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ACTION REPRESENTABILITY OF THE CATEGORY OF
INTERNAL GROUPOIDS

MARINO GRAN AND JAMES RICHARD ANDREW GRAY

Abstract. When C is a semi-abelian category, it is well known that the category
Grpd(C) of internal groupoids in C is again semi-abelian. The problem of determining
whether the same kind of phenomenon occurs when the property of being semi-abelian
is replaced by the one of being action representable (in the sense of Borceux, Janelidze
and Kelly) turns out to be rather subtle. In the present article we give a sufficient
condition for this to be true: in fact we prove that the category Grpd(C) is a semi-abelian
action representable algebraically coherent category with normalizers if and only if C
is a semi-abelian action representable algebraically coherent category with normalizers.
This result applies in particular to the categories of internal groupoids in the categories
of groups, Lie algebras and cocommutative Hopf algebras, for instance.

1. Preliminaries

In this paper C will always denote a semi-abelian category (in the sense of Janelidze, Márki
and Tholen [27]), usually satisfying some additional axioms. Recall that a category C is
semi-abelian if it is

� finitely complete, finitely cocomplete and pointed, with zero object 0;

� (Barr)-exact [1];

� (Bourn)-protomodular [5], which in the pointed case can be expressed by the validity
of the Split Short Five Lemma in C.

There are plenty of interesting algebraic categories which are semi-abelian. For example,
any variety of algebras whose algebraic theory has among its operations and identities
those of the theory of groups is semi-abelian (see [11] for a precise characterization). As
a consequence, the categories Grp of groups, Ab of abelian groups, Rng of (not necessarily
unitary) rings, LieR of Lie algebras over a commutative ring R, XMod of crossed modules
(of groups), are all semi-abelian categories. In addition any category of compact Hausdorff
models of a semi-abelian algebraic theory [3], such as the category Grp(Comp) of compact
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Hausdorff groups, is semi-abelian, as is also the category HopfK,coc of cocommutative Hopf
algebras over a field K [19]. The dual category Setop∗ of the category Set∗ of pointed sets
is semi-abelian [27]. Other examples can be derived from the fact that the category of
internal groupoids in a semi-abelian category is semi-abelian [9].

In any semi-abelian category C there is a natural notion of centrality of arrows [25, 8]
(in fact weaker assumptions on the base category can be required [2], but in this work
we shall always ask C to be at least semi-abelian). Given two morphisms f : A→ B and
g : C → B with the same codomain, they are said to commute in the sense of Huq [25] if
there is a (necessarily unique) arrow c : A× C → B making the diagram commute

A
(1A,0) //

f ""

A× C
c

��

C
(0,1C)oo

g
||

B,

where (1A, 0) and (0, 1C) are the unique morphisms induced by the universal property of
the product A× C. When this is the case the unique arrow c : A× C → B is called the
cooperator of f and g. One usually writes [f, g]Huq = 0, or simply [f, g] = 0, when this is
the case. Given two subobjects f : A → B and g : C → B with the same codomain, the
Huq commutator [f, g], usually denoted by [A,C] (if there is no risk of confusion), is the
smallest normal subobject D of B with the following universal property: in the quotient
π : B → B

D
the regular images π(A) and π(C) (of f : A → B and g : C → B along π)

commute in the sense above.
Given a morphism f : A → B in a semi-abelian category C we will denote by zf :

ZB(A, f) → B the centralizer of f in B, i.e. the terminal object in the category of
morphisms that commute with f , whenever it exists (see e.g. [12, 20]). In this case zf
is always a monomorphism, and we write ZB(A, f) or ZB(A) (when there is no risk of
confusion) for the corresponding subobject of B. For a monomorphism f : A → B the
normalizer of f is the terminal object in the category with objects triples (N, n,m) where
n is a normal monomorphism and m a monomorphism such that mn = f [21].

Recall that a split extension is a diagram in C

X κ // A
α // B
β
oo (1)

where κ is the kernel of α and αβ = 1B. A morphism of split extensions is a diagram in
C

X κ //

u
��

A
α //

v
��

B
β

oo

w
��

X ′ κ′ // A′
α′
// B′

β′
oo

where the top and bottom rows are split extensions (the domain and codomain, respec-
tively), and vκ = κ′u, vβ = β′w and wα = α′v. Let us write SplExt(C) for the category
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of split extensions in C, and write P,K : SplExt(C)→ C for the functors sending a split
extension to its codomain and to the (object part of the) kernel, respectively. The cat-
egory C can be equivalently defined to be action representable, in the sense of Borceux,
Janelidze, Kelly [4] when each fiber of the functor K has a terminal object. This means
that for each X in C there exists a split extension

