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PIVOTAL OBJECTS IN MONOIDAL CATEGORIES
AND THEIR HOPF MONADS

ARYAN GHOBADI

Abstract. A pair of objects (P,Q) in a monoidal category C, is called a pivotal pair
if there exist a family of duality morphisms, making Q both a left dual and a right dual
of P . We introduce the correct notion of morphisms between such pairs, and thereby
define the pivotal cover of a monoidal category. Given such a pair (P,Q), we construct
the category C(P,Q), of objects which intertwine with P and Q in a compatible manner
and show that C(P,Q) lifts the monoidal structure of C as well as the closed structure
of C, when C is closed. If C has suitable colimits, we construct a family of Hopf monads
which correspond to such pairs in C and present the resulting families of braided Hopf
algebras and Hopf algebroids, when C is a braided category or the category of bimodules
over a base algebra, respectively.

1. Introduction

Hopf monads were originally introduced as generalisations of Hopf algebras in braided
monoidal categories, from the setting of braided categories to arbitrary monoidal cate-
gories. In [Moerdijk, 2002], Hopf monads were defined as monads which lift the monoidal
structure of a monoidal category to their category of modules. These monads are now
referred to as bimonads or opmonoidal monads, whereas monads which lift the closed
structure of a closed monoidal category as well as its tensor, are called Hopf monads, ac-
cording to [Bruguieres u. a., 2011]. Initially, Hopf monads were defined for rigid monoidal
categories [Bruguieres und Virelizier, 2007] and many of the usual results about Hopf
algebras were extended to this setting. Additionally, Hopf monads have proved of par-
ticular importance in the study of tensor categories [Bruguières und Natale, 2011] and
topological field theories [Turaev und Virelizier, 2017]. However, in both settings the
categories in consideration are rigid. Although in [Bruguieres u. a., 2011], the theory of
Hopf monads was extended to arbitrary monoidal categories, many of the essential theo-
rems discussed in [Bruguieres und Virelizier, 2007] have not been extended to this general
setting. We believe this is partly due to the lack of examples which have been studied,
when the category is not rigid. Inspired from our work on bimodule connections and Hopf
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algebroids in [Ghobadi, 2020], under the setting of noncommutative differential geometry
[Beggs und Majid, 2020], in the present work, we study objects in arbitrary monoidal
categories, which have isomorphic left and right duals. We call these objects pivotal and
when provided with such a pivotal pair, P and Q, in a monoidal category C, we construct
the category of P and Q intertwined objects C(P,Q). The constructed category lifts the
monoidal structure of C and the closed structure of C, when C is closed. Consequently,
if C is closed and has suitable colimits, we construct a Hopf monad corresponding to
such a pivotal pair so that its Eilenberg-Moore category recovers C(P,Q). The merit of
this construction is that it does not require the category to be braided or even to have a
non-trivial center. We later show that C(P,Q) can be constructed as the dual of a cer-
tain monoidal functor and how our monad can also be recovered from the Tannaka-Krein
reconstruction of bimonads developed in the recent work [Shimizu, 2019].

In [Ghobadi, 2020], we construct a family of Hopf algebroids corresponding to first
order differential caluli. The modules of the Hopf algebroid recover a closed monoidal
subcategory of bimodule connections, however, the differential calculus must be pivotal
for the construction to work. We explain this ingredient in a much more general setting,
here. If C is a monoidal category and P an object in C, one can construct a category
of P -intertwined objects, whose objects are pairs (A, σ), where A is an object of C and
σ : A ⊗ P → P ⊗ A an invertible morphism. This category naturally lifts the monoidal
structure of C, in a similair fashion to the monoidal structure of the center of C. The
key feature in our construction is the following: if P is pivotal and we choose a dual,
Q, of P , then any invertible morphism σ induces two Q-intertwinings on the object A,
namely (5) and (6). In order to obtain a closed monoidal category, we must restrict to
the subcategory of pairs where these induced Q-intertwinings are inverse. We denote this
category, corresponding to the pivotal pair P and Q, by C(P,Q) and describe its monoidal
structure in Theorem 4.1. Our main results are Theorem 4.2 and Corollary 4.3, which
show that C(P,Q) lifts left and right closed structures on C, when they exist. We also
discuss the construction in the cases where C is rigid, Corollary 4.4, and when C has a
pivotal structure which is compatible with P and Q, Theorem 4.5.

Pivotal categories were introduced in [Yetter, 1992], under the name of sovereign cate-
gories, and their study is vital for topological field theories, [Turaev und Virelizier, 2017].
However, a study of individual objects in a monoidal category which have isomorphic
left and right duals has not been produced. In [Shimizu, 2015], the pivotal cover of a
rigid monoidal category was introduced, in connection with Frobenius-Schur indicators
discussed in [Ng und Schauenburg, 2007]. We introduce the pivotal cover Cpiv of an arbi-
trary monoidal category C, in Definition 3.5, from a different point of view which arose
in [Ghobadi, 2020], namely pivotal morphisms. The pivotal cover of a monoidal category
has pivotal pairs as objects, and suitable pivotal morphisms between them, so that any
strong monoidal functor from a pivotal category to the original category, factors through
the pivotal cover, Theorem 3.7. The construction in [Shimizu, 2015] requires all objects to
have left duals and a choice of distinguished left dual for each object i.e. for the category
to be left rigid, while our construction avoids these issue by taking pivotal pairs as objects
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of Cpiv.
The applications of our work are spread as examples throughout the article. In Sec-

tion 3, we observe that dualizable objects in braided categories, Frobenius bimodules, as
defined by Kadison [Kadison, 1999] and ambidextrous adjunctions are examples of pivotal
objects in monoidal categories. In Section 4.2 of [Ghobadi, 2020], we have presented sev-
eral other examples, in the format of differential calculi, where the space of 1-forms is a
pivotal object in the monoidal category of bimodules over the algebra of noncommutative
functions. We explain this setting briefly in Example 3.3. The Hopf monad constructed
in this case, becomes a Hopf algebroid, Example 5.9, which is a subalgebra of the Hopf
algebroid of differential operators defined in [Ghobadi, 2020]. Additionally, to construct
the sheaf of differential operators in the setting of [Ghobadi, 2020], we require the wedge
product between the space of 1-forms and 2-forms to be a pivotal morphism. A direct
consequence of Example 3.6 is that any bicovariant calculus over a Hopf algebra, satisfies
this condition.

In Remark 5.7, we note that for a finite dimensional vector space, the resulting Hopf
algebra becomes precisely a quotient of the free matrix Hopf algebra, NGL(n), discussed
in [Škoda, 2003]. In fact, any invertible n×n-matrix provides us with a pivotal pairing of
an n-dimensional vectorspace and thereby a Hopf algebra, Example 5.8. More generally,
in Theorem 5.4, we show that the Hopf monad constructed is augmented if and only if
the pair P and Q is a pivotal pair in the center of the monoidal category. Consequently,
using the theory of augmented Hopf monads from [Bruguieres u. a., 2011], we a construct
the braided Hopf algebra corresponding to every pivotal pair in the center of the monoidal
category.

We must also point out how our work can be interpreted in terms of [Shimizu, 2019].
Duals of monoidal functors were defined in [Majid, 1992], by Majid, as a generalisation
of the center of a monoidal category. Tannaka-Krein reconstruction for Hopf monads, as
described in [Shimizu, 2019], takes the data of a strong monoidal functor and produces
a Hopf monad whose module category, recovers the dual of the monoidal functor. In
Section 6.3, we briefly review these topics and show that pivotal pairs in a monoidal
category correspond to strict monoidal functors from the smallest pivotal category, which
we call Piv(1), into the category. From this point of view, one can recover the same Hopf
monad structure from the approach of Tannaka-Krein reconstruction. We also provide an
additional result concerning the pivotal structure of the dual monoidal category.

Lastly, we would like to remark that the Hopf monads constructed here should be
the simplest examples which generalise the theory of Hopf algebroids with bijective an-
tipodes, described in [Böhm und Szlachányi, 2004], to the monadic setting. As mentioned
earlier, many results on Hopf algebras have not yet been generalised to the setting of
Hopf monads. Similairly, there are several results, which have not been proved for gen-
eral Hopf algebroids, but are known to hold when the Hopf algebroid admits such an
antipode. Hence, a categorical characterisation of the antipode for Hopf monads, is es-
sential. Although antipodes for Hopf monads have been discussed in both the rigid setting
[Bruguieres und Virelizier, 2007] and the general setting [Böhm und Lack, 2016], neither
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cover the case of Hopf algebroids over noncommutative bases, which admit bijective an-
tipodes. When restricted to the category of bimodules over an arbitrary algebra, our
Hopf monads correspond to Hopf algebroids which in fact admit involutory antipodes,
Example 5.9.

Organisation: In Section 2, we review the theory of Hopf monads and braided Hopf
algebras and the necessary background on duals and closed structures in monoidal cat-
egories. In Section 3, we introduce the notion of pivotal objects and morphisms in an
arbitrary monoidal categories and introduce the pivotal cover. In Section 4, we construct
C(P,Q) and review some of its properties and in Section 5 we construct its corresponding
Hopf monad. In Section 6.1, we briefly discuss the generalisation of our work to arbitrary
pivotal diagrams and in Section 6.3 we provide an alternative description of C(P,Q) as the
dual of a monoidal functor. The proof of Theorem 4.2 requires several large commutative
diagrams which are presented in Section 7, at the end of our work.

2. Preliminaries

We assume basic categorical knowledge and briefly recall the theory of monads and
monoidal categories from [Mac Lane, 2013; Turaev und Virelizier, 2017] and the the-
ory of Hopf monad and bimonads from [Bruguieres u. a., 2011; Bruguieres und Virelizier,
2007].

2.1. Monads. A monad T on a category C, consists of a triple (T, µ, η), where T : C → C
is an endofunctor with natural transformations µ : TT → T and η : idC → T satisfying
satisfying µ(Tµ) = µµT and µTη = idT = µηT . Any monad gives rise to an adjunction
FT a UT : CT � C, where CT is the Eilenberg-Moore category associated to T . The
category CT consists of pairs (X, r), where X is an object of C with a T -action r : TX →
X, satisfying rµX = r(Tr) and rη = idX and morphims which commute with such T -
actions. The free functor is defined by FT (X) = (TX, µX) and the forgetful functor by
UT (X, r) = X. Conversely, any adjunction F a G : D � C gives rise to a monad via its
unit η : idC → GF and counit ε : FG→ idD. The triple produced is (GF,GεF , η). Hence,
there is a natural functor K = FTG : D → CT called the comparison functor. We say
functor G is monadic if K is an equivalence of categories. For more detail on monads,
we refer the reader to Chapter VI of [Mac Lane, 2013], since we will only present Beck’s
Theorem and later utilise it.

2.2. Theorem. [Beck’s Theorem] Given an adjunction F a G : D � C, G is monadic
if and only if the functor G creates coequalizers for parallel pairs f, g : X ⇒ Y for which
Gf,Gg has a split coequalizer.

2.3. Monoidal Categories. We call (C,⊗, 1⊗, α, l, r) a monoidal category, where C is
a category, 1⊗ an object of C, ⊗ : C × C → C a bifunctor and α : (idC ⊗ idC) ⊗ idC →
idC⊗ (idC⊗ idC), l : 1⊗⊗ idC → idC and r : idC⊗1⊗ → idC natural isomorphisms satisfying
coherence axioms, as presented in Section 1.2 of [Turaev und Virelizier, 2017]. We call 1⊗
the monoidal unit.
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In what follows, we assume that all monoidal categories in question are strict i.e.
α, l and r are all identity morphisms. Additionally, there exists a corresponding monoidal
structure on C, the opposite monoidal category, which we denote by (C,⊗op) and is defined
by composing ⊗ with the flip functor i.e. X ⊗op Y = Y ⊗X for pairs of objects X, Y of
C. This notion should not be confused with the notion of the opposite category, where
morphisms are reversed and Cop will only refer to the opposite monoidal category in this
work.

A functor F : C → D between monoidal categories is said to be (strong) monoidal if
the exists a natural (isomorphism) transformation F2(−,−) : F (−)⊗DF (−)→ F (−⊗C−)
and a (isomorphism) morphism F0 : 1⊗ → F (1⊗) satisfying

F2(X ⊗ Y, Z)(F2(X, Y )⊗ idF (Z)) = F2(X, Y ⊗ Z)(idF (X) ⊗ F2(Y, Z))

F2(X, 1⊗)(idF (X) ⊗ F0) = idF (X) = F2(1⊗, X)(F0 ⊗ idF (X))

where we have omitted the subscripts denoting the ambient categories, since they are
clear from context. A functor is said to be opmonoidal or comonoidal if all morphisms in
the above definition are reversed. A strong monoidal fucntor F is called strict monoidal
if the natural isomorphisms F2 and F0 are identity morphisms. A monoidal category is
said to be braided if there exists a natural isomorphism ΨX,Y : X⊗Y → Y ⊗X satisfying
braiding axioms described in Section 3.1 of [Turaev und Virelizier, 2017].

Notation. We will abuse notation and write X instead of the morphism idX whenever
it is feasible. We will also omit ⊗ when writing long compositions of morphisms i.e. AfB
will denote the morphisms idA ⊗ f ⊗ idB for arbitrary objects A and B and morphism f
in C.

The (lax) center of a monoidal category (C,⊗, 1⊗) has pairs (X, τ) as objects, where
X is an object in C and τ : X ⊗ − → −⊗X is a natural (transformation) isomorphism
satisfying τ1⊗ = idX and (idM ⊗ τN)(τM ⊗ idN) = τM⊗N , and morphisms f : X → Y of
C, satisfying (idC ⊗ f)τ = ν(f ⊗ idC), as morphism f : (X, τ) → (Y, ν). We denote the
lax center and center by Z lax(C) and Z(C), respectively. The center is often referred to as
the Drinfeld-Majid center and the lax center is sometimes referred to as the prebraided
or weak center. The (lax) center has a monoidal structure via

(X, τ)⊗ (Y, ν) := (X ⊗ Y, (τ ⊗ idY )(idX ⊗ ν))

and (1⊗, idC) acting as the monoidal unit, so that the forgetful functor to C is strict
monoidal. The center Z(C) is also braided by Ψ(X,τ),(Y,ν) = τY .

