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A NEW APPROACH TO S-PROTOMODULAR CATEGORIES

TAMAR JANELIDZE-GRAY

Abstract. We propose a new approach to S-protomodular categories in the sense of
D. Bourn, N. Martins-Ferreira, A. Montoli, and M. Sobral. Instead of points (=split
epimorphisms) it uses generalized points, which we define as composable pairs of mor-
phisms whose composites are pullback stable regular epimorphisms. This approach is
convenient in describing the connection between split and regular Schreier epimorphisms
of monoids.

1. Introduction

An S-protomodular category in the sense of D. Bourn, N. Martins-Ferreira, A. Montoli,
and M. Sobral (see [3] and [5]) is a pointed category C (with finite limits) equipped with
a class of distinguished split epimorphisms (=“points”) satisfying certain conditions; we
will recall the precise definition in Section 3. The introduction to [5] says (among many
other things):

“Note that our approach to relative non-abelian homological algebra is different from
the one initiated by T. Janelidze in [7] and developed by her in several later papers: in
our work, the word “relative” refers to a chosen class of points, i.e. of split epimorphisms
with specified splitting, while in T. Janelidze’s papers it refers to a chosen class of (not
necessarily split) regular epimorphisms.”

Following this remark, in a sense, in this paper we develop what might be called
non-split (epimorphism) approach to the theory of S-protomodular categories. We replace
points (f, s) =

A
f // B, fs = 1B
s

oo

with pairs (f, g) =

C
g // A

f // B

where the composite fg is required to be a pullback stable regular epimorphism, which we
call generalized points. We impose certain conditions on a class T of generalized points in
a category C, and call C a T-protomodular category when those conditions are satisfied.
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Our main result (Theorem 3.4) describes, for an arbitrary pointed category C with finite
limits, a bijection between the collections of classes S making C an S-protomodular
category and the collections of classes T making C a T-protomodular category. In this
formulation we have in mind of course that S always denotes a class of points while T
always denotes a class of generalized points.

In the last section we take C to be the category of monoids and prove Theorems 4.5 and
4.6, which show that using generalized points is convenient in describing the connection
between split and regular Schreier epimorphisms of monoids.

A remark on terminology: The terms strong (point) and regular (Schreier epimor-
phism) we are using might sound confusing since there are more standard and familiar
strong epimorphisms and regular epimorphisms in general category theory. But this choice
of terminology was already made several years ago in the literature we refer to.

2. Generalized points

Throughout this paper we assume that C is a pointed category with finite limits.

2.1. Definition. A generalized point in C is a pair (f, g), in which f : A → B and
g : C → A are morphisms in C such that the composite fg : C → B is a pullback stable
regular epimorphism in C.

We will also write

C
g // A

f // B (2.1)

for the generalized point (f, g) in C. Note that since fg is a pullback stable regular epi-
morphism, it follows that f is also a pullback stable regular epimorphism (see Proposition
1.5 of [6]).

A morphism between two such generalized points (f, g) and (f ′, g′) is a triple (α, β, γ),
in which α : A → A′, β : B → B′, and γ : C → C ′ are morphisms in C such that the
diagram

C
g //

γ

��

A

α

��

f // B

β

��
C ′

g′
// A′

f ′
// B′

(2.2)

commutes.
We will denote by GPt(C) the category of all generalized points in C. Note that if

we take all those generalized points (2.1) for which the composite fg is the identity, then
we obtain the category of points Pt(C) in C in the sense of D. Bourn [1]. We will also
call such generalized points split generalized points.
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2.2. Definition. A generalized point (f, g) is said to be a strong generalized point, if g
and the kernel of f are jointly strongly epic.

In particular, a split generalized point that is strong is the same as a strong split
epimorphism in the sense of [2], and the same as a regular point in the sense of [8], and
a strong point in the sense of [5].

