = 0, so g∗(P ) is indeed closed. The operadic composition in g∗(P ) is defined as follows.

Suppose p = (pI) ∈ g∗(P )(c1, . . . , cn; c), and q(i) ∈ g∗(P )(d
(i)
1 , . . . , d

(i)
ki

; ci) for i = 1, . . . , n.

Then the composition p(q(1), . . . , q(n)) ∈ g∗(P )(d
(1)
1 , . . . , d

(n)
kn

; c) has coordinates for non-
empty subsets J = J1+. . .+Jn where Ji ⊆ {1, . . . , ki}, defined in terms of the composition
operation of P by

p(q(1), . . . , q(n))J = pI ◦ (q
(1)
J1
, . . . , q

(n)
Jn

) (7)
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where I = {i|Ji 6= ∅} and (q
(1)
J1
, . . . , q

(n)
Jn

) in (7) only contains those operations q
(i)
Ji

for
which Ji 6= ∅.

We will need the explicit description of the units and counits of these adjunctions.
The unit α : Q→ g∗g!(Q) is given by the evident maps

Q(c1, . . . , cn; c)→ lim−→
A

Q(c1, . . . , cn, A; c)

given by the vertex for A = ∅ in the colimit diagram. The counit β : g!g
∗(Q) → Q

if this adjunction maps an operation in Q(c1, . . . , cn, A; c) to the one in Q(c1, . . . , cn; c)
given by substitution of the constants of colours in A. For the other adjunction, the unit
α′ : Q→ g∗g

∗(Q) has components Q(c1, . . . , cn; c)→ Q(cI ; c) for ∅ 6= I ⊆ {1, . . . , n} given
by substitution of the constants of colours cj with j 6∈ I. The counit of this adjunction

β′ : g∗g∗(Q)→ Q

is simply given by the projection maps

g∗g∗(Q)(c1, . . . , cn; c) =
∏
I

Q(cI ; c)→ Q(c1, . . . , cn; c),

onto the factor I = {1, . . . , n} for n > 0. (For n = 0, it is the unique map from a point
to a point.) Observe that the same projection map also defines a retraction ρ,

ρ : Q(c1, . . . , cn; c) // g∗g
∗Q(c1, . . . , cn; c) : α′oo

which one can easily check to be a map of operads. We summarize the discussion as
follows.

1.1. Theorem. The restriction functor g∗ : cOperads → oOperads, from closed sim-
plicial operads to open ones, admits both a left adjoin g! and a right adjoint g∗ (described
explicitly in (5) and (6) above). Moreover, for each closed operad Q the unit of the ad-
junction α′ : Q→ g∗g

∗(Q) admits a retraction ρ.

1.2. Remark. We observed that the functors in the theorem do not change the colours,
hence restrict to adjoint functors

oOperadsC

g!
++

g∗

33
cOperadsC

g∗
oo

for some fixed set of colours C. The functor g∗ is moreover natural in C, in the sense
that for a map of colours f : D → C, the diagram of right adjoints (all obvious restriction
functors)

oOperadsC

f∗

��

cOperadsC

f∗

��

g∗
oo

oOperadsD cOperadsD
g∗
oo

commutes, and hence so does the diagram of all the left adjoints f! and g!, respectively.
The same is true with g∗ replaced by g∗.
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2. Quillen model structures for closed operads with fixed colours

In this section and the next we discuss two types of model structures on closed operads,
one of “transfer type” and of “Reedy type”. We begin with the case of a fixed set of
colours, and leave that of varying sets of colours to the next section.

2.1. Proposition. The category cOperadsC of coloured operads with C as set of colours
carries a cofibrantly generated Quillen model structure for which a map Q→ P is a fibra-
tion, respectively a weak equivalence, if and only if for each sequence of colours c1, . . . , cn, c
the map Q(c1, . . . , cn; c)→ P (c1, . . . , cn; c) is a Kan fibration, respectively a weak equiva-
lence, of simplicial sets.

In other words, this model structure is obtained by transfer form the one on simplicial
sets, and we refer to it as the transferred or the projective model structure.

Proof. As the category cOperadsC is itself the category of algebras in simplicial sets
for another coloured operad the proposition is a special case of [3], Theorem 2.1.

The same category cOperadsC also carries another model structure with the same
weak equivalences, more relevant for what follows in this paper. We refer to this model
structure as the one of Reedy type. Its formulation requires a bit of notation. For a
sequence of colours c1, . . . , cn, c in an operad P write

P−(c1, . . . , cn; c) = lim←−
I

P (cI ; c)

where the limit is taken over proper subsets I ⊆ {1, . . . , n}. For two such sets I ⊆ J , the
maps P (cJ ; c) → P (cI ; c) in the system are induced by the substitution of the constants
of the colours cj for j ∈ J − I. The same substitution induces a map

P (c1, . . . , cn; c)→ P−(c1, . . . , cn; c). (8)

We call a closed operad P with C as set of colours Reedy fibrant if each of the maps is
a Kan fibration. More generally, we call a map Q → P between such operads a Reedy
fibration if for each sequence c1, . . . , cn; c of colours, the map

Q(c1, . . . , cn; c)→ Q−(c1, . . . , cn; c)×P−(c1,...,cn;c) P (c1, . . . , cn; c) (9)

is a Kan fibration.

2.2. Proposition. The category cOperadsC carries a cofibrantly generated model struc-
ture, in which the fibrations are the Reedy fibrations and in which a map Q→ P is a weak
equivalence if each Q(c1, . . . , cn; c) → P (c1, . . . , cn; c) is a weak equivalence of simplicial
sets.
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2.3. Remark. Suppose Q→ P is a Reedy fibration. Then for each sequence c1, . . . , cn, c
of colours, an easy induction on I ⊆ {1, . . . , n} shows that each of the maps Q(cI ; c) →
P (cI ; c) is a fibration. In particular, each Reedy fibration is a fibration in the transferred
model structure. Thus, the identity functor on cOperadsC is a right Quillen equivalence
from the Reedy model structure to the transferred one.

The proof of Proposition 2.2 is quite standard, but requires an explicit description of
pushouts of generating trivial cofibrations, and we need some notation for this. First of
all, for a simplicial set X let us write

Cn[X]

for the closed operad with {0, 1, . . . , n} as set of colours, and characterized by the universal
property that for each closed operad P with set C of colours, and for each sequence ci,
i = 0, . . . , n of colours, maps of coloured operads Cn[X] → P over the evident map
ϕ : {0, . . . , n} → C of colours mapping i to ci correspond to maps of simplicial sets
X → P (c1, . . . , cn; c). Concretely, Cn[X] is the closed operad with spaces of operations
Cn[X](i1, . . . , ik; 0) = X for any non-empty subset {i1, . . . , ik} ⊆ {1, . . . , n}, and besides
this only identity operations in Cn[X](i, i) and unique constants in Cn[X](−, i) for i =
0, . . . , n. If I ⊆ {1, . . . , n} we also write CI [X] for the similar operad with colours 0 and
i ∈ I only. (Thus CI [X] ∼= Ck[X] for k = |I|.) If I ⊆ J ⊆ {1, . . . , n} there is an obvious
map of coloured operads

CI [X]→ CJ [X]

and we write
C
∂

n[X] = lim−→
I

CI [X]

where the colimit ranges over proper subsets I ⊆ {1, . . . , n}.
For an arbitrary set C of colours and a sequence c1, . . . , cn, c of elements of C, there

is a corresponding map ϕ : {0, . . . , n} → C as above, and similar restrictions of ϕ also
denoted ϕ : {0} ∪ I → C. We write

Cc1,...,cn,c[X] = ϕ!Cn[X]

CcI ,c[X] = ϕ!CI [X]

C
∂

c1,...,cn,c
[X] = ϕ!C

∂

n[X]

for the induced operads with C as set of colours. (These operads are considerably larger
when the colour c occurs among the ci as well since there are generated composition of
operations.) Then for a map Q → P in cOperadsC , the map (9) has the RLP with
respect to an inclusion X � Y of simplicial sets if and only if Q→ P has the RLP with
respect to

Cc1,...,cn,c[X] ∪
C

∂
c1,...,cn,c[X]

C
∂

c1,...,cn,c
[Y ]→ Cc1,...,cn,c[Y ]. (10)

Thus, these maps of the form (10), where X � Y is a generating (trivial) cofibra-
tions in sSets, act as generating (trivial) cofibrations for the Reedy model structure on
cOperadsC .
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2.4. Lemma. For a trivial cofibration X → Y of simplicial sets, the pushout of (10) along

a map Cc1,...,cn,c[X] ∪
C

∂
c1,...,cn,c[X]

C
∂

c1,...,cn,c
[Y ]→ P in cOperadsC is a weak equivalence.

Proof Proof (of lemma). Let us consider the category of closed operads with C a
set of colours in Sets rather than sSets for the moment. For an inclusion of sets X ⊆ Y ,
consider the pushout

C−→c [X] ∪
C

∂
−→c [X]

C
∂
−→c [Y ] //

f

��

C−→c [Y ]

��

P // Q

(11)

where −→c stands for c1, . . . , cn, c. So Q is obtained from P by adjoining for each element
y ∈ Y an operation y : c1, . . . , cn → c to P , while identifying this operation with the
one already existing in P and given by the map f if y ∈ X, and similarly identifying
all the operations yI : cI → c given by substitution of constants of colours cj for j ∈
{1, . . . , n} − I for proper subsets I of {1, . . . , n}. For colours d1, . . . , dk, d in C, the
operations in Q(d1, . . . , dk; d) can be described explicitly by equivalence classes of planar
labelled trees of the following kind (similar to [1], Appendix):

(a) the edges of the tree are labelled by colours in C,

(b) the leaves of the tree are numbered 1, . . . , k and the leaf with number i has colour
di,

(c) the root is labelled d,

(d) the vertices of the tree are of two possible colours, black and white,

(e) each internal edge of the tree is connected to at least one white vertex,

(f) the white vertices have input leaves labelled c1, . . . , cn in the given planar order, and
output edge c,

(g) above each of the n input edges of each white vertex there is at least one leaf,

(h) the white vertices are labelled by elements of Y ,

(i) the black vertices are labelled by non-identity operations in P , compatible with the
colours labelling the edges.

(See the example given after the proof.)
For such a planar tree T , let Aut0(T ) be the subgroup of (non-planar) automorphisms

of T which respect the labelling, the colours of the vertices and the numbering of the
leaves (as given by (a), (b), (c), (d)) and which do not change the planar order of the
input edges of the white vertices. In other words, as a set Aut0(T ) is a subset of the
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product over black vertices v of symmetric groups ΣIn(v) on the set In(v) of input edges
of v. (As a group, it is rather an iterated semidirect product of these, cf. [1].) Then
Aut0(T ) acts on the labelling of the black vertices via the symmetries of the operad P ,
and we write PT [Y ] for the quotient. This quotient is really a quotient of the form

PT [Y ] =
∏
w

Y ×

(∏
b

P (In(b),Out(b))× L

)/
Aut0(T ) (12)

where L stands for the labelling of edges and numbering of leaves, w runs through the
white vertices and b through the black ones. The map P (d1, . . . , dk; d)→ Q(d1, . . . , dk; d)
in the pushout (11) is a pushout of sets of the form

∐
T PT [X]

f̃
//

��

P (d1, . . . , dk; d)

��∐
T PT [Y ] // Q(d1, . . . , dk; d)

(13)

where the upper map f̃ is given by f : C−→c [X] → P and composition of the operad P
“along” the trees T . (The sum is over (non-planar) isomorphism classes of trees.) Exactly
the same description applies degreewise if X and Y are simplicial sets. But then clearly,
if X � Y is a trivial cofibration then by the form (12) so is the map on the left of (13),
and hence so is the map on the right. This shows that P → Q is a weak equivalence, and
the lemma is proved.

2.5. Example. For n = 2, y ∈ Y and p ∈ P (a, b; c2) the following two trees are related
by an automorphism in Aut0(T ), and represent the same operation in Q(b, a, c1; c)

c

y
c1

3

c2

p
a

2

b

1

∼

c

y
c1

3

c2

p · σ
b

1

a

2

This operation could be denoted (y◦2p)·τ for the appropriate permutation τ (as pictured in
the left hand tree); or by using dummy variables v1, v2, v3 as place holders, y(v3, p(v2, v1)).
The tree
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c

y
c1 c2

p
a

2

b

1

violates condition (f). Indeed, it represents an operation involving the substitution of the

constant of colour c1 into y, i.e. an operation in C
∂
−→c [Y ], so the map f in (11) allows us

to identify this operation with one already in P .