X
k // [X] nX

p1 // [X],
i

oo

called the generic split extension with kernel X, with the universal property that there
exists a unique morphism to it from each split extension in the fiber K−1(X), that is, there
is a unique morphism, which is the identity on kernels, to it from each split extension (1)
with kernel X:

X κ // A
α //

��

B
β

oo

��
X k // [X] nX

p1 // [X].
i

oo

For instance, in the category Grp of groups, the generic split extension with kernel a group
X is given by the split extension

X k // Aut(X) nX
p1 // Aut(X),
i

oo

where Aut(X) is the group of automorphisms of X and the action of Aut(X) on the group
X is given by the evaluation.

More generally, for X an object in C, a split extension in K−1(X) is called faithful if
there is at most one morphism to it from each split extension in K−1(X). The category C
is called action accessible [12] if for each X in C each split extension in K−1(X) admits a
morphism to a faithful split extension in K−1(X). The category C is algebraically coherent
[15] when the change of base functors of fibers of P preserve joins. This is equivalent (in
the pointed protomodular context) to requiring that for each cospan of monomorphisms
of split extensions

X1
κ1 //

u1
��

A1

α1 //

v1
��

B
β1
oo

X κ // A
α // B
β

oo

X2
κ2 //

u2

OO

A2

α2 //

v2

OO

B
β2
oo

if the morphisms v1 and v2 are jointly strongly epimorphic in C, then so are the morphisms
u1 and u2. Recall that a semi-abelian algebraically coherent category C with normalizers
has the following properties:
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� C is action accessible [12] (see also [22]), and hence centralizers of normal monomor-
phisms exist and are normal (Proposition 5.2 of [10]).

� Huq commutators distribute over joins of subobjects [23]: given three subobjects
A1 → C, A2 → C and B → C of the same object C the Huq commutator satisfies
the following identity:

[A1 ∨ A2, B] = [A1, B] ∨ [A2, B].

� The Jacobi identity holds for normal subobjects (Theorem 7.1 [15]): if K,L,M are
normal subobject of an object C, then

[K, [L,M ]] ≤ [[K,L],M ] ∨ [[M,K], L]. (2)

� a split extension in C
X

κ // A
α // B
β
oo

is faithful if and only if ZA(X, κ) ∧B = 0 (see [7] Corollary 4.1).

2. Reflexive graphs and groupoids

Recall that a reflexive graph in C is a diagram

G
σ //

τ
// G0eoo (3)

in C such that σe = 1G0 = τe. Equivalently, when C has equalizers, a reflexive graph can
be defined as a triple (G, s : G → G, t : G → G) where st = t and ts = s. Indeed, the
second form is obtained from the first by setting s = eσ and t = eτ . On the other hand
the first form is obtained from the second by choosing e : G0 → G to be the equalizer of
s and 1G and constructing σ and τ via the universal property of this equalizer.

When C is a semi-abelian action accessible category, an internal groupoid in C can be
equivalently presented as a triple (G, s : G → G, t : G → G) with st = t and ts = s such
that, moreover, the commutator of the kernels of s and t is trivial:

[ker(s), ker(t)] = 0. (4)

This follows from the results in [13, 12] (the Smith commutator and the Huq commutator
coincide in this context) and from the fact that

[ker(σ), ker(τ)] = [ker(s), ker(t)] = 0,

since e is a monomorphism.
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The category of groupoids in C is then equivalent to the category whose objects are
triples (G, s : G→ G, t : G→ G) as above with [ker(s), ker(t)] = 0, and arrows

f : (G, s : G→ G, t : G→ G)→ (H, s′ : H → H, t′ : H → H)

those f : G → H in C such that s′f = fs and t′f = ft. Observe that this alternative
presentation of the notion of internal groupoid can be seen as a generalization of the
notion of 1-cat group (in the sense of [28]) to the semi-abelian context.

With a slight abuse of notation, since C will always be assumed to be semi-abelian,
from now on we shall write Grpd(C) for this latter equivalent category, and also call its
objects internal groupoids. We shall also denote by ker(s) : ∗G→ G and ker(t) : G∗ → G,
the kernel of s : G→ G and t : G→ G, respectively. The notation ∗G for the domain of
the kernel of s intuitively reminds one of the fact that its “elements” are the (internal)
arrows of G whose “source” is the “zero element in G”, whereas the arrows in G∗ have
as “target” this same “zero element”. We shall also simply write [∗G,G∗] to denote the
commutator [ker(s), ker(t)].

