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THE CANONICAL INTENSIVE QUALITY OF A COHESIVE TOPOS

F. MARMOLEJO AND M. MENNI

Abstract. We strengthen a result in [3] by proving that every pre-cohesive geometric
morphism p : E → S has a canonical intensive quality s : E → L. We also discuss exam-
ples among bounded pre-cohesive p : E → Set and, in particular, we show that if E is
a presheaf topos then so is L. This result lifts to Grothendieck toposes but the sites
obtained need not be subcanonical. To illustrate this phenomenon, and also the subtle
passage from E to L, we consider a particular family of bounded cohesive toposes over
Set and build subcanonical sites for their associated categories L.
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1. Introduction

Inside the rich Appendix C of [6] one finds a short section entitled Topos and the Can-
torian Contrast suggesting that Cantor’s work partially motivates the study of geometric
morphisms p : E → S with enough properties to capture the idea that E is a topos ‘of
spaces’ and that the extraction of pure points p∗ : E → S unites two opposite inclusions
p∗, p! : S → E of ‘discrete’ and ‘codiscrete’ spaces respectively. (See [3] for a more de-
tailed presentation of Axiomatic Cohesion. See also [5] and [11] for more on the relation
to Cantor’s work.)

Recall that a geometric morphism p : E → S is local if p∗ : E → S has a fully faithful
right adjoint. As suggested in the Appendix C cited above, such a local map provides “a
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zeroeth approximation to the reconstruction” of any objectX of E by placing it canonically
in the interval

p∗(p∗X)
β // X

η // p!(p∗X)

where β is the counit of p∗ a p∗ and η is the unit of p∗ a p!. This interval and some
of its properties may be conveniently expressed in an alternative way using a canonical
transformation φ : p∗ → p! recalled in the next result.

1.1. Lemma. If p is local then the two composites below are equal

p∗
ηp∗ // p!p∗p

∗ p!α−1
// p! p∗

p∗ε−1
// p∗p∗p

!
β
p!

// p!

where α is the unit of p∗ a p∗ and ε is the counit of p∗ a p!. The resulting transformation
is denoted by

φ : p∗ → p!

and the following diagrams commute.

p∗p∗

φp∗ ""

β // 1E

η

��

p∗p
∗

p∗φ ""

α−1
// 1S

ε−1

��
p!p∗ p∗p

!

(Notice that the left triangle above is the “interval” quoted before the statement.)

Proof. For the first part see [3] and also [2] for a detailed proof. The equality φp∗ = η ·β
appears in the proof of Lemma 2.4(i) in [2]. On the other hand

p∗φ = p∗βp! · p∗p∗ε−1 = α−1
p∗p! · p∗p∗ε−1 = ε−1 · α−1,

so the other diagram involving φ commutes.

A geometric morphism p : E → S is connected if p∗ : S → E is fully faithful. Of course,
any local map is connected. Such a connected p is hyperconnected if its counit β is monic.

1.2. Lemma. If p : E → S is local then, it is hyperconnected if and only if φ : p∗ → p! is
monic.

Proof. Follows from Lemma 1.1. See also [3] and, in particular, Lemma 2.4(i) in [2].
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Monomorphicity of φ : p∗ → p! is one of the formulations of the Nullstellensatz condi-
tion introduced in [3]. This is consistent with the intuition that βX : p∗(p∗X)→ X is the
discrete subspace of points of X.

Recall that a geometric morphism p : E → S is essential if p∗ has a left adjoint, usually
denoted by p! : E → S.

As in [5] or [8] we say that a geometric morphism is pre-cohesive if it is local, hypercon-
nected, essential, and p! : E → S preserves finite products. In other words, it is a string
of adjoints p! a p∗ a p∗ a p! with fully faithful p∗, p! : S → E such that the Nullstellensatz
holds and the leftmost adjoint preserves finite products. The intuition remains as above,
except for the leftmost adjoint which sends each space X to the set p!X of ‘pieces’ of
X. It is relevant to recall that for a string of adjoints p! a p∗ a p∗ a p! with fully faithful
p∗, p! : S → E , the first three functors determine, in a way analogous to φ, a canonical
transformation θ : p∗ → p! from ‘points’ to ‘pieces’. Then, for the whole string, φ is monic
if and only if θ is epic. In other words, the Nullstellensatz as formulated above in terms
of φ is equivalent to the statement that ‘every piece has a point’. See [3, Definition 2(c)]
and [2, Lemma 2.3].

1.3. Definition. A local geometric morphism q : Q → S is a quality type if the canonical
transformation φ : q∗ → q! is an isomorphism.

Notice that a quality type q : Q → S is always a pre-cohesive geometric morphism,
but of a very special kind since the concepts of ‘discrete’ and ‘codiscrete’ coincide. In this
case also the concepts of ‘piece’ and ‘point’ coincide, in the sense that θ : q∗ → q! is an
isomorphism.

1.4. Definition. An intensive quality (on p) is a quality type q : Q → S together with
a functor s : E → Q such that the following diagram commutes

E

p∗ ��

s // Q
q∗
��
S

and such that s preserves finite products and finite coproducts.

Loosely speaking, ‘qualities’ are functors valued in quality types. (See also the para-
graph after Definition 2.3 in [10].) Intensive qualities have the distinguishing feature that
they preserve points.

Theorem 2 in [3] implies that any pre-cohesive p : E → S satisfying certain complete-
ness conditions has a canonical intensive quality which is actually the direct image of a
hyperconnected essential geometric morphism denoted by s and called “substance”. The
two aspects s∗ and s! are distinguished as rarefied vs.condensed and they are viewed as
“the result of partial observation of the same space (or sample of material), under extreme
conditions of hot vs. cold; the canonical ‘cooling’ maps s∗X → s!X gives further partial
information about the specific nature of the substance of X”.
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As far as we know only two examples of the canonical intensive quality were calculated
explicitly. That of the cohesive topos of finite reversible reflexive graphs [3, Section V]
and that of the pre-cohesive topos of reflexive graphs [4]. Our purpose in the present
paper is to give an elementary proof of the existence of the canonical intensive quality,
and to describe it concretely in other examples of (pre-)cohesion.

In Section 2 we introduce a strengthening of the notion of local map that is opposite
to quality types. We call them intensive maps. In Section 3 we recall the definition of
Leibniz object [4] (going back to [3, Theorem 2]) and then use it to prove, in Section 4,
that every local and hyperconnected geometric morphism p : E → S has an ‘extremal’
factorization p = qs with s intensive and q a quality type. Following [3], the direct image
of s will be called the canonical intensive quality of p. In Section 6 we show that if p is
moreover essential then so is s. It will then be clear that our result is a strengthening of
[3, Theorem 2]. The rest of the paper is devoted to examples.

In Section 7 we show that if the canonical p : Ĉ → Set is pre-cohesive then the codomain
of s : Ĉ → L is also a presheaf topos. We actually show that Ĉ → L is induced by a quo-
tient C → D of categories that we describe explicitly. In Section 8 we illustrate the con-
nection between Weil algebras and the Leibniz core of representable objects in the Gaeta
topos associated to the field of complex numbers. The results about presheaf toposes are
lifted to the level of Grothendieck toposes in Section 9. Indeed, we construct explicit sites
for the relevant L, but we also observe that the resulting sites need not be subcanonical.
So we explore this phenomenon by constructing a subcanonical site in the case of a cohe-
sive toposes described. This gives an interesting illustration of the subtle passage from E
to L.

2. Intensive geometric morphisms

Among other things, Johnstone’s analysis [2] of the Nullstellensatz condition formulated
in [3] points to certain subtle strengthenings of the concept of hyperconnected geometric
morphism. Specifically, it follows from [2, Lemma 2.3] that for any local, connected and
essential geometric morphism, the Nullstellensatz condition is equivalent to the ‘points’
functor being ‘faithful on maps with discrete codomain’. Part of the argument generalizes
as explained below. (For the explanation, bear in mind the definition of conservative
functor as considered, for example, in [1]; that is, faithful and isomorphism-reflecting.)

