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A HOMOTOPY THEORY OF COHERENTLY COMMUTATIVE
MONOIDAL QUASI-CATEGORIES

AMIT SHARMA

Abstract. The main objective of this paper is to construct a symmetric monoidal
closed model category of coherently commutative monoidal quasi- categories. We con-
struct another model category structure whose fibrant objects are (essentially) those
coCartesian fibrations which represent objects that are known as symmetric monoidal
quasi-categories in the literature. We go on to establish a zig zag of Quillen equivalences
between the two model categories.
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1. Introduction

A symmetric monoidal category is a category equipped with a multiplicative structure
which is associative, unital and commutative only up to natural (coherence) isomorphisms.
A quasi-category is a simplicial set which satisfies the weak Kan condition, namely every
inner horn has a filler. In this paper we study quasi-categories which are equipped with
a coherently commutative multiplicative structure and thereby generalize the notion of
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symmetric monoidal categories to higher categories. Such quasi-categories most commonly
arise as (simplicial) nerves of simplicial model categories which are equipped a compatible
symmetric monoidal structure see [NS17]. These quasi-categories played a prominent role
in Jacob Lurie’s work on the cobordism hypothesis. The coherence theorem for symmetric
monoidal categories states that the category of (small) symmetric monoidal categories is
equivalent to the category of strict symmetric monoidal categories, which are also known
as permutative categories, and strict symmetric monoidal functors Perm. The category
Perm is isomorphic to the category of algebras over the categorical Barrat-Eccles operad
in Cat. We recall that the categorical Barrat-Eccles operad is an E∞-operad in Cat. In a
subsequent paper we intend to prove a similar theorem for the quasi-categories equipped
with a coherently commutative multiplicative structure.

There are several different models present in the literature which were developed to
encode a coherently commutative multiplicative structure on simplicial sets. The most
commonly used model is based on operads. An E∞-simplicial set is a simplicial set
equipped with a coherently commutative multiplicative structure which is encoded by an
action of an E∞-operad. In other words an E∞-simplicial set is an algebra over an E∞-
operad in the category of simplicial sets S. There are two model category structures
on the category S namely the standard or the Kan model category structure (S,Kan)
and the Joyal model category structure (S,Q), which is also referred to as the model
category structure of quasi-categories. In this paper we will only be working with the
later model category structure. The category of E∞-simplicial sets inherits a model cat-
egory structure from the Joyal model category structure, see [BM03]. A fibrant object
in this model category can be described as a quasi-category equipped with a coherently
commutative multiplicative structure which is encoded by an action of an E∞-operad.
However this model category is NOT symmetric monoidal closed. The main objective
of this paper is to overcome this shortcoming by presenting a new model for coherently
commutative monoidal quasi-categories based on Γ-spaces. Another model to encode a
coherently commutative multiplicative structure on simplicial sets was presented by Ja-
cob Lurie in his book [Lur] which he called symmetric monoidal quasi-categories. He
modelled these objects as coCartesian fibrations over a quasi-category which is the nerve
of a skeletal category of based finite sets Γop whose objects are n+ = {0, 1, 2, . . . , n}. In
this paper we take a dual perspective, namely we model these as functors from Γop into
(S,Q). However Lurie does not construct a model category structure on his symmetric
monoidal quasi-categories. Yet another model to encode a coherently commutative mul-
tiplicative structure on simplicial sets was presented by Kodjabachev and Sagave in the
paper [KS15]. The authors present a rigidification of an E∞-quasi-category by replac-
ing it by a commutative monoid in a symmetric monoidal functor category. They go on
to construct a zig-zag of Quillen equivalences between a suitably defined model category
structure on the category of commutative monoids mentioned above and a model category
of E∞-simplicial sets. However they were unable to show the existence of a symmetric
monoidal closed model category structure.

A Γ-space is a functor from the category Γop into the category of simplicial sets S. The
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category ΓS of Γ-spaces is the category of functors and natural transformations [Γop,S]. A
normalized Γ-space is a functor X : Γop //S• such that X(0+) = ∗. The category of nor-
malized Γ-spaces ΓS• is the full subcategory of the functor category [Γop;S•] whose objects
are normalized Γ-spaces. In the paper [Seg74] Segal introduced a notion of normalized
Γ-spaces and showed that they give rise to a homotopy category which is equivalent to the
homotopy category of connective spectra. Segal’s Γ-spaces were renamed special Γ-spaces
by Bousfield and Friedlander in [BF78] who constructed a model category structure on
the category of all normalized Γ-spaces ΓS•. The two authors go on to prove that the
homotopy category obtained by inverting stable weak equivalences in ΓS• is equivalent to
the homotopy category of connective spectra. In the paper [Sch99] Schwede constructed
a symmetric monoidal closed model category structure on the category of normalized
Γ-spaces which he called the stable Q-model category. The fibrant objects in this model
category can be described as coherently commutative group objects in the category of
(pointed) simplicial sets S•, where the latter category is endowed with the Kan model
category structure. The objective of Schwede’s construction was to establish normalized
Γ-spaces as a model for connective spectra. In this paper we extend the ideas in [Sch99] to
study coherently commutative monoidal objects in the model category of quasi-categories
and thereby generalizing the theory of symmetric monoidal categories. We construct a
new symmetric monoidal closed model category structure on the category of Γ-spaces ΓS.
Our model category is constructed along the lines of Schwede’s construction and we call
it the JQ model category structure and denote it by (ΓS⊗,Q). The fibrant objects in
(ΓS⊗,Q) can be described as coherently commutative monoidal quasi-categories. We will
show that the (ΓS⊗,Q) is symmetric monoidal closed under the Day convolution product.

The category of pointed simplicial sets S• inherits a model category structure from
the Joyal model category (S•,Q). This model category is symmetric monoidal closed
under the smash product of pointed simplicial sets, see [JT08]. We construct a new model
category structure on the category of nomalized Γ-spaces ΓS•. The fibrant object of this
model category can be described as normalized coherently commutative monoidal quasi-
categories. We will refer to this model category as the JQ model category of normalized
Γ-spaces. In the paper [Lyd99] Lydakis constructed a smash product of Γ-spaces and
showed that it endows ΓS• with a closed symmetric monoidal structure. We will show
that the JQ model category structure of normalized Γ-spaces is compatible with the
smash product of Γ-spaces i.e. it is symmetric monoidal closed under the smash product.
Another significant result of this paper is that the obvious forgetful functor U : ΓS• //ΓS
is the right Quillen functor of a Quillen equivalence between the JQ model category and
the normalized JQ model category. This result is indicative of the presence of a weak semi-
additive structure in the JQ model category. Even though a prominent objective of this
paper is to show that normalized coherently commutative monoidal quasi-categories can
be replaced by unnormalized ones, we still develop a full theory of normalized coherently
commutative monoidal quasi-categories in Appendix C. We do so because traditionally,
Γ-spaces have been studied as normalized objects and we want to establish a continuity
between our theory and the existing literature on this subject.
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A marked simplicial set is a pair (S, E), where S is a simplicial set and E is a set of
edges of S which are called marked edges. We review the theory of marked simplicial sets
in Section 2.2. In Section 6 we construct a model category of coherently commutative
monoidal marked quasi-categories which we denote by (ΓS+

⊗,Q). This model category
serves as an intermediary in achieving the main result of this paper. We establish the
following Quillen equivalence:

Γ(−)[ : (ΓS⊗,Q) � (ΓS+
⊗,Q) : U (1)

The notion of a symmetric monoidal quasi-category based on coCartesian fibrations
of simplicial sets was introduced in [Lur]. A coCartesian fibration p : X // N(Γop)
determines a fibrant object (X\, p) in a coCartesian model category structure on the over-
category S+/N(Γop) , by marking its coCartesian edges. We construct another model
category structure on S+/N(Γop) by localizing the coCartesian model category structure.
We denote this model category by (S+/N(Γop),⊗). An object (X, p) in (S+/N(Γop),⊗)
is fibrant if and only if it is isomorphic to an object (Y \, q) determined by a coCartesian
fibration q : Y //N(Γop) which is a symmetric monoidal quasi-category. We go on further
to establish a Quillen equivalence

F+
• (Γop) : (S+/N(Γop),⊗) � (ΓS+

⊗,Q) : N+
• (Γop), (2)

where the adjoint functor are from [Lur09, Prop. 3.2.5.18]. The right Quillen functor
N+
• (Γop), known as the marked relative nerve funtor, can be viewed as a higher categorical

version of the Grothendieck construction functor. The main result of this paper is to
establish a zig-zag of Quillen equivalences between the model categories (S+/N(Γop),⊗)
and (ΓS⊗,Q). Now the main result is obtained by composing (2) and (1).

This paper has seven sections and three appendices. In Section 2 we collect all the
machinery needed to write this paper. More precicely, we review the theory of Γ-spaces,
the theory of marked simplicial sets and the coCartesian model category structure. In
Section 3 we construct a model category structure on the category of Γ-spaces ΓS called
the strict JQ model category structure. This model category structure is an unnormalized
version of the strict Q model category structure constructed on the category of normalized
Γ-spaces [Sch99, Lem. 1.4]. The fibrant objects of the former can be described as Γ-quasi-
categories whereas those of the latter model category can be described as normalized Γ-
Kan complexes. We go on to show that this model category is symmetric monoidal closed
under the Day convolution product. In Section 4 we construct a symmetric monoidal
closed model category of coherently commutative monoidal quasi-categories which is a left
Bousfield localization of the strict JQ model category. In Appendix C we do the same for
normalized Γ-spaces, namely we construct a symmetric monoidal closed model category
of normalized Γ-spaces. The main goal of Section 5 is to establish a Quillen equivalence
between the model category of coherently commutative monoidal quasi-categories and
the model category of normalized coherently commutative monoidal quasi-categories. In
Section 6 we construct a model category of coherently commutative monoidal marked
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quasi-categories. We show that the Quillen equivalence

(−)[ : (S,Q) � (S+,Q) : U,

from Theorem 2.9, extends to the Quillen equivalence (1). The main result of this paper
appears in Section 7. In this section we construct a model category whose fibrant ob-
jects are (essentially) symmetric monoidal quasi-categories defined in [Lur]. This model
category is a left Bousfield localization of the coCartesian model category structure on
S+/N(Γop). The main result of this paper establishes a zig zag of Quillen equivalences be-
tween the model category of symmetric monoidal quasi-categories and the model category
of coherently commutative monoidal quasi-categories.

