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SPATIAL REALIZATION OF A LIE ALGEBRA AND THE BAR
CONSTRUCTION

YVES FÉLIX AND DANIEL TANRÉ

Abstract. We prove that the spatial realization of a rational complete Lie algebra L,
concentrated in degree 0, is isomorphic to the simplicial bar construction on the group,
obtained from the Baker-Campbell-Hausdorff product on L.

Introduction

In [5], we construct a cosimplicial differential graded complete Lie algebra (henceforth
cdgl) (L•, d), in which (L1, d) is the Lawrence-Sullivan model of the interval introduced
in [8]. As in the work of Sullivan ([10]) for differential commutative graded algebras, the
existence of this cosimplicial object gives an adjoint pair of functors between the category
cdgl of cdgl’s and the category Sset of simplicial sets, see [5] or [3]. In this work, we
focus on one of them, the spatial realization functor,

〈−〉 : cdgl→ Sset,

defined by 〈L〉 = Homcdgl(L•, L) for L ∈ cdgl. (Let us also notice that 〈L〉 is isomorphic
to the nerve of L, a deformation retract of the Getzler-Hinich realization, see [2], [9].)

More precisely, we are interested in the realization 〈L〉 of a complete Lie algebra, L,
concentrated in degree 0 and (thus) with the differential 0. In this case, a group structure
can be defined on the set L from the Baker-Campbell-Hausdorff formula. We denote by
exp L this group. The realization 〈L〉 is an Eilenberg-MacLane space of type K(π, 1), see
[6]. The purpose of this work is the determination of 〈L〉 up to isomorphism.

0.1. Main Theorem. Let L be a complete differential graded Lie algebra, concentrated in
degree 0. Then, its spatial realization 〈L〉 is isomorphic to the simplicial bar construction
on exp L.

Let K(G, 1) be an Eilenberg-Maclane space and L the Lie algebra structure on its
fundamental group. We can consider the realizations of the APL(K(G, 1)) of D. Sullivan
([10]) and MC∗(L) of E. Getzler ([7]). If L is of finite type, A. Berglund proves in [1,
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Proposition 1.6] that these two realizations are isomorphic. In [5, Theorem 8.1], we show
the existence of a weak equivalence between them and the previous spatial realization
〈L〉. In our setting, we prove that the simplicial set 〈L〉 = Homcdgl(L•, L) is isomorphic
to a simplicial bar resolution. With [3], we know that spaces more general than a K(G, 1)
admit a cdgl model L. For them, the simplicial set Homcdgl(L•, L) appears as a natural
extension of the bar construction. We will come back on this point in a forthcoming work.

In Section 1, we recall basic background on cdgl and our construction L•. Section 2
consists of the proof of the Main theorem.

1. Some reminders

We first recall the construction of the cosimplicial cdgl L•. Let V be a finite dimensional
graded vector space. The completion of the free graded Lie algebra on V , L(V ), is the
inverse limit,

L̂(V ) = lim←−
n

L(V )/L≥n(V ),

where L≥n(V ) is the ideal generated by the Lie brackets of length ≥ n. We call L̂(V ) the
free complete graded Lie algebra on V .

As a graded Lie algebra, Ln is the free complete graded Lie algebra on the rational
vector space generated by the elements ai0...ik of degree |ai0...ik | = k − 1, with 0 ≤ i0 <
· · · < ik ≤ n. We denote by adi0...ik the Lie derivation [ai0...ik ,−]. The cdgl Ln satisfies
the following properties.
– L0 is the free cdgl on a Maurer-Cartan element a0, that is:

L0 = (L(a0), d) , da0 = −1

2
[a0, a0].

– L1 = (L̂(a0, a1, a01), d) is the Lawrence-Sullivan interval (see [8]), where a0 and a1 are
Maurer-Cartan elements and

da01 = [a01, a1] +
ad01

ead01 − 1
(a1 − a0).

– A model L2 for the triangle has been described in [5] (see also [4]):

L2 = (L̂(a0, a1, a2, a01, a02, a12, a012), d) with d(a012) = a01 ∗ a12 ∗ a−102 − [a0, a012].