Let F : C → D and G : D → C ′ be functors. We say that G is faithful on maps with
codomain in the image of F if for every A in C and u, v : X → FA in D, Gu = Gv in C ′
implies u = v. For brevity we say that G is F -faithful.

Similarly, we say that G preserves coequalizers of maps with codomain in the image of
F if for every A in C and coequalizer diagram in D as on the left below

X
u //

v
// FA

q // Q GX
Gu //

Gv
// G(FA)

Gq // GQ

the fork on the right above is a coequalizer in C ′.
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2.1. Lemma. If p : E → S is a connected geometric morphism then, p∗ : E → S is p∗-
faithful if and only if p is hyperconnected and p∗ preserves coequalizers of maps with
codomain in the image of p∗.

Proof. An immediate consequence of [12, Lemma 2.4].

If p : E → S is local then it is connected and the direct image preserves all colimits so,
in this case, p is hyperconnected if and only if p∗ is p∗-faithful. On the other hand, [12,
Example 2.3] gives a simple example showing that hyperconnectedness is strictly weaker
than the equivalent conditions of Lemma 2.1.

Let F : C → D and G : D → C ′ be functors as before. We say that G reflects isomor-
phism with codomain in the image of F if, for every A in C and u : X → FA in D, Gu an
isomorphism in C ′ implies that u is an isomorphism in D.

2.2. Lemma. If p : E → S is a connected geometric morphism then the following are
equivalent:

1. The direct image p∗ : E → S reflects isomorphisms with codomain in the image of
p∗.

2. For any X in E, if the counit βX : p∗(p∗X)→ X of p has a retraction then βX is
an isomorphism.

Also, if these conditions hold then p is hyperconnected.

Proof. Assume that the first item holds and let r : X → p∗(p∗X) be a retraction of βX .
As p is connected, p∗βX is an isomorphism. So p∗r is an isomorphism and, using our
assumption, we may deduce that r is an isomorphism.

For the converse let A in S and let u : X → p∗A be such that p∗u is an isomorphism.
Then the top map in the naturality square

p∗(p∗X)

β

��

p∗(p∗u) // p∗(p∗(p
∗A))

β

��
X u

// p∗A

is an isomorphism and, as p is connected, the right vertical map is also an isomorphism.
So β has a retraction and hence, by hypothesis, it is an isomorphism. Therefore u is an
isomorphism.

Assume now that the equivalent conditions hold and let the diagram left square below
be a pullback

K

π0

��

π1 // p∗(p∗X)

β

��

p∗K

p∗π0

��

p∗π1 // p∗(p
∗(p∗X))

p∗β

��
p∗(p∗X)

β
// X p∗(p

∗(p∗X))
p∗β

// p∗X
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so the right square above is a pullback. As p is connected, p∗βX is an isomorphism, so
p∗π0 and p∗π1 are isomorphisms. Then π0 and π1 are isomorphisms by hypothesis, so βX
is monic.

2.3. Definition. A geometric morphism p : E → S is intensive if it is connected and it
satisfies the equivalent conditions of Lemma 2.2.

Intensive morphisms are opposite to quality types in the following sense.

2.4. Lemma. If p : E → S is both intensive and a quality type then p is an equivalence.

Proof. If p is a quality type then φ : p∗ → p! is an isomorphism. In particular, by
Lemma 1.1, φp∗ = ηXβX is an isomorphism for every X in E . That is, βX is split monic
so, as p is intensive, βX is an isomorphism for every X. Hence, both the unit and the
counit of p are isomorphisms.

We will prove in Theorem 4.3 that every local hyperconnected geometric morphism
factors as an intensive one followed by a quality type.

3. Leibniz objects

Fix a geometric morphism p : E → S with counit denoted by β.

3.1. Lemma. If p is connected and p∗ is p∗-faithful then, for every X in E, the counit
p∗(p∗X)→ X has at most one retraction.

Proof. Let u, v : X → p∗(p∗X) be retractions of βX : p∗(p∗X)→ X. As p∗β is an iso-
morphism and p∗ is p∗-faithful, u = v.

Assume from now on that p is connected and p∗ is p∗-faithful.
As in the case of pre-cohesive geometric morphisms, we think of the objects of E as

spaces and the objects of S as sets. The inclusion p∗ : S → E may be identified with
the inclusion of the full subcategory of discrete spaces and, for that reason, we may call
β : p∗(p∗X)→ X the discrete core of X.

3.2. Definition. An object X in E is Leibniz if βX : p∗(p∗X)→ X has a retraction.

Intuitively, a space is Leibniz if it has no figures that substantiate cohesion between
different points. Indeed, such an object should present no obstacle for a retraction onto
its discrete subspace of points. Consistent with this intuition is the idea that a Leibniz
object may be pictured as a collection of ‘infinitesimal blobs’, each blob with exactly one
point. For example, for the pre-cohesive ∆̂1 → Set, the Leibniz reflexive graphs are the
graphs such that each connected component has exactly one node. Each node may have
non-trivial loops. In the topos ∆̂ of simplicial sets, an object L is Leibniz if and only if
every element of s ∈ L[n] has exactly one node, that is, for every two maps k, l : [0]→ [n],
s · k = s · l.

Examples aside, the above intuition suggests that discrete objects and objects with
only one point should be Leibniz.
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3.3. Lemma. The following hold:

1. For every A in S, p∗A is Leibniz.

2. For every X in E, if p∗X = 1 then X is Leibniz.

3. If X is Leibniz then the retraction X → p∗(p∗X) is universal from X to p∗ : S → E.

Proof. Discrete objects are Leibniz because βp∗A : p∗(p∗(p
∗A))→ p∗A is an isomorphism

for every A in S.
For X in E , if p∗X = 1 then the discrete core p∗(p∗X)→ X has an evident retraction.
Assume now that X is Leibniz and that r : X → p∗(p∗X) is the unique retraction for

βX : p∗(p∗X)→ X. For any f : X → p∗A, the diagram on the left below commutes

p∗X

p∗r

��
id

&&

p∗f

**

X

r

��

f

((
p∗(p

∗(p∗X))
p∗β
// p∗X p∗f

// p∗(p
∗A) p∗(p∗X)

β
// X

f
// p∗A

using again that p∗β is an isomorphism (with retract p∗r). So the diagram on the right
above commutes because p∗ is p∗-faithful. As p∗ : S → E is fully faithful, r has the correct
universal property.

The full subcategory of Leibniz objects will be denoted by s∗ : L → E .
Observe that item 3 in the previous lemma produces a natural transformation r : s∗ →

p∗p∗s
∗ : L → E , retraction of β · s∗.

3.4. Lemma. The composite functor q∗ = p∗s
∗ : L → S has a left adjoint q∗ : S → L such

that the following diagram commutes

E Ls∗oo

S

p∗

OO

q∗

??

and, moreover, q∗ is also right adjoint to q∗.

Proof. As discrete objects are Leibniz (Lemma 3.3) there exists a unique functor q∗ : S → L
such that the triangle in the statement commutes. Moreover, the following calculation

L(q∗A,X) ∼= E(s∗(q∗A), s∗X) ∼= E(p∗A, s∗X) ∼= S(A, p∗(s
∗X))

shows that the composite p∗s
∗ : L → S is right adjoint to q∗.

Lemma 3.3 provides the first step in the following sequence of natural isomorphisms

E(s∗L, p∗A) ∼= S(p∗(s
∗L), A) = S(q∗L,A)

with L in L and A in S; but we also have

L(L, q∗A) ∼= E(s∗L, s∗(q∗A)) = E(s∗L, p∗A)

so the result follows.
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Hence, if L were a topos, then q : L → S would be a quality type. For instance, the
comment after [3, Theorem 2] implies that for a pre-cohesive p : E → S satisfying sufficient
completeness conditions, L is indeed a topos.