2. The Setup

In this section we will collect the machinery needed for various constructions in this paper.

2.1. Notation. We will denote the terminal object in a model category by 1. In the case
of S we may also denote a terminal object by ∗.

2.2. A review of marked simplicial sets. In this subsection we will review the
theory of marked simplicial sets. The material presented in this subsection is essentially
a reproduction of that in [Lur09, Sec. 3.1]. Later in this paper we will develop a theory
of coherently commutative monoidal objects in the category of marked simplicial sets.

2.3. Definition. A marked simplicial set is a pair (X, E), where X is a simplicial set
and E is a set of edges of X which contains every degenerate edge of X. We will say that
an edge of X is marked if it belongs to E. A morphism f : (X, E) // (X ′, E ′) of marked
simplicial sets is a simplicial map f : X //X ′ having the property that f(E) ⊆ E ′. We
denote the category of marked simplicial sets by S+.

Every simplicial set S may be regarded as a marked simplicial set in many ways. We
mention two extreme cases: We let S] = (S, S1) denote the marked simplicial set in which
every edge is marked. We denote by S[ = (S, s0(S0)) denote the marked simplicial set in
which only the degenerate edges of S have been marked.

The category S+ is cartesian-closed, i.e. for each pair of objects X, Y ∈ Ob(S+), there
is an internal mapping object [X, Y ]+ equipped with an evaluation map [X, Y ]+×X //Y
which induces a bijection:

S+(Z, [X, Y ]+)
∼=
// S+(Z ×X, Y ),

for every Z ∈ S+.

2.4. Notation. We denote by [X, Y ][ the underlying simplicial set of [X, Y ]+.

The mapping space [X, Y ][ is characterized by the following bijection:

S(K, [X, Y ][)
∼=
// S+(K[ ×X, Y ),

for each simplicial set K.
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2.5. Notation. We denote by [X, Y ]] the simplicial subset of [X, Y ][ consisting of all

simplices σ ∈ [X, Y ][ such that every edge of σ is a marked edge of [X, Y ]+.

The mapping space [X, Y ]] is characterized by the following bijection:

S(K, [X, Y ]])
∼=
// S+(K] ×X, Y ),

for each simplicial set K.
The Joyal model category structure on S has the following analog for marked simplicial

sets:

2.6. Theorem. There is a left-proper, combinatorial model category structure on the
category of marked simplicial sets S+ in which a morphism p : X // Y is a

1. cofibration if the simplicial map between the underlying simplicial sets is a cofibration
in (S,Q), namely a monomorphism.

2. a weak equivalence if the induced simplicial map on the mapping spaces

[p,K\]
[

: [X,K\]
[

// [Y,K\]
[

is a categorical equivalence, for each quasi-category K.

3. fibration if it has the right lifting property with respect to all maps in S+ which are
simultaneously cofibrations and weak equivalences.

Further, the above model category structure is enriched over the Joyal model category, i.e.
it is a (S,Q)-model category.

The above theorem follows from [Lur09, Prop. 3.1.3.7].

2.7. Notation. We will denote the model category structure in Theorem 2.6 by (S+,Q)
and refer to it either as the Joyal model category of marked simplicial sets or as the model
category of marked quasi-categories.

2.8. Theorem. The model category (S+,Q) is a cartesian closed model category.

Proof. The theorem follows from [Lur09, Corollary 3.1.4.3] by taking S = T = ∆[0].

There is an obvious forgetful functor U : S+ // S. This forgetful functor has a left
adjoint (−)[ : S // S+.

2.9. Theorem. The adjoint pair of functors ((−)[, U) determine a Quillen equivalence
between the Joyal model category of marked simplicial sets and the Joyal model category
of simplicial sets.

The proof of the above theorem follows from [Lur09, Prop. 3.1.5.3].
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2.10. Review of Γ-spaces. In this subsection we will briefly review the theory of
Γ-spaces. We begin by introducing some notations which will be used throughout the
paper.

2.11. Notation. We will denote by n the finite set {1, 2, . . . , n} and by n+ the based set
{0, 1, 2, . . . , n} whose basepoint is the element 0.

2.12. Notation. We will denote by N the skeletal category of finite unbased sets whose
objects are n for all n ≥ 0 and maps are functions of unbased sets. The category N is a
(strict) symmetric monoidal category whose symmetric monoidal structure will be denoted
by +. For two objects k, l ∈ N their tensor product is defined as follows:

k + l := k + l.

2.13. Notation. We will denote by Γop the skeletal category of finite based sets whose
objects are n+ for all n ≥ 0 and maps are functions of based sets.

2.14. Notation. Given a morphism f : n+ // m+ in Γop, we denote by Supp(f) the
largest subset of n whose image under f does not contain the basepoint of m+. The set
Supp(f) inherits an order from n and therefore could be regarded as an object of N . We
denote by Supp(f)+ the based set Supp(f) t {0} regarded as an object of Γop with order
inherited from n.

2.15. Definition. A map f : n+ //m+ in Γop is called inert if its restriction to the set
Supp(f)+ is a bijection.

2.16. Definition. A morphism f in Γop is called active if f−1({0}) = {0} i.e. the
pre-image of {0} is the singleton set {0}.

2.17. Notation. A map f : n // m in the category N uniquely determines an active
map in Γop which we will denote by f+ : n+ //m+. This map agrees with f on non-zero
elements of n+.

2.18. Remark. Each morphism in Γop can be factored into a composite of an inert map
followed by an active map in Γop. The factorization is unique up to a unique isomorphism.

2.19. Definition. Each n+ ∈ Γop determines n projection maps δni : n+ // 1+ for
1 ≤ i ≤ n which are defined by δni (i) = 1 and δni (j) = 0 for j 6= i and j ∈ n+.

2.20. Definition. Each n+ ∈ Γop determines a multiplication map mn : n+ //1+ which
is the unique active map from n+ to 1+.

2.21. Definition. A Γ-space is a functor from Γop into the category of simplicial sets
S.

2.22. Definition. A normalized Γ-space is X a Γ-space which satisfies the normalization
condition namely X(0+) ∼= ∗.

In this paper we will also study functors from Γop into the category of marked simplicial
sets:
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2.23. Definition. A marked Γ-space is a functor from Γop to the category of marked
simplicial sets S+. A morphism of marked Γ-spaces is a natural transformation between
marked Γ-spaces.

2.24. Notation. We denote the category of all marked Γ-spaces and morphisms of
Γ-spaces by ΓS+.

The adjoint pair ((−)[, U) defined above induces an adjunction

Γ(−)[ : ΓS 
 ΓS+ : U (3)

where the left adjoint Γ(−)[ is the induced map [Γop, (−)[] : ΓS = [Γop,S] // [Γop,S+] =
ΓS+.

2.25. Review of the coCartesian model structure. In this subsection we will
review the theory of coCartesian fibrations over the simplicial set N(Γop). We also review
a model category structure on the category S+/N(Γop) in which the fibrant objects are
(essentially) coCartesian fibrations. We begin by recalling the notion of a p-coCartesian
edge:

2.26. Definition. Let p : X //S be an inner fibration of simplicial sets. Let f : x //y ∈
(X)1 be an edge in X. We say that f is p-coCartesian if, for all n ≥ 2 and every (outer)
commutative diagram, there exists a (dotted) lifting arrow which makes the entire diagram
commutative:

∆{0,1}_�

��

f

""

Λ0[n]
_�

��

// X

p

��

∆[n] //

<<

S

(4)

2.27. Remark. Let M be a (ordinary) category equipped with a functor p : M // I,
then an arrow f in M , which maps isomorphically to I, is coCartesian in the usual
sense if and only if f is N(p)-coCartesian in the sense of the above definition, where
N(p) : N(M) //∆[1] represents the nerve of p.

This definition leads us to the notion of a coCartesian fibration of simplicial sets:

2.28. Definition. A map of simplicial sets p : X // S is called a coCartesian fibration
if it satisfies the following conditions:

1. p is an inner fibration of simplicial sets.

2. for each edge p : x // y of S and each vertex x of X with p(x) = x, there exists a
p-coCartesian edge f : x // y with p(f) = f .

A coCartesian fibration roughly means that it is up to weak equivalence determined by
a functor from S to a suitably defined ∞-category of ∞-categories. This idea is explored
in detail in [Lur09, Ch. 3]. Next we will review the relative nerve:
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2.29. Definition. ([Lur09, 3.2.5.2]). Let D be a category, and f : D // S a func-
tor. The nerve of D relative to f is the simplicial set Nf (D) whose n-simplices are sets
consisting of:

(i) a functor d : [n] //D; we write d(i, j) for the image of i ≤ j in [n].

(ii) for every nonempty subposet J ⊆ [n] with maximal element j, a map

τJ : ∆J // f(d(j)),

(iii) such that for nonempty subsets I ⊆ J ⊆ [n] with respective maximal elements i ≤ j,
the following diagram commutes:

∆I τI //
_�

��

f(d(i))

f(d(i,j))

��

∆J

τJ
// f(d(j))

For any f , there is a canonical map pf : Nf (D) //N(D) down to the ordinary nerve
of D, induced by the unique map to the terminal object ∆0 ∈ S [Lur09, 3.2.5.4]. When
f takes values in quasi-categories, this canonical map is a coCartesian fibration.

2.30. Remark. A vertex of the simplicial set Nf (D) is a pair (c, g), where c ∈ Ob(D)
and g ∈ f(c)0. An edge e : (c, g) // (d, k) of the simplicial set Nf (D) consists of a pair
(e, h), where e : c // d is an arrow in D and h : f(e)0(g) // k is an edge of f(d).