The remaining part of this section consists largely of a series of lemmas building up
to our main results: Theorems 2.8 and 2.10, and Corollary 2.12. Recall that in a pointed
protomodular category for a split extension (1) the object A is the join of X and B in
A. Indeed, if S is a subobject of A containing X and B, then there are monomorphisms
u : X → S, v : B → S and m : S → A such that κ = mu and β = mv. This easily implies
that u is the kernel of αm, which is a split epimorphism with section v. The split short
five lemma now implies that m is an isomorphism and hence A ≤ S. Let us also recall
the following known result (see Lemma 2.6 in [14]):

2.1. Lemma. Let C be a semi-abelian category. Consider a split extension as in the
bottom row of the diagram

K //

k
��

K ∨ Z //

��

Zoo

X x
// Y

f // Z
s

oo

in C, with the property that xk : K → Y is a normal monomorphism. Then this split
extension lifts along k : K → X to yield a normal monomorphism of split extensions,
where K ∨ Z is the join of the subobjects K and Z of Y .

2.2. Lemma. Let C be a semi-abelian action accessible category. For each split extension

X
κ // A

α // B
β
oo

of internal reflexive graphs, there exists a largest sub-reflexive-graph B̃ of B such that
[∗B̃,X∗] = 0 = [B̃∗, ∗X] in C.
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Proof. We will show that

B̃ = ((ZA(∗X, κ ker(s)) ∧B∗) ∨B0) ∧ ((ZA(X∗, κ ker(t)) ∧ ∗B) ∨B0)

is the largest sub-reflexive-graph of B satisfying the desired property. Since any subobject
of B containing B0 (the “object of objects” of the reflexive graph B) is a sub-reflexive
graph of B, we know that B̃ is a sub-reflexive-graph of B. To see that it satisfies the
desired property let Z1 = ZA(∗X, κ ker(s)) ∧ B∗, and note that, since ∗X = X ∧ ∗A, it
follows that ∗X is a normal subobject of A and hence so is ZA(∗X, κ ker(s)). Accordingly,
Z1 is a normal subobject of B, and this implies that (Z1 ∨B0)∗ = Z1 - just note that we
are in the situation of Lemma 2.1, with Y = B, X = B∗ and Z = B0. From this we then
deduce that

B̃∗ ≤ (Z1 ∨B0)∗ = Z1 ≤ ZA(∗X, κ ker(s)).

A similar argument shows that ∗B̃ ≤ ZA(X∗, κ ker(t)). Now, let B′ be a sub-reflexive-
graph of B satisfying the desired property. Clearly B′∗ ≤ B∗ and B′∗ ≤ ZA(∗X, κ ker(s)),
and hence

B′∗ ≤ ZA(∗X, κ ker(s)) ∧B∗.

Since B′0 ≤ B0 and B′ = B′∗ ∨ B′0 (by protomodularity), it follows that B′ = B′∗ ∨ B′0 ≤
(ZA(∗X, κ ker(s)) ∧ B∗) ∨ B0. By exchanging the roles of s and t of the internal reflexive
graphs, we have that

B′ ≤ (ZA(X∗, κ ker(t)) ∧ ∗B) ∨B0,

from which the claim easily follows.

2.3. Lemma. Let C be a semi-abelian action accessible algebraically coherent category.
For each split extension

X κ // A
α // B
β
oo

of internal reflexive graphs, if X is a groupoid and

[∗B,X∗] = 0 = [B∗, ∗X],

then
[X, [A∗, ∗A]] = 0.

Proof. Note that since C is protomodular we have A∗ = X∗∨B∗ and ∗A = ∗X∨∗B. Note
that trivially [X,B∗] ≤ X, but also that [X,B∗] ≤ A∗ meaning that [X,B∗] ≤ X ∧ A∗ =
X∗. We have

[X,A∗] = [X,X∗] ∨ [X,B∗]

≤ X∗ ∨X∗ = X∗.
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Therefore

[∗A, [X,A∗]] ≤ [∗A,X∗]

= [∗X,X∗] ∨ [∗B,X∗]

= 0,

where the last equality follows from the equality [∗X,X∗] = 0 (since X is a groupoid) and
the assumption [∗B,X∗] = 0.

This and its dual (i.e. swapping s and t) mean that

[A∗, [X, ∗A]] = 0 = [∗A, [X,A∗]].

The Jacobi identity (2) now implies that

[X, [A∗, ∗A]] ≤ [[X,A∗], ∗A] ∨ [A∗, [X, ∗A]] = 0.