2.4. Rigid and Closed Monoidal Categories. For any object, X, in a monoidal
category C, we say an object ∨X is a left dual of X, if there exist morphisms evX :
∨X ⊗X → 1⊗ and coevX : 1⊗ → X ⊗ ∨X such that

(evX ⊗ id∨X)(id∨X ⊗ coevX) = id∨X , (idX ⊗ evX)(coevX ⊗ idX) = idX

In such a case, we call X a right dual for ∨X. Furthermore, a right dual of an object X is
denoted by X∨, with evalutation and coevaluation maps denoted by evX : X ⊗X∨ → 1⊗
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and coevX : 1⊗ → X∨ ⊗ X, respectively. We will refer to evaluation and coevaluation
maps as such, as duality morphisms. We say an object X is dualizable if has both a left
dual and a right dual. The category C is said to be left (right) rigid or autonomous if
all objects have left (right) duals. If a category is both left and right rigid, we simply
call it rigid. Usually, when a category is said to be left (or right rigid), it is assumed
that we have chosen a left dual for all objects and ∨X denotes this specific choice of
left dual for any object X. Given these choices, we have a contravariant functor ∨(−) :
C → C which sends objects X to their left duals ∨X and morphisms f : X → Y to
morphisms (evY ⊗ id∨X)(id∨Y ⊗ f ⊗ id∨X)(id∨Y ⊗ coevX). Similarly, (−)∨ : C → C defines
a contravariant functor on a right rigid category.

We call a category C left (right) closed if for any object X there exists an endofunctor
[X,−]l (resp. [X,−]r) on C which is right adjoint to −⊗X (resp. X ⊗−). By definition
[−,−]l, [−,−]r : Cop×C → C are bifunctors, which we refer to as inner homs. If a category
is left and right closed, we call it closed. Observe that if X has a left (right) dual ∨X
(resp. X∨), the functor −⊗ ∨X (resp. X∨ ⊗−) is right adjoint to −⊗X (resp. X ⊗−)
and ∨X (resp. X∨) is unique up to isomorphism. Furthermore, if X has a left (right)
dual, ∨X ∼= [X, 1⊗]l (resp. X∨ ∼= [X, 1⊗]r). We have adopted the notation of [Bruguieres
u. a., 2011] here, and what we refer to as a left closed structure is sometimes referred to
as a right closed structure in other sources.

It is well known that strong monoidal functors preserve dual objects i.e. F (∨X) ∼=
∨F (X) with F0F (ev)F2(

∨X,X) and F−12 (X, ∨X)F (coev)F−10 acting as the evaluation and
coevaluation morphisms for F (∨X). For left (right) closed monoidal categories C and D,
we say a monoidal functor F : C → D is left (right) closed if the canonically induced

morphism F [X, Y ]
l(r)
C → [F (X), F (Y )]

l(r)
D is an isomorphism for any pair of objects X, Y in

C. In what follows, we will describe the inner homs so that these isomorphisms become the
identity morphisms, thereby making the functor in question closed, in a clearer manner.

2.5. Bimonads and Hopf Monads. A monad (T, µ, η) on C is said to be a bimonad or
an opmonoidal monad if it also has a compatible comonoidal structure (T2, T0) satisfying

T2(X, Y )µX⊗Y = (µX ⊗ µY )T2(TX, TY )T (T2(X, Y ))

T0µ1 = T0T (T0), T2(X, Y )ηX⊗Y = ηX ⊗ ηY , T0η1 = id1

where X, Y are objects of C. A bimonad is said to be left (right) Hopf if the left (right)
fusion operators, denoted by H l (resp. Hr), and defined as

H l
X,Y := (idT (X) ⊗ µY )T2(X,T (Y )) :T (X ⊗ T (Y )) −→ T (X)⊗ T (Y )

Hr
X,Y := (µX ⊗ idT (Y ))T2(T (X), Y ) :T (T (X)⊗ Y ) −→ T (X)⊗ T (Y )

for objects X, Y of C, is invertible. A bimonad is called Hopf if it is both left and right
Hopf. The above conditions can be reformulated purely in terms of FT and UT : given an
adjunction F a G : D � C, the induced monad (GF,GεF , η) is a bimonad if and only if
U is strong monoidal. In this case, the adjunction is called comonoidal. The adjunction
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is called left (right) Hopf if U is a left (right) closed functor. We briefly recall the main
property of these structures and refer the reader to [Bruguieres u. a., 2011] for more detail
on bimonads and Hopf monads.

2.6. Theorem. If T is a monad on a monoidal category C, then

(I) [Moerdijk, 2002] Bimonad structures on T are in correspondence with liftings of
the monoidal structure of C onto CT i.e. monoidal structures on CT such that UT
is strong monoidal.

(II) [Bruguieres u. a., 2011],[Bruguieres und Virelizier, 2007] If C is left (right) rigid
and T a bimonad, then T is left (right) Hopf if and only if CT is left (right) rigid.

(III) [Bruguieres u. a., 2011] If C is left (right) closed, then T being left (right) Hopf is
equivalent to CT being left (right) closed and UT a left (right) closed functor.

2.7. Braided Hopf Algebras and Augmented Hopf Monads. An algebra or
monoid in a monoidal category C consists of a triple (M,µ, η), where M is an object of
C and µ : M ⊗M → M and η : 1⊗ → M are morphisms in C satisfying µ(idM ⊗ η) =
idM = µ(η ⊗ idM) and µ(idM ⊗ µ) = µ(µ ⊗ idM). A coalgebra or comonoid in C can be
defined by simply reversing the morphisms in the definition of a monoid. Observe that
monoid structures on an object A in a monoidal category C, correspond directly to monad
structures on the endofunctor A ⊗ −. The Eilenberg-Moore category CT in this case is
the category of left modules over A i.e. objects X with an action r : A⊗X → X.

A central bialgebra in C consists of an object (B, τ) in Z(C), and morphisms m, η,∆, ε
such that ((B, τ),m, η) is a monoid in Z(C), ((B, τ),∆, ε) is a comonoid in Z(C) and
(m⊗m)(B⊗τB⊗B)(∆⊗∆) = ∆m and εm = (ε⊗ ε) hold. Hence, the monad T = B⊗−
has a bimonad structure, with T2 = (B ⊗ τ ⊗ idC)(∆ ⊗ idC ⊗ idC) and T0 = ε. A central
bialgebra is called a central Hopf algebra if there exists a morphism S : (B, τ) → (B, τ)
such that m(B⊗S)∆ = ηε = m(S⊗B)∆ and the mentioned bimonad B⊗− is left Hopf
in this case and Hopf if S is also invertible. A braided Hopf algebra in a braided monoidal
category (C,Ψ) is just a central Hopf algebra (H, τ) where τ− = ΨH,−. We recover the
usual notion of Hopf algebras as braided Hopf algebras in the braided monoidal category
of vectorspaces.

A Hopf monad (T, µ, η, T2, T0) on a monoidal category C is said to be augmented
if there exists a bimonad morphism ξ : T → idC, where the identity functor idC has
trivial Hopf monad structure. For ξ to be a bimonad morphism, ξη = idC, ξµ = ξT (ξ),
(ξ ⊗ ξ)T2 = ξ−⊗− and ξ1 = T0 must hold.

2.8. Theorem. [Theorem 5.7 [Bruguieres u. a., 2011]] There is an equivalence of cat-
egories between the category of Hopf algebras in the center of C and augmented Hopf
monads on C.

An augmentation on a Hopf monad, provides T (1) with a central Hopf algebra struc-
ture and the Hopf monad T in this case is shown to be isomorphic to the induced
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Hopf monad of T (1). In particular, (T (1), T2(1, 1), T0) forms a comonoid in C, while
T (1, µ1uT (1), η1) forms a monoid in C, where uX = T (ξX)(H l

1,X)−1(T (1) ⊗ ηX), and
τ = (ξ ⊗ T (1))T2(T (X), 1)uX defines a braiding, which makes (T (1), τ) a central Hopf
algebra with its invertible antipode defined by S = ξT (1)(H

l
1,1)
−1(T (1) ⊗ η1) and S−1 =

ξT (1)(H
r
1,1)
−1(η1⊗T (1)). We refer the reader to [Majid, 1994] for more details on braided

Hopf algebras and [Bruguieres u. a., 2011] for the more details on augmented Hopf monads
and the proof of Theorem 2.8.

3. Pivotal Objects and Pivotal Cover

In this section, we define the notion of pivotal objects, pairs and pivotal cover for arbitrary
monoidal categories. Let (C,⊗, 1) be a monoidal category.

3.1. Lemma. If P is an object of C, then the following statements are equivalent:

(I) The object P is dualizable and there exists an isomorphism ∨P ∼= P∨.

(II) There exists an object Q and morphisms coev : 1 → P ⊗ Q, ev : Q ⊗ P → 1

and coev : 1 → Q ⊗ P , ev : P ⊗ Q → 1, making Q a left and right dual of P ,
respectively.

(III) Left duals ∨P and ∨∨P exist and there exists an isomorphism P ∼= ∨∨P .

We say P is a pivotal object if it satisfies any of the above statements and refer to an
ordered pair (P,Q), as in part (II), as a pivotal pair.

Proof. (I)⇒(II) Assume P is dualizable with ∨P and P∨, its left and right dual objects
and coev, ev and coev, ev as the respective coevaluation and evaluation morphisms and
let f : ∨P → P∨ be an isomorphism. Hence, (f−1⊗P )coev and ev(P ⊗ f) make ∨P right
dual to P and Q = ∨P and coev, ev, (f−1 ⊗ P )coev, ev(P ⊗ f) satisfy the conditions in
(II).

(II)⇒(III) By assumption Q = ∨P and P = ∨Q, thereby P = ∨∨P .
(III)⇒(I) Let f : P → ∨∨P be an isomorphism and coev∨P : 1 → ∨∨P ⊗ ∨P , ev∨P :

∨∨P ⊗ ∨P → 1 be the relevant coevaluation and evaluation morphisms. Hence, (∨P ⊗
f)coev∨P and (f−1 ⊗ ∨P )ev∨P make ∨P right dual to P , and ∨P = P∨.

Note that the coevaluation and evaluation morphisms making Q a left and right dual
of P are part of the data for a pivotal pair (P,Q). Additionally, Q is also pivotal object
by definition and (Q,P ) a pivotal pair with the duality morphisms swapped. Moreover,
note that strong monoidal functors preserve pivotal objects, since they preserve duals and
isomorphisms. In particular, a strong monoidal functor F : C → D sends a pivotal pair
(P,Q) in C to a pivotal pair (F (P ), F (Q)) with the natural duality morphisms presented
in Section 2.4.

We now review some examples of pivotal objects in monoidal categories.
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3.2. Example. Any dualizable object P in a braided monoidal category (B,Ψ) is pivotal.
Let ∨P and P∨ be the left and right duals of P with the coevaluation and evaluation maps,
coev, ev and coev, ev, respectively. In this case

lrP := (P∨ ⊗ evΨP,∨P )(coev ⊗ ∨P ) : ∨P → P∨ (1)

rlP := (∨P ⊗ ev)(Ψ−1
P,∨P

coev ⊗ P∨) : P∨ → ∨P (2)

are inverses and provide an isomorphism between ∨P and P∨.

3.3. Example. For a K-algebra A, the category of A-bimodules, denoted by AMA has a
monoidal structure by tensoring bimodules over A. We say an A-bimodule is pivotal if it is
a pivotal object in AMA. Such objects in fact appeared in the work of Kadison [Kadison,
1999], under the name of Frobenius bimodules. In Section 4.2 of [Ghobadi, 2020], we
provided a range of examples of first order differential calculi (A,Ω1, d : A→ Ω1), where
Ω1 was a pivotal bimodule over A, the simplest examples being finitely generated free
bimodules. Our examples also included Hopf bimodules over Hopf algebras. If A is a
Hopf algebra with an invertible antipode, the category of Hopf bimodules has braided
monoidal structure and thereby any dualizable object in this category is pivotal. The
forgetful functor from the category of Hopf bimodules to the category of bimodules over
the Hopf algebra is strong monoidal. Hence as a bimodule, any dualizable Hopf bimodule
is pivotal.

3.4. Example. For any category C, the category of endofunctors on C, denoted by
End(C), has a monoidal structure via composition of functors i.e. F ⊗ G = FG for
F,G ∈ End(C) and the identity functor idC acting as the monoidal unit. In this case, a
functor F being left (right) dual to G, is exactly equivalent to F being left (right) adjoint
to G. An endofunctor is thereby called pivotal if it has left and right adjoint functors
which are isomorphic. Such adjunctions are referred to as ambidextrous and the monad
GF on C is called a Frobenius monad [Theorem 17 [Lauda, 2006]].

A rigid monoidal category C is called pivotal (sometimes called sovereign) if there exists
a natural isomorphism % : idC → ∨∨(−). Equivalently, the condition is sometimes stated
as the existence of a monoidal natural isomorphism %∨ : (−)∨ → ∨(−). In [Shimizu,
2015], the pivotal cover of a rigid monoidal category was introduced by K. Shimizu.
Independently, we discovered this notion for general monoidal categories, by encountering
the notion of pivotal morphisms between pivotal objects in [Ghobadi, 2020].