An immediate consequence of the above definition is the following proposition:

2.31. Proposition. Let f : D //S be a functor, then the fiber of pf : Nf (D) //N(D)
over any d ∈ Ob(D) is isomorphic to the simplicial set f(d).

We now recall a result which will be used in the last section of this paper:

2.32. Theorem. [Lur09, Thm. 3.2.5.18.] The relative nerve functor N+
• (Γop) has a left

adjoint F+
• (Γop). The adjoint pair (F+

• (Γop), N+
• (Γop)) is a Quillen equivalence between the

coCartesian model category (S+/N(Γop), cC) and the strict JQ model category of marked
Γ-spaces.

The latter model category in the statement of the above theorem is constructed in
Section 6.

2.33. Notation. To each coCartesian fibration p : X // N(Γop) we can associate a
marked simplicial set denoted X\ which is composed of the pair (X, E), where E is the set
of p-coCartesian edges of X

2.34. Notation. Let X, Y be two objects in (S+,Q). We will denote by [X, Y ][N(Γop) ⊆
[X, Y ][S+ and [X, Y ]]N(Γop) ⊆ [X, Y ]]S+ the simplicial subsets whose vertices are those maps

which are compatible with the projections to N(Γop).
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2.35. Definition. A morphism F : X // Y in the category S+/N(Γop) is called a co-
Cartesian-equivalence if for each coCartesian fibration Z //N(Γop), the induced simplicial
map [

F,Z\
][
S+ :

[
Y, Z\

][
S+

//
[
X,Z\

][
S+

is a categorical equivalence of simplicial-sets(quasi-categories).

Next we will recall a model category structure on the overcategory S+/N(Γop) from
[Lur09, Prop. 3.1.3.7.] in which fibrant objects are (essentially) coCartesian fibrations.

2.36. Theorem. There is a left-proper, combinatorial model category structure on the
category S+/N(Γop) in which a morphism is

1. a cofibration if it is a monomorphism when regarded as a map of simplicial sets.

2. a weak equivalences if it is a coCartesian equivalence.

3. a fibration if it has the right lifting property with respect to all maps that are simul-
taneously cofibrations and weak equivalences.

We have defined a function object for the category S+/N(Γop) above. The simplicial

set [X, Y ][Γop has vertices, all maps from X to Y in S+/N(Γop). An n-simplex in [X, Y ][Γop

is a map ∆[n][ ×X // Y in S+/N(Γop), where ∆[n][ × (X, p) = (∆[n][ ×X, pp2), where

p2 is the projection ∆[n][ × X // X. The enriched category S+/N(Γop) admits tensor
and cotensor products. The tensor product of an object X = (X, p) in S+/N(Γop) with a
simplicial set A, is the following object:

A[ ×X = (A[ ×X, pp2).

The cotensor product of X by A is an object of S+/N(Γop) denoted X [A]. If

q : X [A] //N(Γop)]

is the structure map, then a simplex x : ∆[n][ //X [A] over a simplex

y = qx : ∆[n] //N(Γop)]

is a map A[×(∆[n][, y) //(X, p). The object (X [A], q) can be constructed by the following
pullback square in S+:

X [A] //

q
��

[A[, X]+

[A[,p]+

��

N(Γop)] // [A[, N(Γop)]]+

where the bottom map is the diagonal. There are canonical isomorphisms:[
A[ ×X, Y

][
D
∼=
[
A, [X, Y ][D

]
∼=
[
X, Y [A]

][
D

(5)
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2.37. Remark. The coCartesian model category structure on S+/N(Γop) is a simplicial
model category structure with the simplicial Hom functor:

[−,−]]Γop : S+/N(Γop)op × S+/N(Γop) // S.

This is proved in [Lur09, Corollary 3.1.4.4.]. The coCartesian model category structure
is a (S,Q)-model category structure with the function object given by:

[−,−][Γop : S+/N(Γop)op × S+/N(Γop) // S.

This is Remark [Lur09, 3.1.4.5.].

2.38. Remark. The coCartesian model category is a (S+,Q)-model category with the
Hom functor:

[−,−]+D : S+/N(D)op × S+/N(D) // S+.

This follows from [Lur09, Corollary 3.1.4.3] by taking S = N(D) and T = ∆[0], where S
and T are specified in the statement of the corollary.

3. The strict JQ model category

Schwede introduced two model category structures on the category of (normalized) Γ-
spaces which he called the strict Q-model category structure and the stable Q-model cat-
egory structure in [Sch99]. The strict Q-model category structure is obtained by restrict-
ing the projective model category structure on the functor category [Γop,S•], where the
codomain category S• is endowed with the Kan model category structure. In this section
we study the projective model category structure on the category of Γ-spaces namely the
functor category [Γop,S]. Following Schwede we will refer to this projective model cate-
gory as the strict JQ model category. We will show that the strict JQ model category is a
S-model category, where S is endowed with the Joyal model category structure. We go on
further to show that the strict JQ model category is a symmetric monoidal closed model
category. We begin by recalling the notion of a categorical equivalence of simplicial sets
which is essential for defining weak equivalences of the desired model category structure.

3.1. Definition. A morphism of simplicial sets f : A //B is called a categorical equiv-
alence if for any quasi-category X, the induced morphism on the homotopy categories of
mapping spaces

ho(MapS(f,X)) : ho(MapS(B,X)) // ho(MapS(A,X)),

is an equivalence of (ordinary) categories.

3.2. Remark. Categorical equivalences are weak equivalences in a cofibrantly generated
model category structure on simplicial sets called the Joyal model category structure which
we will denote by (S,Q), see [Joy08, Theorem 6.12] for the definition of the Joyal model
category structure.
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3.3. Definition. We call a map of Γ-spaces

1. A strict JQ fibration if it is degreewise a pseudo-fibration i.e. a fibration of simpli-
cial sets in the Joyal model category structure on simplicial sets.

2. A strict JQ equivalence if it is degreewise a categorical equivalence i.e. a weak
equivalence of simplicial sets in the Joyal model category structure on simplicial
sets, see [Lur09].

3. A strict JQ cofibration if it has the left lifting property with respect to all maps of
Γ-spaces which are simultaneously JQ equivalences and JQ fibrations.

3.4. Theorem. Strict JQ equivalences, strict JQ fibrations and strict JQ cofibrations
provide the category of Γ-spaces with a combinatorial, left-proper model category structure
on the category of Γ-spaces ΓS.

The model structure in the above theorem follows from [Lur09, Proposition A 3.3.2]
and the left properness is a consequence of the left properness of the Joyal model category.

3.5. Enrichment of the strict JQ model category. The goal of this section is to
show that the strict JQ model category is a (symmetric) monoidal closed model category
i.e. it is enriched over itself in the sense of Definition 3.9. We will prove this in two steps;
we first establish the existence of a Quillen bifunctor

−�
S
− : ΓS × S // ΓS,

where the category ΓS is endowed with the strict JQ model category structure and S is
endowed with the Joyal model category structure (S,Q). Then we will use this Quillen
bifunctor to prove the desired enrichment. We begin by reviewing the notion of a monoidal
model category. Our review is largely taken from [Hov99, Ch. 4].

3.6. Definition. A monoidal model category is a closed monoidal category C with a
model category structure, such that C satisfies the following conditions:

1. The monoidal structure ⊗ : C × C // C is a Quillen bifunctor.

2. Let QS
q
// S be the cofibrant replacement for the unit object S, obtained by using

the functorial factorization system to factorize 0 //S into a cofibration followed by
a trivial fibration. Then the natural map

QS ⊗X
q⊗1
// S ⊗X

is a weak equivalence for all cofibrant X. Similarly, the natural map X⊗QS
1⊗q
//X⊗

S is a weak equivalence for all cofibrant X.

3.7. Example. The model category of simplicial sets with the Joyal model category struc-
ture, (S,Q) is a monoidal model category.
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3.8. Example. The stable Q-model category is a monoidal model category with respect
to the smash product defined in [Lyd99].

3.9. Definition. Let S be a monoidal model category. An S-enriched model category
is an S enriched category A equipped with a model category structure (on its underlying
category) such that

1. The category A is tensored and cotensored over S.

2. There is a Quillen adjunction of two variables, (see Definition A.2),

(⊗,homA,MapA, φ, ψ) : A× S //A.

When A is itself a monoidal model category which is also an A-enriched model category,
we will say that A is enriched over itself as a model category.

3.10. Example. Both strict and stable Q-model category structures, constructed in [Sch99],
on the category ΓS are simplicial, i.e. both strict and stable Q- model categories are
(S,Kan)-enriched model categories.

3.11. Remark. The strict JQ model category structure is NOT simplicial.

For each pair (F,K), where F ∈ Ob(ΓS) and K ∈ Ob(S), one can construct a Γ-space
which we denote by F �

S
K and which is defined as follows:

(F �
S
K)(n+) := F (n+)×K,

where the product on the right is taken in the category of simplicial sets. This construction
is functorial in both variables. Thus we have a functor

−�
S
− : ΓS × S // ΓS.

Now we will define a couple of function objects for the category ΓS. The first function
object enriches the category ΓS over S i.e. there is a bifunctor

MapΓS(−,−) : ΓSop × ΓS // S

which assigns to each pair of objects (X, Y ) ∈ Ob(ΓS)×Ob(ΓS) a simplicial setMapΓS(X, Y )
which is defined in degree zero as follows:

MapΓS(X, Y )0 := ΓS(X, Y )

and the simplicial set is defined in degree n as follows:

MapΓS(X, Y )n := ΓS(X �
S

∆[n], Y )
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For any Γ-spaceX, the functorX�
S
− : S //ΓS is left adjoint to the functorMapΓS(X,−) :

ΓS //S. The counit of this adjunction is the evaluation map ev : X�
S
MapΓS(X, Y ) //Y

and the unit is the obvious simplicial map K //MapΓS(X,X �
S
K).

To each pair of objects (K,X) ∈ Ob(S) × Ob(ΓS) we can define a Γ-space XK , in
degree n, as follows:

(XK)(n+) := [K,X(n+)] .