3.5. Lemma. Assume that p = gc with c : E → G and g : G → S. If c is connected and g
is a quality type then c∗ : G → E factors through s∗ : L → E.

Proof. It is not hard to show that the retraction of β · c∗ = βcc
∗ · c∗βgc∗c∗ is c∗φ−1

g g∗c∗c
∗ ·

c∗ηgc∗c
∗ · c∗αc, where αc is the unit of c∗ a c, ηg the unit of g∗ a g!, φg the arrow that

witnesses that g is a quality type, ηg is the unit of g∗ a g! and βc and βg are the counits
of c∗ a c∗ and g∗ a g∗ respectively.

4. The canonical intensive quality

Let p : E → S be a local and hyperconnected geometric morphism. As observed after
Lemma 2.1, it follows that p∗ is p∗-faithful so we may consider the subcategory s∗ : L → E
of Leibniz objects discussed in Section 3.

For any X in E we let the following square

ΛX

λX

��

λ′X // p∗(p∗X)

φp∗X
��

X η
// p!(p∗X)

be a pullback. Notice that λX : ΛX → X is monic because φ is. We call λX the Leibniz
core of X. The terminology is justified by the next result.

4.1. Lemma. For every X in E the following hold:

1. The map p∗λ : p∗(ΛX)→ p∗X is an isomorphism in S.

2. ΛX is Leibniz.

3. X is Leibniz if and only if λ : ΛX → X is an isomorphism.

Proof. As p∗ preserves finite limits, p∗λ is the pullback of p∗φ along p∗η, but p∗φ is an
isomorphism by Lemma 1.1. To prove the second item observe that p∗p∗λX = λ′ · βΛX

(apply p∗p∗ to the pullback square that defines ΛX, thus writing p∗pλ in terms of λ′, φ
and (p∗η)−1, use the definition of φ in terms of β and ε and that p∗p∗β = βp∗p∗). Thus as
a retraction of βΛX we have p∗(p∗λ)−1 · λ′X .

If λX is an isomorphism then X is Leibniz by the second item. To prove the converse
assume r : X → p∗(p∗X) is a retraction of βX witnessing that X is Leibniz. Lemma 1.1
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implies that the diagram on the left below commutes

p∗(p∗X)

β

��
id

%%
φp∗

**

β // X

η

��

X

η
##

r // p∗(p∗X)

φp∗
��

X r
// p∗(p∗X)

φp∗

// p!(p∗X) p!(p∗X)

and, as βX : p∗(p∗X)→ X is dense (w.r.t. the subtopos p∗ a p!) and p!(p∗X) is a sheaf,
the triangle on the right above commutes. Then, the pullback property defining ΛX
implies that λ : ΛX → X has a section. So, as it is monic, λ is an isomorphism.

The intuition may be better described by a quotation from [4] (with a minor adjust-
ment in notation): “The Leibniz Core of a space X is the union ΛX of all its generalized
points; this is obtained as the right adjoint of the inclusion functor from the subcategory
of those spaces that look like clouds of Leibnizian monads. The more general figures that
substantiate cohesion between points are omitted in the reduction from X to ΛX, but
each point may have self-cohesion (which is retained in ΛX)”.

The assignment X 7→ ΛX is clearly functorial and the resulting functor Λ : E → E
preserves finite limits because the functors p∗, p∗ and p! preserve finite limits and ΛX is
built as a finite limit. It is also easy to check that λX : ΛX → X is natural in X.

4.2. Lemma. The pair (Λ, λ) is a cartesian idempotent comonad on E with monic counit
λ. Moreover, the full subcategory of coalgebras coincides with s∗ : L → E. Hence, L is a
topos and, moreover s∗ is the inverse image of an intensive geometric morphism s : E → L.

Proof. By Lemma 4.1, λΛ : Λ(ΛX)→ ΛX is an isomorphism. If we define the comul-
tiplication as λ−1

Λ : ΛX → Λ(ΛX) then it is straightforward to check that (Λ, λ, λ−1
Λ ) is

a comonad. Coassociativity follows from naturality of λ and the counit axiom follows
because, as λ is monic, λΛ = Λλ : Λ(ΛX)→ ΛX.

Lemma 4.1 implies that X is a coalgebra if and only if X is Leibniz. That is, L is
the topos of coalgebras for (Λ, λ) and s∗ : L → E is the inverse image of a hyperconnected
geometric morphism s : E → L with counit λ. To prove that s is intensive let X in E and
assume that λX : s∗(s∗X) = ΛX → X has a retraction, say, r. Then the functor p∗ sends
the composite

X r // ΛX
λ′X // p∗(p∗X)

βX // X

to the identity (use the fact that p∗r = (p∗λ)−1, that composed with p∗λ
′ is (p∗ϕ)−1

p∗X
· p∗η

and that βp∗ · ϕp∗ = εp∗); since p∗ is p∗-faithful, r is mono, thus λX is an isomorphism

4.3. Theorem. If p : E → S is a local hyperconnected geometric morphism then there
exists a factorization p = qs with s connected and q a quality type which is ‘extremal’ in
the sense that: for any factorization p = gc with c connected and g a quality type, the full
subcategory c∗ of E factors through s∗. Moreover, s is intensive and s∗ coincides with the
full subcategory of Leibniz objects of p.
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Proof. Let s∗ : L → S be the full subcategory of Leibniz objects. Lemma 3.4 implies
that q : L → S is a quality type. Also, as the diagram on the left below commutes

E Ls∗oo E
p∗
��

s∗ // L

q∗��
S

p∗

OO

q∗

??

S

the diagram on the right above also commutes. That is, p = qs : E → S. Lemma 4.2
implies that s is intensive and Lemma 3.5 implies that the factorization p = qs is ‘ex-
tremal’.

Notice that s∗ preserves finite coproducts because hyperconnected morphisms are pure
[1, C3.4.12(ii)] so s∗ is an intensive quality in the sense of Definition 1.4. Following [3],
we call s∗ : E → L the canonical intensive quality of p.

5. Leibniz objects and codiscrete objects

Let p : E → S be a hyperconnected and local geometric morphism and let s : E → L be
its canonical intensive quality. The presence of codiscrete objects allow us to say a few
more things about Leibniz objects.

Intuitively, points of codiscrete objects in E lack self-cohesion and, therefore so do
their subobjects. Hence, if we omit the “more general figures that substantiate cohesion
between points” we should get a discrete object. The next result makes this argument
precise.

5.1. Corollary. If X in E is separated for the subtopos p∗ a p! then s∗s∗X is discrete.

Proof. Let X ∈ E be separated for p∗ a p!. By Lemma 1.1 we have that the following
square

p∗p∗X X

p∗p∗X p!p∗X

βX //

1p∗p∗X ��
ηX
��

φp∗X

//

commutes. Since ηX is monic (because X is separated), it follows that the above square
is a pullback. Thus s∗s∗X ' p∗p∗X is discrete.

Let Ω be the subobject classifier of E . Intuitively, it is unlikely that there will be much
self-cohesion around ⊥ : 1→ Ω. On the other hand, consider the ‘Leibnizian monad’
around > : 1→ Ω. That is, consider the following pullback diagram

J Ω

p!p∗1 p!p∗Ω

//

! ��
ηΩ
��

p!p∗>
//
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in E . Notice that the subobject J → Ω is the well-known classifier of dense subobjects
(w.r.t. p∗ a p!). Taking points of the above pullback square (i.e. applying p∗) we may
conclude that p∗J → p∗p

!p∗1 = 1 is an iso, so J is Leibniz by Lemma 3.3.
Intuition suggests that if J → Ω is to classify something non trivial then there must

be some non trivial cohesion in the Leibnizian monad J . Indeed:

5.2. Corollary. The following are equivalent:

1. s∗s∗Ω is discrete.

2. J is terminal.

3. p : E → S is an equivalence.