3.5. Definition. Let C be a monoidal category, and (P1, Q1) and (P2, Q2) pivotal pairs
in C with coevi, evi, coevi, evi being the relevant coevaluation and evaluation morphisms.
We say a morphism f : P1 → P2 is pivotal if

(ev2 ⊗Q1)(Q2 ⊗ f ⊗Q1)(Q2 ⊗ coev1) = (Q1 ⊗ ev2)(Q1 ⊗ f ⊗Q2)(coev1 ⊗Q2) (3)

as morphisms from Q2 to Q1. The pivotal cover of C, denoted by Cpiv, has ordered pivotal
pairs (P,Q), in C, as objects and pivotal morphisms of C as morphisms.
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There is a subtlety which we must point out. Namely, that a morphisms f : P1 →
P2 being pivotal does really depend on the choice of Q1 and Q2. Even for a single
pivotal object P and two Q1 and Q2 left and right duals of P with coevi, evi, coev′i, ev′i
denoting the relevant coevaluation and evaluation morphisms, the identity morphism idP
is not necessarily a morphism between pivotal pairs (P,Q1) and (P,Q2). There exist
isomorphisms hl : Q1 → Q2 and hr : Q1 → Q2 defined by hl = (ev2⊗Q1)(Q2⊗coev1) and
hr = (Q1⊗ ev2)(coev1⊗Q2). The identity morphism being pivotal in terms Q1 and Q2 is
exactly equivalent to hl = hr, which is not necessarily true (Example 5.8). However, the
identity morphism is clearly a pivotal morphism from (P,Q1) to itself. It should also be
clear that Cpiv is well-defined and pivotal morphisms are closed under composition.

In the terminology of rigid monoidal categories, if Q = ∨P = P∨ is the chosen left and
right dual of P , the left hand morphism in (3) is exactly ∨f and the right hand morphism,
f∨, and we call a morphism f between objects pivotal, if ∨f = f∨.

In Section 5.2 of [Ghobadi, 2020], we presented two families of examples of piv-
otal morphisms. In [Ghobadi, 2020], we were interested in differential graded algebras
(⊕i≥0Ωi, d,∧), with ∧ denoting the graded multiplication, where Ω1 and Ω2 were pivotal
bimodules over the algebra (Ω0,∧), and ∧ : Ω1⊗Ω1 → Ω2 was a pivotal morphism. One of
the examples presented in [Ghobadi, 2020] was that of Woronowicz’s bicovariant algebras
[Woronowicz, 1989] over the group algebra, for any arbitrary group. The Woronowicz
construction extends any Hopf module calculus over a Hopf algebra to a DGA of Hopf
bimodules and has been generalised to the language of braided abelian categories by Ma-
jid, Section 2.6 [Beggs und Majid, 2020], in the name of braided exterior algebras. In the
following examples we show the mentioned morphism is always pivotal for any braided
exterior algebra.

3.6. Example. [Braided Exterior Algebra] Let (C,⊗, 1) be a braided monoidal category
and Ψ denote its braiding. Recall from Example 3.2 that any dualizable object in C is
pivotal. Let P1 and P2 be dualizable objects in C such that ∧ : P1 ⊗ P1 → P2 is the
coequalizer of the parallel pair idP1⊗P1 ,ΨP1,P1 : P1 ⊗ P1 ⇒ P1 ⊗ P1. We claim that ∧ is
a pivotal morphism. As in Example 3.2, ∨P1 and ∨P 2 denote left duals of P1 and P2,
respectively, which become right duals by the isomorphism provided, so that ∨P1 ⊗ ∨P1

also becomes a left and right dual of P1 ⊗ P1. Hence, writing the pivotal condition, (3),
for ∧ in terms of ∨P1 ⊗ ∨P1 and ∨P2, reduces to checking if the morphisms

(ev2(
∨P1)(

∨P1))(
∨P2 ∧ (∨P1)(

∨P1))
( ∨P2(P1coev1

∨P1)(coev1)
)
,

(∨P1
∨P1ev2)((rlP1 ⊗ rlP1 ⊗ ∧)P2

∨)
(
(P∨1 coevP1)(coev)⊗ lrP2

)
are equal. By the definition of rl and lr and the properties of the braiding, the second
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morphism simplifies as follows

(∨P1
∨P1ev2ΨP2,

∨P2
)((∨P1)(

∨P1) ∧ (∨P2))(
∨P1Ψ

−1
P1,
∨P1

coev1P1(
∨P2))(Ψ

−1
P1,
∨P1

coev1
∨P2)

=(ev2(
∨P1)(

∨P1))(
∨P2Ψ∨P1⊗∨P1,P2

)((∨P2)(
∨P1)(

∨P1)∧)( ∨P2(
∨P1Ψ

−1
P1,
∨P1

coev1P1)(Ψ
−1
P1,
∨P1

coev1)
)

=(ev2(
∨P1)(

∨P1))(
∨P2Ψ∨P1,P2

(∨P1))(
∨P2(

∨P1) ∧Ψ−1P1,P1
(∨P1))( ∨P2(Ψ

−1
P1,
∨P1

coev1 ⊗ coev1)
)

=(ev2(
∨P1)(

∨P1))(
∨P2 ∧Ψ−1P1,P1

Ψ−1P1,P1
(∨P1)(

∨P1))(
∨P2(P1coev1

∨P1)coev1)

=(ev2(
∨P1)(

∨P1))(
∨P2 ∧ (∨P1)(

∨P1))
( ∨P2(P1coev1

∨P1)(coev1)
)

The calculations above are much more clear from a pictorial point of view and readers
who are familiar with the graphical calculus of braided monoidal categories, should draw
the said morphisms for a quicker proof. We refer the reader to Chapter 2 of [Turaev und
Virelizier, 2017] and Section 2.6 of [Beggs und Majid, 2020], for more details on graphical
calculus.

We can define a natural monoidal structure on Cpiv by (P1, Q1) ⊗ (P2, Q2) = (P1 ⊗
P2, Q2⊗Q1), since the tensor of pivotal morphisms is again a pivotal morphism in this way.
Thereby, Cpiv lifts the monoidal structure of C, so that the natural forgetful functor H :
Cpiv → C, which sends a pivotal pair (P,Q) to P , is strict monoidal. Furthermore, notice
that Cpiv is also rigid and admits left and right duality functors ∨(−) = (−)∨ : Cpiv → Cpiv,
which are defined by (P,Q)∨ = (Q,P ) and f∨ = (ev2 ⊗ Q1)(Q2 ⊗ f ⊗ Q1)(Q2 ⊗ coev1)
for f : (P1, Q1) → (P2, Q2), as in Definition 3.5. By our definition of pivotal morphisms,
it should be clear that the trivial identity morphism forms an isomorphism between ∨(−)
and (−)∨ and the category Cpiv is trivially pivotal.

In order to discuss the universal property of the pivotal cover, we recall the definition
of a pivotal functor from [Shimizu, 2015]. If C and D are rigid monoidal categories
and F : C → D is a strong monoidal functor, then we have a natural family of unique
isomorphisms ζ : F (∨−)→ ∨F (−) defined by

ζX = (F0F (ev)F2(
∨X,X)⊗ ∨F (X))(F (∨X)⊗ coevF (X))

ζ−1X = (evF (X) ⊗ F (∨X))(∨F (X)⊗ F−12 (X, ∨X)F (coevX)F−10 )

where X is an object of C. If C and D are pivotal categories with pivotal structures
%C : idC → ∨∨(−) and %D : idC → ∨∨(−), we say F preserves the pivotal structure if

%DF (X) =
∨
(ζ−1X )(ζ∨X)F (%CX) (4)

holds for all objects X of C.

3.7. Theorem. The pivotal cover Cpiv of C is pivotal and satisfies the following universal
property: if D is a pivotal monoidal category and G : D → C a strong monoidal functor,
then there exists a unique functor G′ : D → Cpiv so that G = HG′ and G′ preserves the
pivotal structures.
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Proof. Let the pivotal structure of D be denoted by the natural isomorphism % : idC →
∨∨(−). Since strong monoidal functors preserve duals, G(X) for any object X in D will be
a pivotal object in C. In particular, we define G′(X) to be the pivotal pair (G(X), G(∨X))
with coevaluation and evaluation morphisms

coevGX := G−12 (X, ∨X)G(coevX)G−10 , G−12 (∨X,X)G((∨X ⊗ %X)coev∨X)G−10

evGX := G0G(evX)G2(
∨X,X), G0G(ev∨X(%−1X ⊗

∨X))G2(X,
∨X)

If f : X1 → X2 is a morphism in D, then G(f) is a pivotal morphism between (G(X1),
G(∨X1)) and (G(X2), G(∨X2)), since %−1∨Xf

∨%∨X = ∨f . Hence, by letting G′(f) = G(f)

we have defined a functor G′ : D → Cpiv such that HG′ = G.
Additionally, G′ is a pivotal functor: if ζ : G′(∨−) → ∨G(−) is the unique natu-

ral isomorphism as defined before the Theorem, then G′(∨X) = (G(∨X), G(∨∨X)) and
∨G(X) = (G(∨X), G(X)) with the appropriate duality morphisms as defined above.
Hence,

∨
(ζ−1X )(ζ∨X)G′(%X) =

∨
(ζ−1X )(evG∨X ⊗

∨
G′(X))(G′(%X)⊗ coevG′(∨X))

= (evG′(∨X) ⊗
∨∨
G′(X))(

∨
G′(X)⊗ ζ−1X ⊗

∨∨
G′(X))(

∨
G′(X)⊗ coev∨G′(X))

(evG∨X ⊗
∨
G′(X))(G′(%X)⊗ coevG′(∨X))

= (evG′(∨X) ⊗
∨∨
G′(X))(

∨
G′(X)⊗ evG′(X) ⊗G′(∨X)⊗ ∨∨G′(X))

(
∨
G′(X)⊗ ∨G′(X)⊗ coevGX ⊗

∨∨
G′(X))(

∨
G′(X)⊗ coevG′(X))

(evG∨X ⊗
∨
G′(X))(G′(%X)⊗ coevG′(∨X))

and by construction id(P,Q) = P for any pair (P,Q) in Cpiv and

∨
(ζ−1X )(ζ∨X)G′(%X) = (evG∨X ⊗G(X))(G(∨X)⊗ coevG′(X))(evG∨X ⊗G(∨X))

(G(%X)⊗ coevG∨X)

= (evG∨X ⊗G(X))(G(∨X)⊗G(X)⊗G(%−1X ))(G′(∨X)⊗ coevG∨X)G(%X)

= idG(X) = idG′(X)

holds and thereby G′ is pivotal.

In [Shimizu, 2015], the pivotal cover of a left rigid monoidal category Cpiv is constructed
as the category of fixed objects by the endofunctor ∨∨(−) : C → C. Constructing the
pivotal cover as such has two main drawback, namely that we need to assume all objects
in C have left duals and C is left rigid so that there is a distinguished choice of left dual for
ever object. While we will not directly compare the constructions, the universal property
above, is also proved in Theorem 4.3 of [Shimizu, 2015] and thereby the two constructions
of Cpiv are equivalent when C is left rigid.
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4. The Category C(P,Q)

Given a pivotal pair P and Q, as in Lemma 3.1 (II), we define the category of P and Q
intertwined objects, denoted by C(P,Q), as the category whose objects are pairs (X, σ),
where X is an object of C and σ : X ⊗P → P ⊗X an invertible morphism in C such that

(ev ⊗X ⊗Q)(Q⊗ σ ⊗Q)(Q⊗X ⊗ coev) : Q⊗X → X ⊗Q (5)

(Q⊗X ⊗ ev)(Q⊗ σ−1 ⊗Q)(coev ⊗X ⊗Q) : X ⊗Q→ Q⊗X (6)

are inverses. Morphisms between objects (X, σ), (Y, τ) of C(P,Q) are morphisms f : X →
Y in C, which satisfy τ(f ⊗ P ) = (P ⊗ f)σ. For an object (X, σ) in C(P,Q), we call σ a
P -intertwining and denote the induced morphisms (5) and (6), by σ and σ−1, respectively,
and call them induced Q-intertwinings.

Observe that the definition of C(P,Q) is dependent on the choice of Q: let P and
Q′ together with coev′ : 1 → P ⊗ Q′, ev′ : Q′ ⊗ P → 1 and coev′ : 1 → Q′ ⊗ P ,
ev′ : P ⊗ Q′ → 1 satisfy the conditions of Lemma 3.1 (II). Hence, we have two induced
isomorphisms between Q and Q′, f = (ev⊗Q′)(Q⊗coev′) and f−1 = (ev′⊗Q)(Q′⊗coev),
and g = (Q′ ⊗ ev)(coev′ ⊗ Q) and g−1 = (Q ⊗ ev′)(coev ⊗ Q′). Additionally, if for a P -
intertwining (X, σ), we denote the induced Q-intertwinings and induced Q′-intertwinings
by σQ, σ−1Q and σQ′ , σ

−1
Q′ , respectively, then σQ′ = (g ⊗ X)σQ(X ⊗ g−1) and σ−1Q′ =

(X⊗ f)σ−1Q (f−1⊗X). Hence, σQ and σ−1Q being inverses is not equivalent to σQ′ and σ−1Q′
being inverses unless f = g.

On the other hand, the category C(Q,P ) is isomorphic to C(P,Q). The isomorphism
sends an object (X, σ) in C(P,Q) to (X, σ−1) in C(Q,P ). The Q-intertwining σ−1 is
invertible and the induced P -intertwinings on X in C(Q,P ) are precisely σ and σ−1:

σ−1 =(ev ⊗X ⊗ P )(P ⊗ σ−1 ⊗ P )(P ⊗X ⊗ coev)

σ =(P ⊗X ⊗ ev)(P ⊗ σ ⊗ P )(coev ⊗X ⊗ P )

Note that the isomorphism described between C(Q,P ) and C(P,Q) commutes with the
forgetful functors from each category to C.

The monoidal structure of C lifts to C(P,Q) so that the forgetful functor U : C(P,Q)→
C which sends a pair (X, σ) to its underlying object X, becomes strict monoidal: for any
pair of objects (X, σ) and (Y, τ), the monoidal structure of C(P,Q), denoted by ⊗ again,
is defined by

(X, σ)⊗ (Y, τ) =
(
X ⊗ Y, (σ ⊗ Y )(X ⊗ τ)

)
(7)

and (1, idP ) acts as the monoidal unit. Furthermore, ⊗ is defined on pairs of morphisms
of C(P,Q), as it is by ⊗ in C.