This assignment is functorial in both variables and therefore we have a bifunctor

−− : Sop × ΓS // ΓS.

For any Γ-spaceX, the functorX− : S //ΓSop is left adjoint to the functorMapΓS(−, X) :
ΓSop // S. The following proposition summarizes the above discussion.

3.12. Proposition. There is an adjunction of two variables

(−�
S
−,−−,MapΓS(−,−)) : ΓS × S // ΓS. (6)

3.13. Theorem. The strict model category of Γ-spaces, ΓS, is a (S,Q)-model category.

Proof. We will show that the adjunction of two variables (6) is a Quillen adjunction for
the strict JQ model category structure on ΓS and the model category (S,Q). In order
to do so, we will verify condition (2) of Lemma A.3. Let g : K // L be a cofibration in
S and let p : Y //Z be a strict fibration of Γ-spaces. We have to show that the induced
map

hom�
ΓS(g, p) : Y L // ZL ×

ZK
Y K

is a fibration in ΓS which is acyclic if either of g or p is acyclic. It would be sufficient to
check that the above morphism is degreewise a fibration in (S,Q), i.e. for all n+ ∈ Γop,
the morphism

hom�
ΓS(g, p)(n+) = hom�

S (g, p(n+)) : Y (n+)L // Z(n+)L ×
Z(n+)K

Y (n+)K ,

is a fibration in (S,Q). This follows from the observations that the simplicial morphism
p(n+) : Y (n+) // Z(n+) is a fibration in (S,Q) and the model category (S,Q) is a
cartesian closed model category whose internal hom is provided by the bifunctor −− :
S × S // S.

Let X and Y be two Γ-spaces, the Day convolution product of X and Y denoted by
X ∗ Y is defined as follows:

X ∗ Y (n+) :=

∫ (k+,l+)∈Γop

Γop(k+ ∧ l+, n+)×X(k+)× Y (l+). (7)
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Equivalently, one may define the Day convolution product of X and Y as the left Kan
extension of their external tensor product X×Y along the smash product functor

− ∧− : Γop × Γop // Γop.

we recall that the external tensor product X×Y is a bifunctor

X×Y : Γop × Γop // S

which is defined on objects by

X×Y (m+, n+) = X(m+)× Y (n+).

It follows from [Lyd99, Thm. 2.2] that the functor − ∗ Γn has a right adjoint which
we denote by −(n+ ∧ −) : ΓS // ΓS. We will denote the Γ-space −(n+ ∧ −)(X) by
X(n+ ∧ −) and define it by the following composite:

Γopn
+∧−
// Γop X

// S. (8)

The following proposition sums up this observation:

3.14. Proposition. There is a natural isomorphism

φ : −(n+ ∧ −) ∼=Map
ΓS(Γn,−).

In particular, for each Γ-space X there is an isomorphism of Γ-spaces

φ(X) : X(n+ ∧ −) ∼=Map
ΓS(Γn, X).

Proof. Consider the functor n+ ∧− : Γop // Γop. We observe that a left Kan extension
of Γ1 : Γop // S along n+ ∧ − is the Γ-space Γn : Γop // S. This implies that we have
the following bijection

ΓS(Γn, X) ∼= ΓS(Γ1, X(n+ ∧ −)).

We observe that this natural bijection extends to a natural isomorphism of Γ-spaces:

Map
ΓS(Γn, X) ∼=Map

ΓS(Γ1, X(n+ ∧ −)).

3.15. Proposition. The category of all Γ-spaces ΓS is a symmetric monoidal category
under the Day convolution product (7). The unit of the symmetric monoidal structure is
the representable Γ-space Γ1.

Next we define an internal function object of the category ΓS which we will denote
by

Map
ΓS(−,−) : ΓSop × ΓS // ΓS. (9)

Let X and Y be two Γ-spaces, we define the Γ-space Map
ΓS(X, Y ) as follows:

Map
ΓS(X, Y )(n+) :=MapΓS(X ∗ Γn, Y ).
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3.16. Proposition. The category ΓS is a closed symmetric monoidal category under the
Day convolution product. The internal hom is given by the bifunctor (9) defined above.

The above proposition implies that for each n ∈ N the functor −∗Γn : ΓS //ΓS has
a right adjoint Map

ΓS(Γn,−) : ΓS // ΓS.
The next theorem shows that the strict model category ΓS is compatible with the Day

convolution product.

3.17. Theorem. The strict JQ model category ΓS is a symmetric monoidal closed model
category under the Day convolution product.

Proof. Using the adjointness which follows from Proposition 3.16 one can show that if
a map f : U // V is a (acyclic) cofibration in the strict JQ model category ΓS then the
induced map f ∗ Γn : U ∗ Γn // V ∗ Γn is also a (acyclic) cofibration in the strict JQ
model category for all n ∈ N. By (3) of Lemma A.3 it is sufficient to show that whenever
f is a cofibration and p : Y // Z is a fibration then the map

Map�
ΓS(f, p) :Map

ΓS(V, Y ) //Map
ΓS(V, Z) ×

Map
ΓS(U,Z)

Map
ΓS(U, Y ).

is a fibration in ΓS which is acyclic if either f or p is a weak equivalence. The above map
is a (acyclic) fibration if and only if the simplicial map

Map�
ΓS(f ∗ Γn, p)(n+) :MapΓS(V ∗ Γn, Y ) //

MapΓS(V ∗ Γn, Z) ×
MapΓS(U∗Γn,Z)

MapΓS(U ∗ Γn, Y )

is a (acyclic) fibration in (S,Q) for all n ∈ N. Since f ∗ Γn is a cofibration (which is
acyclic whenever f is acyclic as observed above) therefore it follows from Theorem 3.13
that the simplicial map Map�

ΓS(f ∗ Γn, p)(n+) is an (acyclic) fibration of simplicial sets
for all n ∈ N.

The following corollary is an easy consequence of the above theorem and we leave the
proof as an exercise for the interested reader.

3.18. Corollary. Let F ′ be a Q-cofibrant Γ-space and p : F // G is be a strict JQ
fibration. Then the morphism induced by p on the function objects

Map
ΓS(F ′, p) :Map

ΓS(F ′, F ) //Map
ΓS(F ′, G)

is a strict JQ fibration.

3.19. Definition. A morphism in ΓS is called a trivial fibration of Γ-spaces if it has
the right lifting property with respect to all maps in the following class of maps

{Γn �
S
f ; f is a simplicial monomorphism and n ≥ 0}

3.20. Proposition. A trivial fibration is a strict JQ equivalence.
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Proof. Let p : X // Y be a trivial fibration of Γ-spaces and f : A //B be a simplicial
monomorphism. Then whenever the outer diagram commutes in the following diagram:

Γn �
S
A //

Γn�
S
f

��

X

p

��

Γn �
S
B //

==

Y

there exists a dotted arrow which makes the whole diagram commutative, for each n ≥ 0.
By adjointness, we get the following commutative diagram in the category of simplicial
sets:

A //

f

��

MapΓS(Γn, X)

MapΓS(Γn,p)

��

B //

88

MapΓS(Γn, Y )

We observe that the map

MapΓS(Γn, X) :MapΓS(Γn, X) //MapΓS(Γn, Y )

is the same as the simplicial map p(n+) : X(n+) //Y (n+) up to isomorphism namely we
have the following commutative diagram:

A //

f

��

MapΓS(Γn, X)

MapΓS(Γn,p)

��

∼= // X(n+)

p(n+)
��

B //

88

MapΓS(Γn, Y )∼=
// Y (n+)

This observation and the above simplicial commutative diagram together imply that for
each n ≥ 0, the simplicial map p(n+) has the right lifting property with respect to all
simplicial monomorphisms, in other words p(n+) is a trivial fibration of simplicial sets.
By [Joy08, Prop. 1.22], this implies that the simplicial map p(n+) is a weak equivalence
in the Joyal model category of simplicial sets. Thus, we have shown that p is a strict JQ
equivalence of Γ-spaces.

3.21. Proposition. A strict JQ fibration is a trivial fibration of Γ-spaces if and only if
it is a strict JQ equivalence.

4. The model category of coherently commutative monoidal quasi-categories

The objective of this section is to construct a new model category structure on the category
ΓS. This new model category is obtained by localizing the strict JQ model category
defined above. We will refer to this new model category structure as the model category
structure of coherently commutative monoidal quasi-categories. The guiding principle
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of this new model structure is to endow its homotopy category with a semi-additive
structure. In other words we want this new model category structure to have finite
homotopy biproducts. We go on further to show that this new model category is symmetric
monoidal closed with respect to the Day convolution product, see [Day70]. We begin by
recalling the notion of a left Bousfield localization. A detailed treatment of this notion
can be found in [Hir02, Sec. 3.3]:

4.1. Definition. ([Hir02, Defn. 3.3.1.(1))]) Let M be a model category and let S be a
class of maps in M. The left Bousfield localization of M with respect to S is a model
category structure LSM on the underlying category of M such that

1. The class of cofibrations of LSM is the same as the class of cofibrations of M.

2. A map f : A // B is a weak equivalence in LSM if it is an S-local equivalence,
namely, for every fibrant S-local object X, the induced map on homotopy function
complexes

f ∗ : MaphM(B,X) //MaphM(A,X)

is a homotopy equivalence of simplicial sets. Recall that an object X is called fibrant
S-local if X is fibrant in M and for every element g : K // L of the set S, the
induced map on homotopy function complexes

g∗ : MaphM(L,X) //MaphM(K,X)

is a weak homotopy equivalence of simplicial sets.

where Maph
M(−,−) is the simplicial function object associated with the strict model cat-

egory M, see [DK80a], [DK80b] and [DK80c].

We want to construct a left Bousfield localization of the strict model category of
Γ-spaces. For each pair k+, l+ ∈ Γop, we have the obvious projection maps in ΓS

δk+l
k : (k + l)+ // k+ and δk+l

l : (k + l)+ // l+.

The maps
Γop(δk+l

k ,−) : Γk // Γk+l and Γop(δk+l
l ,−) : Γl // Γk+l

induce a map of Γ-spaces on the coproduct which we denote as follows:

hlk : Γl t Γl // Γl+k.