Proof Proof of Proposition 2.2. The proof of this proposition now follows one of
several standard patterns. The cofibrations are by definition the maps having the LLP
with respect to trivial fibrations, and one observes that the “generating (trivial) cofibra-
tions” as described in (10) are indeed (trivial) cofibrations. Referring to the formulation
of the axioms as CM1-5 in [26], axioms CM1-3 are now obvious. The factorization of a
map into a cofibration followed by a trivial fibration (more precisely, by a map having
the RLP with respect to all cofibrations), and the factorization into a trivial cofibration
followed by a fibration, is achieved by the small object argument. (It is here that one uses
the preceding Lemma.) Finally, one half of the lifting axiom CM4 holds by definition of
the cofibrations, while the other half is proved by the standard retract argument.

2.6. Remark. For a map of sets f : D → C, the pullback functor

f ∗ : cOperadsC → cOperadsD

clearly preserves weak equivalences, and one easily checks that is also preserves Reedy
fibrations. Thus, this functor together with its left adjoint forms a Quillen pair.

3. Quillen model structure on closed operads

In this section, we will prove the existence of two Quillen model structures on the cate-
gory cOperads, of all closed simplicial operads without fixing the colours. One of the
structures is of projective or transfer type and one is of Reedy type, as for the case of
fixed colours discussed above.

To begin with, recall the Quillen model structure on the category Operads of all
simplicial coloured operads introduce in [11]. For two such operads Q = (Q,D) and
P = (P,C), a morphism ϕ : Q → P is a fibration in this model structure iff (i) for each
sequence d1, . . . , dn, d of colours of Q the map Q(d1, . . . , dn; d)→ P (ϕd1, . . . , ϕdn;ϕd) is a
fibration of simplicial sets (i.e., ϕ is a “local fibration”); and (ii) the map π0j

∗Q→ π0j
∗P

is a fibration in the naive model structure on discrete categories. Here

j∗ : Operads→ Categories
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is the functor taking a simplicial operad to the simplicial category given by restricting
the operad to its unary operations only, and π0 takes a simplicial category to a discrete
category by taking the set of connected components of each simplicial set of morphisms.
A morphism ϕ : Q → P as above is weak equivalence in this model structure iff each
Q(d1, . . . , dn; d) → P (ϕd1, . . . , ϕdn;ϕd) is a weak equivalence of simplicial sets (i.e., ϕ is
a “local weak equivalence”, or ϕ is “fully faithful”) and π0j

∗Q→ π0j
∗P is an essentially

surjective functor between discrete categories. (One says that ϕ : Q → P is essentially
surjective in this case.)

This model structure is cofibrantly generated: The generating cofibrations are the
maps of the following two types

(C1) ∅ → η

(C2) Cn[X]→ Cn[Y ], for X � Y a generating cofibration of simplicial sets, and n > 0.

Here η is the operad with one colour and an identity operation only. For a simplicial set
X, the operad Cn[X] has colours 0, 1, . . . , n, a space X of operations 1, . . . , n → 0, and
no other operations besides identities. The generating trivial cofibrations are the maps of
the following two types:

(A1) η → H

(A2) Cn[X] → Cn[Y ], for X � Y a generating trivial cofibration of simplicial sets, and
n > 0.

Here H is a countable simplicial category with two objects 0 and 1 which is cofibrant in
the Bergner model structure on simplicial categories [5], and in which all the simplicial
hom-sets are weakly contractible. (Of course, in (C2) and (A2) we can restrict ourselves
to any small set of monomorphisms X � Y which generate the (trivial) cofibrations; for
example, we can ask X and Y to be finite.)

This model structure on the category Operads restricts to one on the category
oOperads of open simplicial operads because the latter category is a slice of the for-
mer. Since categories are open operads, the sets of generating (trivial) cofibrations are
still described by (C1,2) and (A1,2) except that one asks n > 0 in (C2) and (A2). The
description of fibrations and weak equivalences also applies verbatim.

3.1. Proposition. The category cOperads of closed simplicial operads carries a Quillen
model structure, uniquely determined by the requirement that the restriction functor

g∗ : cOperads→ oOperads

preserves and detects fibrations and weak equivalences. (We refer to this model structure
as the transferred of projective one.)
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Proof. As the formulation of the proposition already makes clear, this model structure
is obtained by transfer along the adjunction

g! : oOperads // cOperads : g∗,oo

and we need to check that the conditions for transfer are met. Since g∗ also has a right
adjoint (Section 1, (3)), it suffices to prove that for any generating trivial cofibration
U � V in oOperads (of type (A1) or (A2)), the map

g∗g!U → g∗g!V

is again a trivial cofibration in oOperads. The composite functor g∗g! is the identity on
simplicial categories (i.e., simplicial operads with unary operations only), so this is clear
for maps of type (A1). Let us consider a “corolla” Cn[X] with n > 0 as in the maps of type
(A2). Then g!Cn[X] is the “closed” corolla Cn[X] generated by Cn[X](1, . . . , n; 0) = X,
so has

Cn[X](I; 0) = X

for any non-empty sequence I = (i1, . . . , ik) of distinct numbers 0 ≤ i1, . . . , ik ≤ n. The
only possible compositions in this operad are the substitutions of constants, which give
the identity map Cn[X](I; 0)→ Cn[X](J ; 0) for ∅ 6= J ⊆ I. Restricting back to the open
part we find that

g∗g!Cn[X] =
∨
I

CI [X].

Here CI [X] ∼= Ck[X] is the k-corolla with root edge 0 and I = {i1 < . . . < ik} as set of
leaves, and

∨
is the coproduct in oOperads{0,...,n} ranging over all non-empty subsets

I ⊆ {1, . . . , n}. (So, strictly speaking, we view CI [X] in this coproduct as an operad with
colours {0, . . . , n} by adding identites for all j ∈ {1, . . . , n}−I.) In particular, the functor
g∗g! maps a generating trivial cofibration Cn[X]→ Cn[Y ] to the coproduct∨

I

CI [X]→
∨
I

CI [Y ], (14)

which is again a trivial cofibration. (Notice that, for any fixed set C of colours, the
inclusion OperadsC ↪→ Operads obviously preserves trivial cofibrations.) This shows
that the conditions for transfer are fulfilled, and proves Proposition 3.1.

3.2. Remark. As for any transferred model structure, the model structure of Proposition
3.1 exhibits the adjoint pair g!, g

∗ as a Quillen pair; i.e. g∗ is a right Quillen functor. The
proof above makes it clear that in fact, g∗ is also a left Quillen functor.

For the Reedy model structure, the situation is slightly more subtle. Let us call a map
ϕ : (Q,D) → (P,C) in cOperads a Reedy fibration if it is a fibration in the projective
model structure of Proposition 3.1, and if moreover Q → ϕ∗P is a Reedy fibration in
cOperadsD. In other words, ϕ : Q → P is a Reedy fibration iff it has the RLP with
respect to
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(R1) η → H (as in (A1))

(R2) Cn[X]∪
C

∂
n[X]

C
∂

n[Y ]→ Cn[Y ] for each n ≥ 0 and each generating trivial cofibration

X � Y in sSets (cf. Section 2, (10)).

Recall that the generating trivial cofibrations in the Reedy model structure on cOperadsC
are the maps of the form

f!U � f!V

for U � V a map of type (R2) above, and for any function f : {0, . . . , n} → C of
colours. As a preparation for the proof of Proposition 3.4, we also observe the following
two properties of pushouts in cOperads, both easily verified.

3.3. Lemma.

1. Let U → V be a map in cOperadsC and let f : C → D be a function of sets. Then
the diagram

U //

��

f!(U)

��

V // f!(V )

is a pushout in cOperads.

2. The inclusion cOperadsC → Operads preserves pushouts.

3.4. Proposition. The category cOperads of closed simplicial operads carries a model
structure with the same weak equivalences as the one of Proposition 3.1, and with the
Reedy fibrations just defined as fibrations. (We refer to this model structure as the Reedy
model structure.)

Proof. Define the “Reedy” cofibrations to be the maps having the LLP with respect
to all the trivial Reedy fibrations; i.e. Reedy fibrations which are weak equivalences in
the model structure of Proposition 3.1. Since these are in particular projective trivial
fibrations, any cofibration in the projective model structure is a Reedy cofibration. So
any map having the RLP with respect to the Reedy cofibrations is a weak equivalence.
The existence of the model structure now follows by standard arguments, once we show
that for a generating trivial cofibration U → V of type (R1) and (R2) and for any map
U → P of closed operads, the pushout map P → V ∪U P is a weak equivalence. For maps
of type (R1) this was already verified in the proof of Proposition 3.1. For a map U → V
of type (R2), let f : V → P and also write f : {0, . . . , n} → C for the map on colours.
Then we can decompose the pushout as

U //

��

f!(U)

��

// P

��

V // f!(V ) // V ∪U P.

(15)
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But f!U → f!V is a generating trivial cofibration in cOperadsC (by definition), and these
were verified to be weak equivalences in Section 2, Lemma 2.4. The right hand square in
(15) is a pushout since the rectangle and the left hand square are. So it follows by the
model structure on cOperadsC that P → V ∪U P is a weak equivalence here, hence a
fortiori in cOperads. This completes the proof.

3.5. Remark. One easily checks that the map of type (C1), together with the maps like
those in (R2), but where X � Y is just a generating cofibration, form a set of generating
cofibrations for the Reedy model structure of Proposition 3.4.

3.6. Remark. As any Reedy fibration is a projective fibration, the identity functor is a
right Quillen equivalence from the Reedy model structure on cOperads to the projective
one. For the same reason, the functor g∗ : cOperads → oOperads is still right Quillen
for the Reedy model structure on cOperads. As for the projective model structure, it is
in fact also left Quillen. Indeed, it maps a generating cofibration of the form

Cn[X] ∪
C

∂
n[X]

C
∂

n[Y ]→ Cn[Y ]

to the map ∨
I

CI [Y ] ∪ Cn[X]→
∨
I

CI [Y ] ∪ Cn[Y ]

where I ranges over non-empty proper subsets of {1, . . . , n}. This map is a cofibration in
oOperads, in fact a pushout of Cn[X]� Cn[Y ].

4. Open and closed dendroidal sets

In this section we review the definition of the categories of open and closed dendroidal
sets, and introduce several adjoint pairs of functors between these categories. In the next
sections, we will introduce a model structure on closed dendroidal sets and investigate to
what extent these adjoint pairs are Quillen pairs.

We refer to [24, 17] for a definition of the category Ω of trees indexing the category
dSets of dendroidal sets, i.e. of presheaves on Ω. A tree T in Ω is called open if it has
no stumps (vertices without input edges, nullary vertices), and closed if it has no leaves
(i.e. no external edges other than the root edge).

closed tree arbitrary tree open tree
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Notice that in the terminology of [17], every elementary face S → T of a closed tree
T is an inner face, with the possible exception of the root face. Moreover, a closed tree
has a root face only if its root vertex is unary. We shall write Ωcl for the full subcategory
of Ω consisting of closed trees and Ωo for the one consisting of open trees. Moreover, we
shall denote the inclusion functors by u and o respectively:

Ωcl
u // Ω Ωo.

ooo

The inclusion functor u has a left adjoint cl, taking a tree T to its closure, denoted cl(T )
or T : this is the tree obtained from T by simply putting a stump on top of each leaf.
Moreover, we will write h = cl ◦ o. These functors all fit into a diagram

Ωo
o //

h !!

Ω

cl
��

Ωcl

u

OO h = cl ◦ o (16)

They induce adjoint pairs between the presheaf categories. In general, if f : A → B is a
functor between small categories, restriction along f defines a functor f ∗ which has both
a left adjoint f! and a right adjoint f∗,

SetsA
op

f!
++

f∗

55Sets
Bopf∗

oo (17)

The presheaf categories associated to the small categories in (16) are the categories dSets
of dendroidal sets, odSets of open dendroidal sets (presheaves on Ωo), and cdSets of
closed dendroidal sets (presheaves on Ωcl). Thus we obtain functors

odSets

h!
**

h∗

55cdSets
h∗oo (18)

odSets

o!
**

o∗

66dSets
o∗oo (19)

cdSets

u!
**

u∗

66dSets
u∗oo (20)

dSets

cl!
**

cl∗

66cdSets
cl∗oo (21)
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respectively. Moreover, since cl is left adjoint to u, also

cl∗ = u!, cl∗ = u∗ (22)

while by definition of h as cl ◦ o, also

h! = cl!o!, h∗ = cl∗o∗, h∗ = cl∗o∗. (23)

For a closed tree T , viewed as a representable presheaf, we will also write

h∗(T ) = Int(T ) = lim−→
S→T, S open

S

for the “interior” of T . (Warning: this interior is not just obtained simply by removing
the stumps from T . For examples, for the closed 2-corolla pictured on the left,

b c

a
∪

b c

a
∪

b

a

c

a

its interior is the union of the three representable open dendroidal sets on the right (where
“union” means pushout identifying the edges)).