4. q : L → S is an equivalence.

Proof. Notice first that, as J is Leibniz, we have a monomorphism J ∼= s∗(s∗J)→ s∗(s∗Ω).
To prove that the first item implies the second assume that s∗s∗Ω is discrete. Since

subobjects of discrete objects are discrete, the monic J → s∗(s∗Ω) implies that J is dis-
crete and hence terminal.

The second item implies the third because if J is terminal then the only dense subob-
jects are identities and so every object is a sheaf. That is, p! : S → E is an equivalence.

The third item trivially implies the fourth. Finally, if q : L → S is an equivalence then
every Leibniz object is discrete. In particular, s∗(s∗Ω) is discrete.

For the rest of the section we assume that the reader is familiar with De Morgan
toposes [1, Section D4.6]. During CT2017 in Vancouver, the first author presented some
of the results in this paper. At the same meeting, D. J. Myers proposed to the authors the
conjecture that the topos L of Leibniz objects associated to a pre-cohesive topos (over
a base S) is De Morgan. The intuition he transmitted was using reflexive graphs: for
any subobject of a Leibniz graph, its Heyting complement must contain all loops around
the underlying points, therefore it must have a Boolean complement. Before the meeting
ended we offered Myers a proof of the conjecture under the assumption that the base S is
Boolean. We present below an improvement of that result, with a slightly more efficient
proof.

5.3. Lemma. For any hyperconnected geometric morphism g : G → S the following hold:

1. If G is De Morgan then so is S.

2. If the subobject classifier of G is Leibniz and S is De Morgan then G is De Morgan.

3. If g is a quality type then, G is De Morgan if and only if S is.
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Proof. To prove the first item notice that SubG(g
∗A) ' SubS(A) by A4.6.6 in [1]. So S

is De Morgan.
To prove the second item we use that g∗ preserves the subobject classifier (again A4.6.6

in [1]). So, as S is De Morgan by hypothesis, 2 is a retract of g∗Ω in S. Then 2 is a
retract of g∗(g∗Ω) in G. As Ω is Leibniz, g∗(g∗Ω) is a retract of Ω in G. Composing the
retracts we obtain that 2 is a retract of Ω in G. That is, G is De Morgan.

If g is a quality type then every object is Leibniz by Lemma 1.1 so the third item
follows from the other two.

Let us say that an object X in a topos is De Morgan if and only if the Heyting algebra
of subobjects of X is actually a De Morgan algebra. It is well-known that a topos is De
Morgan if and only if every object in it is De Morgan.

5.4. Proposition. Let p : E → S be local and hyperconnected. Then L is De Morgan if
and only if S is. Moreover, in this case, Leibniz objects are De Morgan.

Proof. By Theorem 4.3, q : L → S is a quality type so we may apply Lemma 5.3 to
conclude that L is De Morgan if and only if S is. In this case, every object X in L is De
Morgan, so s∗X is De Morgan because s is hyperconnected.

6. Essentiality of the canonical intensive quality

Let p : E → S be local and essential. We continue with the notation in earlier sections
and we also let σ and τ be the unit and counit of p! a p∗.

6.1. Lemma. The two composites below

p∗
τ−1
p∗ // p!p

∗p∗
p!β // p! p∗

p∗σ // p∗p
∗p!

α−1
p! // p!

are equal. The resulting transformation is denoted

θ : p∗ → p!

and the following diagrams

p∗p∗

p∗θ ""

β // 1E

σ

��

p∗p
∗

θp∗ ""

α−1
// 1S

τ−1

��
p∗p! p!p

∗

commute.

Proof. Analogous to Lemma 1.1. See [3, 2].
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Lemma 1.2 above and Lemma 2.3 in [2] imply that, p is hyperconnected if and only if
φ : p∗ → p! is monic if and only if θ : p∗ → p! is epic.

Assume for the rest of the section that the local and essential p : E → S is also hyper-
connected.

The following result confirms that the canonical intensive quality of p coincides with
that described in [3, Theorem 2].

6.2. Lemma. For any X in E, X is Leibniz if and only if θ : p∗X → p!X is an isomor-
phism.

Proof. If θ : p∗X → p!X is an isomorphism then, using Lemma 6.1, it is easy to check
that the transposition X → p∗(p∗X) of θ−1 : p!X → p∗X is a retract of β : p∗(p∗X)→ X.

On the other hand, if r : X → p∗(p∗X) is a retract of the discrete core β : p∗(p∗X)→ X
then p∗r : p∗X → p∗(p

∗(p∗X)) is an isomorphism. So, in the following commutative
square,

p∗X

θ
��

p∗r // p∗(p
∗(p∗X))

θp∗

��
p!X p!r

// p!(p
∗(p∗X))

the top map is an iso. Also, the right vertical map is an iso by Lemma 6.1, so the left
vertical map is monic.

The next construction is borrowed from the proof of [3, Theorem 2]. Let X in E and
define X by declaring that the following square

p∗(p∗X)

βX
��

p∗θX // p∗(p!X)

t1
��

X
t0

// X

is a pushout in E .

6.3. Lemma. The object X is Leibniz.

Proof. As p∗ preserves pushouts the following square

p∗p
∗p∗X

p∗βX
��

p∗p∗θX // p∗p
∗p!X

p∗t1
��

p∗X p∗t0
// p∗X
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is a pushout. Since p∗βX is an iso, we conclude that p∗t1 is an iso. On the other hand,
Lemma 6.1 tells us that the exterior of the diagram

p∗p∗X

βX
��

p∗θX // p∗p!X

t1
�� 1p∗p!X

��

X
t0

//

σX ..

X
t

$$
p∗p!X

commutes. So there exists a unique t : X → p∗p!X such that the above diagram commutes.
Then p∗t is a retraction of p∗t1, and this latter map is an iso, thus p∗t is an iso. The

retraction of βX is the composite X
t
// p∗p!X p∗αp!X

// p∗p∗p
∗p!X p∗p∗t1

// p∗p∗X.

6.4. Proposition. For every X the map t0 : X → X is universal from X to s∗ : L → E.

Proof. Let X be an object in E . Lemma 6.3 tells us that X is Leibniz. To prove that
it is universal from X to s∗ : L → E let L be a Leibniz object and l : X → L be a map
in E . It is enough to prove that there exists a unique map l′ : p∗(p!X)→ L such that the
diagram below

p∗(p∗X)

βX
��

p∗θX // p∗(p!X)

l′

��
X

l
// L

commutes. Uniqueness follows because p∗θ is epic. For existence just take

p∗(p!X) p∗(p!L) p∗(p∗L) L
p∗(p!l) //

p∗θ−1
L // βL //

and confirm that the square above commutes.

We denote the left adjoint by s! : E → L.
To summarize, we state the following improvement of Theorem 2 in [3].

6.5. Theorem. If p : E → S is an essential, hyperconnected and local geometric mor-
phism then the intensive part of its canonical intensive/quality-type factorization is also
essential.

Proof. This is the combination of Theorem 4.3 and Proposition 6.4.
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Let us also mention a relevant fact related to s! : E → L. Intuitively, s! forces cohesion
between points into self-cohesion. It does not omit any cohesion. So, roughly speaking, if
s!X is discrete then X should be discrete.

6.6. Corollary. For any object X in E, X is discrete if and only if s∗(s!X) is discrete.

Proof. Let us recall that the following diagram

p∗(p∗X)

β

��

p∗θ // p∗(p!X)

t1
��

X
t0

// s∗(s!X)

is a pushout by the definition of s∗(s!X). (Notice that the square is also a pullback
because the left vertical map is monic.)

Assume first that X is discrete, so the left map in the square is an isomorphism. Then
so is the right map, which means that s∗(s!X) is in the image of p∗ : S → E .