We now define a det of maps E∞S in ΓS:

E∞S := {hlk : Γl t Γl // Γl+k : l, k ∈ Z+}
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4.2. Definition. We call a Γ-space X a (∆× E∞S)-local object if it is a fibrant object
in the strict JQ model category and for each map hlk ∈ E∞S, the induced simplicial map

Maph
ΓS(∆[n] �

S
hlk, X) :Maph

ΓS(∆[n] �
S

Γk+l, X) //

Maph
ΓS(∆[n] �

S
(Γk t Γl), X),

is a homotopy equivalence of simplicial sets for all n ≥ 0 where Maph
ΓS(−,−) is the

simplicial function complexes associated with the strict model category ΓS, see [DK80a],
[DK80b] and [DK80c].

Appendix B tell us that the Kan complex J(MapΓS(X, Y )), which is the maximal
Kan complex contained in the quasicategoryMapΓS(X, Y ), is a model for the homotopy
function complex Maph

ΓS(X, Y ), whenever X is cofibrant and Y is fibrant in the strict
JQ model category.

The following proposition gives a characterization of E∞S-local objects

4.3. Proposition. A strict JQ fibrant Γ-space X is a (∆ × E∞S)-local object in ΓS if
and only if it satisfies the Segal condition i.e. the simplicial map

(X(δ
(k+l)
k ), X(δ

(k+l)
l )) : X((k + l)+) //X(k+)×X(l+)

is a categorical equivalence of quasi-categories for all k+, l+ ∈ Ob(Γop).

Proof. We begin the proof by observing that each element of the set E∞S is a map of
Γ-spaces between cofibrant Γ-spaces. Theorem B.10 implies that X is a (∆× E∞S)-local
object if and only if the following simplicial map

MapΓS(hkl , X) :MapΓS(Γ(k+l), X) //MapΓS(Γk t Γl, X)

is a categorical equivalence of quasi-categories.
We observe that we have the following commutative square in (S,Q)

MapΓS(Γ(k+l), X)

∼=
��

MapΓS(hkl ,X)
//MapΓS(Γk t Γl, X)

∼=
��

X((k + l)+)
(X(δ

(k+l)
k ),X(δ

(k+l)
l ))

// X(k+)×X(l+)

This implies that the simplicial map (X(δ
(k+l)
k ), X(δ

(k+l)
l )) is a categorical equivalence of

quasi-categories if and only if the functor MapΓS(hkl , X) is one.
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4.4. Definition. We will refer to a (∆×E∞S)-local object as a coherently commutative
monoidal quasi-category.

4.5. Definition. Let X be a coherently commutative monoidal quasi-category. We will
refer to the homotopy category of the quasi-category X(1+), ho(X(1+)), as the homotopy
category of X and denote it by ho(X).

4.6. Definition. A morphism of Γ-spaces F : X //Y is a (∆×E∞S)-local equivalence
if for each coherently commutative monoidal category Z the following simplicial map

Maph
ΓS(F,Z) :Maph

ΓS(Y, Z) //Maph
ΓS(X,Z)

is a homotopy equivalence of simplicial sets.

4.7. Proposition. A morphism between two cofibrant Γ-spaces F : X // Y is an (∆×
E∞S)-local equivalence if and only if the simplicial map

MapΓS(F,Z) :MapΓS(Y, Z) //MapΓS(X,Z)

is an equivalence of quasi-categories for each coherently commutative monoidal quasi-
category Z.

Proof. Let us first assume that F : X // Y is an (∆ × E∞S)-local equivalence. Then
for any coherently commutative monoidal quasi-category Z the following simplicial map

Maph
ΓS(F,Z) :Maph

ΓS(Y, Z) //Maph
ΓS(X,Z)

is a homotopy equivalence of Kan complexes. We observe that for each n > 0, the Γ-space
Z∆[n] is a coherently commutative monoidal quasi-category because it satisfies the Segal
condition, see 4.3, namely we have the following diagram in which the first map is an
equivalence of quasi-categories

Z((k + l)+)∆[n] // (Z(k+)× Z(l+))∆[n] ∼= Z(k+)∆[n] × Z(l+)∆[n].

This implies that for each n > 0 the following simplicial map is an equivalence of quasi-
categories:

Maph
ΓS(F,Z∆[n]) :Maph

ΓS(Y, Z∆[n]) //Maph
ΓS(X,Z∆[n]).

By Proposition B.8, we have

Maph
ΓS(F,Z∆[n]) = J(MapΓS(F,Z∆[n])).

By adjointness we have the following isomorphisms in the category of arrows of simplicial
sets:

MapΓS(F,Z∆[n]) ∼=MapΓS(F ×∆[n], Z) ∼=MapΓS(F,Z)∆[n]

Since the map J(MapΓS(F,Z∆[n])) is a homotopy equivalence of Kan complexes, the above
isomorphisms imply that so is the simplicial map J(MapΓS(F,Z)∆[n]). Now Lemma B.10
says that the simplicial map MapΓS(F,Z) is an equivalence of quasi-categories.
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Conversely, let us assume that the simplicial map MapΓS(F,Z) is an equivalence of
quasi-categories. Since the functor J takes equivalences of quasi-categories to homotopy
equivalences of Kan complexes, therefore J(MapΓS(F,Z)) =Maph

ΓS(F,Z) is a homotopy
equivalence of Kan complexes. Thus, we have shown that F : X //Y is a (∆×E∞S)-local
equivalence.

4.8. Definition. We will refer to a (∆×E∞S)-local equivalence either as an equivalence
of coheretly commutative monoidal categories or as a JQ equivalence.

The main result of this section is about constructing a new model category structure
on the category ΓS, by localizing the strict model category of Γ-spaces with respect to
morphisms in the set E∞S. We recall the following theorem which will be the main tool
in the construction of the desired model category. This theorem first appeared in an
unpublished work [Smi] but a proof was later provided by Barwick in [Bar10].

4.9. Theorem. [Bar10, Theorem 4.7] IfM is a left-proper, combinatorial model category
and S is a small set of homotopy classes of morphisms ofM, the left Bousfield localization
LSM of M along any set representing S exists and satisfies the following conditions.

1. The model category LSM is left proper and combinatorial.

2. As a category, LSM is simply M.

3. The cofibrations of LSM are exactly those of M.

4. The fibrant objects of LSM are the fibrant S-local objects Z of M.

5. The weak equivalences of LSM are the S-local equivalences.

4.10. Theorem. There is a closed, left proper, combinatorial model category structure
on the category of Γ-spaces, ΓS, in which

1. The class of cofibrations is the same as the class of JQ cofibrations of Γ-spaces.

2. The weak equivalences are equivalences of coherently commutative monoidal quasi-
categories.

An object is fibrant in this model category if and only if it is a coherently commuta-
tive monoidal category. A fibration between two coherently commutative monoidal quasi-
categories is a strict JQ equivalence.

Proof. The strict model category of Γ-spaces is a combinatorial model category therefore
the existence of the model structure follows from Theorem 4.9 stated above. The last
statement follows from (1).
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4.11. Notation. The model category constructed in Theorem 4.10 will be referred to
either as the model category of coherently commutative monoidal quasi-categories or as
the JQ model category of Γ-spaces. We will denote this model category by (ΓS⊗,Q).

The rest of this section is devoted to proving that the model category of
coherently commutative monoidal quasi-categories is a symmetric monoidal closed model
category. In order to do so we will need some general results which we state and prove
now.

4.12. Proposition. A cofibration, f : A // B, between cofibrant objects in a model
category C is a weak equivalence in C if and only if it has the right lifting property with
respect to all fibrations between fibrant objects in C.

Proof. The unique terminal map B // ∗ can be factored into an acyclic cofibration
ηB : B //R(B) followed by a fibration R(B) // ∗. The composite map ηB ◦ f can again
be factored as an acyclic cofibration followed by a fibration R(f) as shown in the following
diagram:

A

f

��

ηA // R(A)

R(f)

��

B

==

ηB
// R(B)

Since R(B) is fibrant and R(f) is a fibration, therefore R(A) is a fibrant object in C.
Thus, R(f) is a fibration between fibrant objects in C and now by assumption, the dotted
arrow exists which makes the whole diagram commutative. Since both ηA and ηB are
acyclic cofibrations, therefore the two out of six property of model categories implies that
the map f is a weak equivalence in the model category C.

4.13. Proposition. If X is a coherently commutative monoidal quasi-category, then so
is the Γ-space X(n+ ∧ −), for each n ∈ N.

Proof. We begin by observing that X(n+ ∧ −)(1+) = X(n+) and since X is fibrant,

the pointed category X(n+) is equivalent to
n∏
1

X(1+). Notice the isomorphisms (n+ ∧

(k + l)+) ∼=
n
∨
1
(k + l)+ ∼= (

n
∨
1
k+) ∨ (

n
∨
1
l+) ∼= ((

n
∨
1
k+) + (

n
∨
1
l+)). The two projection maps

δk+l
k : (k + l)+ // k+ and δk+l

l : (k + l)+ // l+ induce an equivalence of categories

X((
n
∨
1
k+) + (

n
∨
1
l+)) //X(

n
∨
1
k+) ×X(

n
∨
1
l+). Composing with the isomorphisms above, we

get the following equivalence of pointed simplicial sets X(n+ ∧ −)((k + l)+) //X(n+ ∧
−)(k+)×X(n+ ∧ −)(l+).

4.14. Corollary. For each coherently commutative monoidal category X, the mapping
object Map

ΓS(Γn, X) is also a coherently commutative monoidal category for each n ∈ N.

Proof. The corollary follows from the above Proposition and Proposition 3.14.
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The category Γop is a symmetric monoidal category with respect to the smash product
of pointed sets. In other words the smash product of pointed sets defines a bi-functor −∧
− : Γop×Γop //Γop. For each pair k+, l+ ∈ Ob(Γop), there are two natural transformations

δk+l
k ∧ − : (k + l)+ ∧ − ⇒ k+ ∧ − and δk+l

l ∧ − : (k + l)+ ∧ − ⇒ l+ ∧ −.