Our construction is very similar to that of the center of a monoidal category, and is an
example of its generalisation, the dual of a strong monoidal functor [Majid, 1992], which
we will comment on in Section 6.3.

4.1. Theorem. The monoidal structure on C(P,Q), as described above, is well-defined.
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Proof. The only non-trivial fact we need to check in our case is whether (X, τ)⊗ (Y, τ)
is an object of C(P,Q). In particular, if σ and τ are invertible, it should be clear that (σ⊗
Y )(X ⊗ τ) is also invertible, however, we need to prove that the induced Q-intertwinings,
(5) and (6), for X ⊗ Y are inverses. This follows from the fact that the induced Q-
intertwinings, (5) and (6) for (X, τ) and (Y, τ) are inverses:

(σ ⊗ τ)(σ ⊗ τ−1) = (evXYQ)(Qσ ⊗ τQ)(QXY coev)(QXY ev)(Q(σ ⊗ τ)−1Q)

(coevXYQ)

=(evXYQ)(QσY Q)(QXτQ)(QXY coev)(QXY ev)(QXτ−1Q)(Qσ−1Y Q)

(coevXYQ)

=(evXYQ)(QσY Q)(QXP evY Q)(QXcoevPY Q)(QXτQ)(QXY coev)

(QXY ev)(QXτ−1Q)(QXevY Q)(QXP coevY Q)(Qσ−1Y Q)(coevXYQ)

=(XevY Q)(XQτQ)(XQY coev)(evXQY )(QσQY )(QXcoevY )

(QXevY )(Qσ−1QY )(coevXQY )(XQY ev)(XQτ−1Q)(XcoevY Q)

=(XevY Q)(XQτQ)(XQY coev)(XQY ev)(XQτ−1Q)(XcoevY Q) = idXYQ

In a symmetric manner, it follows that (σ ⊗ τ−1)(σ ⊗ τ) = idQXY .

4.2. Theorem. If C is a left closed monoidal category, then C(P,Q) has a unique left
closed monoidal structure lifting that of C, such that the forgetful functor U becomes left
closed.

Proof. Let (A, σA) and (B, σB) be objects in C(P,Q). If C is left closed, we denote
the right adjoint functor to − ⊗ A, by [A,−]l, and let ηA− : − → [A,− ⊗ A]l and εA− :
[A,−]l ⊗ A → − denote the unit and counit of this adjunction. To demonstrate that
the left closed structure of C lifts to C(P,Q), we provide a functorial P -intertwining on
[A,B]l, and demonstrate that the unit and counit morphisms are morphisms in C(P,Q).
We claim that 〈σA, σB〉l as defined below is a P -intertwining with the described inverse:

〈σA, σB〉l :=(P [A, (evB)(QσB)(QεABP )(Q[A,B]lσ−1A )]l)(PηAQ[A,B]lP )

(coev[A,B]lP )

〈σA, σB〉−1l :=([A, (Bev)(σ−1B Q)(PεABQ)(P [A,B]lσA)]lP )(ηAP [A,B]lQP )

(P [A,B]lcoev)

Demonstrating that ([A,B]l, 〈σA, σB〉l) is an object of C(P,Q) requires showing that
〈σA, σB〉l and 〈σA, σB〉−1l are inverses and that the induced Q-intertwinings given by

〈σA, σB〉l =([A, (evB)(QσB)(QεABP )(Q[A,B]lσ−1A )]lQ)(ηAQ[A,B]lPQ)

(Q[A,B]lcoev)

〈σA, σB〉l
−1

=(Q[A, (Bev)(σ−1B Q)(PεABQ)(P [A,B]lσA)]l)(QηAP [A,B]lQ)

(coev[A,B]lQ)
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are inverses as well. These fact are not hard to show, but reduce to long diagram chases,
for which we refer the reader to Section 7. If f : (B, σB) → (C, σC) is a morphism in
C(P,Q), then it follows by definition that [A, f ]l is also a morphism in C(P,Q):

(P [A, f ]l)〈σA, σB〉l = (P [A, f ]l)(P [A, (evB)(QσB)(QεABP )(Q[A,B]lσ−1A )]l)

(PηAQ[A,B]lP )(coev[A,B]lP )

=(P [A, f(evB)(QσB)(QεABP )(Q[A,B]lσ−1A )]l)(PηAQ[A,B]lP )(coev[A,B]lP )

=(P [A, (evC)(QσC)(QfP )(QεABP )(Q[A,B]lσ−1A )]l)(PηAQ[A,B]lP )(coev[A,B]lP )

=(P [A, (evC)(QσC)(QεACP )(Q[A,C]lσ−1A )(Q[A, f ]lPA)]l)(PηAQ[A,B]lP )

(coev[A,B]lP ) = 〈σA, σC〉([A, f ]lP )

Hence the assignment

[(A, σA),−]l : C(P ) −→ C(P,Q)

(B,σB) 7→
(
[A,B]l, 〈σA, σB〉

)
is functorial by acting as [A,−]l on morphisms. In particular, the functor [(A, σA),−]l is
a lift of [A,−]l via the forgetful functor U so that U [(A, σA),−]l = [A,U(−)]l. Hence, it
only remains to show that natural transformations ηA and εA lift to C(P,Q), with respect
to the defined P -intertwinings on [(A, σA),−]l. We must check that

(PηAB)σB = 〈σA, σB ⊗ σA〉(ηABP ) : B ⊗ P → P ⊗ [A,B ⊗ A]l

holds. We must also check that the counit commutes with the P -intertwinings i.e.

σB(εABP ) = (PεAB)(〈σA, σB〉 ⊗ σA) : [A,B]l ⊗ A⊗ P → P ⊗B

holds. Both fact are proved in the form of commutative diagram, which are presented in
Section 7. Hence, we have demonstrated that the left closed structure of C lifts to C(P,Q)
via the forgetful functor U .

4.3. Corollary. If C is a right closed monoidal category, then C(P,Q) has a unique
right closed monoidal structure lifting that of C, such that the forgetful functor U becomes
right closed.

Proof. One could prove this statement directly as done for the left closed structure in
Theorem 4.2, however, we take a short-cut in this case. Notice that a right closed structure
on (C,⊗) corresponds to a left closed structure on (C,⊗op). Hence, the forgetful functor
U : C(P,Q)→ C lifting the right closed structure of C is equivalent to Uop : C(P,Q)op →
Cop lifting the left closed structure of Cop, where by Cop we mean (C,⊗op). On the other
hand, we observe that (P,Q) is again a pivotal pair in Cop with ev and coev making Q a
left dual of P and ev and coev making Q a right dual of P in (C,⊗op). Furthermore, we
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have an isomorphism of categories

L : Cop(P,Q) C(P,Q)op//

(A, σ : A⊗op P → P ⊗op A) (A, σ−1 : A⊗ P → P ⊗ A)� //

R : C(P,Q)op Cop(P,Q)//

(A, σ : A⊗ P → P ⊗ A) (A, σ−1 : A⊗op P → P ⊗op A)� //

which is monoidal i.e. for a pair of objects (A, σA) and (B, σB) in C(P,Q)op, we have

R
(
(A, σA)⊗op (B, σB)

)
= R

(
(B ⊗ A, σB ⊗ σA)

)
=
(
B ⊗ A, (σB ⊗ σA)−1

)
=
(
B ⊗ A, (B ⊗ σ−1A )(σ−1B ⊗ A)

)
= (A, σ−1A )⊗op (B, σ−1) = R((A, σA))⊗op R((B, σB))

Moreover, UopL is precisely the forgetful functor from Cop(P,Q) to Cop which sends a pair
(A, σ) to A. By Theorem 4.2, we know that UopL lifts the left closed structure of Cop and
since L is a strict isomorphism of monoidal categories, we conclude that U op also lifts the
left closed structure of Cop.

The proof of Corollary 4.3 allows us to compute the induced P -intertwinings on the
right inner homs of C so that the right closed structure of C lifts to C(P,Q). Explicitly,
if (A, σA) and (B, σB) are objects in C(P,Q), and ΓA− : − → [A,A ⊗ −]r and ΘA

− :
A⊗ [A,−]r → − denote the unit and counit of −⊗ A a [A,−]r in C, then

〈σA, σB〉r :=(P [A, (evB)(QσB)(QΘA
BP )(σ−1A [A,B]rP )]r)(PΓAQ[A,B]rP )

(coev[A,B]rP )

〈σA, σB〉−1r :=([A, (Bev)(σ−1B Q)(PΘA
BQ)(σA[A,B]rQ)]lP )(ΓAP [A,B]rQP )

(P [A,B]rcoev)

define a suitable P -intertwining on [A,B]r so that the endofunctor [(A, σA),−]r which
sends a pair (B, σB) in C(P,Q) to

(
[A,B]r, 〈σA, σB〉r

)
is right adjoint to −⊗ (A, σA).

4.4. Corollary. If C is left (right) rigid, then C(P,Q) is left (right) rigid.

Proof. The statement follows directly from Theorem 4.2 and Corollary 4.3, when re-
stricted to the case of a left or right rigid monoidal category. Explicitly, if (X, σ) is an
object in C(P,Q), then the P -intertwinings induce on ∨X = [X, 1]l and X∨ = [X, 1]r (if
they exist), are denote by σ∨X and σX∨ , respectively, and are given by

σ∨X = (evXP
∨X)(∨Xσ−1 ∨X)(∨XP coevX)

σ−1∨X = (ev ∨XP )(P evXQ
∨XP )(P ∨Xσ ∨XP )(P ∨XQcoevXP )(P ∨Xcoev)

σX∨ = (PX∨ev)(PX∨QevXP )(PX∨σ−1X∨P )(P coevXQX
∨P )(coevX∨P )

σ−1X∨ = (X∨P evX)(X∨σX∨)(coevXPX
∨)

providing the left and right duals of (X, σ) in C(P,Q).
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4.5. Theorem. If % : idC → ∨∨(−) is a pivotal structure on C and P is fixed by ∨∨(−),
∨P = Q and %P = idP , then C(P,Q) is pivotal and the forgetful functor U preserves this
pivotal structure.

Proof. In this case, the pivotal structure of C directly lifts to C(P,Q). Here, we demon-
strate that %X : (X, σ) → ∨∨(X, σ) commutes with the P -intertwinings for any object
(X, σ) of C(P,Q). Observe that by Corollary 4.4, ∨∨(X, σ) = (∨∨X, (σ∨X)∨∨X) where

(σ∨X)∨∨X = (ev∨XP (∨∨X))(∨∨Xσ−1∨X
∨∨X)(∨∨XP coev∨X)

= (P (∨∨X)ev)(P (∨∨σ)P )(coev ∨∨XP )

Observe that in the above statement we are abusing notation and assuming that ∨∨(−) is
strict monoidal whereas this is not necessarily the case and ∨∨σ should denote a morphism
from ∨∨(Q⊗X) to ∨∨(X ⊗Q). However, this is not an issue since %X is a monoidal
isomorphism and commutes with the natural isomorphisms ∨∨(Q⊗X) ∼= ∨∨Q ⊗ ∨∨X.
Since ∨%X = %−1∨X holds, [Ng und Schauenburg, 2007] Appendix A, we conclude that

((σ∨X)∨∨X)(%XP ) = (P (∨∨X)ev)
(
P (∨∨σ)(%Q ⊗ %X)(%−1Q X)P

)
(coevXP )

= (P (∨∨X)ev)(P (%X ⊗ %Q)P )(PσP )(P%−1Q XP )(coevXP )

= (P%X)(PXev)(PσP )(coevXP ) = (P%X)σ

Hence %X is morphism in C(P,Q) and lifts the pivotal structure of C trivially.

4.6. Remark. Notice that in the proof of Theorem 4.5, we only needed σ for an arbitrary
object (X, σ) in C(P,Q) to commute with %P . Although this does not hold for arbitrary
P -intertwinings, one could restrict to a subcategory of C(P,Q) where this additional
condition holds. We will briefly discuss generalisations of this type in Section 6.1.

Before concluding this section, we show that all colimits in C lift to C(P,Q).

4.7. Lemma. If C is closed, the forgetful functor U creates colimits.

Proof. Consider a diagram D : J → C(P,Q) so that the diagram UD : J → C has a
colimit A in C with a family of universal morphisms πj : UD(j) → A for objects j in C.
Since D : J → C(P,Q) is a functor, we have a family of morphisms σj : D(j) ⊗ P →
P ⊗D(j) which are natural with respect to J and thereby form a natural transformation
σ : D⊗P ⇒ P ⊗D. Furthermore, because the category C is closed, the diagrams UD⊗P
and P ⊗ UD admit colimits A ⊗ P and P ⊗ A, respectively. By the universal property
of A ⊗ P , there exists a unique morphism σA such that σA(π ⊗ P ) = (P ⊗ π)σ. Since σ
is invertible, it follows from the universal property of P ⊗ A that there exists a unique
morphism σ−1A such that σ−1A (P ⊗ π) = (π ⊗ P )σ−1. It follows that σA and σ−1A are
inverses and similarly we conclude that the induced Q-intertwinings on A are inverses.
Hence, (A, σA) is an object of C(P,Q) and π : D ⇒ (A, σA) a cocone of the diagram. To
demonstrate that (A, σA) is a colimit, consider another cocone κ : D ⇒ (B, σB). Since
A is a colimit of UD, there exists a unique morphism t : A → B such that Uκ = t(Uπ).
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What remains to be shown is whether t commutes with the P -intertwinings of A and B
which follows from the universality of A⊗ P and the calculation below

(P ⊗ t)σA(Uπ ⊗ P ) = (P ⊗ t)(P ⊗ Uπ) = (P ⊗ Uκ)

= σB(Uκ⊗ P ) = σB(t⊗ P )(Uπ ⊗ P )

Hence (P ⊗ t)σA = σB(t ⊗ P ) and thereby, (A, σA) is a colimit of the original diagram
D.