Recall from the proof of Lemma 6.3 that p∗t1 is an isomorphism and notice that since
the following diagram commutes

p∗p∗p
∗p!X

p∗p∗t1
��

β // p∗p!X

t1
��

p∗p∗s
∗s!X β

// s∗s!X

and the span is made of isos, β : p∗p∗s
∗s!X → s∗s!X is an iso if and only of t1 is an iso.

So, if we assume that s∗s!X is discrete then t1 is an isomorphism and so X is discrete
because the first square is a pullback.

Let us call an object X in E boolean if every subobject of X has a complement.

6.7. Proposition. Boolean objects in E are discrete. So, if E is Boolean as a category,
then p is an equivalence.

Proof. If X is Boolean in E then we can take the complement c : C → X of the discrete
core p∗(p∗X)→ X and, clearly, X is discrete if and only if C is initial. As p∗ : E → S
preserves coproducts, the following diagram

p∗(p
∗(p∗X))

p∗β // p∗X p∗C
p∗coo

is a coproduct in S. Since the left leg is an iso, p∗C is initial and so C is initial because,
as p is hyperconnected essential, p∗ reflects 0 (see [11, Lemma 3.1]).
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The intuition is appealing: a topos ‘of spaces’ is unlikely to be Boolean because if you
take the complement of a point then you are likely to miss the ‘infinitesimals around the
point’.

6.8. Corollary. If L is Boolean then q : L → S is an equivalence (so p is an equiva-
lence).

Proof. The geometric morphism q : L → S is pre-cohesive so we may apply Proposi-
tion 6.7 to conclude that q is an equivalence. Then p is an equivalence by Corollary 5.2.

One may wonder if the hyperconnected essential s : E → L is pre-cohesive. The an-
swer, in general, is ‘no’, as the following examples show. First, let us consider the question
of whether s : E → L may be local.

6.9. Example. [s∗ does not preserve coequalizers in general] Consider the pre-cohesive

topos p : ∆̂1 → Set. Let A be the (representable) reflexive graph consisting of a single
arrow between two different nodes. The object A has two points ⊥,> : 1→ A. Their
coequalizer A→ D collapses the two nodes into one, and the arrow into a loop. On the
other hand, s∗A→ s∗D = D is not epic, because s∗A = 1 + 1.

Even is s : E → L is not local in general, one may also wonder if s! preserves finite
products.

6.10. Example. [s! does not preserve products in general] Consider again the pre-

cohesive topos p : ∆̂1 → Set and the single arrow A. The graph A× A has 5 non-identity
arrows and hence, so does s!(A× A). On the other hand, s!A× s!A has three non-trivial
arrows. Therefore, the canonical s!(A× A)→ s!A× s!A cannot be an iso.

7. The case of pre-cohesive presheaf toposes

In this section we discuss the canonical intensive quality of a pre-cohesive presheaf topos.
Fix a small category C with terminal object and such that every object has a point, so
that the canonical geometric morphism p : Ĉ → Set is local, hyperconnected and essential
(and, in fact, pre-cohesive).

7.1. Lemma. Let s : Ĉ → L be the canonical intensive quality. Then, for any X in Ĉ, the
counit s∗(s∗X)→ X may be identified with

(s∗(s∗X))C = {x ∈ XC | for all a, b : 1→ C, x · a = x · b} → XC

for every C ∈ C.

Proof. Follows from the explicit construction of s∗ in Section 4.
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Lemma 7.1 shows that we can easily calculate the ‘Leibniz core’ of a presheaf, but this
gives no immediate information on the nature of L. We show below that L is a presheaf
topos and make some related observations.

For any f, g : C ′ → C we write f ∼ g if both maps are constant (in the sense that
they factor through the terminal object). Write ≡ for the congruence on C generated by
∼. Let D = C/≡ and r : C → (C/≡) = D be the resulting quotient. This functor induces

a hyperconnected geometric morphism r : Ĉ → D̂, and D̂ is identified via r∗ with the
full subcategory of Ĉ that consists of the functors that respect this congruence. (See [1,
A4.6.9].)

7.2. Lemma. For any X in Ĉ, the following are equivalent:

1. The counit r∗(r∗X)→ X is an iso.

2. For every h, h′ : 1→ C in C and x ∈ XC, x · h = x · h′.

Proof. For any f, g : C ′ → C define f ∼= g if f = g or f ∼ g. We want to show that ∼=
is the relation ≡ generated by ∼. It suffices to show that ∼= is a congruence. Consider a
not necessarily commutative diagram

C0
a // C ′

f //
g
// C b // C1

with f ∼= g. If f = g then clearly bfa = bga. If f and g are constant then so are bfa and
bga and hence bfa ∼= bga. Therefore ∼= is a congruence and its simple description implies
that it is the least one containing ∼.

7.3. Proposition. The canonical intensive quality of the pre-cohesive geometric mor-

phism p : Ĉ → Set is r : Ĉ → Ĉ/≡.

Proof. By 7.1 and 7.2 we obtain that L and Ĉ/≡ can be identified with the subcategory
of those functors Cop → Set that satisfy the condition: for every h, h′ : 1→ C in C and
x ∈ XC, x · h = x · h′.

Applying Proposition 7.3 to ∆1 one obtains the concrete description of the canonical
intensive quality of the topos of reflexive graphs discussed in [4]. Similarly for the case
dealt with in [3]. For an arbitrary small C the quotient C/≡ may not be so easy to
visualize. On the other hand, a little experience with the simpler pre-cohesive toposes in
algebraic geometry suggests the possibility of more informative descriptions of the Leibniz
cores of certain objects. We first argue abstractly.

Following [9, Definition 5.5], a map f : B → C in C is pseudo-constant if fa = fb for
every a, b : 1→ B. A little figure (of C) is a map with codomain C whose domain has
exactly one point. (Of course, every little figure is pseudo-constant.) The category C is
said to have enough little figures if every pseudo-constant B → C factors through a little
figure of C.
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7.4. Lemma. If C has enough little figures then, for every C in C, the Leibniz core of
C( , C) is the sieve generated by the little figures of C.

Proof. Lemma 7.1 implies that the Leibniz core of C( , C) is the sieve of pseudo-
constants.

Let C! → C be the full subcategory of objects with exactly one point. If C has enough
little figures, [9, Lemma 5.9] shows that Ĉ! → Ĉ is the largest subtopos f : F → Ĉ of Ĉ
such that pf is a quality type. So Lemma 7.4 suggests interesting connection between the
canonical intensive quality (of p) and level ε (of p) to be studied elsewhere.

There is a further aspect that appears in practice but was not treated in [9]. Namely,
the possibility that every little figure B → C factors as B → B′ → C with B → B′ epic
and B′ → B a monic little figure. In this case, it follows from Lemma 7.4 that the Leibniz
core of C( , C) is the sieve generated by the monic little figures of C. In the next section
we discuss a conspicuous concrete example.

8. The case of the complex Gaeta topos

Let Ring be the category of rings, let C be the field of complex numbers. Let C be the
opposite of the category of finitely generated C-algebras with exactly two idempotents.
It is well-known, that Ĉ → Set is pre-cohesive and classifies C-algebras with exactly two
idempotents. (It is also well-known that Ĉ is the Gaeta topos of C.) It follows from [9,
Theorem 7.7] that C has enough little figures.

As in the previous section we denote by C! → C the full subcategory of the objects
that have exactly one point. The opposite of the category C! is equivalent to the category
of Weil algebras (over C), that is, the local and finitely generated C-algebras. See [9,
Lemma 6.2] and references therein.

8.1. Lemma. If L→ D is an epimorphism in C and L is in C! then so is D.

Proof. We prove a slightly more general dual statement: Any finitely generated subal-
gebra of a Weil algebra is Weil. (This result is mentioned in passing in Weil’s classical
paper.) Let W be a Weil algebra and let γ : W → C be the quotient by the nilradical.
For any w ∈ W , w = γw + (w − γw) and γ(w − γw) = 0 trivially. Hence, every w ∈ W
is of the form w = γw + n for some nilpotent n.