Let (f, g) be a generalized point in C and let x : X → B be any morphism in C.
Taking the pullbacks (A ×B X, π1, π2) of f and x, and (C ×B X, π′1, π′2) of fg and x, we
obtain the commutative diagram

C ×B X
g×1 //

π′
1
��

A×B X
π1
��

π2 // X

x
��

C g
// A

f
// B

(2.3)

in which π2(g×1) = π′2, and not only the second square but also the first one is a pullback.
Since (f, g) is a generalized point, so is also the pair (π2, g × 1), and we informally say
that (π2, g × 1) is the pullback of (f, g) along x in GPt(C).

We have:

2.3. Theorem. If in the commutative diagram (2.3), (f, g) is a generalized point in C,
x is a pullback stable regular epimorphism, and ker(π2) and g×1 are jointly strongly epic,
then ker(f) and g are also jointly strongly epic.

Proof. Let m : M → A be a monomorphism, and let u : Ker(f) → M and v : C → M
be any morphisms with mu = ker(f) and mv = g. We have to prove that, under the
assumptions of the theorem, m is an isomorphism. For, consider the diagram

C ×B X
1×v

%%

g×1 //

π′
1

��

A×B X
π2 //

π1

��

X

x

��

M ×B X

m×1
66mmmmmmmmmmmmmm

π′′
1

��

K

u′
bb

k′

FF

















u
||yyyyyyyyy

k

��2
222222222222222

M

m

((RRRRRRRRRRRRRRRRRR

C

v

99ssssssssssss
g

// A
f

// B

(2.4)

in C, which adds more arrows to diagram (2.3) as follows:

• Since the right-hand square of (2.4) is a pullback, we can identify Ker(π2) with
Ker(f), and this object is denoted by K; accordingly, we can write (K, k) =
(Ker(f), ker(f)) and (K, k′) = (Ker(π2), ker(π2)).
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• m, u, and v are as above.

• M ×B X is obtained as the pullback of fm and x; its first pullback projection
is denoted by π′′1 , while the second one coincides with the composite of m × 1 :
M ×B X → A×B X and π2 : A×B X → X. It follows that (M ×B X, π′′1 ,m× 1) is
the pullback of m and π1, therefore m× 1 is a monomorphism since so is m. Note
also that π1 is a pullback stable regular epimorphism since so is x.

• Since mu = k = π1k
′, there exists a (unique) morphism u′ : K → M ×B X such

that (m× 1)u′ = k′ (and also π′′1u
′ = u).

Since k′ = ker(π2) and g × 1 are jointly strongly epic, it follows that m× 1 is an isomor-
phism. Therefore, since π1 is a pullback stable regular epimorphism and (M×BX, π′′1 ,m×
1) is the pullback of m and π1, it follows that m is an isomorphism (see e.g. Proposition
1.6 of [6]).

Note the following simple fact:

2.4. Proposition. In a commutative diagram

B

s

��

h

��~~~~~~~~~~~
1B

��@@@@@@@@@@@

C g
// A

f
// B

in C, if ker(f) and s are jointly strongly epic, then (f, g) is a generalized strong point in
C.

Given a generalized point (f, g) as in (2.3), consider the commutative diagram

C

〈1C ,1C〉

yysssssssssssssss

〈g,1C〉
��

1C

##GGGGGGGGGGGGG

C ×B C g×1
//

π′
1

��

A×B C

π1

��

π2
// C

fg

��
C g

// A
f

// B

whose bottom part is the same as diagram (2.3) with x = fg. From Theorem 2.3 and
Proposition 2.4, we obtain:

2.5. Corollary. In the notation above, if 〈g, 1C〉 and ker(π2) are jointly strongly epic,
then (f, g) is a generalized strong point.
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3. T-protomodular categories

Let S and T be classes of points (= split generalized points) and of generalized points,
respectively, in C. Consider the following conditions:

3.1. Condition. The class S has the following properties:

(a) it is pullback stable;

(b) it is closed under finite limits in Pt(C);

(c) all its elements are strong.

3.2. Condition. The class T has the following properties:

(a) it is pullback stable;

(b) it is closed under component-wise finite limits in GPt(C);

(c) all its elements are strong;

(d) in a diagram of the form

C
〈g,1C〉 // A×B C

π1
��

π2 // C

fg
��

C g
// A

f
// B,

where (f, g) is a generalized point and the right-hand square is a pullback, the top
row belongs to T if and only if the bottom row does.