2.4. Lemma. Let C be a semi-abelian action accessible algebraically coherent category.
For each split extension

X
κ // A

α // B
β
oo

of internal reflexive graphs. If X and B are groupoids and

[∗B,X∗] = 0 = [B∗, ∗X],

then A is a groupoid.

Proof. We have

[A∗, ∗A] = [X∗ ∨B∗, ∗X ∨ ∗B]

= [X∗, ∗X] ∨ [X∗, ∗B] ∨ [B∗, ∗X] ∨ [B∗, ∗B]

= 0.

As follows from Theorem 2.1 of [24] if C admits centralizers, I is a finite category, and
f : A→ C is a morphism in the functor category CI, then the centralizer of f exists. In
addition, it follows from the same theorem that if g : B → C is the centralizer of f and
X is an object in I, then B(X) together with the morphism gx : B(X) → C(X) can be
constructed as follows:

For each morphism i : X → Y in I let wi : Wi → C(X) be the preimage of the
centralizer of fY along C(i) as displayed in the pullback

Wi
wi //

ĩ
��

C(X)

C(i)
��

ZC(Y )(C(X), fY ) zfY
// C(Y ).
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The pair (B(X), gX) is then the product of the objects (Wi, wi) in the comma category
(C ↓ C(X)). Note that if I is the monoid (considered as a one object category) with iden-
tity element e and generated by s and t satisfying st = t and ts = s, then CI is essentially
the category of reflexive graphs in C. Applying the above mentioned construction to this
special case we obtain:

2.5. Lemma. Let C be a semi-abelian category admitting centralizers. If S is sub-reflexive-
graph of A, then the centralizer of S in A has underlying object Z∧s−1(Z)∧ t−1(Z) where
Z is the centralizer of the underlying subobject inclusion of S in A, and s−1(Z) and t−1(Z)
are the inverse images of Z along s and t, respectively.

2.6. Lemma. Let C be a semi-abelian action accessible algebraically coherent category. A
split extension

X κ // A
α // B
β
oo

of internal graphs is faithful if and only if

ZA(X, κ) ∧ s−1(ZA(X, κ)) ∧ t−1(ZA(X, κ)) ∧B = 0

in C.

Proof. Since according to Corollary 2.3 of [24] the category of internal reflexive graphs
in C is action accessible as soon as C is, the claim follows from the previous lemma via
the last bullet of Section 1.

2.7. Lemma. Let C be a semi-abelian action accessible algebraically coherent category.
For each faithful split extension

X κ // A
α // B
β
oo

of internal reflexive graphs, B is a groupoid if and only if

[X, [B∗, ∗B]] = 0

in C.

Proof. If B is a groupoid then this is trivially the case. The converse follows from Lemma
2.6 and the fact that [B∗, ∗B] is always in s−1(ZA(X, κ)) and t−1(ZA(X, κ)) (because
s([B∗, ∗B]) = 0 and similarly for t).

2.8. Theorem. Let C be a semi-abelian action accessible algebraically coherent category.
For each faithful split extension

X
κ // A

α // B
β
oo

of reflexive graphs with X a groupoid, there exists a largest sub-split-extension of groupoids
with kernel X.
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Proof. By Lemma 2.2 there is a largest sub-reflexive-graph B̃ of B such that [∗B̃,X∗] =
0 = [B̃∗, ∗X]. We will prove that the split extension at the top of the diagram

X
κ̃ // Ã

��

α̃ // B̃

��

β̃

oo

X
κ // A

α // B
β
oo

obtained by pulling back along B̃ → B is the desired split extensions of groupoids.
According to Lemma 2.3 [X, [Ã∗, ∗Ã]] = 0 which means that [X, [B̃∗, ∗B̃]] = 0. Therefore,
since a sub-split-extension of a faithful extension is faithful, it follows from Lemma 2.7
that B̃ is a groupoid. The final claim then follows from Lemma 2.4.

We will also need the following proposition which shows that a coreflective subcategory
closed under certain limits admits generic split extensions whenever the category it is
coreflective in does. Recall that a functor between pointed categories is protoadditive [17]
when it preserves split exact sequences.

2.9. Proposition. Let X and Y be semi-abelian categories, and let
I : X→ Y be a full and faithful protoadditive functor with right adjoint R : Y→ X. If Y
has generic split extensions, then so does X.