4.8. Corollary. If C is a rigid abelian category, then C(P,Q) is rigid and abelian and
the forgetful functor U is exact.

Proof. Since in a rigid category X⊗− and −⊗X preserve limits as well as colimits, for
arbitrary objects X in C, a symmetric proof to that of Lemma 4.7 demonstrates that U
creates limits. Furthermore, the additive structure of C lifts trivially and since U creates
all finite limits and colimits, C(P,Q) becomes abelian and U exact.

We conclude this section with a small examples of what the category C(P,Q) looks
like, for a well-known monoidal category.

4.9. Example. Let G be a finite group and consider the monoidal category of finite
dimensional G-graded vectorspaces vecG with the usual monoidal structure, as described
in Example 2.3.6 of [Etingof u. a., 2016] and denote its simple objects by Vg where g ∈
G. Then for any g ∈ G, P = Vg is pivotal and Q = Vg−1 and the evaluation and
coevaluation morphism are trivial identity morphisms of the ground field. Hence, the
category C(Vg, Vg−1) has pairs (⊕ni=1Vhi , σ) as objects, where n ∈ N, hi ∈ G and σ :
⊕ni=1Vhig → ⊕ni=1Vghi is a G-graded isomorphism. Due to the trivial form of the the
duality morphisms in vecG, for any such σ, σ and σ−1 will automatically be inverses.
Note that for any object (⊕ni=1Vhi , σ), the set {hi | 1 ≤ i ≤ n} is a disjoint union of orbits
of the conjugation action of g on G.

5. Resulting Hopf Monads

In this section, we assume that the category C is closed and has countable colimits.
Thereby, ⊗ commutes with colimits and the category of endofunctors End(C) also has
countable colimits. Utilising this, we construct the Hopf monad whose Eilenberg-Moore
category recovers C(P,Q). In our first steps, we will call a morphism F (X) → X, for
any endofunctor F : C → C, an action of F on an object X. Although the functors in
question will not carry any monad structures, we will build a monad on the colimit of a
diagram of these functors, so that these actions induce a genuine module structure over
the resulting monad, thereby justifying our terminology.

Observe that for a pair (X, σ) in C(P,Q), we can view σ and σ−1 as certain actions of
the functors Q⊗−⊗ P and P ⊗−⊗Q on X:

Q⊗X ⊗ P X
(ev⊗X)(Q⊗σ) // P ⊗X ⊗Q X

(X⊗ev)(σ−1⊗Q) //
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Moreover, for any pair (X, σ) in C(P,Q), we can translate the mentioned actions in
terms of the induced Q-intertwinings, since (X ⊗ ev)(σ ⊗ P ) = (ev ⊗ X)(Q ⊗ σ) and
(ev ⊗X)(P ⊗ σ−1) = (X ⊗ ev)(σ−1 ⊗Q).

Conversely, when provided with two morphisms α : Q⊗X ⊗P → X and β : P ⊗X ⊗
Q→ X, we can recover right and left P -intertwinings as below:

X ⊗ P P ⊗X(P⊗α)(coev⊗X⊗P ) // P ⊗X X ⊗ P(β⊗Q)(P⊗X⊗coev) //

If we want the induced P -interwtinings of α and β to be inverses, we need the following
equalities to hold:

ev ⊗X = β(P ⊗ α⊗Q)(P ⊗Q⊗X ⊗ coev) : P ⊗Q⊗X → X (8)

X ⊗ ev = α(Q⊗ β ⊗ P )(coev ⊗X ⊗Q⊗ P ) : X ⊗Q⊗ P → X (9)

Similarly, α and β induce Q-intertwinings, (5) and (6) which can be written as

X ⊗Q Q⊗X(Q⊗β)(coev⊗X⊗Q) // Q⊗X X ⊗Q(α⊗Q)(Q⊗X⊗coev) //

In order for the induced Q-intertwinings to be inverses, we require the following equalities
to hold:

ev ⊗X = α(Q⊗ β ⊗ P )(Q⊗ P ⊗X ⊗ coev) : Q⊗ P ⊗X → X (10)

X ⊗ ev = β(P ⊗ α⊗Q)(coev ⊗X ⊗ P ⊗Q) : X ⊗ P ⊗Q→ X (11)

With this view of P -intertwinings in mind, we construct the left adjoint functor to U .
Define the endofunctors F+, F− : C → C by

F+(X) = Q⊗X ⊗ P, F−(X) = P ⊗X ⊗Q
Let the endofunctor F ? be defined as the coproduct

F ? =
∐

n∈N∪{0},(i1,i2,...,in)∈{−,+}n
Fi1Fi2 · · ·Fin

where the term Fi1Fi2 · · ·Fin at n = 0, is just the identity functor idC. For arbitrary n ∈ N
and (i1, i2, . . . , in) ∈ {−,+}n, we denote Fi1Fi2 · · ·Fin by Fi1,i2,...,in and the respective
natural transformations Fi1,i2,...,in ⇒ F ? by ιi1,i2,...,in . We denote the additional natural
transformation idC ⇒ F ? by ι0. Hence, for any Fi1,i2,...,in we have four parallel pairs:

P ⊗Q⊗ Fi1,i2,...,in F ?
ι−,+,i1,i2,...,in

(P⊗Q⊗Fi1,i2,...,in
⊗coev)

//

ιi1,i2,...,in (ev⊗Fi1,i2,...,in
)

// (12)

Fi1,i2,...,in ⊗Q⊗ P F ?
ι+,−,i1,i2,...,in

(coev⊗Fi1,i2,...,in
⊗Q⊗P )

//

ιi1,i2,...,in (Fi1,i2,...,in
⊗ev)

// (13)

Q⊗ P ⊗ Fi1,i2,...,in F ?
ι+,−,i1,i2,...,in

(Q⊗P⊗Fi1,i2,...,in
⊗coev)

//

ιi1,i2,...,in (ev⊗Fi1,i2,...,in
)

// (14)

Fi1,i2,...,in ⊗ P ⊗Q F ?
ι−,+,i1,i2,...,in

(coev⊗Fi1,i2,...,in
⊗P⊗Q)

//

ιi1,i2,...,in (Fi1,i2,...,in
⊗ev)

// (15)
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Consider the diagram, in End(C), which the described parallel pairs create. We denote
the colimit of this diagram by T , the unique natural transformation F ? ⇒ T , by ψ, and
the compositions ψιi1,i2,...,in and ψι0, by ψi1,i2,...,in and ψ0, respectively.

Since ⊗ commutes with colimits, the family of morphisms

ψ+,i1,i2,...,in : Q⊗ Fi1,i2,...,in ⊗ P → T

induce a unique morphism α : Q⊗T⊗P → T such that α(Q⊗ψi1,i2,...,in⊗P ) = ψ+,i1,i2,...,in .
Similarly, the family of morphisms

ψ−,i1,i2,...,in : P ⊗ Fi1,i2,...,in ⊗Q→ T

induce a morphism β : P ⊗ T ⊗Q→ T such that β(P ⊗ ψi1,i2,...,in ⊗Q) = ψ−,i1,i2,...,in . As
mentioned at the start of the section, such actions α and β provide us with the necessary
P -intertwinings, but we must show that the induced P -intertwining belongs to C(P,Q).

5.1. Lemma. For any object X in C(P,Q), the pair(
T (X), (P ⊗ αX)(coev ⊗ T (X)⊗ P )

)
belongs to C(P,Q).

Proof. As we demonstrated at the beginning of this section, we only need to check
that equalities (8), (9), (10) and (11) hold for the defined actions αX and βX . Consider
equation (8). We observe that by construction

(ev ⊗ T )(P ⊗Q⊗ ψi1,,i2,...,in) = ψ−,+,i1,i2,...,in(P ⊗Q⊗ Fi1,i2,...,in ⊗ coev)

= β(P ⊗ ψ+,i1,i2,...,in ⊗Q)(P ⊗Q⊗ Fi1,i2,...,in ⊗ coev)

= β(P ⊗ α⊗Q)(P ⊗Q⊗ ψi1,i2,...,in ⊗ P ⊗Q)(P ⊗Q⊗ Fi1,i2,...,in ⊗ coev)

= β(P ⊗ α⊗Q)(P ⊗Q⊗ T ⊗ coev)(P ⊗Q⊗ ψi1,i2,...,in)

and by the universal property of the functor T , we conclude that

(ev ⊗ T ) = β(P ⊗ α⊗Q)(P ⊗Q⊗ T ⊗ coev)

It should be clear that (9), (10) and (11) follow in a similar manner from the construction
of the functor T , and we leave the details to the reader.

We denote the natural transformation (P ⊗ α)(coev ⊗ T ⊗ P ) : T ⊗ P ⇒ P ⊗ T by
σT . Hence, we define the functor F : C → C(P,Q) by F (X) =

(
T (X), σTX

)
for objects X

of C and F (f) = T (f) for morphisms f of C. By construction, F is functorial.

5.2. Theorem. The functor F as defined above is left adjoint to U , making F a U a
Hopf adjunction.
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Proof. We provide the unit and counit of the adjunction explicitly and show they satisfy
the necessary conditions. The unit of the adjunction was present in our construction as
ν := ψ0 : idC ⇒ UF = T . For the counit, consider a pair (X, σ) in C(P,Q) and denote
its induced actions (ev ⊗ X)(Q ⊗ σ) and (X ⊗ ev)(σ−1 ⊗ Q) by ασ : F+(X) → X
and βσ : F−(X) → X, respectively. We can define θi1,i2,...,in : Fi1,i2,...,in(X) → X, for
arbitrary n ∈ N and (i1, i2, . . . , in) ∈ {−,+}n, by iteratively applying ασ and βσ so that
θ+,i1,i2,...,in = ασ(Q⊗θi1,i2,...,in⊗P ) and θ−,i1,i2,...,in = βσ(P ⊗θi1,i2,...,in⊗Q), where θ+ = ασ
and θ− = βσ. Together with θ0 = idX , we have a family of morphisms from Fi1,i2,...,in(X)
to X, which must factorise through F ?(X). We denote the unique morphism F ?(X)→ X
by θ? and observe that the family of morphisms described commute with the parallel pairs
(12), (13), (14) and (15) e.g. for the parallel pair (12):

θ?ι−,+,i1,i2,...,in(P ⊗Q⊗ Fi1,i2,...,in ⊗ coev) = θ−,+,i1,i2,...,in(P ⊗Q⊗ Fi1,i2,...,in ⊗ coev)

=β(P ⊗ α⊗Q)(P ⊗Q⊗ θi1,i2,...,in ⊗Q⊗ P )(P ⊗Q⊗ Fi1,i2,...,in ⊗ coev)

=β(P ⊗ α⊗Q)(P ⊗Q⊗X ⊗ coev)(P ⊗Q⊗ θi1,i2,...,in)

=β(P ⊗ (ev ⊗X)(Q⊗ σ)⊗Q)(P ⊗Q⊗X ⊗ coev)(P ⊗Q⊗ θi1,i2,...,in)

=(X ⊗ ev)(σ−1 ⊗Q)(P ⊗ σ)(P ⊗Q⊗ θi1,i2,...,in)

=(ev ⊗X)(P ⊗Q⊗ θi1,i2,...,in) = θ?(ev ⊗ ιi1,i2,...,in)

Similar calculations follow for parallel pairs (13), (14) and (15) from the properties of
σ. Hence, by the universal property of T (X), we conclude that there exists a unique
morphism θ(X,σ) : T (X)→ X such that θXψi1,i2,...,in = θi1,i2,...,in . In fact, θ is a morphism
between (T (X), σTX) and (X, σ) in C(P,Q) i.e. (P ⊗ θX)σTX = σ(θX ⊗ P ) holds: this is
equivalent to ασ(Q ⊗ θX ⊗ P ) = θXαX which holds by definition of θX . By universality
of T , θ is natural and we have described a natural transformation θ : FU ⇒ idC(P,Q).
The triangle identities for the unit and counit ν and θ follow trivially by the universal
property of θ since θ(T (X),σT

X)νX = idX by definition.

5.3. Corollary. The adjunction F a U is monadic and the monad (T, UθF , ν) is a
Hopf monad.

Proof. By Lemma 4.7 and Beck’s Theorem 2.2, the adjunction is monadic. By Theo-
rem 4.2, the induced monad (T, ε, η) is a Hopf monad.

At this point we would like to take a step back and look at the particular structure
of T as a bimonad. At the beginning of the section, we described how a P -intertwining
σ on an object X is equivalent to a pair of suitable actions ασ and βσ on X. In the
proof of Theorem 5.2, we showed that for any object (X, σ) in C(P,Q), there exists a
unique morphism θ(X,σ) : T (X) → X so that θψi1,i2,...,in = θi1,i2,...,in , where θi1,i2,...,in
are just the iterative applications of ασ and βσ. In particular, for any object X of C,
T (X) has naturally suitable actions αX and βX which satisfy αX(Q ⊗ (ψi1,i2,...,in)X ⊗
P ) = (ψ+,i1,i2,...,in)X and αX(P ⊗ (ψi1,i2,...,in)X ⊗Q) = (ψ−,i1,i2,...,in)X . Hence, for the pair
F (X) = (T (X), σTX), θF (X) : TT (X)→ T (X) is the unique morphism such that

θF (X)(ψi1,...,in)T (X)Fi1,...,in
(
(ψj1,...,jm)X

)
= (ψi1,...,in,j1,...,jm)X
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for arbitrary non-negative integers n,m and i1, i2, . . . , in, j1, j2, . . . , jm ∈ {+,−}. As pre-
viously mentioned ν = ψ0 : idC → T . The comonoidal structure of T arises directly from
the monoidal structure of C(P,Q). Observe that for pairs (X, σ) and (Y, τ) , the induced
action ασ⊗τ on A ⊗ B is the composition (ασ ⊗ βσ)(P ⊗X ⊗ coev ⊗ Y ⊗ Q). With this
in mind, we observe that the comonoidal structure of T , T2 : T (−⊗−)→ T (−)⊗ T (−),
is the unique morphism such that

T2ψi1,...,in =
(
ψi1,...,in ⊗ ψi1,...,in

)
Fi1,...,in(−⊗ coevi1,...,in ⊗−)

where coevi1,...,in : 1 → F−in,...,−i1(1) is defined by coev+,i1,i2,...,in = F−in,...,−i1(coev) and
coev−,i1,i2,...,in = F−in,...,−i1(coev), where coev+ = coev and coev− = coev. Recall that
the P -intertwining making 1 the unit of the monoidal structure in C(P,Q) is simply the
identity morphism idP and its induced actions are αidP = ev and βidP = ev. Hence,
morphism T0 : T (1) → 1 is the unique morphism so that T0ψi1,i2,...,in = evi1,i2,...,in ,
where evi1,...,in : Fi1,...,in(1) → 1 is defined iteratively by ev+,i1,...,in = evF+(evi1,i2,...,in)
and ev−,i1,...,in = evF−(evi1,i2,...,in), with ev+ = ev and ev− = ev.