4.1. Remark. (1) Let O be the dendroidal set defined by

OT =

{
{∗}, if T is open,
∅, otherwise.

(This dendroidal set is well-defined because if S → T is a morphism in Ω and T is
open, then S must be open as well.) Then odSets = dSets/O, and the functors in (19)
correspond to the usual adjoint functors associated with a slice category (o∗ corresponds
to “product with O”, etc.).

(2) The functors cl! and h! behave rather poorly on (normal) monomorphisms, cf. [17].
For example, consider the open tree S,

b

c

d

a

x
S:

and U = ∂x(S) ∪ ∂b(S). Then U � S is a normal monomorphism. The intersection
V = ∂x(S) ∩ ∂b(S) is a disjoint sum of copies of the unit tree η, one for a and one for d.
However, ∂x(S) ∩ ∂b(S) is the representable
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d

a

strictly larger than V . Thus, cl!(U)→ cl!(S) = S is not mono.
(3) Since the inclusions o : Ωo → Ω and u : Ωcl → Ω are fully faithful, so are their

left Kan extensions o! : odSets ↪→ dSets and u! : cdSets ↪→ dSets. Therefore, we often
identify odSets and cdSets with the corresponding full subcategories of dSets, and
delete o! and u! from the notation whenever this does not lead to confusion.

5. Tensor products and normal monomorphisms

Recall that the category dSets of dendroidal sets carries a tensor product. This tensor
product, denoted X ⊗ Y , preserves colimits in each variable separately, so is determined
by what it does on representables. If X = S and Y = T are representables given by trees
S and T , then

S ⊗ T =
⋃

shuffles

A

is a union of representables, namely of all shuffles A ⊆ S ⊗ T . The same is true for an
n-fold tensor product S1 ⊗ . . .⊗ Sn, and there are associativity morphisms

S1 . . .⊗ (Si ⊗ . . .⊗ Sj)⊗ . . .⊗ Sn → S1 ⊗ . . .⊗ Sn.

We refer to [16, 17] for a detailed discussion, including conditions under which these
associativity morphisms are isomorphisms or weak equivalences.

The closure cl!(X) of a dendroidal set X can be defined in terms of this tensor product
as

cl!(X) = X ⊗ η (24)

where η is the closed unit tree.

η:

(A more precise way of writing (24) is as u!cl!X = X ⊗ η, cf. Remark 4.1, (3) above.)
The full subcategories of open and of closed dendroidal sets are both closed under tensor
products, and we will use the same notation X⊗Y for the tensor products on cdSets and
odSets. (So, more formally, u!X⊗u!Y = u!cl!(u!X⊗u!Y ), and we will write cl!(u!X⊗u!Y )
simply as X ⊗ Y . Then u!(X ⊗ Y ) = u!X ⊗ u!Y .) Indeed, these properties are easily
checked for representables and extend to colimits, so hold generally.

It follows that the simplicial enrichment of dendroidal sets (see [16]) extends to open
and to closed dendroidal sets. Writing

i! : sSets ↪→ dSets
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for the inclusion as in [24], one notices that i factors through odSets ↪→ dSets, and one
can define the simplicial tensor on cdSets more formally as

M ⊗X = cl!i!(M)⊗X

forM a simplicial set andX an object of cdSets. Then the adjoint functors u! : cdSets ↪→
dSets and cl! : dSets→ cdSets preserve the tensor up to canonical isomorphism:

u!(M ⊗X) = M ⊗ u!X and cl!(M ⊗ Y ) = M ⊗ cl!(Y ),

for M a simplicial set, X in cdSets and Y in dSets.
Next, we turn to the notion of a normal monomorphism. Recall that a monomorphism

X � Y of dendroidal sets is called normal if for each tree T , the group Aut(T ) acts freely
on the complement of XT inside YT . The class of normal monomorphisms is saturated,
and generated by boundary inclusions ∂T � T of representables. As a consequence, every
X has a “normalization” X̃, i.e. a factorization of ∅ → X into a normal mono ∅ → X̃
(i.e. X̃ is a normal object) and a map X̃ → X having the RLP with respect to all normal
monomorphisms.

All this extends to open dendroidal sets in the obvious way, because if X is open, then
for any map Y → X, the object Y must be open as well. So X̃ is open if X is, and ∂T is
open if T is.

All this also extends to closed dendroidal sets, but some care is needed to distinguish
the “closed boundary” of a closed tree from its boundary ∂T , so we will introduce a
separate notation.

5.1. Definition. For a closed tree T , its closed boundary is the largest proper subobject
of T in the category cdSets. It is the union of all the inner faces of T , together with the
root face if the root face exists. It is denoted by

∂cl(T ) ⊆ T.

5.2. Example. For the tree T pictured below

a

b c

r

T :



CLOSED DENDROIDAL SETS AND UNITAL OPERADS 137

the closed boundary ∂clT is the union of the root face on the left and the three inner faces
on the right:

b c

a

∂rT

b c

r

∂aT

c

a

r

∂bT

b

a

r

∂cT

The boundary ∂T of T as a dendroidal set is much larger, and also contains

a

b c

r

and a

b c

r

In other words, for a closed tree T , the inclusion ∂clT � ∂T is usually a proper monomor-
phism, which we could also write as

u!(∂clT )� ∂(u!T ).

Note also that the closure of the boundary is larger than the closed boundary:

∂cl(T )� cl!(∂u!T )
∼−→ T.

With these closed boundaries in place, one can define a monomorphism X → Y
between closed dendroidal sets to be normal in one of the following equivalent ways:

1. u!X → u!Y is a normal monomorphism in dSets;

2. For every closed tree T , the group Aut(T ) acts freely on the complement of XT ↪→
YT ;

3. X � Y lies in the saturation of the set of closed boundary inclusions ∂cl(T )� T ,
for all objects T in Ωcl.

The following nice property is somewhat in contrast with the case of dSets, cf. [16].

5.3. Lemma. Let U � X and V � Y be normal monomorphisms of closed dendroidal
sets. Then the pushout-product map

U ⊗ Y ∪X ⊗ V � X ⊗ Y

is again a normal monomorphism. (The union sign ∪ denotes the pushout under U ⊗V .)

Proof. See [17], 4.26(ii).
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6. Via morphisms

With an eye towards the next section, we recall the “operadic” model structure [9] on
dSets, for which the cofibrations are the normal monomorphisms and the fibrant objects
are the dendroidal inner Kan complexes, also referred to as (dendroidal)∞-operads. The
fibrations between fibrant objects in this model structure are the maps Y → X having
the RLP with respect to two kinds of morphisms: the inclusions

ΛeT � T

of inner horns, for any tree T and any inner edge e in T ; and the two inclusions

η = i!(∆[0])→ i!(J)

where J is the nerve of the groupoid 0↔ 1.

6.1. Remark. If P is any operad in Sets, its nerve N(P ) is a fibrant object in this
model structure. However, even if P is unital, P need not have the RLP with respect
to “closed inner horns”, i.e. inclusions of the form Λe

cl(T ) � T where T is a closed tree
and Λe

cl(T ) ⊆ ∂cl(T ) is the union of all the closed faces except the one contracting e. For
example, for T a closed 2-corolla as pictured below, Λe

cl(T ) just encodes a single unary
operation:

d e

r
T :

e

r
Λe
cl(T ):

Thus, we need to adapt the definition of “inner horn” in the context of closed den-
droidal sets:

6.2. Definition.

(a) An edge e in a closed tree T is called very inner edge if it is an inner edge which is
not connected to a stump.

(b) The very inner horn Λe
clT ⊆ T associated to a very inner edge e in a closed tree T

is the union of all the closed faces (so ΛeT ⊆ ∂clT ) except the one contracting e.

(c) The saturation of the set of very inner horn inclusions, for all closed trees T , is
called the class of very inner anodyne (“via”) morphisms.

Note that any via morphism is in particular a normal monomorphism. The following
proposition shows that these via morphisms behave well with respect to tensor products
of closed dendroidal sets, a fact which simplifies many things in comparison with the case
of general dendroidal sets.
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6.3. Proposition. Let U � X and V � Y be normal monomorphisms between closed
dendroidal sets. If at least one of these is a via morphism, then so is the pushout-product
map

U ⊗ Y ∪X ⊗ V � X ⊗ Y.

Before embarking on the proof of the proposition, we observe the following two lemmas.

6.4. Lemma. Let E be a non-empty set of very inner edges in a closed tree T , and let
ΛE
cl(T ) � ∂cl(T ) be the union of all the closed faces except the ones contracting an edge

in E. Then ΛE
cl(T )� T is a via morphism.

Proof. The case where E has only one element holds by definition. And a larger such
set can be written as E ∪ {d} where E is non-empty. Then the diagram

Λ
E∪{d}
cl (T ) // // ΛE

cl(T ) // T

ΛE
cl(∂d(T ))

OO

// // ∂d(T )

OO

shows that Λ
E∪{d}
cl (T ) → T is again a via morphism, as the square is a pullback and a

pushout, while the lower morphism is via by induction.

6.5. Lemma. Let E ⊂ T be a non-empty set of very inner edges in a closed tree T , and
let D be a set of inner edges in T , disjoint from E and such that no edge d ∈ D is
immediately above any e ∈ E (or more generally, such that each e ∈ E is still very inner
in ∂d1 . . . ∂dnT for any d1, . . . , dn in D). Then ΛE∪D

cl (T )� T is a via morphism.

Proof. We proceed by induction on the size of D. For D = ∅ this is the previous lemma.
If D = D′ ∪ {d} and the lemma has been proved for D′ then the diagram,

ΛE∪D
cl (T ) // // ΛE∪D′

cl (T ) // // T

ΛE∪D′
cl (∂d(T ))

OO

OO

// // ∂d(T )
OO

OO

in which the square is a pullback as well as a pushout, shows that ΛE∪D
cl (T )� T is via.

Let us now turn to the proof of the proposition.

Proof Proof (of Proposition 6.3). The proof is a relatively straightforward modi-
fication of the one of [17], 6.2.4. Observe first that the pushout-product map is a normal
monomorphism by Lemma 5.3. Next, a standard induction along saturated classes re-
duces the problem to the case of two closed boundary inclusions of representables. So let
us suppose that U � X and V � Y are of the form

Λe
cl(S)� S and ∂cl(T )� T
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respectively, for closed trees S and T and a very inner edge e in S. Now write S ⊗ T as
a union of shuffles Ri ⊆ S ⊗ T , and order these as

R1, . . . , RN

by a linear order which extends the natural partial order (in which “copies of S on top
of T” is the smallest shuffle and “copies of T on top of S” is the largest). This defines a
filtration of S ⊗ T as

A0 ⊆ A1 ⊆ A2 ⊆ . . . ⊆ AN = S ⊗ T,

where
A0 = Λe

cl(S)⊗ T ∪ S ⊗ ∂cl(T ),

and
Ai = Ai−1 ∪Ri.

One then shows that each Ai−1 � Ai is a via map. To this end, consider the shuffle
R = Ri. It has edges (e, t) for the given edge e in S and various edges t in T . Call the
highest occurrences of these edges special. These are edges with an S-vertex immediately
above it in the shuffle R:

(a, t) (b, t) (c, t)

(e, t)

Let Σ = ΣR be the set of these special edges in R. Notice that these are all very inner
in R as e is very inner in S. For a subset H of inner edges disjoint from Σ, let R[H] be
the face obtained by contracting all the inner edges in R except the ones in H ∪ Σ. We
then adjoin these R[H] to Ai−1 in some order extending the inclusion order of the H’s. So
consider a specific R[H], and suppose all R[H′] for strictly smaller H ′ ⊆ H have already
been adjoined, yielding an intermediate closed dendroidal set Ai−1 ⊆ B ⊆ Ai. We wish
to adjoin R[H] to B. If R[H] ⊆ B already, then there is nothing to do. This holds in
particular if none of the special edges (e, t) in R[H] is very inner in R[H] (because then the
S-colours above e have disappeared in R[H], so R[H] ⊆ A0).