Horizontal composition of either of these two natural transformations with a Γ-space X
determines a morphism of Γ-spaces

idX ◦ (δk+l
k ∧ −) =: X(δk+l

k ∧ −) : X((k + l)+ ∧ −) //X(k+ ∧ −).

4.15. Proposition. Let X be an coherently commutative monoidal quasi-category, then
for each pair (k, l) ∈ N× N, the following morphism

(X(δk+l
k ∧ −), X(δk+l

l ∧ −)) : X((k + l)+ ∧ −) //X(k+ ∧ −)×X(l+ ∧ −)

is a strict equivalence of Γ-spaces.

Using the previous two propositions, we now show that the mapping space functor
Map

ΓS(−,−) provides the homotopically correct function object when the domain is
cofibrant and codomain is fibrant.

4.16. Lemma. Let W be a Q-cofibrant Γ-space and let X be a coherently commu-
tative monoidal quasi-category. Then the mapping object Map

ΓS(W,X) is also a
coherently commutative monoidal quasi-category.

Proof. We begin by recalling that

Map
ΓS(W,X)((k + l)+) =MapΓS(W ∗ Γk+l, X).

We recall that the Γk+l is a cofibrant Γ-space and by assumption W is also a cofibrant
Γ-space therefore it follows from Theorem 3.17 that W ∗ Γk+l is also a cofibrant Γ-space.
Since X is a coherently commutative monoidal quasi-category i.e. a fibrant object in the
model category of coherently commutative monoidal quasi-categories, therefore it follows
from Theorem 3.17 that the mapping objectMapΓS(W ∗Γk+l, X) is a quasi-category, for
all k, l ≥ 0.

We recall that the map hkl : Γk t Γl // Γk+l is a weak equivalence in the model
category of coherently commutative monoidal quasi-categories, now by using adjointness
and Corollary 4.14, it is easy to show that the top arrow in the following commutative
diagram is a categorical equivalence of quasi-categories:

MapΓS(W ∗ Γk+l, X)
MapΓS(W∗hkl ,X)

//MapΓS((W ∗ Γk) t (W ∗ Γl), X)

∼=
��

MapΓS(W ∗ Γk, X)×MapΓS(W ∗ Γl, X)

Now the result follows from the above diagram.
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The following lemma will be used in the proof of the main result of this section:

4.17. Lemma. Let M be a model category and L(M) be a left Bousfield localization of
M. Then a map f : X //Y between two fibrant objects in L(M), is a fibration in L(M)
if and only if it is a fibration in M.

Proof. The implication (⇒) is clear because each fibration in L(M) is a fibration inM.
Conversely, let us assume that f is an M-fibration between two L(M)-fibrant objects.
We will show that f is also an L(M)-fibration. Let us choose a factorization

Z
p

��

X

i

>>

f
// Y

where p is an L(M)-fibration and i is an acyclic cofibration in L(M). We observe that i
is a map between two L(M)-fibrant objects. The identity functor id : L(M) //M is a
right Quillen functor and therefore preserves weak equivalences between fibrant objects.
Thus i is also an acyclic cofibration in M because cofibrations in M and L(M) are
the same. This implies that the following (outer) commutative diagram has a (dotted)
diagonal filler:

X

i
��

X

f
��

Z p
//

>>

Y

This implies that f is a retract of p and therefore f is an L(M)-fibration.

A map of Γ-spaces F : X //Y is an acyclic strict JQ fibration of Γ-spaces if and only
if it has the right lifting property with respect to all maps in the set

I = {Γn �
S
∂i | ∀n, i ∈ Ob(N )}, (10)

where ∂i : ∂∆[i] // ∆[i] is the boundary inclusion map. This set thus forms a set of
generating cofibrations.

Finally, we get to the main result of this section. All the lemmas proved above will be
useful in proving the following theorem:

4.18. Theorem. The model category of coherently commutative monoidal quasi-categories
is a symmetric monoidal closed model category under the Day convolution product.

Proof. In light of [Hov99, Cor. 4.2.5], it is sufficient to show that for each pair of
generating JQ cofibrations i : U // V and j : Y // Z, the following pushout product
morphism

i�j : U ∗ Z
∐
U∗Y

V ∗ Y // V ∗ Z
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is a JQ cofibration which is also a JQ equivalence whenever either i or j is one. We
first deal with the case of both i and j being a generating JQ cofibration. The closed
symmetric monoidal model structure on the strict JQ model category, see Theorem 3.17,
implies that i�j is a JQ cofibration.

Now, let us assume that j is an acyclic JQ cofibration i.e. the JQ cofibration j
is also a JQ equivalence of coherently commutative monoidal quasi-categories. Since
all generating JQ cofibrations, and therefore the map i�j, have cofibrant domains and
codomains, it follows from Proposition 4.12 the JQ cofibration i�j is a JQ equivalence
if and only if it has the left lifting property with respect to all strict JQ fibrations of
Γ-spaces between coherently commutative monoidal quasi-categories. Let p : W //X be
a strict JQ fibration between two coherently commutative monoidal quasi-categories. By
adjointness, a (dotted) lifting arrow would exists in the following diagram

U ∗ Z
∐
U∗Y

V ∗ Y //

��

W

p

��

V ∗ Z

88

// Y

if and only if a (dotted) lifting arrow exists in the following adjoint commutative diagram

Y //

j

��

Map
ΓS(V,W )

(j∗,p∗)

��

Z

55

//Map
ΓS(U,X) ×

Map
ΓS(U,Y )

Map
ΓS(V, Y )

The map (j∗, p∗) is a strict JQ fibration of Γ-spaces by Lemma A.3 and Theorem 3.17.
Further the observation that both V and U are JQ cofibrant and the above Lemma
4.16 together imply that (j∗, p∗) is a strict JQ fibration between coherently commutative
monoidal quasi-categories and therefore, by the above lemma, a fibration in the JQ model
category. Since j is an acyclic cofibration in the JQ model category by assumption
therefore the (dotted) lifting arrow exists in the above diagram. Thus, we have shown
that if i is a JQ cofibration and j is a JQ cofibration which is also a weak equivalence
in the JQ model category then i�j is an acyclic cofibration in the JQ model category.
A similar argument shows that whenever i is an acyclic JQ cofibration and j is merely a
JQ cofibration, the map i�j is an acyclic JQ cofibration.

Finally, we will show that the construction of the model category of coherently com-
mutative monoidal quasi-categories achieves the goal of inducing a semi-additive structure
on its homotopy category:

4.19. Theorem. The homotopy category of the model category of coherently commutative
monoidal quasi-categories is semi-additive.
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Proof. In light of [GS16, Prop. 6(ii)], it is sufficient to show that for each cofibrant
coherently commutative monoidal quasi-category X, its coproduct with itself is homotopy
equivalent to its product with itself. This follows from observing that the following map
is a homotopy equivalence:

X tX ∼= X ∗ (Γ1 t Γ1)
X∗h1

1
//X ∗ (Γ2) ∼= X ×X.

5. Equivalence with normalized Γ-spaces

A normalized Γ-space is a functor X : Γop //S• such that X(0+) = 1. The category of all
(small) normalized Γ-spaces ΓS• is the category whose objects are normalized Γ-spaces.
This category is defined by the following equalizer diagram in Cat:

ΓS• // [Γop;S•]

##

[0;S•]
// [1;S•]

1
0

<<

where [0;S•] is the functor which precomposes a functor in [Γop;S•] with the unique
(pointed) functor 1 // Γop whose image is 0+ ∈ Γop and the upward diagonal functor 0
maps the terminal category 1 to the terminal object of the codomain functor category.
Traditionally, Γ-spaces have been studied as normalized objects [Seg74], [BF78], [Lyd99],
[Sch99]. This is because Γ-spaces are a model for connective spectra which are normal-
ized object. In order to carry forward this tradition, we develop a theory of normalized
coherently commutative monoidal quasi-categories in Appendix C. All results from the
previous two sections have analogs, for normalized Γ-spaces, in Appendix C.

Even though we carry the aforementioned tradition forward, the purpose of this sec-
tion is to show that the theory of normalized coherently commutative monoidal quasi-
categories is equivalent to the theory of unnormalized coherently commutative monoidal
quasi-categories. More precisely, in this section we will establish a Quillen equivalence
between the model category of coherently commutative monoidal quasi-categories con-
structed above and the model category of normalized coherently commutative monoidal
quasi-categories which is constructed in Appendix C.10. A similar result in the con-
text of coherently commutative monoidal (special Γ-) spaces was proved in [dBM17]. In
the cited paper, the authors prove the aforementioned result for the (Quillen-equivalent)
Reedy model category structures on the two categories of Γ-spaces in context. Here we
will prove our result working directly with the two aforementioned model categories.

The category of normalized Γ-spaces is equipped with a forgetful functor

U : ΓS• // ΓS. (11)
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This functor maps a normalized Γ-space X to the following composite

Γop X
// S•

US
// S,

where the second functor is the obvious forgetful functor which forgets the basepoint of a
simplicial set. The forgetful functor U has some very desirable homotopical properties: we
will show in this section that U preserves weak equivalences namely it maps JQ equiva-
lences of normalized Γ-spaces to JQ equivalences. This functor also preserves cofibrations
even though it is a right Quillen functor.