Lastly, we will provide a criterion for when the constructed Hopf monad is augmented,
and thereby corresponds to a Hopf algebra in Z(C). We say a pivotal pair (P,Q) in C
lifts to Z(C), if there exist braidings λ : P ⊗ idC ⇒ idC ⊗ P and χ : Q ⊗ idC ⇒ idC ⊗ Q,
such that (P, λ) and (Q,χ) are objects in Z(C) and coev, ev, coev and ev are morphisms
in Z(C), making (P, λ) and (Q,χ) a pivotal pair in Z(C).

5.4. Theorem. The Hopf monad T is augmented if and only if the pivotal pair (P,Q)
lifts to Z(C).

Proof. (⇒) Assume T is augmented and there exists a Hopf monad morphism ξ : T ⇒
idC. Hence ξ satisfies ξν = idC, ξθ = ξT (ξ), (ξ⊗ξ)T2 = ξ−⊗− and ξ1 = T0. We consider the
natural transformation λ := (ξψ−⊗P )(P ⊗ idC ⊗ coev). We now demonstrate that λ is a
braiding as required. First observe that λ is invertible and λ−1 := (P⊗ξψ+)(coev⊗idC⊗P )
provides its inverse:

λλ−1 = (ξψ− ⊗ P )(P ⊗ idC ⊗ coev)(P ⊗ ξψ+)(coev ⊗ idC ⊗ P )

= (ξψ− ⊗ P )(F−(ξψ+)⊗ P )(coev ⊗ idC ⊗ P ⊗ coev)

=
(
ξT (ξ)(ψ−)TF−(ψ+)⊗ P

)
(coev ⊗ idC ⊗ P ⊗ coev)

=
(
ξθ(ψ−)TF−(ψ+)⊗ P

)
(coev ⊗ idC ⊗ P ⊗ coev)

= (ξψ−,+ ⊗ P )(coev ⊗ idC ⊗ P ⊗ coev)

= (ξψ0ev ⊗ P )(idC ⊗ P ⊗ coev) = idC

The calculation showing λ−1λ = idC is completely symmetric and left to the reader.
Observe that the braiding conditions follow from the properties of ξ. We can directly
deduce that λ1 = idP since

(ξ(ψ−)1 ⊗ P )(P ⊗ 1⊗ coev) = (T0(ψ−)1 ⊗ P )(P ⊗ 1⊗ coev)

= (ev ⊗ P )(P ⊗ 1⊗ coev) = idP
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and λX⊗Y = (X⊗λY )(λX⊗Y ) holds for any arbitrary pair of objects X and Y in C since

λX⊗Y = (ξX⊗Y (ψ−)X⊗Y ⊗ P )(P ⊗X ⊗ Y ⊗ coev)

=
(
(ξX ⊗ ξY )T2(X, Y )(ψ−)X⊗Y ⊗ P

)
(P ⊗X ⊗ Y ⊗ coev)

=
(
ξX(ψ−)X ⊗ ξY (ψ−)Y ⊗ P

)
(P ⊗X ⊗ coev ⊗ Y ⊗ coev)

= (X ⊗ ξY (ψ−)Y )(X ⊗ P ⊗ Y ⊗ coev)(ξX(ψ−)X ⊗ Y )(P ⊗X ⊗ coev ⊗ Y )

= (X ⊗ λY )(λX ⊗ Y )

Hence, (P, λ) is an object in the center of C. In the same manner, one can deduce that
χ := (ξψ+⊗Q)(Q⊗ idC⊗coev) is a braiding with χ−1 := (Q⊗ξψ−)(coev⊗ idC⊗Q) as its
inverse. What remains to be checked is whether coev, ev, coev and ev are morphisms in
Z(C) and commute with the braidings of 1, P⊗Q and Q⊗P . For ev we must demonstrate
that ev ⊗ idC = (idC ⊗ ev)(χ ⊗ P )(Q ⊗ λ) which follows by considering the parallel pair
(14):

(idC ⊗ ev)(χ⊗ P )(Q⊗ λ) = (idC ⊗ ev)(χ⊗ P )(Q⊗ ξψ− ⊗ P )

(Q⊗ P ⊗ idC ⊗ coev)

=(idC ⊗ ev)(ξψ+ ⊗Q⊗ P )(Q⊗ ξψ− ⊗ coev ⊗ P )(Q⊗ P ⊗ idC ⊗ coev)

=ξT (ξ)(ψ+)TF+(ψ−)(Q⊗ P ⊗ idC ⊗ coev)

=ξθ(ψ+)TF+(ψ−)(Q⊗ P ⊗ idC ⊗ coev)

=ξψ+,−(Q⊗ P ⊗ idC ⊗ coev) = ξψ0(ev ⊗ idC) = ev ⊗ idC

For coev we must show that (λ ⊗ Q)(P ⊗ χ)(coev ⊗ idC) = idC ⊗ coev which follows by
considering the parallel pair (15):

(λ⊗Q)(P ⊗ χ)(coev ⊗ idC) = (ξψ− ⊗ P ⊗Q)(P ⊗ idC ⊗ coev ⊗Q)

(P ⊗ ξψ+ ⊗Q)(coev ⊗ idC ⊗ coev)

=(ξT (ξ)(ψ−)TF−(ψ+)⊗ P ⊗Q)(P ⊗ F+ ⊗ coev ⊗Q)(coev ⊗ idC ⊗ coev)

=(ξθ(ψ−)TF−(ψ+)⊗ P ⊗Q)(P ⊗ F+ ⊗ coev ⊗Q)(coev ⊗ idC ⊗ coev)

=(ξψ−,+ ⊗ P ⊗Q)(coev ⊗ idC ⊗ P ⊗ coev ⊗Q)(idC ⊗ coev)

=(ξψ0 ⊗ P ⊗Q)(idC ⊗ coev) = idC ⊗ coev

In a symmetric fashion, by looking at (12) and (13) one can show that coev and ev are
also morphisms in Z(C).

(⇐) Assume there exist braidings λ : P ⊗ idC ⇒ idC ⊗ P and χ : Q ⊗ idC ⇒ idC ⊗ Q
making (P, λ) and (Q,χ) objects in Z(C), such that coev, ev, coev and ev are morphisms
in Z(C). We can iteratively define the natural transformations ξi1,...in : Fi1,...in ⇒ idC by

ξ+,i1,...in = (idC ⊗ ev)(χ⊗ P )F+(ξi1,...in)

ξ−,i1,...in = (idC ⊗ ev)(λ⊗Q)F−(ξi1,...in)
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where ξ+ = (idC ⊗ ev)(χ⊗ P ) and ξ− = (idC ⊗ ev)(λ⊗Q) and ξ0 = idC. Since ev and ev
commute with the braidings, then ξ+ = (ev⊗ idC)(Q⊗λ−1) and ξ− = (ev⊗ idC)(P ⊗χ−1).
It is straightforward to check that ξi1,...in commute with the parallel pairs (12), (13), (14)
and (15), and therefore induce a unique morphism ξ : T → idC e.g. for parallel pair (12):

ξ−,+,i1,...in(P ⊗Q⊗ Fi1,...in ⊗ coev) = (idC ⊗ ev)(λ⊗Q)(P ⊗ idC ⊗ ev ⊗Q)

(P ⊗ χ⊗ P ⊗Q)F−,+(ξi1,...in)(P ⊗Q⊗ Fi1,...in ⊗ coev)

=(idC ⊗ ev)(λ⊗Q)(P ⊗ χ)(P ⊗Q⊗ ξi1,...in)

=(ev ⊗ idC)(P ⊗Q⊗ ξi1,...in) = ξi1,...in(ev ⊗ idC)

Similar arguments follow for ξi1,...in commuting with parallel pairs (13), (14) and (15).
Observe that by definition ξν = idC and ξ1 = T0 since (ξi1,...in)1 = (evi1,...in). Furthermore,

ξθ(ψi1,...,in)TFi1,...,in(ψj1,...,jm) = ξψi1,...,in,j1,...,jm = ξi1,...,in,j1,...,jm
= ξi1,...,inFi1,...,in(ξj1,...,jm) = ξψi1,...,inFi1,...,in(ξψj1,...,jm)

= ξT (ξ)(ψi1,...,in)TFi1,...,in(ψj1,...,jm)

(ξ ⊗ ξ)T2(ψi1,...in)−⊗− =
(
ξψi1,...,in ⊗ ξψi1,...,in

)
Fi1,...,in(−⊗ coevi1,...,in ⊗−)

=
(
ξi1,...,in ⊗ ξi1,...,in

)
Fi1,...,in(−⊗ coevi1,...,in ⊗−) = (ξi1,...in)−⊗−

and from the universal properties of TT and T (−⊗−), we conclude that ξθ = ξT (ξ) and
(ξ ⊗ ξ)T2 = ξ−⊗− and thereby, ξ is a bimonad morphism.

Recall that an augmentation on a Hopf monad is equivalent to a central Hopf algebra
structure on T (1). To be more precise, T (1) together with T2(1, 1) : T (1)→ T (1)⊗ T (1)
and T0 : T (1) → 1 form a comonoid in C. Additionally, as we recalled in Theorem 2.8,
if (P, λ) and (Q,χ) is a pivotal pair in the center of C, then we have a monoid structure
on T (1), m : T (1) ⊗ T (1) → T (1), ψ0(1) : 1 → T (1) where m is the unique morphism
satisfying

m(ψi1,...,in(1)⊗ ψj1,...,jm(1)) = ψi1,...,in,j1,...,jm(1)(
Qi1 ⊗ . . .⊗Qin ⊗ λi1,...,in(Qj1 ⊗ . . .⊗Qjm ⊗ Pj1 ⊗ . . .⊗ Pjn)

)
where we denote P+ = P , P− = Q, Q+ = Q and Q− = P so that F±(−) = Q± ⊗−⊗ P±
and λi1,...,in : Pi1 ⊗ . . . ⊗ Pin ⊗ idC → idC ⊗ Pi1 ⊗ . . . ⊗ Pin is the induced braiding on
Pi1 ⊗ . . .⊗Pin , where λ+ = λ, λ− = χ and λi1,...,in = (λi1 ⊗Pi2 ⊗ . . .⊗Pin)(Pi1 ⊗ λi2,...,in).
Observe that T (1) has an induced braiding ς : T (1)⊗ idC ⇒ idC ⊗ T (1) satisfying

ς(ψi1,...,in(1)⊗ idC) = (idC ⊗ ψi1,...,in(1))λ−i1,...,−in,in,...,i1

It follows that (T (1), ς) is an object in the center of C and together with m, ψ0(1), T2(1, 1),
T0 forms as central bialgebra. Moreover, we have an induced isomorphism of bimonads
Υ : T (−)⇒ T (1)⊗− defined as the unique morphism satisfying

Υψi1,...,in = (ψi1,...,in(1)⊗ idC)(Qi1 ⊗ . . .⊗Qin ⊗ λ−1in,...,i1)
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Additionally, T (1) becomes a central Hopf algebra and its antipode S : T (1)→ T (1) can
be recovered as the unique morphism satisfying

Sψi1,...,in =(evi1,...,in ⊗ ψ−in,...,−i1(1))(Qi1 ⊗ . . .⊗Qin ⊗ λ−1in,...,i1(F−in,...,−i1))
(Fi1,...,in(1)⊗ coev−in,...,−i1)

with its inverse S−1 : T (1)→ T (1) defined as the unique morphism satisfying

S−1ψi1,...,in = (evi1,...,in ⊗ ψ−in,...,−i1(1))

(Qi1 ⊗ . . .⊗Qin ⊗ λ−1in,...,i1(F−in,...,−i1))(coev−in,...,−i1 ⊗ Fi1,...,in(1))

We now review the structure of the constructed Hopf monad on some familiar categories.

5.5. Example. If C is braided with braiding Ψ, then (P,ΨP,−) and (Q,ΨQ,−) naturally
form a pivotal pair in Z(C) and by Theorem 2.8, T is augmented. In particular, T ∼=
T (1)⊗− where T (1) is in fact a braided Hopf algebra in C since the induce braiding on
T (1) will naturally coincide with the braiding ΨT (1),−.