According to [5] (originally from [3]), to say that C is S-protomodular is to say that
S satisfies Condition 3.1, and we introduce:

3.3. Definition. We say that C is T-protomodular if T satisfies Condition 3.2.

The purpose of this section is to prove the following theorem, which in fact says that
the notions of S-protomodular and of T-protomodular are equivalent to each other:

3.4. Theorem. Let S and T be the collections of all classes of points and of all classes of
generalized points, respectively, in C. Let F : T→ S and G : S→ T be the maps defined
by

F (T) = T ∩Pt(C), G(S) = {(f, g) ∈ GPt(C) | (π2, 〈g, 1C〉) ∈ S},

where π2 and 〈g, 1C〉 are as in the diagram used in Condition 3.2(d). Then F and G induce
inverse to each other bijections between the collection of all T ∈ T, such that C is a T-
protomodular category, and the collection of all S ∈ S, such that C is an S-protomodular
category.
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Proof. Suppose S ∈ S and T ∈ T satisfy Conditions 3.1 and 3.2, respectively; we have
to verify that:

(i) F (T) satisfies Condition 3.1:

(ii) G(S) satisfies Condition 3.2;

(iii) GF (T) = T;

(iv) FG(S) = S.

Let us give details of these verifications:
(i) is obvious, having in mind that all finite limits in Pt(C) are component-wise.
(ii), Condition 3.2(a): Given (f : A → B, g : C → A) ∈ G(S) and a morphism

x : X → B, consider the commutative diagram

C ×B X

}}{{{{{{{{{
// A×B C ×B X

xxppppppppppp

��

// C ×B X

}}{{{{{{{{{

��

C // A×B C

��

// C

��

C ×B X

}}{{{{{{{{{
// A×B X

wwppppppppppppp
// X

x
}}{{{{{{{{{

C g
// A

f
// B

(with obviously defined unlabeled arrows). In this diagram, since each face of the right-
hand cube is a pullback diagram, we have:

• since (f, g) belongs to G(S), the second row belongs to S;

• since the second row belongs to S, and S is pullback stable, the first row also belongs
to S;

• since the first row belongs to S, the third row, which is nothing but the pullback
(f, g) along x, belongs to G(S).

(ii), Condition 3.2(b): Consider the extension D of GPt(C) defined simply as the
category of all composable pairs of morphisms in C. Define the forgetful functor U : D→
C by U(f : A → B, g : C → A) = B, and, for an object B in C, write (D ↓ B) for the
fibre of this functor over B. G(S) does satisfy Condition 3.2(b) since:

• the component-wise limits in GPt(C) are calculated as in D;

• G(S) (obviously) contains the terminal object (0→ 0, 0→ 0) of D;
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• for every object B, the fibre inclusion functor (D ↓ B) → D preserves pullbacks,
and the same is true for Pt(C);

• for every morphism x : X → B, the change-of-base functor x∗ : (D ↓ B)→ (D ↓ X)
preserves all finite limits, and, again, the same is true for Pt(C).

(ii), Condition 3.2(c): G(S) does satisfy it by Corollary 2.5.
(ii), Condition 3.2(d): G(S) does satisfy it since (obviously) the top row of the diagram

belongs to G(S) if and only if it belongs to S.
(iii): For a generalized point (f, g), we have

(f, g) ∈ GF (T)⇔ (π2, 〈g, 1C〉) ∈ F (T)⇔ (π2, 〈g, 1C〉) ∈ T⇔ (f, g) ∈ T,

where the second equivalence holds because (π2, 〈g, 1C〉) automatically belongs to Pt(C),
while the third one holds by Condition 3.2(d).

(iv): For a point (f, g), we have

(f, g) ∈ FG(S)⇔ (f, g) ∈ G(S)⇔ (f, g) ∈ S,

since, when (f, g) is a point, it is the same as (π2, 〈g, 1C〉).