Now let us consider closed faces of R[H]. The root face of R[H] (if it exists) must miss
the root edge of S or that of T , hence must be contained in A0. (Note that R[H] may have a
root face while S and T do not.) Any non-special inner face of R[H] is contained in R[H′] for
a smaller H ′, hence in B. If (e, t) is a special edge in R[H], on the other hand, then the face
∂e⊗tR

[H] cannot belong to an earlier R[H′]. And it cannot belong to an earlier shuffle Rj

(j < i) unless R[H] itself already does (in which case we are back in the earlier case where
R[H] ⊂ B already). Similarly, if ∂(e,t)(R

[H]) would be contained in Λe
cl(S)⊗ T ⊆ A0, then

so would R[H]. The only remaining case in which ∂(e,t)(R
[H]) is contained in B is where

the edge t has disappeared entirely, so that ∂(e,t)(R
[H]) ⊆ S ⊗ ∂cl(T ) ⊆ A0. This cannot

happen if (e, t) is very inner in R[H] however, because then t still occurs immediately
above (in (e, t)).
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The conclusion is that B∩R[H] contains the root face of R[H] and all inner faces except
the ones contracting a very inner edge (e, t), as well as some of those contracting just an
inner edge (e, t′). The same applies to intersection of these (as they involve different t’s).
It follows by Lemma 6.5 that B ∩ R[H] � R[H] is a via morphism, and hence so is its
pushout B� B ∪R[H].

This completes the induction step, and proves the proposition.

It will be necessary to formulate the precise relation between what are called “Segal
cores” in [10, 16] and “spines” in [17], and via morphisms. The treatment is to a large
extent analogous to the one in these two references, but does not seem to be a formal
consequence of either (and, in fact, seems a bit easier for closed trees).

If T is a closed tree, each vertex v in T defines a map

cv : Cv � T

from a closed corolla Cv to T , which maps the edges of Cv to the edges in T attached
to v in a bijective fashion. (This map Cv is a composition of inner faces contracting
all the edges not attached to v and not on the path from v down to the root, followed
by a (possibly empty) composition of root faces.) The intersection of two such corollas
Cv � T and Cw � T in T is either empty, or if there is an edge connecting v and w, is
the map η → T corresponding to this edge e. The closed spine

cSpine(T )� T

is by definition the union of all these corollas Cv → T ranging over all vertices v in T .
(If T 6= η, it is enough to consider inner vertices in T only, since for a stump v in T
the corolla Cv

∼= η is contained in the corolla Cw for the vertex w immediately below
v.) Thus, if T is itself a corolla, then cSpine(T ) → T is an isomorphism. The following
theorem is analogous to [10], Propositions 2.4 and 2.5.

6.6. Theorem.

(a) Let T be a closed tree. Then cSpine(T )→ T is a via morphism.

(b) The class of via morphisms is the smallest saturated class containing all the closed
spine inclusions, and which moreover has the property that if a composition A �
B � C of normal monomorphisms as well as A � B belong to the class then so
does B� C.

Proof. Let T be a tree with at least one very inner edge, and let E be the set of all very
inner edges in T . We will show that

cSpine(T )→ ΛE(T ) (25)

is a via morphism, and that it belongs to the saturation of the class of closed spine
inclusions. Since ΛET → T is a via morphism (cf. Lemma 6.4), this proves that the
composition cSpine(T )→ T is a via morphism as well, thus proving Part (a).
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And by applying the cancellation condition in Part (b) of the theorem to the com-
position cSpine(T ) → ΛE(T ) → T , it proves that ΛET → T belongs to the class. This
holds for all closed trees, in particular for all faces of T . Now write E = {e1, . . . , en} and
Ei = {e1, . . . , ei} for i = 1, . . . , n. Then the pushout in Lemma 6.4 shows that each of the
morphisms ΛEi+1(T )→ ΛEi(T ) belongs to the class (by induction on the size of the set of
very inner edges in face of T ). By the cancellation property, ΛE1(T )→ T belongs to the
class, proving Part (b).

Consider a set A of edges in T , disjoint from E. Write ∂aT for the face corresponding
to an edge a ∈ A. (If a is the root edge, we use this notation only if the root vertex is
unary.) Also write

∂AT =
⋃
a∈A

∂aT.

It now suffices to show for each such set A that

cSpine(T )� cSpine(T ) ∪ ∂A(T ) (26)

belongs to the saturation of the closed spine inclusions and is a via morphism. Indeed, if
A is maximal then cSpine(T ) ⊆ ∂A(T ) = ΛE(T ), so we conclude that cSpine(T )� ΛE(T )
belongs to this saturation and is a via morphism, as was to be shown.

We argue by induction on T and A. The minimal case is where T = [2], a tree with
just one very inner edge:

b

e

a
v

u
T :

Then cSpine(T ) → ΛE(T ) is an isomorphism, as Cu = ∂aT and Cv = ∂bT . For a larger
tree T , suppose we have shown that (26) is a via morphism for all smaller trees and
smaller sets A, and write A = A′ ∪ {a} for a 6∈ A′. Then there is a pushout

cSpine(T ) ∪ ∂A′(T ) // // cSpine(T ) ∪ ∂A(T )

(cSpine(T ) ∪ ∂A′(T )) ∩ ∂a(T )

OO

// // ∂a(T )

OO

and one easily checks that
∂A′(T ) ∩ ∂aT = ∂A′∂aT

and also
cSpine(T ) ∩ ∂a(T ) = cSpine(∂aT )

(remember that a 6∈ E, so a does not connect two inner vertices). It follows by induction
that the lower map in the diagram belongs to the class, and is via. But then the same is
true for the upper one, and hence for the composition

cSpine(T )� cSpine(T ) ∪ ∂A′(T )� cSpine(T ) ∪ ∂A(T ),
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which is the map (26). This completes the induction, and the proof of the theorem.

7. Unital ∞-operads

Recall from [24, 17] the inclusion Ω→ Operads, with an induced adjunction

τ : dSets //OperadsSets : Noo

between dendroidal sets and operads in Sets, i.e. discrete operads. For such an operad
P , the dendroidal set N(P ) is called its dendroidal nerve. This adjunction restricts to an
adjunction, again denoted

τ : cdSets // cOperadsSets : Noo

between closed dendroidal sets and discrete closed (or unital) operads. For a general
operad P , its nerve N(P ) is an ∞-operad in the sense of having the RLP with respect
to all inner horn inclusions between arbitrary trees. For a unital operad P , the closed
dendroidal set N(P ) similarly has the RLP with respect to all very horn inclusions of
closed trees. (It clearly need not have the RLP with respect to all inner horn inclusions
of closed trees. For example, the inner horn Λ1(C2) of the closed 2-corolla

1 2

0

is a copy of the closed 1-simplex

1

0

and the RLP of N(P ) against Λ1(C2)� C2 would require any unary operation to extend
to a binary one in P .)

7.1. Definition. A closed dendroidal set E is called a unital ∞-operad if it has the
RLP with respect to very inner horn inclusions ΛeT � T , for every very inner edge e in
a closed tree T ; or equivalently, if it has the RLP with respect to every via morphism.

Thus, for every discrete unital operad P its “closed” nerve N(P ) is such a unital ∞-
operad. Later, we will see that a suitable homotopy coherent nerve of a unital simplicial
operad is again a unital ∞-operad.

We will prove in the next section that these unital∞-operads are the fibrant objects in
a model category structure on closed dendroidal sets, cf. Theorem 8.1 The main technical
result that we need for this is the following theorem, Theorem 7.2 below. To state this
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theorem, let us denote for two closed dendroidal sets X and Y the simplicial hom-set by
hom(X, Y ). Thus, for any n ≥ 0,

hom(X, Y )n = HomcdSets(∆[n]⊗X, Y ).

(Recall that in terms of the tensor product on the category cdSets, ∆[n]⊗X is defined
as cl!i!(∆[n])⊗X, cf. Section 5) With this notation, Proposition 6.3 has as a consequence
for closed dendroidal sets A and E that if A is normal and E is a unital ∞-operad, then
hom(A,E) is an ∞-category. More generally, we have the following result.

7.2. Theorem. Let E be a unital ∞-operad. Then for every normal monomorphism
A� B in cdSets, the restriction map

hom(B,E)→ hom(A,E)

is a fibration between ∞-categories.

Proof. For a simplex ∆[n], any inner face ∂i : ∆[n − 1] � ∆[n] (i.e., 0 < i < n)
becomes a very inner face upon closure. So for any inner horn Λi[n] � ∆[n], the map
cl!(Λ

i[n]) � cl!(∆[n]) is a via morphism. It then follows from Proposition 6.3 that
hom(B,E) and hom(A,E) are ∞-categories, and that the map hom(B,E)→ hom(A,E)
is an inner fibration. It thus remains to be shown that this map has the RLP with respect
to the inclusion {1}� J of one of the endpoints into the “interval” J , the nerve of the
groupoid 0↔ 1 viewed as a dendroidal set. In other words, using an induction on normal
monomorphisms, we have to show that for any closed tree S, every unital ∞-operad E
has the RLP with respect to the map

{1} ⊗ S ∪ J ⊗ ∂cl(S)� J ⊗ S.

By basic properties of maps into∞-categories ([20], Corollary 1.6 and [21], Section 1.2.5)
it in fact suffices to prove that every unital ∞-operad E has the extension property with
respect to

{1} ⊗ S ∪∆[1]⊗ ∂cl(S)� ∆[1]⊗ S (27)

for maps which send each copy ∆[1]⊗s of ∆[1] (for s an edge in S) to an equivalence in E.
Notice that for S = η this map (27) is a retract, so there is nothing to prove. For larger
S, this extension property follows from the following two lemmas, which then complete
the proof of the theorem.

The first of these two lemmas is an analogue of [9, 17] although the proof for closed
trees is a bit easier:

7.3. Lemma. Let S be a closed tree with at least two vertices. Then the inclusion (27),

{1} ⊗ S ∪∆[1]⊗ ∂cl(S)� ∆[1]⊗ S.
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is a composition of a finite number of via morphisms followed by the pushout of a unary
root horn into a closed tree with at least three vertices (with unary root vertex corresponding
to the vertex of ∆[1]⊗ r for the root edge r in S).

(The tree with at least three vertices occurring in the lemma is the tree obtained by
grafting S on top of ∆[1].)

Proof. Let A = {1} ⊗ S ∪∆[1] ⊗ ∂cl(S), the domain of the map in the lemma. Let us
also write ∆[1] ⊗ S as a union of shuffles R1, . . . , Rn, where the first shuffle is “copies of
∆[1] on top of S” and the last one is “a copy of S on top of ∆[1]”. For example, if S is
the closed 2-corolla as pictured on the left, there are only two shuffles as pictured on the
right:

a b

r

1a 1b

0a 0b

1r

0a 0b

0r

1r

Consider the filtration of ∆[1]⊗ S,

A = B0 ⊆ B1 ⊆ . . . ⊆ Bn = ∆[1]⊗ S,

defined by Bi = A∪R1∪ . . .∪Ri. Then one easily sees that the last inclusion Bn−1 ↪→ Bn

is a pushout of a unary root horn. Indeed, for the last shuffle Rn, the face contracting
the edge (0, r) just above the unary root belongs to Rn−1, and the higher faces belong to
A, while the face chopping off the root vertex and root edge (1, r) is the only one that is
missing.

We claim that for each i < n, the inclusion Bi−1 ↪→ Bi is a via morphism. To see this,
consider the shuffle R = Ri. Now consider “special” faces F ⊆ R obtained by successively
contracting edges with colour (0, a), for an edge in S. These special faces are ordered by
inclusion, and we can adjoin them successively to Bi−1. Suppose for a given such special
face F , all smaller special faces have already been adjoined, while F is not contained in
A. Write C for the union of Bi−1 and these smaller special faces. Then each face of F
contracting an edge (0, a) belongs to C. There must be at least one such face, because
otherwise F would already be contained in A. This implies in particular that at least one
of the highest occurrences of an edge coloured (1, a) for some a is very inner. Contracting
any such highest very inner edge (1, a) results in a face of F which cannot belong to A,
nor to an earlier shuffle. On the other hand, contracting an edge (1, a) without an edge
(0, a) above it in F yields a face belonging to A. This shows that F ∩ C � F is a via
morphism (cf. Lemma 6.5), and hence so is its pushout C → C ∪ F . This completes the
induction step, and the proof of the lemma.

7.4. Lemma. Let T be a close tree with at least three vertices, and a unary root vertex.
Then the inclusion Λr

cl(T )� T of the root horn has the extension property for maps into
a unital ∞-operad E which sends the unary root vertex to an equivalence.
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Proof. The proof is completely analogous to the one in [9] or [17], and we only give
a sketch. (The main differences lie in distinguishing the closed boundary from the full
dendroidal boundary, and the observation to be made below that joins of trees give very
anodyne maps.)