Let f : A→ W be monic in C/Ring. For every a ∈ A, fa = γ(fa) + n for some
nilpotent n ∈ W . Trivially, f(a− γ(fa)) = fa− γ(fa) = n so, as f is injective, a− γ(fa)
is nilpotent. Then, a = γ(fa) + (a− γ(fa)) is the sum of an invertible and a nilpotent
and is therefore invertible. To summarize, f reflects invertible elements.

Let m ⊆ A be the restriction of the nilradical of W . If x ∈ A but x 6∈ m then fx ∈ W
is not nilpotent, so it is invertible and hence x is invertible. In other words, the non-
invertibles of A form a prime ideal. Then A is local.
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In C, every map factors as an epic followed by a regular monomorphism. So, if L→ C
is a little figure of C in C then we can factor it and, by Lemma 8.1, the regular-monic part
is also a little figure of C. So, by the comments at the end of Section 7, the Leibniz cores
of representables are generated by the (regular-)monic little figures of the representing
object.

8.2. Proposition. In the Gaeta topos of C, the Leibniz core of the generic model, i.e. the
representable by C[x], is dually generated by the quotients C[x]→ W with Weil codomain.

Of course, there is an analogue for any finite set of generators.

9. The case of pre-cohesive Grothendieck toposes

Given a geometric morphism g : F → E between pre-cohesive toposes (over some base),
it is natural to wonder if g restricts to a geometric morphism L(F)→ L(E) between the
respective quality types. We will see that this question is relevant for the more ‘concrete’
problem of calculating sites for codomains of intensive qualities. In any case, we give here a
sufficient condition for g to restrict as above. This sufficient condition is formulated using
pieces-preserving geometric morphisms as introduced in [8]. We assume some familiarity
with that paper.

9.1. Proposition. Let

F E

S

g //

f
��

p
��

be a diagram of toposes and geometric morphisms, where

(i) g∗f∗ = p∗;

(ii) f and p are connected, essential and hyperconnected.

(iii) p∗ inverts the unit of g.

1. If g∗ preserves S-indexed coproducts, then g∗ preserves and reflects Leibniz objects.

2. If g preserves pieces, then g∗ preserves and reflects Leibniz objects. Thus, if further-
more f and p are local, g restricts to a geometric morphism h : L(F)→ L(E) over
S.

3. If, moreover, g : F → E is a subtopos, then the top-right composite in the commu-
tative diagram below (in the category of toposes and geometric morphisms)

F
g

��

// L(F)

h
��

E s
// L(E)
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is the surjection/inclusion factorization of the left-bottom composite.

Proof. We stick to the notation of Section 6 of [8]. Assume first that g∗ preserves
S-indexed coproducts. We next prove that the diagram

p∗

p∗g∗g
∗ f∗g

∗ f!g
∗

p!

p∗ν

OO

θ
//

θg∗ //

%

��

commutes. Indeed, the diagram

p∗

p∗g∗g
∗

f∗g
∗ f!g

∗ f!g
∗p∗p! f!f

∗p!

p!

f∗g
∗p∗p! f∗f

∗p!

p∗g∗g
∗p∗p! p∗p

∗p!p∗p
∗p!

p∗ν

OO

p∗σ //

θ

33

θg∗ //
f∗g∗σ

))

f!g
∗σ //

τp!

��

θg∗p∗p!

55
θf∗p!

22

α−1
p!

''(p∗νp∗p!
)−1

//
α−1
p! //

p∗νp∗p! //

commutes. Since g∗ preserves S-indexed coproducts, % is an iso (Lemma 6.4 in [8]), and
p∗ν is assumed to be an iso. Thus, for Y ∈ E , θY is an iso if and only if θg∗Y is an iso. It
follows that g∗ : E → F restricts to a functor L(E)→ L(F).

Assume now that g preserves pieces. Let X ∈ L(F ). Then in the commutative
diagram

p∗g∗X p!g∗X

f∗X f!X

θg∗X //

λX

��

θX

//

of Proposition 6.12 in [8], applied to X, we know that λ is an iso. Thus θX is an iso if
and only if θg∗X is an iso. Clearly, when f and p are local, L(E) and L(F) are toposes by
Theorem 6.5, and the restriction g∗ : L(E) → L(F) preserves finite limits, so g restricts
to a geometric morphism h : L(F)→ L(E).

Finally, assume that g : F → E is a subtopos. The restriction result shows that the
diagram on the left below commutes

L(E)

s∗

��

h∗ // L(F)

t∗

��

F
t

��

g // E
s

��
E

g∗
// F L(F)

h
// L(E)
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where t : F → L(F) is the canonical intensive quality of F and h∗ is the restriction of
g∗. It follows that the diagram on the right above commutes in the category of toposes;
but h∗ is the restriction of the full and faithful g∗ so it is also full and faithful. That is,
h : L(F)→ L(E) is a subtopos. Since t is a surjection, the result follows.

For example, for n ≥ 1, we have that

∆̂n ∆̂

Set

g //

f %%
p
��

(where g∗ : ∆̂→ ∆̂n is truncation of simplicial sets at level n) satisfies the conditions
(i)-(iii) of Proposition 9.1. Furthermore g preserves pieces (so, in particular, g∗ preserves

Set-indexed coproducts). We thus obtain a geometric morphism L(∆̂n)→ L(∆̂). This of
course could have been done directly since Leibniz on both categories means that every
connected component has exactly one point.

Fix now a site (C, J). We recall the following definition (see [2] for instance).

9.2. Definition. The site (C, J) is locally connected if each J-covering sieve on C is
connected as a full subcategory of C/C. If furthermore C has a terminal object, then we
say that (C, J) is connected and locally connected.

Assume from now on that C has a terminal object and that every object has a point.
Assume also that J is a coverage making (C, J) into a (connected and) locally connected

site. It follows from [2] that both p : Ĉ → Set and f : Sh(C, J)→ Set are pre-cohesive.
We thus have the following situation

Sh(C, J) Ĉ

Set

g //

f
��

p
��

with both f and p pre-cohesive and g the canonical geometric morphism. So conditions
(i) and (ii) of Proposition 9.1 are satisfied. We observe that (iii) is also satisfied.

9.3. Lemma. The functor p∗ inverts the unit of g∗ a g∗ : Sh(C, J)→ Ĉ.

Proof. Let P ∈ Ĉ. Then the unit of the adjunction is the composite

P → P+ → (P+)+

where P+ is Grothendieck’s +-construction. Thus it will be sufficient to show that the
map p∗(P → P+) is an isomorphism. We know that p∗ is evaluation at 1. Thus we have
to check that

P1→ lim//S∈J(1)
Ĉ(S, P )
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is an iso. Let S ∈ J(1). Since (C, J) is locally connected, S is non-empty. So take
(f : C → 1) ∈ S. Now, taking a point 1→ C, we see that 11 : 1→ 1 is an element of S,

so the only element of J(1) is the maximal sieve. Thus lim//S∈J(1)
Ĉ(S, P ) = Ĉ(C(−, 1), P ) ∼=

P (1).

We may now prove the main result of the section.

9.4. Theorem. Let (C, J) be a connected and locally connected site such that every object
in C has a point. Let C/≡ be the category that results from identifying all the points, and
let r : C → C/≡ be the quotient functor. If r+J is the largest topology on C/≡ such that
r reflects covers, then

L(Sh(C, J)) ' Sh(C/≡, r+J).

Proof. Lemma 7.7 in [8] implies that the geometric morphism g : Sh(C, J)→ Ĉ is pieces
preserving so, by Lemma 9.3, we may apply Proposition 9.1 to conclude that the canonical
intensive quality Sh(C, J)→ L(Sh(C, J)) is the surjective part of the factorization of the
composite

Sh(C, J) // Ĉ s // L(Ĉ)

in the category of toposes. Proposition 7.3 shows that s may be identified with the

geometric morphism r : Ĉ → Ĉ/≡ induced by r : C → C/≡. By Lemma C2.3.19 in [1],
r+J is the coverage on C/≡ corresponding to the image of the composite

Sh(C, J) // Ĉ r // Ĉ/≡

so the result follows.