Here ∗ denotes the Baker-Campbell-Hausdorff product defined for any pair of elements a,
b of degree 0 by a ∗ b = log(expa expb).
– Moreover these structures appear in each Ln: each vertex ar is a Maurer-Cartan element,
each triple (ar, as, ars) is a Lawrence-Sullivan interval and each family
(ar, as, at, ars, art, ast, arst) is a triangle as above.
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The family (Ln)n≥0 forms a cosimplicial cdgl which allows the definition of the spatial
realization of L ∈ cdgl by,

〈L〉 := Homcdgl(L•, L).

The cofaces δi and the codegeneracies σi of the cosimplicial cdgl L• are defined by

δiai0...ip = aj0...jp with jk =

{
ik if ik < i,
ik + 1 if ik ≥ i,

(1)

σiai0...ip =


0 if {i, i+ 1} ⊂ {i0, . . . , ip} ,

aj0...jp otherwise, with jk =

{
ik if ik ≤ i,
ik − 1 if ik > i.

(2)

2. Proof of the main theorem

The simplicial bar construction on a group G, is the simplicial set B•G with set of n-
simplices BnG = Gn. Its elements are denoted [g1| . . . |gn], with gi ∈ G. The faces di and
degeneracies si of B•G are defined as follows:

d0[g1| . . . |gn] = [g2| . . . |gn], (3)

di[g1| . . . |gn] = [g1| . . . |gigi+1| . . . |gn], for 0 < i < n,

dn[g1| . . . |gn] = [g1| . . . |gn−1].

The degeneracy si inserts the identity e of G in position i.

Let L ∈ cdgl be generated in degree 0 and f : Ln → L a morphism in cdgl. For degree
reasons, we have f(ai0...ik) = 0 if k 6= 1. Moreover, since f commutes the differential, from
the definition of the differential in L2, we get

0 = df(a0rs) = f(a0r) ∗ f(ars) ∗ f(a0s)
−1.

Therefore, for any r, s > 0, we have

f(ars) = f(a0r)
−1 ∗ f(a0s).

The map f being entirely defined by its values on the a0i, we have a bijection

Φ: Homcdgl(Ln, L)→ Ln, defined by f 7→ (f(a01), f(a02), . . . , f(a0n)).

We now determine the image of the faces and degeneracies on Homcdgl(L•, L), induced
from (1) and (2). For the face operators, as only the elements (a0r) play a role, it suffices
to consider,

δi(a0r) =

{
a0r if r < i
a0(r+1) if r ≥ i

for i > 0, and δ0(a0r) = a1(r+1).
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Let f : Ln → L be specified by (f(a01), . . . , f(a0n)). Then d0f = f ◦ δ0 : Ln−1 → L is
described by

d0(f(a01), . . . , f(a0(n−1))) = (f ◦ δ0(a01), . . . , f ◦ δ0(a0(n−1)))
= (f(a12), . . . , f(a1n))

= (f(a01)
−1 ∗ f(a02), . . . , f(a01)

−1 ∗ f(a0n)).

Therefore, the face operator d0 on L•, induced from Φ, is

d0(x1, . . . , xn) = (x−11 ∗ x2, . . . , x−11 ∗ xn).

Similar arguments give, for i > 0,

di(x1, . . . , xn) = (x1, . . . , x̂i, . . . , xn).

As for the degeneracies, starting from

σi(a0r) =

{
a0r if r ≤ i
a0(r−1) if r > i

for i > 0,

σ0(a0r) = a0(r−1) if r > 1, and σ0(a01) = 0,

we get
s0(x1, . . . , xn) = (0, x1, . . . , xn)

and for i > 0,
si(x1, . . . , xn) = (x1, . . . , xi, xi, . . . , xn).

Now a straightforward and easy computation shows that the morphism

Ψ: Homcdgl(L•, L)→ B•(expL)

defined by

Ψ(f) = [f(a01)|f(a01)
−1f(a02)|f(a02)

−1f(a03)| . . . |f(a0(n−1))
−1f(a0n)]

is an isomorphism of simplicial sets.
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