For a tree T in the lemma, one can write T as the join T = F ? ∆[1], where F is the
forest obtained by chopping off the lower two vertices in T :

T : 0

1

r F :

One next translates an extension problem as in the diagram on the left into one as on
the right:

ΛrT

��

// E

T

<< {1}

��

// F/E

��

∆[1] //

99

∂cl(F )/E

where the slice denotes the adjoint to the join, as in [9], and ∂cl(F ) is the closed forest
boundary of F . One next observes that F/E → ∂cl(F )/E is a left fibration. Indeed, for
the inclusion ∂cl(F )� F into a non-empty forest, the map

F ? Λi[n] ∪ ∂cl(F ) ?∆[n]� F ?∆[n]

is a via morphism for 0 < i < n (cf. [17], Lemma 6.4.3). One then finishes the proof
exactly as in loc. cit., observing that ∆[1]→ ∂cl(F )/E is an equivalence in ∂cl(F )/E and
using that left fibrations have the RLP with respect to such equivalences.

8. The unital operadic model structure for closed dendroidal sets

In this section we present a model structure on the category of cdSets of closed dendroidal
sets, suitable for a comparison with unital operads in Section 12 below. The following
two theorems summarize the main aspects of this model structure.

8.1. Theorem. The category cdSets of closed dendroidal sets carries a Quillen model
structure in which the cofibrations are the normal monomorphism while the fibrant objects
are precisely the unital ∞-operads.

We shall refer to this model structure as the unital operadic model structure on cdSets.
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Proof. The proof of the model structure follows the same pattern as the one in [17]. The
cofibrations are generated by the closed boundary inclusions ∂cl(T ) � T , for all closed
trees T . The small object argument then gives a factorization of any map X → Y into
a cofibration X → Z followed by a map Z → Y having the RLP with respect to all the
cofibrations. In particular, for X = ∅, this yields a normalization Ỹ � Y of any object Y .
One then defines a map f : A→ B to be a weak equivalence iff for some map f̃ between
normalizations which covers f , as in

Ã

����

f̃
// B̃

����

A
f
// B

the induced morphism hom(B̃, E) → hom(Ã, E) is a weak equivalence of ∞-categories,
for any unital operad E. This definition is independent of the choice of the normalization
f̃ : Ã→ B̃ of f : A→ B.

Next, one shows that a map Y → X having the RLP with respect to all the normal
monomorphisms (i.e., all the cofibrations) is a weak equivalence. Indeed, for a normaliza-
tion X̃ → X the pullback Ỹ = X̃ ×X Y → Y is a normalization of Y and Ỹ → X̃ still
has the RLP with respect to all normal monomorphisms. It follows that this map has a
section, making X̃ a J-deformation retract of Ỹ . This makes hom(X̃, E) → hom(Ỹ, E)
a deformation retraction for any unital ∞-operad E, proving that Y → X is a weak
equivalence.

The next thing to prove is that any map can be factored as a trivial cofibration
followed by a map having the RLP with respect to all the trivial cofibrations. For this,
one again uses the small object argument and shows first that the trivial cofibrations are
generated by trivial cofibration between countable (and normal) objects, exactly as in [16]
and [23], and that they are stable under pushout. The latter follows readily from the fact
that a pushout square can be covered by another pushout square between normalizations
(exactly as in [16], Lemma 3.7.13), hence maps to a pullback suqare of∞-categories after
applying hom(−, E) for a unital ∞-operad E.

Finally, one defines the fibrations as the maps having the RLP with respect to all
trivial cofibrations. The proof can then be completed in the standard way, using the
retract argument for the verification of one of the lifting axioms.

It will be useful to explicitly state some properties of this model structure:

8.2. Theorem. The unital operadic model structure on cdSets has the following prop-
erties:

(a) A map A→ B between normal objects is a weak equivalence iff for every unital ∞-
operad E, the map hom(B,E)→ hom(A,E) is a weak equivalence of ∞-categories.

(b) The model structure is cofibrantly generated.
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(c) The model structure is left proper.

(d) A morphism Y → X between unital ∞-operads is a fibration iff it has the RLP with
respect to all via morphisms as well as with respect to the two inclusions η → cl!(J)
(where J is the nerve of the gruopoid 0↔ 1 viewed as a dendroidal set).

(e) The pushout-product property holds: if U � X and V � Y are cofibrations the so
is U ⊗ Y ∪X ⊗ V � X ⊗ Y ; and in addition, the latter is a trivial cofibration if at
least one of U � X or V � Y is.

Proof. The additional properties (a)-(d) are immediate from the way the model structure
was established, again exactly as in [16, 23]. Part (e) now follows form these properties
together with Proposition 6.3. Indeed, to prove that U ⊗Y ∪X ⊗V � X ⊗Y is a trivial
cofibration if, say, U � X is, we use the general fact that a map is a trivial cofibration
iff it has the RLP with respect to fibration between fibrant objects. Moreover, using an
induction on V � Y , it suffices to consider the case where V → Y is a closed boundary
inclusion, of the form ∂clT � T for a closed tree T . It then suffices to show that if E → B
is a fibration between fibrant objects, so is

Hom(T,E)→ Hom(∂clT,E)×Hom(∂clT,B) Hom(T,B)

(where Hom is the internal Hom adjoint to ⊗). Using Part (d) and the Hom-tensor
adjunction again, it then suffices to show that

U ⊗ T ∪X ⊗ ∂clT � X ⊗ T

is a trivial cofibration in the two cases where (i) U � X is a very inner horn inclusion of
the form Λd

clS � S, say; or (ii) U � X is of the form η → cl!(J). Case (i) follows form
Proposition 6.3. Case (ii) follows since η⊗T ∪ cl!(J)⊗ ∂clT � cl!(J)⊗T has been shown
to be a trivial cofibration in Section 7.

8.3. Remark. One important advantage of the category of closed dendroidal sets over
that of all dendroidal sets is that for all practical purposes, the former behaves like a
monoidal model category, the only defect being that the tensor product is only associative
up to a trivial cofibration. More precisely, if X, Y and Z are normal objects, then the
canonical map (cf. [16], Section 6.3)

(X ⊗ Y )⊗ Z → X ⊗ Y ⊗ Z

is a trivial cofibration. Indeed, by a standard induction on cofibrant objects, one can
reduce the problem to the case where X, Y and Z are representable. In other words, we
claim that for closed trees R, S and T , the map (R ⊗ S) ⊗ T � R ⊗ S ⊗ T is a trivial
cofibration. (Recall from [16] that R⊗ S ⊗ T is the union of all threefold shuffles of R, S
and T , while (R ⊗ S) ⊗ T is the union over the smaller set of shuffles given by shuffling
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T with a single shuffle of R ⊗ S at the time; cf also the example below.) Write R′ � R
for the closed spine of R and similarly for S and T . Then there is a diagram

(R′ ⊗ S ′)⊗ T ′ // //

��

��

R′ ⊗ S ′ ⊗ T ′
��

��

(R⊗ S)⊗ T // // R⊗ S ⊗ T

where the vertical maps are via morphisms, by Proposition 6.3 and Theorem 6.6. Thus, to
prove the claim, it suffices to prove that the upper map is a trivial cofibration. Using the
fact that all objects involved in this map are unions of closed corollas, this now reduces
the problem to showing that for three closed corollas Ck, C l and Cm, the map

(Ck ⊗ C l)⊗ Cm� Ck ⊗ C l ⊗ Cm

is a trivial cofibration. In fact, it is a via morphism. Let us prove this for k = l = 1 and
m = 2. It will be clear that the argument is exactly the same (but notationally more
involved) for general k, l and m. So, write the three corollas as

-
0

1

C1

a

b

C1

y z

x

C2

Then C1 ⊗ C1 is a union of two shuffles

0a

1a

1b

0a

0b

1b

So (C1 ⊗ C1)⊗ C2 is the union of the following two:

- -

0ay 0az

1ay 1az

1by 1bz

1bx

A:

0ay 0az

0by 0bz

1by 1bz

1bx

B:
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together with the shuffles obtained by percolating through the binary vertex:

-

-

-

-

A′ A′′ B′ B′′

In C1 ⊗ C1 ⊗ C2, there are two more shuffles which mix the two parts in C1 ⊗ C2:

- -

0ay 0az

0by 1az

1by 1bz

1bx

D:

0ay 0az

1ay 0bz

1by 1bz

1bx

E:

So we need to see how to adjoin these. More precisely,

C1 ⊗ C1 ⊗ C2 = ((C1 ⊗ C1)⊗ C2) ∪D ∪ E.

For the shuffle D, the upper very inner faces (contracting 0by, respectively 1az) are
contained in A∩B hence in (C1 ⊗C1)⊗C2. But neither the very inner face contracting
1by nor the one contracting 1bz (nor their intersection) is. And similarly, neither ∂0ay nor
∂0az nor their intersection is. By Lemma 6.5 we see that

(C1 ⊗ C1)⊗ C2 ∩D� D

is a via morphism, and hence so is its pushout (C1 ⊗C1)⊗C2 → ((C1 ⊗C1)⊗C2) ∪D.
In the same way, one shows that (((C1 ⊗ C1) ⊗ C2) ∪ D) ∩ E � E is a via morphism,
and hence so is its pushout ((C1 ⊗ C1)⊗ C2) ∪D → C1 ⊗ C1 ⊗ C2.

8.4. Corollary. The tensor product on cdSets induces a symmetric monoidal structure
on the homotopy category associated to the unital operadic model structure of Theorem
8.1.

This corollary is one of the main differences between this model structure on cdSets
and the operadic one on dSets.
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9. Some Quillen functors

Recall that we have introduced the following functors between small categories:

Ωo
o //

h !!

Ω

cl
��

Ωcl
u // Ω

h = cl ◦ o, cl a u

These induce restriction functors between presheaf categories

odSets dSetso∗oo

cdSets
h∗

ff

cl∗

OO

dSetsu∗oo

which each have a left adjoint (−)! and a right adjoint (−)∗. Moreover, these categories
carry model structures: the operadic one on dSets which induces a model structure on
its slice odSets = dSets/O, and the unital operadic one on cdSets discussed in the
previous section. In this section, we will investigate to what extent these different adjoint
pairs form Quillen pairs. For completeness, we begin by stating a trivial observation.

9.1. Proposition. The adjoint pair o! : odSets // dSets : o∗oo is a Quillen pair.

Proof. This is simply a special case of the well-known general property of an adjunction
of the form E/X //

Eoo associated to an arbitrary object X in a model category E.

9.2. Remark. The functor o∗ has a right adjoint, and preserves normal monomorphisms,
i.e. cofibrations. Nonetheless, it is not a left Quillen functor. For example, for the tree
T pictured below, o!o

∗ maps the inner horn Λb(T ) � T to the embedding of the tree
denoted T ◦ below into the union denoted A, as in

b c

a

T

b c

a

T ◦

b c

a

A

∪
c

a

where ∪ denotes the pushout over a and c. This embedding T ◦ � A cannot be a trivial
cofibration, because that would make T ◦ a retract of A, which is clearly impossible.

9.3. Remark. The functor cl! does not preserve (normal) monomorphisms as we have
seen, so cannot be a left Quillen functor.

Next we turn to the adjoint functors induced by u : Ωcl → Ω.

9.4. Proposition. The adjoint pair u! : cdSets // dSets : u∗oo is a Quillen pair.
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Proof. If T is a closed tree, its closed boundary ∂clT → T consists of the union of
inner faces of T , together with the root face in case the root vertex of T is unary. Since
the intersection of any two such faces is again a closed tree, it follows that ∂cl(T ) → T
is a monomorphism in dSets, necessarily normal since T is normal. In other words,
u!(∂clT ) → u!(T ) is a normal monomorphism. Since these closed boundary inclusions
generate the cofibrations in cdSets, this shows that u! preserves cofibrations.

To verify that u! preserves trivial cofibrations as well, it suffices to check that u∗

preserves fibrations between fibrant objects. Thus, by Theorem 8.2 (d), it suffices to
check that u! sends the morphisms of the following two kinds to weak equivalences: the
inclusion η = cl!{0} � cl!(J) of one of its endpoints into the “closed interval”, and all
inclusions of very inner horns ΛeT → T into closed trees T .

For the first type of inclusion, observe that {0} → J is a trivial cofibration in dSets,
and hence so is its pushout

{0} = u!cl!{0}� J ∪ u!cl!{0} = J ∪ {0}.