5.1. Proposition. The forgetful functor U : ΓS• // ΓS preserves acyclic fibrations.

Proof. A morphism of normalized Γ-spaces p : X // Y is an acyclic fibration in the
JQ model category of normalized Γ-spaces if and only if there is a lifting arrow in the
following commutative diagram for each n ∈ N

Γn ∧
S•
∂∆[i]+

��

// X

��

Γn ∧
S•

∆[i]+ //

;;

Y

because the collection I• = {Γn ∧
S•
∂∆[i]+ // Γn ∧

S•
∆[i]+ : n, i ∈ N} is a set of generating

cofibrations for the combinatorial JQ model category of normalized Γ-spaces ΓS•. By
adjointness the lifting arrow exists in the above diagram if and only if a lifting arrow
exists in the following (adjoint) commutative diagram in S•

∂∆[i]+

��

//MapΓS•(Γ
n, X) ∼= X(n+)

p

��

∆[i]+ //

55

MapΓS•(Γ
n, Y ) ∼= Y (n+)

We recall the adjunction (−)+ : S � S• : US and observe that U(X)(n+) = US(X(n+)).
This implies that the lifting arrow in the above commutative diagram of pointed simplicial
sets will exists if and only if a lifting arrow exists in the following (adjoint) commutative
diagram in S

∂∆[i]

��

// US(X(n+))

US(pn)
��

∆[i] //

88

US(Y (n+))

We observe that for any normalized Γ-space Z, US(Z(n+)) ∼= U(Z)(n+). Therefore a
lifting arrow exists in the above diagram if and only if a lifting arrow exists in the following
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commutative diagram:

∂∆[i]

��

//MapΓS(Γn, U(X))

MapΓS(Γn,U(pn))

��

∆[i] //

66

MapΓS(Γn, U(Y ))

By adjointness, this lifting arrow would exist if and only if there exists a lifting arrow in
the following (adjoint) commutative diagram:

Γn �
S
∂∆[i]

��

// U(X)

��

Γn �
S•

∆[i] //

::

U(Y )

The collection I = {Γn�
S
∂∆[i] //Γn�

S•
∆[i] : n, i ∈ N} is a set of generating cofibrations

for the combinatorial model category ΓS. Thus, we have shown that the map of Γ-spaces
U(p) has the right lifting property with respect to the set of generating cofibrations of the
JQ model category and hence U(p) is an acyclic fibration.

A similar argument as in the proof of the above proposition when applied to the
collection of generating acyclic cofibrations of the strict JQ model category of normalized
Γ-spaces ΓS• gives a proof of the following proposition:

5.2. Proposition. The forgetful functor U : ΓS• // ΓS preserves strict JQ fibrations.

We would like to construct a left adjoint of the functor U . For a given Γ-space X we
will construct another Γ-space X[0] which is equipped with a map ι : X[0] //X.

5.3. Definition. Let X be a Γ-space, the unital part of X is the constant Γ-space X[0]
which is defined by

X[0](n+) := X(0+)

for all n+ ∈ Ob(Γop). The map ι is defined, in degree n by the following simplicial map:

ι(n+) := X(0n) : X(0+) //X(n+),

where 0n : 0+ // n+ is the unique map in Γop between 0+ and n+.

We notice that if X is a normalized Γ-space then the unital part of U(X)[0] is the
terminal Γ-space. We want to use the above construction to associate with a Γ-space a
normalized Γ-space which is equipped with a map from the original Γ-space.
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5.4. Definition. Let X be a Γ-space, we define another Γ-space U(Xnor) by the following
pushout square:

X[0]

��

ι // X

ηX
��

1 // U(Xnor)

(12)

where 1 is the terminal Γ-space. The bottom horizontal arrow in the above pushout square
is an object of the category 1/ΓS. Since U(Xnor)(0+) = ∗ therefore the image is an object
of the category (1/ΓS)•, see (C.11). Its image under the isomorphism of categories from
remark (C.12) determines a normalized Γ-space which we denote by Xnor and call it the
normalization of X.

The above construction is functorial in X and hence we have defined a functor (−)nor :
ΓS // ΓS•.

5.5. Proposition. For any Γ-space X the map ι : X[0] //X defined above is a degree-
wise mononorphism of simplicial sets.

Proof. We want to show that for each n+ ∈ Ob(Γop) the simplicial map

ι(n+) : X(0+) //X(n+)

is a monomorphism. We observe that the object 0+ is the zero object in Γop therefore the
unique composite arrow

0+ // n+ // 0+

is the identity map of 0+, for all n+ ∈ Ob(Γop). This implies that the simplicial map
X(0+) //X(n+) //X(0+) is the identity map of X(0+), in other words the simplicial
map ι(n+) has a left inverse which implies that the map ι(n+) : X(0+) // X(n+) is a
monomorphism.

5.6. Proposition. For each coherently commutative monoidal quasi-category X the map
of Γ-spaces ηX : X // U(Xnor) defined in (12) is a (strict) JQ equivalence.

Proof. Since X is a coherently commutative monoidal quasi-category by assumption
therefore the unique terminal map X[0] // 1 is a strict JQ equivalence because X(0+)
is homotopy equivalent to the terminal simplicial set in the Joyal model category. The
Γ-space U(Xnor) is defined as a pushout, see (12), and pushouts in the category Γ-space
are degreewise therefore we have the following pushout diagram in the category S:

X[0](n+)

��

ι(n+)
// X(n+)

ηX(n+)
��

1 // U(Xnor)(n+)

(13)
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for each n+ ∈ Ob(Γop). By Proposition 5.5 the simplicial map ι(n+) is a monomorphism.
Since monomorphisms are cofibrations in the Joyal model category which is a left proper
model category therefore a pushout of a weak equivalence along a monomorphism is a
weak equivalence in Joyal model category. Thus, we have shown that the map ηX(n+) :
X(n+) // U(Xnor)(n+) is a weak equivalence in the Joyal model category which proves
that the unit map ηX : X //U(Xnor) is a strict JQ equivalence whenever X is a coherently
commutative monoidal quasi-category.

5.7. Corollary. The functor (−)nor maps coherently commutative monoidal quasi-cat-
egories to normalized coherently commutative monoidal quasi-categories.

5.8. Corollary. The functor U : ΓS• // ΓS preserves weak equivalences.

Proof. A map f : X // Y is a JQ equivalence of normalized Γ-spaces if and only if
each cofibrant replacement of f is also the same, so we may assume that f is a map
between cofibrant objects. It would be sufficient to show that for each coherently com-
mutative monoidal quasi-category Z the following simplicial map is an equivalence of
quasi-categories:

MapΓS(U(f), Z) :MapΓS(U(Y ), Z) //MapΓS(U(X), Z)

We have the following commutative diagram of simplicial mapping objects:

MapΓS(U(Y ), Z)
MapΓS (U(f),Z)

//

MapΓS(U(Y ),ηZ)

��

MapΓS(U(X), Z)

MapΓS(U(X),ηZ)

��

MapΓS(U(Y ), U(Znor)) //

∼=
��

MapΓS(U(X), U(Znor))

∼=
��

U(MapΓS•(Y, Z
nor))

U(MapΓS• (f,Znor))
// U(MapΓS•(X,Z

nor))

Since f is a JQ equivalence of normalized Γ-spaces by assumption and Znor is a nor-
malized coherently commutative monoidal quasi-category therefore the simplicial map
U(MapΓS•(f, Z

nor)) is an equivalence of quasi-categories. The vertical arrows in the bot-
tom rectangle are isomorphisms by Corollary C.3. The vertical arrows in the top rectangle
are equivalences of quasi-categories because ηZ is a weak equivalence by Proposition 5.6,
U(X) and U(Y ) are cofibrant and Z and U(Znor) are both fibrant. Now the two out of
three property of weak equivalences in a model category tells us that the top horizontal
map in the above diagram namely MapΓS(U(f), ηZ) is a weak equivalence in the Joyal
model category. By Lemma 4.7 we have shown that the map U(f) is a JQ equivalence.
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We claim that (−)nor is a left adjoint of the forgetful functor U : ΓS• //ΓS. The unit
of this adjunction is given by the quotient map ηX : X // U(Xnor). For a normalized
Γ-space Y we have a canonical isomorphism (depicted by the dotted arrow) in the following
diagram

1 // U(Y )

�� id

��

1 //

,,

U(U(Y )nor)
εY

&&

U(Y )

(14)

The diagram (14) is a composite arrow in the category (1/ΓS)•. The image of the map εY
under the isomorphism of categories from remark (C.12) gives us the counit map which
we also denote by εY .

The next proposition verifies our claim made above:

5.9. Proposition. The functor (−)nor : ΓS // ΓS• is a left adjoint to the forgetful
functor U : ΓS• // ΓS.

Proof. We will prove this proposition by showing that the unit map ηX constructed above
is universal. Let X be a Γ-space and Y be a normalized Γ-space and f : X //U(Y ) be a
map in ΓS. We will show the existence of a unique map g : Xnor // Y in ΓS• such that
the following diagram commutes in the category ΓS:

X
ηX //

f
##

U(Xnor)

U(g)

��

U(Y )

(15)

The map 1 //U(Y ) in the diagram below is the image of the normalized Γ-space Y under
the isomorphism of categories in remark following (C.11):

X[0] //

��

X

ηX
�� f

��

1 //

,,

U(Xnor)

U(g) %%

U(Y )

Since U(Y )(0+) = ∗ therefore f maps X(0+) to a point. This implies that the outer
solid diagram in the figure above commutes. Since the square in the above diagram is
a pushout square therefore there exists a unique (dotted) arrow which makes the whole
diagram commutative. The lower commutative triangle in the diagram above is a map in
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the category (1/ΓS)•. The image of this map under the isomorphism of categories from
remark following (C.11) is a map g : Xnor // Y in ΓS• whose image under the forgetful
functor U(g) makes the diagram (15) commute.

This proposition has the following consequence:

5.10. Corollary. The forgetful functor U : ΓS• // ΓS maps JQ cofibrations of nor-
malized Γ-spaces to JQ cofibrations.

Proof. Let i : V //W be a JQ cofibration of normalized Γ-spaces. We will show that
U(i) is a JQ cofibration. By adjointness U(i) is a cofibration if and only if U(i)nor is a
JQ cofibration of normalized Γ-spaces. The following commutative square in ΓS• shows
that U(i) is a cofibration because i is one by assumption:

U(V )nor ∼=
εV //

U(i)nor

��

V

i

��

U(W )nor
∼=
εW

//W

Next we show that the adjunction (−)nor a U is compatible with the model category
structures i.e. it is a Quillen adjunction.