5.6. Example. Let K be an arbitrary field and consider its symmetric monoidal category
of vector spaces (Vec,⊗,K), where ⊗ denotes the tensor product over the field. Any
finite dimensional vectorspace is dualizable and pivotal with its dual vectorspace having
the same dimension and the trivial evaluation and coevaluation providing the duality
morphism for both sides. Since the category is symmetric, by Theorem 2.8, any Hopf
monad constructed as above is augmented. Hence, the monad should arise from a Hopf
algebra. Explicitly, for an n-dimensional vectorspace, the monad F ? is isomorphic to
B ⊗ −, where B is the free algebra K〈if j, iej | 1 ≤ i, j ≤ n〉 and generators if j and iej
correspond to the bases of P ⊗Q and Q⊗P , respectively. Consequently, the monad T is
isomorphic to the induced monad, H ⊗ −, where H is the quotient of the algebra B by
relations

n∑
j=1

jf i. jek =
n∑
j=1

if j. kej =
n∑
j=1

jei. jfk =
n∑
j=1

iej. kf j = δi,k

for all 1 ≤ i, k ≤ n. The coproduct, counit and antipode, ∆, ε, S of the Hopf algebra H
are defined as

∆(ifk) =
n∑
j=1

if j ⊗ jfk, ε(ifk) = δi,k, S(ifk) = kei

∆(iek) =
n∑
j=1

iej ⊗ jek, ε(iek) = δi,k, S(iek) = kf i

for all 1 ≤ i, k ≤ n.
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5.7. Remark. The Hopf algebra constructed in the above example can be viewed as
a suitable quotient of the free Matrix Hopf algebra NGL(n) discussed in [Škoda, 2003].
The free matrix bialgebra of rank n2 is exactly the free algebra K〈if j | 1 ≤ i, j ≤ n〉
with the coproduct and counit defined as in Example 5.6. The Hopf envelope of this
bialgebra as defined by Manin [Manin, 1988], would be the quotient of

∐
l∈NBl where

Bl = K〈if lj | 1 ≤ i, j ≤ n〉 by the relations
∑n

j=1 if
l
j. ke

l+1
j =

∑n
j=1 jf

l+1
i. jf

l
k = δi,k for

all l ∈ N and the antipode is defined as the shift S(if
l
j) = jf

l+1
i. The Hopf algebra of

Example 5.6 is just the quotient of this Hopf algebra by requiring the Bl components to
be equal for odd l and similairly for even l, so that S2 = id.

5.8. Example. Notice that any n-dimensional K-vectorspace, P , in fact belongs to
a GL(n,K) moduli of pivotal pairs. Let (P,Q) denote a pivotal pair in Vec, with
coev, ev, coev, ev representing the relevant duality morphisms. We can always pick a basis
{vi}ni=1 for P and change the basis of Q, to {wi}ni=1, so that ev(wi, vj) = δi,j and coev(1) =∑n

i=1 vi ⊗wi. Consequently, coev must be of the form coev(1) =
∑n

i,j=1 qijwi ⊗ vj, where

Q = (qij)1≤i,j≤n forms an invertible matrix and ev(vi⊗wj) = pij, where Q−1 = (pij)1≤i,j≤n.
Hence, we can associate a Hopf algebra to each invertible matrix Q, as a quotient of the
free algebra K〈if j, iej | 1 ≤ i, j ≤ n〉 by relations

n∑
j=1

jfk. jei =
n∑
j=1

if j. kej = pik,
n∑

j,l=1

jei. lfkqjl =
n∑

j,l=1

iej. kf lqlj = δi,k

for all 1 ≤ i, k ≤ n. The coproduct and counit, ∆, ε, of the Hopf algebra are defined as in
Example 5.6, for iek, and extended by

∆(ifk) =
n∑

j,l=1

if j ⊗ lfkqjl, ε(ifk) = pik

S(iek) =
n∑
l=1

kf lqli, S(ifk) =
n∑
l=1

kelpil

for all 1 ≤ i, k ≤ n.

5.9. Example. [Theorem 4.11 [Ghobadi, 2020]] If A is a K-algebra and P a pivotal
object in the category of A-bimodules, AMA, the arising Hopf monad was constructed in
[Ghobadi, 2020]. As proven in [Szlachányi, 2003], additive bimonads and Hopf monads
on AMA which admit a right adjoint correspond to left bialgebroids and Hopf algebroids
over A, in the sense of Schauenburg [Schauenburg, 2000]. We adapt the notation of
[Böhm, 2018] to describe the Hopf algebroid in question and refer the reader to [Ghobadi,
2020] where the construction is described in full detail. Consider the A⊗K A

op-bimodule
structure induced on Q ⊗K P (resp. P ⊗K Q) where we regard Q (resp. P ) as an A-
bimodule and P (resp. Q) as an Aop-bimodule, where Aop denotes the opposite algebra to
A. We denote arbitrary elements of Q⊗K P and P ⊗KQ by (q, p) and (p, q), respectively,
and we denote elements of Aop in H by a line over head i.e. a ∈ A ⊂ H and a ∈
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Aop ⊂ H.. We define the Hopf algebroid H as the quotient of the free A ⊗K A
op-algebra

TA⊗KAop(Q⊗K P ⊕ P ⊗K Q) by relations

n∑
i=1

(ωi, q)(xi, p) = ev(p⊗ q)
m∑
j=1

(yj, p)(ρj, q) = ev(q ⊗ p)

m∑
j=1

(q, ρj)(p, yj) = ev(q ⊗ p)
n∑
i=1

(p, xi)(q, ωi) = ev(p⊗ q)

for all p ∈ P and q ∈ Q, where coev(1) =
∑n

i=1 ωi ⊗ xi and coev(1) =
∑m

j=1 yj ⊗ ρj for
positive integers n,m. The coproduct and counit of H, ∆ and ε, are defined by

∆(ab) = a⊗ b, ε(ab) = ba ε((p, q)) = ev(p⊗ q) ε((q, p)) = ev(q ⊗ p)

∆((q, p)) =
n∑
i=1

(q, ωi)⊗ (xi, p) ∆((p, q)) =
m∑
j=1

(p, yj)⊗ (ρj, q)

In [Ghobadi, 2020], we show that H is not only a left Hopf algebroid in the sense of
Schauenburg, but furthermore a Hopf algebroid in the sense of Böhm, and Szlachányi
[Böhm und Szlachányi, 2004] and admits an invertible antipode S acting as S((p, q)) =
(q, p) with S = S−1.

6. Generalizations

6.1. On Generalisation to Pivotal Diagrams. By a pivotal diagram, we mean a
functor D : J → Cpiv0 from a small category J to the category Cpiv0 which has pivotal
pairs (P,Q) as objects and morphism all f : P1 → P2 as morphism between (P1, Q1) and
(P1, P2). Hence the datum for a pivotal diagram consists of sets of pivotal pairs (Pi, Qi)
and pivotal morphisms fj : Pjs → Pjt between them, where i, js, jt ∈ I and j ∈ J for
index sets I, J . We define the category of D-intertwined objects in C, denoted by C(D), as
follows: the objects of C(D) are pairs (X, {σi}i∈I), where X is an object of C and {σi}i∈I
a family of morphisms σi : X ⊗ Pi → Pi ⊗ X for i ∈ I, so that for all i ∈ I, the pair
(X, σi) belongs to C(Pi, Qi), and for any j ∈ J ,

(fj ⊗X)σjs = σjt(X ⊗ fj) : X ⊗ Pjs → Pjt ⊗X

holds. Morphisms between objects (X, {σi}i∈I) and (Y, {τi}i∈I) are morphisms f : X → Y
in C, which satisfy τi(f ⊗ Pi) = (Pi ⊗ f)σi for all i ∈ I.

Observe that C(D) lifts the monoidal structure of C: we can define the tensor of two
objects (X, {σi}i∈I) and (Y, {τi}i∈I) of C(D) as

(X, {σi}i∈I)⊗ (Y, {τi}i∈I) =
(
X ⊗ Y, {(σi ⊗ Y )(X ⊗ τi)}i∈I

)
By this definition, for any i ∈ I, the forgetful functor Ui : C(D)→ C(Pi, Qi) which sends
a pair (X, {σi}i∈I) to (X, σi), is strict monoidal. Consequently, the forgetful functor
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UD : C(D) → C sending pairs (X, {σi}i∈I) to their underlying objects, X, also becomes
strict monoidal. We must emphasize that the monoidal structure well-defined because for
any j ∈ J , fj commutes with the relevant Pi-intertwinings, and thereby

(fj ⊗X ⊗ Y )(σjs ⊗ Y )(X ⊗ τjs) = (σjt ⊗ Y )(X ⊗ fj ⊗ Y )(X ⊗ τjs)
= (σjt ⊗ Y )(X ⊗ τjt)(X ⊗ fj)

holds.

6.2. Theorem. If C is a left (right) closed monoidal category and D a pivotal diagram
as described above, then C(D) has a left (right) closed monoidal structure which lifts that
of C and the forgetful functor UD is left (right) closed.

Proof. In Theorem 4.2, we have provided suitable Pi-intertwinings for inner homs of two
objects in C(Pi, Qi) and demonstrated that the unit and counits of the adjunctions com-
mute with these intertwinings. Hence, if (X, {σi}i∈I) and (Y, {τi}i∈I) are objects of C(D) ,
we only need to check whether the induced D-intertwinings {〈σi, τi〉l}i∈I and {〈σi, τi〉r}i∈I
commute with morphisms fj so that ([X, Y ]l, {〈σi, τi〉l}i∈I) and ([X, Y ]r, {〈σi, τi〉r}i∈I)
provide inner homs in C(D), and lift the closed structure of C. Let j ∈ J , then

〈σjt , τjt〉([X, Y ]lfj) =(Pjt [A, (evjtB)(Qjtτjt)(Qjtε
A
BPjt)(Qjt [A,B]lσ−1jt )]l)

(Pjtη
A
Qjt [A,B]lPjt

)(coevjt [A,B]lPjt)([X, Y ]lfj)

=(Pjt [A, (evjtB)(Qjtτjt)(QjtY fj)(Qjtε
A
BPjs)(Qjt [A,B]lσ−1js )]l)

(Pjtη
A
Qjt [A,B]lPjs

)(coevjt [A,B]lPjs)

=(Pjt [A, (evjsB)(∨fj ⊗ τjs)(Qjtε
A
BPjs)(Qjt [A,B]lσ−1js )]l)

(Pjtη
A
Qjt [A,B]lPjs

)(coevjt [A,B]lPjs)

=(Pjt [A, (evjsB)(Qjsτjs)(Qjsε
A
BPjs)(Qjs [A,B]lσ−1js )]l)

(Pjtη
A
Qjs [A,B]lPjs

)((Pjt
∨fj)coevjt [A,B]lPjs)

=(fj[X, Y ]l)(Pjs [A, (evjsB)(Qjsτjs)(Qjsε
A
BPjs)(Qjs [A,B]lσ−1js )]l)

(Pjsη
A
Qjs [A,B]lPjs

)(coevjs [A,B]lPjs) = (fj[X, Y ]l)〈σjs , τjs〉l
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holds, where ∨fj := (evjtQjs)(QjtfjQjs)(Qjtcoevjs). A similar computation follows for
{〈σi, τi〉r}i∈I and

〈σjt , τjt〉r([X, Y ]rfj) = (Pjt [A, (evjtB)(Qjtτjt)(QjtΘ
A
BPjt)(σjt

−1[A,B]rPjt)]
r)

(PjtΓ
A
Qjt [A,B]rPjt

)(coevjt [A,B]rPjt)([X, Y ]rfj)

=(Pjt [A, (evjtB)(Qjtτjt)(QjtBfj)(QjtΘ
A
BPjs)(σjt

−1[A,B]rPjs)]
r)

(PjtΓ
A
Qjt [A,B]rPjs

)(coevjt [A,B]rPjs)

=(Pjt [A, (evjsB)(∨fj ⊗ τjs)(QjtΘ
A
BPjs)(σjt

−1[A,B]rPjs)]
r)

(PjtΓ
A
Qjt [A,B]rPjs

)(coevjt [A,B]rPjs)

=(Pjt [A, (evjsB)(Qjs ⊗ τjs)(QjsΘ
A
BPjs)(σjs

−1[A,B]rPjs)]
r)

(PjtΓ
A
Qjs [A,B]rPjs

)((Pjt
∨fj)coevjt [A,B]rPjs)

=(fj[X, Y ]r)(Pjs [A, (evjsB)(Qjs ⊗ τjs)(QjsΘ
A
BPjs)(σjs

−1[A,B]rPjs)]
r)

(PjsΓ
A
Qjs [A,B]rPjs

)(coevjs [A,B]rPjs) = (fj[X, Y ]r)〈σjs , τjs〉r

holds. We are using the fact that σjt
−1(∨fjA) = (A ∨fj)σjs

−1 which follows from (∨fjA)σjs =
σjt(A

∨fj).

As in Section 5, one can construct the relevant Hopf monad for a pivotal diagram,
when suitable colimits exist. The monad will be a quotient of the coproduct of Ti, where
Ti are the respective Hopf monads of each pair (Pi, Qi). We would also like to point out
that as mentioned in Remark 4.6, if one considers the pivotal diagram D, consisting of
the object (P,Q) and the morphism %P : (P,Q) → (P,Q) in a pivotal category C, the
obtained category C(D) will lift the pivotal structure of C. We will make this statement
more precise in the next section.

6.3. C(P,Q) as a Dual of a Monoidal Functor. In this section we comment on
the connection between our work and the recent work on Tannaka-Krein Duality for
bimonads, as presented in [Shimizu, 2019].

In [Majid, 1992], Majid introduced the dual of a strong monoidal functor U : D → C
as the category whose objects are pairs (X, σ : X ⊗ U ⇒ U ⊗X), where X is an object
of C and σ a natural monoidal isomorphism. One can recover the center of a monoidal
category, C, as the dual of the identity functor idC : C → C. The dual, denoted by U◦, has
a natural monoidal structure, as in Relation (7), so that the relevant forgetful functor to C
becomes strict monoidal. If we weaken this definition to allow the braidings, σ, to not be
isomorphisms, we arrive at the concept of the lax dual or weak center, and must distinguish
between the right and left dual, each having objects of the form (X, σ : X ⊗U ⇒ U ⊗X)
and (X, σ : U⊗X ⇒ X⊗U), respectively. However, if D is rigid, then all lax braidings will
be invertible and the lax left dual, the lax right dual and U◦, will all agree [Schauenburg,
2017].