We claim that J∪{0}� u!cl!(J) =: J is inner anodyne. Observe that the non-degenerate
dendrices of J are all of the form Ln := u!cl![n]:

i0

i1

...

in

Ln:

where i0, . . . , in is an alternating sequence of zeroes and ones, and hence all these are faces
of ones of the form where i0 = 0 and we use Ln only for the one with i0 from now on. We
can adjoin these dendrices to J ∪ {0} = J ∪ L0 by induction. For n = 0, the dendrex is
already there. For n = 1, the dendrex L1 has its top face in J and its root face is L0 = {0},
so it misses only its inner face. Thus (J ∪ L0) ∩ L1 = Λ0L1 � L1 is inner anodyne, and
hence so is J ∪ L0 → J ∪ L0 ∪ L1 = J ∪ L1. Similarly, (J ∪ Ln−1) ∩ Ln = Λ0Ln � Ln
only misses its top inner face. Indeed, the top outer face of Ln belongs to J and the other
inner faces are faces of Ln−1. Thus J ∪ Ln−1 → J ∪ Ln is again inner anodyne. Taking
the colimit, we conclude that J ∪ L0 �

⋃
n Ln = J is inner anodyne.

Next, let us turn to the inclusions of the form u!(Λ
e
clT ) � u!(T ) for a closed tree

T ∈ Ωcl and a very inner edge e in T . Notice that u!T is simply T as an object of Ω, or
as a representable object in dSets, while

u!(Λ
e
clT )� ΛeT � T.

The first inclusion is not an isomorphism, because the non-closed faces chopping off stumps
from T belong to ΛeT but not to u!(Λ

e
clT ), the latter being the union of closed trees. The
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fact that u!(Λ
e
clT )� T is a trivial cofibration is thus a special case of the following slightly

more general lemma.

9.5. Lemma. Let S be an arbitrary tree (not necessarily closed) and let e be an inner
edge in S. Let A ⊆ ΛeS the union of some faces of S, namely the root face (if it exists),
all the inner faces except the one contracting e, and all the top faces except a number of
top faces chopping off stumps. Suppose that none of these stumps is immediately above e.
Then A� S is inner anodyne.

Proof. List the stumps v for which ∂vS is missing from A as v1, . . . , vk. Then A∪∂v1S∪
. . . ∂vkS � S is the inner horn ΛeS � S, so it suffices to prove that each A ∪ ∂v1S ∪
. . . ∂viS � A∪ ∂v1S ∪ . . . ∂vi+1

S is inner anodyne. Now (A∪ ∂v1S ∪ . . .∪ ∂viS)∩ ∂vi+1
S �

∂vi+1
S is an inclusion of the form stated in the lemma, but missing only k−(i+1) top faces

chopping of stumps. So, proceeding by induction on k, it suffices to prove the case k = 1.
Write v = v1 for the one stump for which ∂vS is missing from A. Thus A ∪ ∂vS = ΛeS,
and it suffices to show that A ∩ ∂vS = Λe(∂vS). We show both inclusions in turn.

(⊇) The faces of ∂vS are faces of S, with the possible exception of the top face ∂w∂vS
for the vertex w immediately below v. This top face of ∂vS exists if w is a top vertex of
∂vS. But then ∂w∂vS is a face of ∂bS ⊆ A, where b 6= e is the edge between v and w. This
proves that Λe∂v(S) ⊆ A ∩ ∂vS.

(⊆) The object A is the union of three or four types of faces of S:

(i) inner faces ∂aS where a 6= e and a is not attached to v,

(ii) top faces ∂wS for w a top vertex of S, w 6= v,

(iii) possibly the root face ∂rootS,

(iv) the face ∂bS where b is the edge below v.

We will show that for each of these faces, the intersection with ∂vS is contained in Λe∂vS.

(i) For such a face ∂aS, the intersection ∂aS ∩ ∂vS is an inner face of ∂vS, hence
contained in Λe∂vS.

(ii) Similarly, as w 6= v, for such a face ∂wS the intersection ∂wS ∩ ∂vS is a top face of
∂vS, hence contained in Λe∂vS.

(iii) If the root face ∂rootS exists, then ∂rootS ∩ ∂vS = ∂root∂vS because S contains e
hence is not a corolla, and this intersection is contained in Λe∂vS.

(iv) The only non-trivial case is that of ∂bS ∩ ∂vS for the edge b immediately below v.
Write w for the vertex below b, and a1, . . . , an (n ≥ 0) for the input edges of w other
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than b. Write Tai for the subtree of S with root ai, and Tr for the subtree below w:

Tr

w

a1 b an

v
TanTa1

r

Then ∂bS ∩ ∂vS = Ta1 ∪ . . .∪ Tan ∪ Tr, and we show each of these parts is contained
in Λe∂vS. Notice that Tr ⊆ ∂ai∂vS which belongs to Λe∂vS as soon as ai is an
inner edge of ∂vS. Similarly, Tai ⊆ ∂c∂vS ⊆ Λe∂vS if we can find an inner edge c in
∂vS which does not belong to Tai , or if Tai is contained in the root face of S. This
proves that ∂bS ∩ ∂vS ⊆ Λe∂vS, except possibly in the case where each ai is a leaf
of S, or n = 0. But in that case ∂w∂vS = ∂wv∂bS ⊆ ΛeS (where wv is the new
vertex resulting from contracting b) is a face of ∂vS containing Tr, while each ai is
contained in ∂c∂vS for the edge c immediately below w (which must be inner as S
contains the edge e not immediately below v).

This proves that ∂bS ∩ ∂vS ⊆ Λe∂vS, and completes the proof of the inclusion ⊆, and
hence that of the lemma.

Finally, we consider one of the adjoint pairs induced by the composition h = cl ◦
o : Ωo → Ωcl.

9.6. Theorem. The adjoint pair h∗ : cdSets // odSets : h∗oo is a Quillen pair.

Proof. The functor h∗ is the composition h∗ = o∗cl∗ = o∗u!, so it clearly preserves normal
monomorphisms as both o∗ and u! do (cf. Remark 9.2 and Proposition 9.4 above). It
thus suffices to show that h∗ sends the two types of “quasi-generating” (in the sense of
detecting the fibrations between fibrant objects) trivial cofibrations to weak equivalences.
For the trivial cofibration {0} → J featuring in the previous proof also, this is clear
because h∗ maps it back to {0} → J .

Let us consider a very inner horn inclusion ΛeT � T for a closed tree T . If S is an
arbitrary closed tree, let us write S◦ ⊆ S for the open subtree obtained by chopping off
all the stumps of S. For an upwards closed set A of edges in T (i.e., f ≥ g ∈ A⇒ f ∈ A),
write T [A] for the closed tree obtained by contracting all the edges in A, and T [A]◦ ⊆
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T [A] ⊆ T for the resulting open face of T . Here is an example:

T :

c d

a by

x

y

x

A = {a, b, c, d} T [A]◦:

Then h∗(T ) =
⋃
A T [A]◦, where the union is as subobject of T , and ranges over all such

upwards closed subsets A. Now all these trees T [A]◦ are contained in h∗(Λe[T ]), except
for the case A = ∅ when T [∅]◦ = T ◦. (This uses that e is very inner so {e} is not itself
upwards closed.) But T ◦∩h∗(Λe[T ]) = Λe[T ◦]. So T ◦∩h∗(Λe[T ])� T ◦ is inner anodyne,
and hence so is its pushout h∗(Λe[T ]) → T ◦ ∪ h∗(Λe[T ]) = h∗(T ). This completes the
proof of the theorem.

10. The Boardman-Vogt resolution

The Boardman-Vogt resolution for simplicial operads associated to each such operad P
is a map W (P ) → P which forms a cofibrant resolution in case P is Σ-free (cf. [2]). In
particular, it associates to each tree T (viewed as operad) a simplicial operad W (T ). This
operad W (T ) is simple to describe explicitly: the colours of W (T ) are the edges of T .
For edges e1, . . . , en and e in T , the space W (T )(e1, . . . , en; e) is empty, unless there is a
(unique) subtree of T with leaves e1, . . . , en and root e, in which case

W (T )(e1, . . . , en; e) =
∏

d∈I(e1,...,en;e)

∆[1],

where I(e1, . . . , en; e) is the set of inner edges in this subtree. Composition in the operad
W (T ) is defined by assigning “length 1” to the newly arising inner edges. (Since T is free
as an operad, we have simplified the description of the Boardman-Vogt resolution given
in [3] somewhat, by identifying operations in the operad T with subtrees of T whose
edges have length zero.) This construction defines a functor W : Ω→ Operads into the
category of simplicial operads, which induces a pair of adjoint functors

w! : dSets //Operads : w∗oo (28)

by Kan extension. The following theorem is one of the main results of [9, 10, 11]:

10.1. Theorem. The pair w! : dSets //Operads : w∗oo is a Quillen equivalence for
the operadic model structure on the category dSets of dendroidal sets and the projective
model structure on the category Operads of simplicial operads.

Since W maps open trees to open operads, w! maps open dendroidal sets to open
operads, and the theorem has the following immediate corollary.
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10.2. Corollary. This pair restricts to a Quillen equivalence

◦
w! : odSets // oOperads :

◦
w∗oo

between open dendroidal sets and open operads.

For closed operads, the situation is slightly different, as the following example shows.

10.3. Example. Let P be a closed operad, with set of colours C, all of whose spaces
of operations are contractible Kan complexes. Then the map P → 1 into the terminal
object is a trivial fibration. Consider the closed tree T ,

a b

r
T :

and its closed boundary ∂cl(T ), and a commutative square of the form

w!(∂cl(T )) //

��

P

��

T u //W (T )

::

// 1,

together with the map of operads T → W (T ) which assigns length 1 to any edge. Write a,
b and r also for the colours of P which are images of the corresponding edges of T under
∂cl(T )→ P . Then a diagonal lift as dotted in the diagram would imply that given unary
operation α ∈ P (a; r) and β ∈ P (b; r), there exists a binary operation γ ∈ P (a, b; r) with
γ ◦a ca = β and γ ◦b cb = α, where ca and cb are the unique constants of colours a and b
in P , respectively. For such a lift to exist, it is necessary that the map

P (a, b; r)→ P (a; r)× P (b; r)

is a trivial fibration. In other words, P needs to be Reedy fibrant rather than just
projectively fibrant.

Thus, for the Boardman-Vogt resolution for closed operads, we shall have to work
with the Reedy model structure. On the other hand, for closed trees we can get by with a
somewhat smaller resolution, putting lengths only on some of the inner edges. This gives
rise to a functor

W : Ωcl → cOperads

which assigns to each closed tree T a closed simplicial operad W (T ). Its colours are again
the edges of T . And for a sequence of edges e1, . . . , en, e of T , the space of operations
W (T )(e1, . . . , en; e) is again empty unless these edges span a subtree of T with leaves
e1, . . . , en and root e. In that case

W (T )(e1, . . . , en; e) =
∏

d∈D(e1,...en;e)

∆[1] (29)
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where d ranges over the set D(e1, . . . , en; e) of those inner edges of the tree

T (e1, . . . , en; e)

which have at least one of the leaves e1, . . . , en above them. (We informally refer to the
product over these edges d as lengths assigned to these edges, as in [2].)

For example, for the closed tree T pictured on the left

T :

d e

b c

a

S:

d e

b c

a

R:

d e

b c

a

the space W (T )(d; a) corresponding to the subtree S = T (d; a) is a copy of ∆[1], while
the space W (T )(b; a) corresponding to the subtree R is just a point.

Composition in this operad W (T ) is again defined by grafting subtrees, assigning
length 1 to newly arising inner edges which require a length, and erasing lengths on edges
that no longer have leaves above them in the grafted tree.

The construction of the operad W (T ) is obviously functorial in T , and induces adjoint
functors

w! : cdSets // cOperads : w∗oo

10.4. Theorem. This adjoint pair is a Quillen pair for the unital operadic model struc-
ture on the category cdSets of closed dendroidal sets and the Reedy model structure on
the category cOperads of closed (or unital) simplicial operads.