Since it relates to the applicability of Theorem 9.4, it is important to recall, also from
Lemma C2.3.19 in [1], that r+J has a very simple description. Indeed, a sieve S on C in
the category C/≡ is in (r+J)C if and only if the sieve

{g : dom g → C in C|r(g) ∈ S}

is in JC.

10. The case of a cohesive Grothendieck topos

Recall from [10] the example where the category is L of intervals and linear functions
between them, with the topology given by a base K formed of all the families of inclusions
from a partition of an interval. Recall that the canonical Sh(L,K)→ Set is cohesive (see
Section 10 in loc. cit.). Based on these ideas, [13] determines a whole family of monoids
of continuous endomorphisms of the unit interval that produce models of cohesion. Since
the argument that follows is basically the same in both cases, we deal here with the latter
one.
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Thus, in this section M denotes the category of closed real intervals induced by a
suitable submonoid M of the monoid of continuous endomorphisms of the unit interval
[0, 1], such that every function in M is unilateral, with the Grothendieck topology K of
finite intervals, as in [13], and we produce a subcanonical site of definition for the Leibniz
category L(Sh(M, K)) associated with the cohesive geometric morphism Sh(M, K) →
Set.

Recall that a continuous endomorphism f of the unit interval is unilateral if for any
t ∈ [0, 1] there is an ε > 0 such that the function f − f(t) does not change sign in the
interval [t, t+ ε] ∩ [0, 1] and does not change sign in the interval [t− ε, t] ∩ [0, 1].

Given a submonoid M of the monoid of continuous endomorphisms of the unit interval
[0, 1] that contains all the linear endomorphisms, [13] shows that the following defines a
subcanonical site: the category M has as objects all the real closed intervals [a, b] (a, b ∈ R,
a ≤ b), and as morphisms all the piecewise M -functions (a function f : [a, b] → [c, d] is
an M-function if it can be written in the form

[a, b] [0, 1] [0, 1] [c, d],
m

where the arrows on both extremes are linear functions, and m ∈ M). A continuous
function f : [a, b]→ [c, d] is a piecewise M-function if there is a partition a = r0 < · · · <
rn = b such that the restriction of f to every [ri, ri+1] is an M -function.

A basis K of a Grothendieck topology on M is given by finite partitions: K([a, a]) =
{1[a,b]} for any a ∈ R, and for a < b in R, K([a, b]) consists of those families

{[rj−1, rj] [a, b]|1 ≤ j ≤ n}

determined by partitions a = r0 < · · · < rn = b of [a, b]. Then (M, K) is a subcanonical
site and Sh(M, K) is a cohesive topos over Set (see Theorem 2.8 in [13]).

According to Theorem 9.4 we have that a site of definition for L(Sh(M, K)) is given
by (M/≡, r+K), where r : M → M/≡ is the canonical functor. So we could use
Giraud’s theorem (see the appendix of [7]) to obtain a subcanonical site of definition
for L(Sh(M, K)) by taking the full subcategory of Sh(M/≡, r+K) whose objects are
sheafifications of the presheaves represented by objects in M/≡, and give this category
the topology that consists of those families that are epimorphic in Sh(M/≡, r+K). The
process does not produce an explicit description of the site, but we next observe the
following two facts. On the one hand, if F : M/≡→ Sh(M/≡, r+K) denotes Yoneda
followed by sheafification, then the topology given by epimorphic families coincides with
the topology F+(r+K), and on the other, every representable functor is separated for this
topology. One can then take the category whose objects are the objects of M/≡, and as
arrows from [a, b] to [c, d], the set

Sh(M/≡, r+K)([a, b]+, [c, d]+),
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where [a, b]+ := (M/≡ (−, [a, b]))+ is Grothendieck’s plus construction applied to the
presheaf represented by [a, b]. But now

Sh(M/≡, r+K)([a, b]+, [c, d]+) ' [c, d]+([a, b]),

so it is clear that what one must understand is compatible families of arrows. Since we
have identified all the points in M/≡ and the coverings are determined by partitions, the
condition of being compatible trivializes.

This last observation suggests a more incisive direct description of essentially the same
subcanonical site for L(Sh(M, K)) for a suitable monoid M as follows.

We first require that the monoid M satisfy the following two conditions:

1. Every m ∈M is either constant or strictly monotone.

2. For every pair of M -functions f : [a, b] → [c, d], g : [a′, b′] → [c, d] with a <
a′ < b < b′ and f |[a′,b] = g|[a′,b] : [a′, b] → [c, d], the unique continuous function
h : [a, b′]→ [c, d] that restricts to f on [a, b] and to g on [a′, b′] is also an M -function.

There may be milder conditions on M for which the following reasoning works, but
we still have plenty of monoids M that satisfy these conditions: for instance the monoid
M of functions that are either constant or strictly monotone.

Consider the following category OI.
The objects of OI are open real intervals (a, b) with a ≤ b in R (so ∅ ∈ OI).
The morphisms f : (a, b)→ (c, d) in OI are partial functions that satisfy the following

conditions:

a) the set of points where f is defined is of the form
⋃m
i=1 Ii, with m ∈ N, where {Ii}mi=1

is a disjoint family of non-empty open subintervals of (a, b), and

b) for every i ∈ {1, . . . ,m}, f |Ii : Ii → (c, d) is a restriction of a strictly monotone
M -function Ii → [c, d] where Ii is the closure of Ii.

Composition in OI is defined as the usual composition of partial functions. One must
of course show that such a composite satisfies the conditions expressed above, a task we
leave to the reader.

Given f : (a, b) → (c, d) in OI, we define the M-saturation f : (a, b) → (c, d) of f as
follows. The partial function f is defined at a point t ∈ (a, b) if there exist x < t < y such
that f is defined on [x, t) and on (t, y] and f |[x,t)∪(t,y] can be extended to an M -function
l : [x, y] → [c, d] (and observe that l turns out to be strictly monotone); in such a case
we define f(t) = l(t). It is not hard to see that f is a morphism in OI, that the set of
points where f is defined is the union of the set where f is defined and a set with a finite
number of points, and that for any t ∈ (a, b), f(t) = f(t) when the latter is defined. We
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have below an example (of the graph) of an f in OI:
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and (the graph) of its M -saturation f :
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(assuming of course that the right end t of J2 is the left end of J3, and that we can
fill in the point “f(u)” in such a way that the resulting function on J2 ∪ {t} ∪ J3 is an
M -function).

10.1. Lemma. For any f : (a, b)→ (c, d) and g : (c, d)→ (u, v) in OI, we have that

gf = gf = gf.

Proof. We show first that gf = gf .
Let t ∈ (a, b) be such that gf is defined at t. There exist x, y ∈ R such that x < t < y,

gf is defined on [x, t)∪ (t, y], and an M -function l : [x, y]→ [u, v] that agrees with gf on
(x, t)∪ (t, y). Then it is clear that gf satisfies these same conditions. Thus gf(t) = gf(t).

Assume now that gf is defined at t ∈ (a, b). There are x < t < y such that gf is defined
on [x, t) ∪ (t, y] and an M -function l : [x, y]→ [u, v] that agrees with gf on [x, t) ∪ (t, y].
This means that f is defined on [x, t) ∪ (t, y], and for every s ∈ [x, t) ∪ (t, y], g is defined
on f(s). Observe that f(x, t) is an open subinterval of (c, d), and that the number of
points at which g is defined but g is not, is finite. Thus, increasing x if necessary, we may
assume that g is defined on f(x, t). We similarly may assume that g is defined on f(t, y).
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In this way gf is defined on [x, t)∪ (t, y] and agrees with l : [x, y]→ [u, v] there. Thus gf
is defined at t and gf(t) = gf(t).