Proof. Suppose X is an object in X and suppose that

I(X) k // [I(X)] n I(X)
p1 // [I(X)]
i

oo

is the generic split extension with kernel I(X) in Y. Let η be the unit of the adjunction
I a R which is an isomorphism. The claim now follows by observing that (i) the lower part
of (6) (below) is a split extension; (ii) for each split extension (1) the upper part of (5)
(below) is a split extension, and the adjunction produces a bijection between morphisms
of split extensions of the form

I(X)
I(κ) // I(A)

��

I(α) // I(B)
I(β)

oo

��
I(X) k // [I(X)] n I(X)

p1 // [I(X)]
i

oo

(5)

in Y and morphisms of split extensions of the form

X
κ // A

��

α // B
β

oo

��
X

R(k)ηX // R([I(X)] n I(X))
R(p1) // R([I(X)])
R(i)
oo

(6)

in X.
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2.10. Theorem. A category C is a semi-abelian action representable algebraically coher-
ent category with normalizers if and only if the category Grpd(C) of internal groupoids in
C is a semi-abelian action representable algebraically coherent category with normalizers.

Proof. For the “if” part suppose that Grpd(C) is a semi-abelian algebraically coherent
category with normalizers. Noting that functor from C to Grpd(C), sending an object in
C to the discrete groupoid in Grpd(C) embeds C as a full reflective and coreflective sub-
category of Gpd(C) (closed in Grpd(C) under quotients and subobjects), it follows that C
is a semi-abelian algebraically coherent category with normalizers. Action representabil-
ity now follows from the previous proposition. For the “only if” part suppose that C is
a semi-abelian action representable algebraically coherent category with normalizers. It
follows from [21] that the category of reflexive graphs being a functor category is action
representable. For a groupoid X, applying the previous theorem to the generic split exten-
sion of reflexive graphs with kernel X it easily follows that the largest sub-split extension
of groupoids with kernel X is the generic split extension of groupoids with kernel X. The
fact that Grpd(C) is semi-abelian when C is semi-abelian follows from Lemma 4.1 in [9].
Proposition 4.18 of [15] now tells us that Grpd(C) is algebraically coherent, and hence
it remains to show that Grpd(C) has normalizers. However, by Corollary 2.3 of [24] the
category RG(C) of reflexive graphs in C has normalizers and hence so does Grpd(C) being
closed under subobjects and finite limits in RG(C).

2.11. Remark. Note that the “only if” part of the above theorem is known in the special
case when C is the category of groups. This goes back to the work of Norrie [29] whose
actors of crossed modules of groups are essentially the same, as shown by Ramasu in
[30], as split extension classifiers in the category of internal groupoids in the category of
groups. Let us also mention that Bourn has defined action groupoids whose existence are
equivalent to the existence of generic split extensions in the pointed protomodular context,
and has shown that each category of groupoids with “fixed object of objects” admits action
groupoids [6].

Recall that, for a non-negative integer n, the category Grpdn(C) of n-fold internal
groupoids can be thought of as the category of internal groupoids in Grpdn−1(C) when
n > 0, and be identified with C when n = 0. As an immediate corollary of the previous
theorem we obtain:

2.12. Corollary. If C is a semi-abelian action representable algebraically coherent cat-
egory with normalizers, then so is the category Grpdn(C) of n-fold internal groupoids in
C.

2.13. Examples. The results in this article apply to some important algebraic categories,
such as the categories Grpd(Grp), Grpd(LieR), or Grpd(HopfK,coc), of internal groupoids in
the categories of groups, Lie algebras over a commutative ring R, or cocommutative Hopf
algebras over a field K, respectively. For the fact that HopfK,coc is an action representable
semi-abelian category the reader is referred to [19], whereas the fact that it is algebraically
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coherent is explained in Example 4.6 in [15]. To see that HopfK,coc has normalizers recall
that:

(a) HopfK,coc is equivalent to the category Grp(CoalgK,coc) of internal groups in the finitely
complete cartesian closed category CoalgK,coc of cocommutative coalgebras over K;

(b) for a cartesian closed category X with finite limits: (i) Grp(X2) ∼= (Grp(X))2, (ii) X2

is cartesian closed;

(c) the category of internal groups in a cartesian closed category with finite limits is
action representable as soon as it is semi-abelian [4];

(d) a semi-abelian category is action representable and admits normalizers if and only if
its category of morphisms is action representable [21].

Using the equivalence between the categories of internal groupoids and (internal) crossed
modules [26], it follows that the categories of crossed modules of groups, n-cat groups
[28], crossed modules of Lie algebras, crossed n-cubes of Lie algebras [16], and cat1-
cocommutative Hopf algebras [18, 19] are all algebraically coherent action representable
semi-abelian categories with normalizers.
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