Proof. Let T be a closed tree, and let ∂cl(T ) be its closed boundary, as before. To show
that the inclusion w!(∂clT )� w!(T ) is a Reedy cofibration, consider a lifting problem of
the form

w!(∂clT )
ψ

//

��

Q

f

��

W (T )

χ

;;

ρ
// P

where f is a trivial Reedy fibration between unital operads P and Q. To define a di-
agonal lift χ, consider a non-empty space of operations W (T )(e1, . . . , en; e) for edges
e1, . . . , en and e in T . Now first notice that unless e1, . . . , en enumerate all the maxi-
mal edges in T (the ones immediately below the stumps) and e is the root edge of T ,
the tree T (e1, . . . , en; e) is a subtree of a closed face of T , so the space of operations
W (T )(e1, . . . , en; e) is already contained in w!(∂clT ). So assume e1, . . . , en are all the
maximal edges and e is the root; in other words, T (e1, . . . , en; e) = T ◦ in the notation
used earlier. The map χ : W (T )(e1, . . . , en; e) → Q we are looking for is already pre-
scribed by ψ on the subspace of the product

∏
d ∆[1] for which one of the coordinates is

1, because then the operation is a composition of operations occurring in w!(∂clT ). It is
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also prescribed by ψ if one of the coordinates, say the one for the edge d, is zero, because
then it is an operation in the image of w!(∂dT )→ w!(∂clT )→ w!(T ). Finally, the value of
χ is provided by ψ if we compose with one of the (unique) constants of colour ei, because
then the operation lies in W (∂eiT )(e1, . . . , êi, . . . , en; e). Thus, the required map χ is a
solution to a lifting problem of the form

∂(∆[1]D) //

��

��

Q(ψe1, . . . , ψen;ψe)

��

∆[1]D // P (ϕe1, . . . , ϕen;ϕe)×P−(ϕe1,...,ϕen;ϕe) Q
−(ψe1, . . . , ψen;ψe)

where D = D(e1, . . . , en; e) as in (29), and P− and Q− are as defined in Section 2. Such
a solution indeed exists since Q→ P is assumed to be a trivial Reedy fibration.

Next, we prove that w! also preserves trivial cofibrations. For this, it suffices to show
that it sends the two kinds of trivial cofibrations which detect fibrations between fibrant
objects (called “quasi-generating” before) to trivial Reedy cofibrations.

Consider first the inclusion of a very inner horn Λa
cl(T )� T . Here the argument for

the existence of a lift in a diagram of the form

w!(Λ
a
cl(T ))

ψ
//

��

Q

��

w!(T )

::

ρ
// P

where Q → P is a Reedy fibration is entirely similar to the previous argument, and
reduces to the problem of finding a lift in

Λa(∆[1]D) //

��

��

Q(ψe1, . . . , ψen;ψe)

��

∆[1]D // P (ϕe1, . . . , ϕen;ϕe)×P−(ϕe1,...,ϕen;ϕe) Q
−(ψe1, . . . , ψen;ψe)

where Λa(∆[1]D) ⊆ ∂(∆[1]D) is that part of the boundary consisting of those coordinates
which either have length 1 at a, or length 0 or 1 at some d 6= a. Such a lift exists because
Λa(∆[1]D)� ∆[1]D is a trivial cofibration of simplicial sets.

Next, and finally, consider an inclusion {0}� J . We claim that w!{0} → w!(J) is a
trivial Reedy cofibration. Indeed, it is a Reedy cofibration since we already know that w!

preserves cofibrations, so it suffices to prove it is a weak equivalence. In other words, we
need to prove that each of the spaces of operations

w!(J)(i, j), i, j = 0 or 1,

is weakly contractible. For example, let us consider the case i = 0 = j. (The other cases
are similar.) Then w!(J)(0, 0) is a colimit of cubes coming from lengths on edges in the



CLOSED DENDROIDAL SETS AND UNITAL OPERADS 159

tree with 2n+ 1 edges:

0

1 t1

0 t2

1

...

1 t2n−1

0
(30)

Such a tree has 2n− 1 very inner edges, so it is a cube ∆[1]2n−1. Thus

w!(J)(0, 0) = lim−→A(n)

is a colimit of a sequence
A(1) → A(2) → A(3) → . . .

where A(n+1) = A(n) ∪∆[1]2n−1 and A(1) = pt. These cubes are glued together as follows.
Write Zn ⊆ ∆[1]2n−1 for the simplicial subset of those coordinates (t1, . . . , t2n−1) where at
least one of the ti = 0. Define

αn : Zn → A(n)

by mapping to a lower dimensional cube as follows:

- if t1 = 0, (contract the upper two edges in (30) and erase t2, i.e.) map (t1, . . . , t2n−1)
to (t3, . . . , t2n−1).

- if ti = 0, i > 1, (contract the (i − 1)th and ith edge, and) map (t1, . . . , t2n−1) to
(t1, . . . , ti−1 ∨ ti+1, . . . , t2n−1).

- if t2n−1 = 0, map (t1, . . . , t2n−1) to (t1, . . . , t2n−3).

Then A(n+1) is defined as the pushout

Zn
αn //

��

��

A(n)
��

��

∆[1]2n−1 // A(n+1),

in particular A(n) → A(n+1) is a weak equivalence.
This shows that w!(J) has a weakly contractible space of operations 0→ 0. The case

of the other spaces of operations being similar, this proves that w!{0} → w!(J) is a weak
equivalence.

This completes the proof of the theorem.
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11. Open and closed dendroidal spaces

Let us write
dSpaces = sSetsΩop

for the category of dendroidal spaces. It carries an evident simplicial structure which we
denote by ×. Thus, for a dendroidal space X and a simplicial set M ,

(X×M)(T ) = X(T )×M,

by definition. This category of dendroidal spaces carries two equivalent model structures,
the projective and the Reedy one. These model structures and the left Quillen equivalence
between these are denoted

(dSpaces)P
∼−→ (dSpaces)R.

The second one can be localized by the Reedy cofibration

Λe(T )×∆[n] ∪ T×∂∆[n]� T×∆[n] (31)

for each inner edge e in a tree T and each n > 0, as well as

{0}×∆[n] ∪ J×∂∆[n]� J×∆[n] (32)

for each n > 0. This results in a “complete Segal” model structure (dSpaces)RSC , whose
fibrant objects are the Reedy fibrant objects satisfying the Segal condition (meaning that
they have the RLP with respect to the maps of type (31)) and the completeness condition
(RLP with respect to (32)). A similar localization of the projective model structure
by (cofibrant replacements of) the maps in (31) and (32) results in a model category
(dSpaces)PSC and a left Quillen equivalence

(dSpaces)PSC
∼−→ (dSpaces)RSC .

The adjoint functors d! : dSets // dSpaces : d∗oo sending a dendroidal set to the cor-
responding discrete dendroidal space and its right adjoint sending a dendroidal space to
its dendroidal set of vertices, define a Quillen equivalence

d! : dSets // (dSpaces)RSC : d∗,oo (33)

see [10] for details.
By slicing over the dendroidal set O (or over the dendroidal space d!(O), respectively)

we obtain similar model structures and Quillen equivalences for the category odSpaces =
sSetsΩop

o of open dendroidal spaces,

(odSpaces)PSC
// (odSpaces)RSCoo

// odSetsoo (34)

(left Quillen functors on top).
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Exactly the same constructions and arguments apply to the category

cdSpaces = sSetsΩop
cl

of closed dendroidal spaces, and the localizations by the closed analogues of (31) and (32);
namely, maps of type (31) for every very inner edge e in a closed tree T , and for (32)
the closure {0}� J (i.e. cl!({0}) � cl!(J)) instead of {0}� J (cf. Theorem 8.2 (d)).
We again refer to the localizations as the projective and Reedy complete Segal model
structures, now on the category of closed dendroidal spaces. Analogous to (34), there are
Quillen equivalences

(cdSpaces)PSC
// (cdSpaces)RSCoo

// cdSets,oo (35)

where the latter is equipped with the unital operadic model structure of Theorem 8.1.
The arguments for Proposition 9.4 of Section 9 show that there are Quillen pairs

induced by the inclusion u : Ωcl ↪→ Ω as in the upper two rows of the following commutative
diagram (the lower row is the Quillen pair of Proposition 9.4 and the columns are (34)
and (35)):

u! : (cdSpaces)PSC
//

��

(odSpaces)PSC : u∗oo

��

u! : (cdSpaces)RSC
//

∼
OO

��

(odSpaces)RSC : u∗oo

��

∼
OO

u! : cdSets //

∼
OO

odSets : u∗oo

∼
OO

(36)

The functor cl! does not preserve normal monomorphisms (cf. Remark 9.3), so does
not induce a Quillen pair dSpacesR

// cdSpacesRoo , but it does so for the projective
structure,

cl! : dSpacesP
// cdSpacesP : cl∗.oo

11.1. Lemma. This Quillen pair restricts to a Quillen pair

cl! : dSpacesPSC
// cdSpacesPSC : cl∗.oo

Proof. We need to show that the localizing maps defining the passage from
(dSpaces)P to (dSpaces)PSC are sent to weak equivalences in (cdSpaces)PSC by the
functor cl!. For the Segal condition, we observe that instead of localizing by inner horns,
we might equally well localize by “spines” or “Segal cores”, cf. [10]. A cofibrant resolution
of the Segal core Sc(T ) of a tree T in the projective model structure (dSpaces)P is its
“Čech nerve”

Sc(T )
∐

v0
Cv0oooo

∐
v0,v1

Cv0 ∩ Cv1oo
oo

oo
oo
oo

(37)

where the vi range over the vertices of T and Cvi ⊆ T denotes the corresponding corolla.
The intersections Cv0 ∩ . . . ∩ Cvn occurring here are either empty or copies of the unit



162 IEKE MOERDIJK

tree η (or corollas in case v0, . . . , vn are all the same). These types of intersections are
preserved by the closure functor cl!. So the image of this cofibrant resolution (37) under
the functor cl! is precisely the Čech type resolution of the closed spine cSpine(T ) � T ,
which is a localizing map for cdSpacesPSC , cf. Theorem 6.6. A similar argument applies
to the localizing map {0} � J . Indeed, J =

⋃
Ln and J =

⋃
Ln, as in the proof of

Proposition 9.4. The intersections Ln1 ∩ . . .∩Lnp of this cover of J are again of the form
Lm for a smaller m, and these intersections are preserved by the closure operator cl!. This
proves the lemma.

Next, let us turn to the composite functor h = cl ◦ o : Ωo → Ωcl. First of all, the
arguments of Theorem 9.6 show the following.

11.2. Lemma. The functor h : Ωo → Ωcl induces a Quillen pair rendering the following
diagram commutative:

h∗ : (cdSpaces)RSC
//

��

(odSpaces)RSC : h∗oo

��

h∗ : cdSets //

∼
OO

odSets : h∗oo

∼
OO

(left Quillen functors on the left and on top).

The functor h∗ is of course not left Quillen for the projective model structure. However,
the functor h! : (odSpaces)P → (cdSpaces)P is, and has the following property.

11.3. Lemma. The Quillen pair h! : (odSpaces)P
// (cdSpaces)P : h∗oo restricts to a

Quillen pair
h! : (odSpaces)PSC

// (cdSpaces)PSC : h∗oo

Proof. This follows immediately from the definition of h as the composition h = cl ◦ o,
together with Lemma 11.1.

Let us observe some consequences of these lemmas.

11.4. Proposition. The functor Lh∗ : Ho(cdSets)→ Ho(odSets) induced by the Quillen
pair of Theorem 9.6 has both a left and a right adjoint.

Proof. This follows from the commutativity of the square

cdSets
d! //

h∗

��

(cdSpaces)RSC

h∗

��

(cdSpaces)PSC

h∗

��

idoo

odSets
d! // (odSpaces)RSC (odSpaces)PSC

idoo

in which the horizontal functors are left Quillen equivalences. The functor h∗ in the middle
is left Quillen, while the same functor on the right is right Quillen. These two functors
act in the same way on objects which are both Reedy cofibrant and Reedy fibrant (and
hence also projectively fibrant).
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11.5. Proposition. The functor Lh∗ : Ho(cdSets)→ Ho(odSets) detects isomorphisms.

Proof. First, observe that the right Quillen functor

h∗ : (cdSpaces)PSC → (odSpaces)PSC

evidently detects weak equivalences between fibrant objects. Indeed, for such an object
X, the value h∗(X) of the functor is defined on an open tree S by

h∗(X)S = XS,

so h∗ already detects weak equivalences as a functor (cdSpaces)P → (odSpaces)P . But
the weak equivalences between fibrant objects in the localized model structure remain the
same, showing that h∗ also detects weak equivalences between fibrant objects as a functor
(cdSpaces)PSC → (odSpaces)PSC .

Next, note that the statement in the proposition is equivalent to the assertion that

Lh∗ : Ho(cdSpacesRSC)→ Ho(odSpacesRSC)

detects weak equivalences. But on fibrant and cofibrant objects in (cdSpaces)RSC , Lh∗

is represented by the same functor h∗ as

Rh∗ : Ho(cdSpacesPSC)→ Ho(odSpacesPSC)

is. This functor detects isomorphisms, as observed at the start of the proof.

12. Closed dendroidal sets are equivalent to unital operads

The goal of this section is to prove the following “rectification” theorem.

12.1. Theorem. The Quillen pair of Theorem 10.4

w! : cdSets // cOperads : w∗oo

is a Quillen equivalence.