This completes the proof that gf = gf . The proof that gf = gf is similar, and is left
to the reader.

The lemma allows us to define the following category OIs. The objects of OIs are the
same as those of OI. A morphism f : (a, b) → (c, d) in OIs is a morphism f : (a, b) →
(c, d) in OI that is M -saturated (i.e. f = f). The composition of f : (a, b) → (c, d) and
g : (c, d)→ (u, v) in OIs is given by the formula

gf : (a, b)→ (u, v).

The fact that this defines a category follows from the observation that the identities in
OI are M -saturated, and the following calculation

hgf = hgf = hgf

for composable f, g, h ∈ OIs.
Now we can consider any piecewise M -function as a morphism in OIs: for f : [a, b]→

[c, d] with a < b, take the minimal partition a = r0 < · · · < rn = b such that every f |[ri,ri+1]

is an M -function; take as domain of the morphism in OIs those (ri, ri+1) at which f is
not constant, and define the partial function as f in those intervals. For a = b there is
only one possible function to consider. This clearly defines a functor F : M→ OIs where
F ([a, b]) = (a, b) on objects. The next lemma gives us a more concrete description of the
topology F+K.

10.2. Lemma. F+K(∅) consists only of the maximal sieve, and for a < b, R ∈ F+K((a, b))
if and only if there is a partition a = r0 < · · · < rk = b of [a, b] such that for every
i ∈ {1, . . . , k}, the inclusion (ri−1, ri) // // (a, b) belongs to R.

Proof. Let S ∈ F+K(∅). Since ∅ is a zero object in OIs, to show that S is the maximal
sieve it suffices to show that S is non-empty. But since 1∅ : F1 → ∅ and ∅ /∈ K1,
this is clear. Take now a < b real numbers. Let R ∈ F+K((a, b)). Since we have
1(a,b) : F ([a, b])→ (a, b), then we have that

{g : X → [a, b]|F (g) ∈ 1∗(a,b)R = R} ∈ K([a, b]).

There is, therefore, a partition 0 = s0 < · · · < sk = 1 of [a, b] such that for every
i ∈ {1, . . . , k}, the inclusion fi : [si−1, si] → [a, b] is such that F (fi) ∈ R. But F (fi) is of
course the inclusion (si−1, si) // // (a, b).

Assume now that a sieve R on (a, b) satisfies the condition given on the statement of
the lemma. We must show that for every f : FX → (a, b) in OIs we have that

{g : Y → X|F (g) ∈ f ∗R} ∈ K(X).

For X = 1 this is clear since R is non-empty. So assume that X = [c, d] with c < d.
So now f : (c, d) → (a, b) is an M -saturated partial function, where the set of points



276 F. MARMOLEJO AND M. MENNI

at which f is defined is of the form
⋃m
j=1 Ij, where the union is disjoint, for every j,

Ij is an open subinterval of (c, d), and f |Ij : Ij → (a, b) is a strictly monotone M -
function. This means that there is a partition c = s0 < · · · < sm = d such that for
every j ∈ {1, . . . ,m}, f |(sj−1,sj) : (sj−1, sj) → (a, b) is either the empty partial function
or it is a strictly monotone function defined everywhere on (sj−1, sj). In the first case, if
ιj : [sj−1, sj] // // [c, d] denotes the inclusion, we have that f ◦ F (ιj) is the empty partial
function, and thus it belongs to R. In the second case consider the partition of [sj−1, sj]
given by {sj−1, sj}∪f−1({r0, . . . , rk}). If u < v are two consecutive points in this partition,
then the inclusion ι : [u, v] // // [c, d] is such that f ◦ F (ι) factors through some inclusion
(ri−1, ri) // // (a, b), and thus it belongs to R. We conclude that R ∈ F+K((a, b)).

10.3. Proposition. The site (OIs, F+K) is subcanonical and the geometric morphism

Sh(M, K)→ Sh(OIs, F+K)

induced by F is the canonical intensive quality of the cohesive Sh(M, K)→ Set.

Proof. We begin by showing that the site (OIs, F+K) is subcanonical.
Clearly OIs(−,∅) = 1, so it is a sheaf.
Let a < b be real numbers. We must show that OIs(−, (a, b)) is a sheaf. So let c, d be

real numbers with c ≤ d and let S ∈ F+K((c, d)). By Lemma 10.2, S is generated by a
family of the form

{ιi : (ri−1, ri) // // (c, d)|c = r0 < · · · < rk = d}.

A compatible family for S is now just a family

{fi : (ri−1, ri) // // (a, b)|i ∈ {1, . . . , k}},

(compatibility is automatic). If we put all these fi together, we obtain a partial function
f : (c, d) → (a, b). The amalgam of the given family is f . Uniqueness of the amalgam
follows from the fact that r0 < · · · < rk is a partition of (c, d).

Now, the functor F : M→ OIs clearly identifies all the points in M. Thus there is a
unique functor G : M/≡ → OIs such that

M M/≡

OIs

r //

F ""
G
��

commutes. Observe that F+K = G+(r+(K)) (use the description of ( )+ in terms of
images given in the proof C2.3.19(ii)). The functor G : M/≡ → OIs is faithful. In fact,
G induces an isomorphism of categories between M/≡ and the subcategory D of OIs
whose objects are of the form (a, b); and whose arrows are all the arrows that begin or
end at ∅, and those arrows f : (c, d) → (a, b) (with c < d and a < b) that are defined
everywhere, plus the empty partial function (c, d)→ (a, b). Once we transfer the coverage
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r+K from M/≡ to D, we observe that this coverage on D coincides with (F+K)D (see
C2.2.2). D is clearly a F+K-dense subcategory of OIs (see C2.2.1). So an application of
the Comparison Lemma (see C2.2.3) produces the equivalence with the canonical intensive
quality.

It follows that the functor induced on sheaves by R is essentially the geometric mor-
phism given by the Leibniz category Sh(Lp, H+K) → L(Sh(Lp, H+K)). Thus we know
that there is an extra left adjoint. One advantage of having subcanonical sites is that this
extra left adjoint has a simple form.

10.4. Proposition. The geometric morphism s : Sh(M, K) → Sh(OIs, F+K) induced
by r : M→ OIs is the canonical intensive quality of the cohesive Sh(M, K)→ Set, and
the diagram

ÔIsM̂

Sh(OIs, F+K)Sh(M, K)

r! //

s!
//

OO OO

commutes, where the vertical arrows are the corresponding inclusions.

Proof. We prove something a bit more general. Assume that we have a functor F : C →
D and a topology K on C. Thus we have a geometric morphism Sh(C, K)→ Sh(D, F+K)
induced by a functor F : C → D, where (C, J) is a site. Assume that composing with F ,
F ∗ : Sh(D, F+K)→ Sh(C, K), has a left adjoint F!, and that both sites are subcanonical.
Then F! preserves representables as the usual calculation

F!(C(−, C)) Y

C(−, C) Y · F
Y (FC)

D(−, FC) Y

//

//

//

shows, for C ∈ C, Y ∈ Sh(D, K), using, of course, that both sites are subcanonical. This
last fact gives us the following formula for F! since it preserves colimits, and every object
in the domain is a canonical colimit of representables:

F!(X) = lim//C(−,C)→XD(−, FC),

for X ∈ Sh(C, J). That is, the diagram

Ĉ D̂

Sh(C, J) Sh(D, F+J)

F! //

F!

//

OO OO

commutes, where the vertical arrows are inclusions.
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The fact that s! preserves representables allows us to obtain, for example, a very con-
crete expression of the “supercooling” of the unit interval M(−, [0, 1]), namely OIs(R(−), (0, 1)),
and also of the corresponding counit M(−, [0, 1])→ s∗s!(M(−, [0, 1])), namely

R : M(−, [0, 1])→ OIs(R(−), (0, 1)).
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