4. A characterisation of regular Schreier extensions in the category of
monoids

Throughout this section we assume that C is a category of monoids, for which we will use
the additive notation. Since it is a variety of universal algebras, a generalized point in C
is a pair (f, g) for which fg is a surjective homomorphism (of monoids). Let us recall two
known definitions (see e.g. [10], [8], [4], [3], [9]):

4.1. Definition. A point (=split generalized point) (f, g) =

B
g // A

f // B

(in C) is said to be a Schreier point, if for every a ∈ A there exists a unique k ∈ Ker(f)
such that a = k + gf(a).

4.2. Definition. Let f : A→ B be a surjective homomorphism of monoids. Then:

(a) an element a in A is said to be a representative of an element b in B, if f(a) = b
and for every a′ ∈ A with f(a′) = b, there exists a unique element k ∈ Ker(f) with
a′ = k + a;

(b) f is said to be a Schreier epimorphism if every element of B has a representative;

(c) f is said to be a regular Schreier epimorphism if it is a Schreier epimorphism and
the set of all representatives of elements of B is a submonoid of A.

Let us introduce:
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4.3. Definition. A generalized point (f, g) =

C
g // A

f // B

(in C) is said to be a Schreier generalized point, if for every a ∈ A and every c ∈ C with
f(a) = fg(c), there exists a unique k ∈ Ker(f) such that a = k + g(c).

4.4. Remark. Every Schreier generalized point is obviously strong.

The following two theorems describe the connection between Definitions 4.1, 4.2(c),
and 4.3.

4.5. Theorem. Let S and T be the classes of Schreier points and of Schreier generalized
points, respectively. Then:

(a) C is an S-protomodular category in the sense of [5] (this is proved in [3]);

(b) C is a T-protomodular category in the sense of our Definition 3.3;

(c) S and T correspond to each other under the bijection described in Theorem 3.4.

Proof. As follows from 4.5(a) (which was proved in [3]) and Theorem 3.4, all we need to
show is that G(S) = T . That is, we only need to show that, in the notation above, (f, g)
is a Schreier generalized point if and only if (π2, 〈g, 1C〉) =

C
〈g,1C〉 // A×B C

π2 // C

is a Schreier point. However, this is straighforward, having in mind that:

• (a, c) ∈ A × C belongs to A ×B C if and only if a ∈ A and c ∈ C are such that
f(a) = fg(c);

• Ker(π2) = Ker(f)× {0};

• (a, c) = (k, 0) + 〈g, 1C〉π2(a, c) ⇐⇒ (a, c) = (k, 0) + (g(c), c) ⇐⇒ a = k + g(c).

4.6. Theorem. A monoid homomorphism f : A→ B is a regular Schreier epimorphism
if and only if there exists a monoid homomorphism g : C → A making (f, g) a Schreier
generalized point.
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Proof. “If”: Suppose (f, g) is a Schreier generalized point. Since fg is surjective, for ev-
ery b ∈ B there exists c ∈ C with fg(c) = b, making g(c) a representative of b. Therefore,
f is a Schreier epimorphism. It remains to prove that if a and a′ are representatives of b
and b′ respectively, then a+ a′ is a representative (of b+ b′). As follows from Proposition
3.5 of [9], we can replace a with any other representative b, and a′ with any other repre-
sentative of b′. We replace a with g(c), and a′ with g(c′), where fg(c) = b and fg(c′) = b′,
and we know that g(c) + g(c′) = g(c+ c′) is a representative (of b+ b′).

“Only if”: Suppose f : A → B is a regular Schreier epimorphism. Let C be the
free monoid on B, and η : B → C the canonical inclusion map. For each b ∈ B choose
any representative ab of b, and define g : C → A as the unique monoid homomorphism
carrying η(b) to ab, for each b ∈ B. To prove that (f, g) is a Schreier generalized point it
suffices to prove that each g(c) (c ∈ C) is a representative, but this follows from the fact
that so are all g(η(b)) = ab (b ∈ B) and C is generated by η(B).

4.7. Corollary. A monoid homomorphism f : A → B is a regular Schreier epimor-
phism if and only if there exists a monoid homomorphism g : C → A such that fg is
surjective and (π2, 〈g, 1C〉) =

C
〈g,1C〉 // A×B C

π2 // C

is a Schreier point.
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