Recall from Section 10 that the model structures involved are the unital operadic
model structure on the category cdSets of closed dendroidal sets and the Reedy model
structure on the category cOperads of closed or unital simplicial operads. Now consider
the following diagram of model categories and Quillen adjunctions:

cdSets
w! //

h∗

��

cOperads
w∗

oo

g∗

��

odSets
◦
w! //

h∗

OO

oOperads.
◦
w∗

oo

g∗

OO
(38)
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12.2. Lemma. The diagram commutes up to isomorphism.

12.3. Remark. For what follows it is actually enough to know that there is a natu-
ral weak equivalence

◦
w!h

∗X
∼−→ g∗w!X for each cofibrant object X. Since the category

cdSets is left proper, a standard induction over cofibrant objects reduces the problem
again to representables. And since the functors involved are left Quillen, the trivial cofi-
brations cSpine(T ) � T of Theorem 6.6 then reduce the problem to showing that the
map θCn

:
◦
w!h

∗Cn → g∗w!Cn is a weak equivalence for each closed corolla Cn, which is
obvious.

Proof Proof (of Lemma 12.2). We will exhibit a natural isomorphism θX :
◦
w!h

∗X →
g∗w!X for each closed dendroidal set X. Since the left adjoint functors involved preserve
colimits, it suffices to define such an isomorphism for representable X, i.e.

θT :
◦
w!h

∗T → g∗w!T

for each closed tree T . Recall that

h∗(T ) =
⋃
A

T [A]◦

where A ranges over upwards closed subforests of the tree T , and T [A] is the tree obtained
by contracting the edges in A while (−)◦ is the operation of chopping off the stumps from
a closed tree. For each such A, there is an evident map of operads

W (T [A]◦)→ W (T )

and together these are easily seen to induce the desired isomorphism. Indeed, suppose
e1, . . . , en and e are edges in T spanning a subtree T (e1, . . . , en; e) with leaves e1, . . . , en
and root e. Then operations in W (T )(e1, . . . , en; e) can be represented as operations in
W (T [A]◦) for a maximal and canonical such A, viz. the forest consisting of all the edges
in T which are not in the tree T (e1, . . . , en; e), nor on the path from e down to the root
of T .

The next lemma states another commutation property of the diagram (38).

12.4. Lemma. [“Projection formula”] There is a natural isomorphism of derived functors

Lh∗Rw∗ ' R
◦
w∗Lg∗.

Proof. Consider first the left Quillen equivalence d! : dSets
∼−→ dSpaces of Section 11

and its variants for open and closed dendroidal sets and spaces. Recall from [9] that for
a fibrant dendroidal set X, a fibrant replacement of d!(X) in (dSpaces)RSC (a “comple-
tion”) is defined as the dendroidal space d!(X)∧ whose value at a tree T is the simplicial
set (Kan complex)

Map(T,X)
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where “Map” refers to the model structure on dendroidal sets. (An example of a cofibrant
cosimplicial resolution of T by which to compute this “Map” is n 7→ T ⊗ |∆[n]|J , where
| − |J refers to geometric realization relative to the interval J .) Similar descriptions of
completion apply to cdSets and odSets.

Now, to prove the lemma, consider a fibrant and Σ-free unital operad P and its open
part g∗P . Then a complete Segal model (d!

◦
w∗g∗(P ))∧ for the open dendroidal set

◦
w∗g∗(P )

can be described for each open tree S by

(d!
◦
w∗g∗(P ))∧(S) = MapodSets(S,

◦
w∗g∗(P ))

= Map(g!
◦
w!(S), P ),

the latter “Map” referring to the model structure on closed operads.
On the other hand, a complete Segal model (d!w

∗(P ))∧ for the closed dendroidal set
w∗(P ) is described for each closed tree T by

(d!w
∗(P ))∧(T ) = MapcdSets(T,w

∗P )

= Map(W (T ), P )

the latter “Map” referring to closed operads again. This object is normal if P is Σ-free,
so a model for Lh∗Rw∗(P ) in (odSpaces)RSC is defined by the functor

S 7→Map(W (S), P ).

(This model is again “complete Segal”, but for the projective model structure on odSpaces,
cf. Section 11.)

The proof of the lemma now simply consists of the observation that for each open tree
S there is a natural weak equivalence

g!W (S)→ W (S).

Indeed, an operation in g!W (S)(e1, . . . , en; e) is given by operation in

W (S)(e1, . . . , en, f1, . . . , fm; e)

composed with the substitution of constants for f1, . . . , fm. This is represented by an
operation in W (S) for the tree S(e1, . . . , en; e) given by S(e1, . . . , en, f1, . . . , fm; e) with
the closed trees S(f1), . . . , S(fn) with roots f1, . . . , fk, respectively, grafted on top of it.
This defines a map g!W (S) → W (S). The fact that this map is a weak equivalence is
obvious from the commutativity of

g!W (S) //

∼
��

W (S)

∼
��

g!(S) S

where in the lower row, S and S are viewed as (discrete) operads.



166 IEKE MOERDIJK

The theorem stated at the beginning of the section now follows easily.

Proof Proof of Theorem. First of all, let us observe that w∗ detects weak equiva-
lences between fibrant objects. Indeed, this is clear from the projection formula of the
last lemma, together with the fact that both g∗ and

◦
w∗ detect weak equivalences, cf.

Proposition 3.1 and Corollary 10.2.
Consider then the derived units and counits

η : X → Rw∗Lw!X and ε : Lw!Rw
∗P → P

for a closed dendroidal set X and a closed operad P . By the triangular identities and
the fact that Rw∗ detects isomorphisms as just observed, it follows that if the derived
unit is an isomorphism then so is the derived counit. Thus, it suffices to prove for each
fibrant and cofibrant closed dendroidal set X that the unit η : X → Rw∗(w!(X)) is a weak
equivalence. In fact, by Proposition 11.5 it suffices to prove that

Lh∗(η) : Lh∗(X)→ Lh∗Rw∗(w!X)

is a weak equivalence. Using the projection formula again, this map can be identified with
a map

Lh∗(X)→ R
◦
w∗Lg∗(w!X) = R

◦
w∗(

◦
w!h

∗X)

(the last identity by Lemma 12.2). Running through the definitions, one identifies this
map with the derived unit at h∗(X) of the adjunction between

◦
w! and

◦
w∗. The unit is a

weak equivalence by Corollary 10.2. This completes the proof of the theorem.

13. Weakly unital operads

In this final section we will briefly discuss the property of an operad having a contractible
space of constants for each colour, and the corresponding property of dendroidal spaces.
We begin with the latter.

Consider again the projective complete Segal model structure on the category of (all)
dendroidal spaces, and the Quillen pair

cl! : (dSpaces)PSC
// (cdSpaces)PSC : cl∗oo (39)

of Lemma 11.1 above. Write (dSpaces)PSCU for the left Bousfield localization by the map
η → η. Thus, a fibrant object in (dSpaces)PSC is local (i.e., fibrant in (dSpaces)PSCU)
precisely when X(η)→ X(η) is a (weak) homotopy equivalence between Kan complexes.
This localization can be seen as a push forward of a similar localization of the operadic
model structure on dSets which we denote by dSetsU . Moreover, the closure functor
cl! maps η → η to an isomorphism, so clearly the Quillen pair (39) factors through
(dSpaces)PSCU . All put together, we obtain a diagram of left Quillen functors

dSets
d!
∼
//

��

(dSpaces)RSC

��

(dSpaces)PSC

��

∼oo cl! // (cdSpaces)PSC

dSetsU
d!
∼
// (dSpaces)RSCU (dSpaces)PSCU

∼oo

55
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in which all four horizontal functors in the two squares are Quillen equivalences and the
vertical maps are localizations.

13.1. Proposition. The Quillen pair (39) induces a Quillen equivalence

cl! : (dSpaces)PSCU
// (cdSpaces)PSC : cl∗oo

Proof. First of all, as cl : Ω→ Ωcl is surjective on objects, the functor

cl∗ : (cdSpaces)P → (dSpaces)P

clearly detects weak equivalences between arbitrary objects. It follows that the right
Quillen functor cl∗ : (cdSpaces)PSC → (dSpaces)PSCU detects weak equivalences be-
tween fibrant objects.

It thus suffices to prove that the derived unit X → Rcl∗Lcl!(X) is a weak equivalence
for each (cofibrant) object X in (dSpaces)PSCU . But cl∗ = u! is also left Quillen (cf.
the diagram (36)), hence cl∗ preserves weak equivalences between cofibrant objects. So it
suffices to prove that the non-derived unit X → cl∗cl!(X) = u!cl!(X) is a weak equivalence
in (dSpaces)PSCU for each cofibrant object X.

Since the functors u! and cl! involved preserve colimits and the model categories are
left proper, we can use induction on cofibrant objects, and reduce the problem to the case
where X is representable. In other words, we have to show that for each tree S the unit
S → cl∗cl!(S) is a weak equivalence in (dSpaces)PSCU . But this unit is the map S → S,
and the following lemma completes the proof.

13.2. Lemma. For any tree S, the inclusion S → S is a trivial cofibration in dSetsU
(and hence a weak equivalence in cdSpacesPSCU and cdSpacesRSCU).

Proof. Let λS be the set of leaves of S, and consider the pushout∐
`∈λS η

//

��

��

S
��

��∐
`∈λS η

// S ′.

Then S → S ′ is a pushout of a trivial cofibration in dSetsU , hence itself a trivial cofibra-
tion. Moreover, the map S ′ → S is a composition of grafting morphisms, grafting a copy
of η onto each leaf of S. So S ′ → S is inner anodyne (cf. [24], [17]).

13.3. Corollary. There is a zigzag of Quillen equivalences

dSetsU ' cdSets,

between the localization by η → η of the operadic model structure on dSets and the unital
operadic model structure on cdSets.

To conclude this paper, we briefly consider the effect of the localization dSetsU on
the equivalence (28) (from [11]) between dendroidal sets and simplicial operads. To this
end, we introduce the following terminology.
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13.4. Definition. A simplicial operad P is called weakly unital (or weakly closed) if
for each colour c in P , the space P (−; c) of constants of colour c is weakly contractible.
We write

Ho(OperadsWU) ⊆ Ho(Operads)

for the full subcategory spanned by these weakly unital operads.

13.5. Proposition. The Quillen equivalence w! : dSets //Operads : w∗oo of [11] in-
duces an equivalence of categories

Ho(dSetsU) ' Ho(OperadsWU).

Proof. Recall from [11] that w! : dSets→ Operads was proved to be a Quillen equiva-
lence through a homotopy commutative diagram of left Quillen equivalences

(Segalpreoperads)tame
τd //

id!
��

Operads

(Segalpreoperads)Reedy
γ∗

**

dSets

w!

OO

d!vv

(dSpaces)RSC .

(40)

Here Segal preoperads are dendroidal spaces X with a discrete space X(η) of objects,
and γ∗ is simply the inclusion. The functor τ d in the diagram is the left adjoint of
the levelwise nerve functor, denoted Nd : Operads → (Segalpreoperads). A Segal
operad is such a Segal preoperad satisfying a Segal condition. The fibrant objects in
the two model structures on Segal preoperads are all Segal operads. A key property of
Segal operads is that a map is a weak equivalence iff it is fullly faithful and essentially
surjective on colours. Now consider a fibrant simplicial operad P . Then P is weakly unital
iff Nd(P )(−; c) is (weakly) contractible for each colour c, i.e. iff Nd(P )(η) → Nd(P )(η)
is a trivial fibration. Of course Nd(P )(η) is simply the discrete space C of colours of P .
Let P̂ � Nd(P ) be a tamely cofibrant resolution. This is a weak equivalence between
Segal operads, so P̂ (η)→ C is again a trivial fibration because weak equivalences between
Segal operads are fully faithful, as said. Then Lid!Nd(P ) = P̂ is a Reedy cofibrant Segal
operad with the same property, and hence Lγ∗Lid!(Nd(P )) = P̂ as a dendroidal space
still has this property. This means that P̂ as a dendroidal space is local with respect to
the RSCU -localization of dendroidal spaces. This sequence of implications can obviously
be reversed, showing that P is weakly unital iff Lγ∗Lid!RNd(P ) is local in this sense.
Combining this with the left Quillen equivalence cl! in the commutative diagram (40)

identifies the image of Ho(dSetsU) ⊆ Ho(dSets) under Ho(dSets)
Lw!−−→ Ho(Operads)

with Ho(OperadsWU) proving the result.



CLOSED DENDROIDAL SETS AND UNITAL OPERADS 169

13.6. Corollary. There is an equivalence Ho(OperadsWU) ' Ho(cOperads) between
the homotopy categories of closed and of weakly unital operads.

Chasing through the functors involved, one easily checks that this equivalence is in-
duced by the inclusion cOperads→ Operads.
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