In [Shimizu, 2019], given a reconstruction data i.e. a strong monoidal functor U : D →
C, from an essentially small monoidal category D, Shimizu constructs the bimonad whose
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modules would recover the left lax dual of U , and describes this monad as a coend. This
generalizes the work of [Bruguières und Virelizier, 2012] on the centralizability of Hopf
monads. The tools in [Shimizu, 2019] are then used to provide a monadic setting for the
FRT reconstruction for a braided object in C, where D is the category of braids. In the
same vein, our work can be viewed as a reconstruction for a pivotal pair, where D is the
simplest pivotal category

A choice of a pivotal pair in a monoidal category C, exactly corresponds to a strict
monoidal functor from the monoidal category generated by a single pivotal object, which
we denote by Piv(1). In the language of monoidal signatures, as described in Section
6.1 of [Shimizu, 2019], the category Piv(1) is the monoidal category generated by two
objects 1 and 2 and two pairs of duality morphisms making 2 both the left and right
dual of 1. From this point of view, it should be clear that given any pivotal pair in
C, we have a strict monoidal functor (P,Q) : Piv(1) → C which sends 1 to P and 2
to Q. Additionally, any pivotal morphism f : (P1, Q1) → (P2, Q2) provides a natural
transformation between the corresponding functors f : (P1, Q1) ⇒ (P2, Q1) with f1 = f
and f2 = (ev2Q1)(Q2fQ1)(Q2coev1).

Provided with a pivotal pair (P,Q), the category C(P,Q) is exactly the dual of the
corresponding monoidal functor (P,Q). Any object (A, σ) of C(P,Q) has a natural braid-
ing σ defined by σP = σ and σQ = σ−1 and it follows easily that the duality morphisms
commute with these braidings. Conversely, for any object (A, σ) in (P,Q)◦, (A, σP ) natu-
rally becomes an object in C(P,Q), since the duality morphisms commute with σ, which
implies that σQ and σ must be inverses. We should also note that in [Schauenburg, 2017],
it is shown that the dual of a monoidal functor from a rigid category, lifts the left inner
homs of the target category, when they exist. This result provides an indirect proof for
Theorem 4.2. Additionally, given the reconstruction data (P,Q) : Piv(1)→ C, the monad
constructed in [Shimizu, 2019] is given by the coend

T (X) =

∫ a∈Piv(1)
(P,Q)(a)⊗X ⊗ (P,Q)(a)∨

which would exactly reduce to our definition in Section 5. From this point of view, the
parallel pairs described in Section 5 are the only pairs we consider since Piv(1) is only
generated by the four duality morphisms. Similarly, a pivotal diagram as in Section 6.1 can
be viewed as a strict monoidal functor from the category generated by several pivotal pairs
and morphisms between them, with the relevant composition relations. Consequently,
C(D) can be viewed as the dual of this functor, which by Theorem 6.2 will again be
closed.

We conclude this section by the following extension of Theorem 4.5:

6.4. Theorem. Assume U : D → C is a pivotal functor between pivotal categories and
strictly preserves duality morphisms i.e. the induced isomorphisms ζ : F (∨−) → ∨F (−)
are the identity morphisms. Then the dual of U is a pivotal category such that the forgetful
functor from U◦ to C preserves its pivotal structure.
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Proof. Since C is rigid, U◦ is a rigid category and the braidings on the duals are given
exactly as described in Corollary 4.4. Hence the proof follows exactly as the proof of
Theorem 4.5, where σ is now a natural transformation. In the calculations of Theorem 4.5,
we required σ to commute with %Q i.e. in this general setting we need the pivotal structure
%C in C to commute with the braidings. However, this follows directly by our assumptions
in the statement and that the braidings commute with U(%D), where %D denotes the
pivotal structure of D.

7. Diagrams and Proof of Theorem 4.2

In this section, we provide the necessary diagrams for the proof of Theorem 4.2. The
large commutative rectangles marked with ♠, commute by the naturality of the unit and
the triangle identities.

BP PB

[A,BA]lP PQBP P [A,BA]l

PQ[A,BA]lP P [A,QBPA]l P [A,QPBA]l

P [A,Q[A,BA]lPA]l P [A,QBAP ]l

P [A,Q[A,BA]lAP ]l P [A,QBAP ]l

ηABP
coevBP

σB

PηAB

coev[A,BA]lP
PQηABP

P (Bev)(σBP )

PηAQBP

PηA
Q[A,BA]lP P [A,QBσ−1

A ]lP [A,QηABPA]
l

P [A,(Bev)(σBP )A]l P [A,evBA]l

P [A,Q[A,BA]lσ−1
A ]l

P [A,QηABAP ]l

P [A,QεABAP ]l

P [A,Q(σB⊗σA)]l

Figure 1: Proof of unit commuting with P -intertwinings



[A,B]lAP [A,B]lPA PQ[A,B]lPA

[A,B]lAP PQ[A,B]lPA P [A,Q[A,B]lPA]lA

BP PQ[A,B]lAP

PB PQBP P [A,Q[A,B]lAP ]lA

P [A,B]lA P [A,QBP ]lA

[A,B]lσA

[A,B]lσ−1
A

coev[A,B]lPA

PηA
Q[A,B]lP

A

coev[A,B]lAPεABP PQ[A,B]lσ−1
A

P [A,Q[A,B]lσ−1
A ]lA

PεA
Q[A,B]lPA

coevBPσB PQεABP

P (evQ)(QσB)

P [A,QεABP ]lA

PεA
Q[A,B]lAP

PεAB

P [A,(evB)(QσB)]lA

PεAQBP

Figure 2: Proof of counit commuting with P -intertwinings



[A,B]lP

[A,B]lPQP [A, [A,B]lPQA]lP [A, [A,B]lA]lP [A,B]lP

[A,B]lP PQ[A,B]lPQP [A,PQ[A,B]lPQA]lP [A, [A,B]lPAQ]lP [A, [A,B]lAPQ]lP [A,BPQ]lP

PQ[A,B]lP P [A,Q[A,B]lPA]lQP [A,PQ[A,B]lPAQ]lP [A,BPQ]lP [A,PBQ]lP

P [A,Q[A,B]lPA]l P [A,Q[A,B]lAP ]lQP [A,PQ[A,B]lAPQ]lP [A,P [A,B]lAQ]lP

P [A,Q[A,B]lAP ]l P [A,QBP ]lQP P [A,QPB]lQP [A,PQBPQ]lP [A,P [A,B]lQA]lP

P [A,QBP ]l P [A,QPB]l P [A,B]l P [A,B]lQP

ηA
[A,B]l

P

coev[A,B]lPQP

ηA
[A,B]lPQ

P

[A,B]levP

[A,coev[A,B]PQA]lP
[A,[A,B]lPσA

−1]lP

[A,[A,B]levA]lP [A,εAB ]lP

coev[A,B]lP

[A,B]lP coev

PηA
Q[A,B]lP

QP [A,PQ[A,B]lPσA
−1]lP

[A,coev[A,B]lPAQ]lP

[A,[A,B]lσ−1
A Q]lP

[A,coev[A,B]lAPQ]lP

[A,εABPQ]lP

[A,[A,B]lAev]lP [A,Bev]lP

PηA
Q[A,B]lP

PQ[A,B]lP coev

P [A,Q[A,B]lσ−1
A ]lQP

[A,PQ[A,B]lσ−1
A Q]lP

[A,coevBPQ]lP

[A,σ−1
B Q]lP

P [A,Q[A,B]lσ−1
A ]l

P [A,Q[A,B]lPA]lcoev

♠

P [A,QεABP ]lQP [A,PQεABPQ]lP

[A,PεABQ]lP

P [A,QεABP ]l

P [A,Q[A,B]lAP ]lcoev

P [A,QσB ]lQP

P [A,evB]lQP

[A,P (evB)(QσB)Q]lP

[AP [A,B]lσA
−1]lP

P [A,QσB ]l

P [A,QBP ]lcoev

P [A,evB]l

P [A,QPB]lcoev

P [A,B]lcoev

ηA
P [A,B]lQ

P

Figure 3: Proof of 〈σA, σB〉−1l 〈σA, σB〉l = id[A,B]lP



PQP [A,B]l P [A,B]l P [A, [A,B]lA]l P [A,B]l

P [A,B]l PQP [A,B]lQP P [A,QP [A,B]lQPA]l P [A,QP [A,B]lA]l P [A,QPB]l

P [A,B]lQP PQ[A,P [A,B]lQA]lP P [A,QP [A,B]lQAP ]l P [A,QPB]l P [A,QBP ]l

[A,P [A,B]lQA]lP PQ[A,P [A,B]lAQ]lP P [A,QP [A,B]lAQP ]l P [A,Q[A,B]lAP ]l

[A,P [A,B]lAQ]lP PQ[A,PBQ]lP PQ[A,BPQ]lP P [A,QPBQP ]l P [A,Q[A,B]lPA]l

[A,PBQ]lP [A,BPQ]lP [A,B]lP PQ[A,B]lP

PηA
QP [A,B]l

P ev[A,B]l

PQP [A,B]lcoev

PηA
[A,B]l

P [A,εAB ]l

P [A,B]lcoev

coevP [A,B]l

PQηA
P [A,B]lQ

P

PηA
QP [A,B]lQP

P [A,QP [A,B]lQσ−1
A ]l

P [A,QP [A,B]lcoevA]l

P [A,QP [A,B]lAcoev]l

P [A,QPεAB ]l

P [A,ev[A,B]lA]l P [A,evB]l

ηA
P [A,B]lQ

P

coevP [A,B]lQP

PQ[A,P [A,B]lσA]lP
P [A,QP [A,B]lσAP ]l

P [A,Qσ−1
B ]l

P [A,QPBcoev]l

P [A,QσB ]l

[A,P [A,B]lσA]lP

coev[A,P [A,B]lQA]lP

♠

[A,PεABQ]lP P [A,QPεABQP ]l

P [A,QεABP ]l

[A,PεABQ]lP

coev[A,PBQ]lP

[A,σ−1
B Q]lP

PQ[A,Bev]lP

P [A,Q(Bev)(σ−1
B Q)P ]l

P [A,Q[A,B]lσ−1
A ]l

[A,σ−1
B Q]lP

coev[A,PBQ]lP

[A,Bev]lP

coev[A,BPQ]lP

coev[A,B]lP

PηA
Q[A,B]lP

Figure 4: Proof of 〈σA, σB〉l〈σA, σB〉−1l = idP [A,B]l



QPQ[A,B]l Q[A,B]l Q[A, [A,B]lA]l Q[A,B]l

Q[A,B]l QPQ[A,B]lPQ Q[A,PQ[A,B]lA]l Q[A,PQB]l Q[A,BPQ]l

Q[A,B]lPQ QP [A,Q[A,B]lPA]lQ Q[A,PQ[A,B]lPQA]l Q[A,PQ[A,B]lAPQ]l Q[A,PBQ]l

[A,Q[A,B]lPA]lQ QP [A,Q[A,B]lAP ]lQ Q[A,PQ[A,B]lPAQ]l Q[A,PQBPQ]l Q[A,P [A,B]lAQ]l

[A,Q[A,B]lAP ]lQ QP [A,QBP ]lQ QP [A,QPB]lQ Q[A,P [A,B]lQA]l

[A,QBP ]lQ [A,QPB]lQ [A,B]lQ QP [A,B]lQ

QPQ[A,B]lcoev

QηA
PQ[A,B]l

Qev[A,B]l

QηA
[A,B]l

Q[A,εAB ]l

Q[A,B]lcoev

coevQ[A,B]l

QPηA
Q[A,B]lP

Q QηA
PQ[A,B]lPQ Q[A,PQ[A,B]lcoevA]l

Q[A,PQ[A,B]lAcoev]l

Q[A,PQεAB ]l

Q[A,ev[A,B]lA]l

Q[A,PQBcoev]l

Q[A,PσB ]l

Q[A,evB]l

Q[A,Bev]l

coevQ[A,B]lPQ

ηA
Q[A,B]lP

Q QP [A,Q[A,B]lσ−1
A ]lQ Q[A,PQ[A,B]lPσA]l

Q[A,PQεABPQ]l

Q[A,σ−1
B Q]l

[A,Q[A,B]lσ−1
A ]lQ

coev[A,Q[A,B]lσ−1
A ]lQ

QP [A,QεABP ]lQ

Q[A,PQ[A,B]lσ−1
A Q]l

Q[A,P (evB)(QσB)Q]l Q[A,PεABQ]l

[A,QεABP ]lQ

coev[A,Q[A,B]lAP ]lQ

QP [A,QσB ]lQ

QP [A,evB]lQ

♠ Q[A,P [A,B]lσA]l

[A,QσB ]lQ

coev[A,QBP ]lQ

[A,evB]lQ

coev[A,QPB]lQ

coev[A,B]lQ

QηA
P [A,B]lQ

Figure 5: Proof of 〈σA, σB〉l
−1
〈σA, σB〉l = idQ[A,B]l



[A,B]lQ

[A,B]lQPQ [A, [A,B]lQPA]lQ [A, [A,B]lA]lQ [A,B]lQ

[A,B]lQ QP [A,B]lQPQ [A,QP [A,B]lQPA]lQ [A, [A,B]lQAP ]lQ [A,QPB]lQ
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Q[A,P [A,B]lQA]l Q[A,P [A,B]lAQ]lPQ [A,QP [A,B]lAQP ]lQ [A,QPBQP ]lQ [A,Q[A,B]lAP ]lQ

Q[A,P [A,B]lAQ]l Q[A,PBQ]lPQ Q[A,BPQ]lPQ [A,Q[A,B]lPA]lQ

Q[A,PBQ]l Q[A,BPQ]l Q[A,B]l Q[A,B]lPQ
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PQ

ηA
QP [A,B]lQP

Q

[A,QP [A,B]lQσ−1
A ]lQ

[A,coev[A,B]lQAP ]lQ

[A,[A,B]lσAP ]lQ

[A,evB]lQ

QηA
P [A,B]lQ

QP [A,B]lQcoev

Q[A,P [A,B]lσA]lPQ [A,QP [A,B]lσBP ]lQ
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Figure 6: Proof of 〈σA, σB〉l〈σA, σB〉l
−1

= id[A,B]lQ
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