5.11. Lemma. The pair of adjoint functors ((−)nor), U) is a Quillen pair.

Proof. A pair of adjoint functors between two model categories is a Quillen pair if and
only if the left adjoint preserves cofibrations and the right adjoint preserves fibrations
between fibrant objects, see [JT06, Prop. 7.15]. Let i : A //B be a cofibration in ΓS and
let p : X // Y be an acyclic fibration in ΓS• then by Proposition 5.1, there is a lifting
arrow in the following (outer) commutative diagram:

A //

i

��

U(X)

U(p)

��

B //

==

U(Y )

By adjointness this lifting arrow exists if and only if there exists a lifting arrow in the
following (adjoint) commutative diagram:

Anor //

inor

��

X

p
��

Bnor //

<<

Y

Thus, we have shown that for each cofibration i in ΓS, its image inor in ΓS• has the left
lifting property with respect to acyclic fibrations in the JQ model category of normalized
Γ-spaces ΓS•. Hence we have shown that the left adjoint preserves cofibrations.
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By Lemma 4.17 JQ fibrations between JQ fibrant normalized Γ-spaces are just strict
JQ fibrations of normalized Γ-spaces. Now Proposition 5.2 tells us that U preserves fibra-
tions between fibrant normalized Γ-spaces. Hence by [JT06, Prop. 7.15] the adjunction
in context is a Quillen pair.

By definition, the counit map εY : U(Y )nor // Y of the adjunction ((−)nor), U) is an
isomorphism for each normalized Γ-space Y . Now we want to show that the unit map of
the same adjunction is a JQ equivalence.

5.12. Lemma. The unit map ηX : X // U(Xnor) is a JQ equivalence for each Γ-space
X.

Proof. We have already seen in Proposition 5.6 that the result holds when the Γ-space
X is a coherently commutative monoidal quasi-category. Now we tackle the general case
wherein X is an arbitrary Γ-space. Since the unit map η is a natural transformation
therefore we have the following commutative diagram in the category ΓS:

X

ηX
��

// R(X)

ηR(X)

��

U(Xnor) // U(R(X)nor)

where X // R(X) is a fibrant replacement of X and therefore it is an acyclic JQ cofi-
bration and R(X) is a coherently commutative monoidal quasi-category. Thus we have
shown that the top and right vertical arrow in the commutative diagram above are JQ
equivalences. Now we want to show that the bottom horizontal arrow is also a JQ equiva-
lence. The functor (−)nor is a left Quillen functor, see (5.11), therefore it preserves acyclic
JQ cofibrations. Now Proposition 5.10 says that U preserves weak equivalences which
implies that the bottom horizontal map is a JQ equivalence.

An easy consequence of the above lemma and the fact that the counit of the Quillen
pair ((−)nor, U) is a natural isomorphism is the following theorem:

5.13. Theorem. The Quillen pair

(−)nor : ΓS � ΓS• : U

is a Quillen equivalence.

6. The model category of coherently commutative monoidal marked quasi-
categories

The objective of this section is to construct a new model category structure on the category
ΓS+ = [Γop;S+], where S+ is the model category of marked simplicial sets. We will refer
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to an object of ΓS+, namely a functor from Γop to S+, as a marked Γ-space. This new
model category can be described as the model category of coherently commutative objects
in S+. We begin by describing a projective model category structure on ΓS+:

6.1. Definition. We call a map of marked Γ-spaces

1. A strict JQ fibration of marked Γ-spaces if it is degreewise a pseudo-fibration of
marked simplicial sets i.e. a fibration in the Joyal model category structure on
marked simplicial sets.

2. A strict JQ equivalence of marked Γ-spaces if it is degreewise a categorical equiv-
alence of marked simplicial sets i.e. a weak equivalence in the Joyal model category
structure on marked simplicial sets.

3. A strict JQ cofibration of marked Γ-spaces if it has the left lifting property with
respect to maps which are simultaneously strict JQ fibrations and strict JQ equiva-
lences.

6.2. Theorem. Strict JQ equivalences, strict JQ fibrations and strict JQ cofibrations of
marked Γ-spaces provide the category ΓS+ with a combinatorial, left-proper model category
structure.

The model structure in the above theorem follows from [Lur09, Proposition A 3.3.2]
and the left properness is a consequence of the left properness of the Joyal model category.

6.3. Notation. We will refer to the above model category as the strict JQ model cate-
gory of marked simplicial sets.

Next we will construct function objects for the above model category. For each pair
(F,K), where F ∈ Ob(ΓS+) and K ∈ Ob(S), one can construct a Γ-space which we
denote by F �

S
K and which is defined as follows:

(F �
S
K)(n+) := F (n+)×K[,

where the product on the right is taken in the category of simplicial sets. This construction
is functorial in both variables. Thus we have a functor

−�
S
− : ΓS+ × S // ΓS+.

Now we will define a couple of function objects for the category ΓS+. The first function
object enriches the category ΓS over S i.e. there is a bifunctor

MapΓS+(−,−) : (ΓS+)op × ΓS+ // S

which assigns to each pair of objects (X, Y ) ∈ Ob(ΓS+) × Ob(ΓS+), a simplicial set
MapΓS+(X, Y ) which is defined in degree zero as follows:

MapΓS+(X, Y )0 := ΓS+(X, Y )
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and the simplicial set is defined in degree n as follows:

MapΓS+(X, Y )n := ΓS+(X �
S

∆[n], Y ) (16)

For any marked Γ-space X, the functor X �
S
− : S // ΓS+ is left adjoint to the functor

MapΓS+(X,−) : ΓS+ //S. The counit of this adjunction is the evaluation map ev : X�

MapΓS+(X, Y ) //Y and the unit is the obvious simplicial map K //MapΓS+(X,X�
S
K).

To each pair of objects (K,X) ∈ Ob(S) × Ob(ΓS+) we can define a Γ-space XK , in
degree n, as follows:

(XK)(n+) := [K[, X(n+)] .

This assignment is functorial in both variables and therefore we have a bifunctor

−− : Sop × ΓS+ // ΓS+.

For any Γ-space X, the functor X− : S // (ΓS+)op is left adjoint to the functor

MapΓS+(−, X) : (ΓS+)op // S.

The following proposition summarizes the above discussion.

6.4. Proposition. There is an adjunction of two variables

(−�
S
−,−−,MapΓS+(−,−)) : ΓS+ × S // ΓS+. (17)

The following theorem follows from [Lur09, Remark A.3.3.4]. A direct proof can also
be easily given by a straightforward verification of Lemma A.3(2).

6.5. Theorem. The strict model category of marked Γ-spaces, ΓS+, is a (S,Q)- model
category with respect to the adjunction of two variables (17).

The adjoint functors ((−)b, U), see 2.9, induce an adjunction

Γ(−)b : ΓS 
 ΓS+ : U. (18)

This adjunction is a Quillen equivalence in light of [Lur09, Remark A 3.3.2] and 2.9:

6.6. Theorem. The adjoint pair (Γ(−)[, U) determines a Quillen equivalence between
the strict JQ model structure on ΓS and the model category structure in Theorem 6.2.

The following three lemmas will be useful in proving various results in this section:

6.7. Lemma. For each pair (X, Y ) consisting of a Γ-space X and a marked Γ-space Y ,
the above adjunction gives the following simplicial isomorphism:

MapΓS+(Γ(X)[, Y ) ∼=MapΓS(X,U(Y )).

Proof. By definition of the function space MapΓS+(Γ(X)[, Y ), see (16), and [GJ99,
Lemma 2.9] it is sufficient to observe that for each n ∈ N

Γ(X)[ ×∆[n][ = Γ(X �
S

∆[n])[.
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The next lemma is a consequence of the definition of the left adjoint functor Γ(−)[:

6.8. Lemma. The left adjoint functor Γ(−)[ maps strict JQ equivalences of Γ-spaces to
strict JQ equivalences of marked Γ-spaces.

Proof. Let F : X // Y be a strict JQ equivalence of Γ-spaces. For each n ∈ N we
have a categorical equivalence of simplicial sets F (n+) : X(n+) //Y (n+). We recall that
each simplicial set is cofibrant in the Joyal model category therefore F (n+) is a weak
equivalence between cofibrant objects.

In degree n, the map of marked Γ-spaces Γ(F )[ is the following map of marked sim-
plicial sets:

Γ(F )[(n+) : X(n+)
[

// Y (n+)
[
.

In other words Γ(F )[(n+) = F (n+)
[
. Since (−)[ is a left adjoint of a Quillen equiva-

lence therefore it preserves weak equivalences between cofibrant objects. Thus F (n+)
[

=

Γ(F )[(n+) is a weak equivalence in the Joyal model category of marked simplicial sets for

each n+ ∈ Γop and hence Γ(F )[ is a strict JQ equivalence of marked Γ-spaces.

6.9. Lemma. For any strict JQ fibrant marked Γ-spaces X, the counit map εX : Γ(X)[

//X is a strict JQ equivalence of marked Γ-spaces.

Proof. Since (Γ(−)[, U) is a Quillen pair therefore it induces a derived adjunction

(ΓL(−)[, UR) on the homotopy categories of the two model categories in context. For
a strict JQ fibrant Γ-space X, the counit of this derived adjunction εDX is defined as
follows:

Γ(U(X))[
εX // X

Γ(Q(U(X)))[

Γ(q)[

OO

εDX

99

where q : QU((X)) // U(X) is a cofibrant replacement of U(X) in the strict JQ model

category of Γ-spaces. By the previous Lemma Γ(q)[ is a strict JQ equivalence of marked

Γ-spaces. Since the Quillen pair (Γ(−)[, U) is also a Quillen equivalence between the strict
model categories therefore εDX is a strict JQ equivalence of marked Γ-spaces. By the 2 out
of 3 property of weak equivalences in a model category, we conclude that the counit map
εX is a strict JQ equivalence of marked simplicial sets.

Now we will construct another model category structure on ΓS+. The guiding principle
of this new model structure is to endow its homotopy category with a semi-additive
structure. In other words we want this new model category structure to have finite
homotopy biproducts. We want to construct a left Bousfield localization of the strict JQ
model category of marked Γ-spaces. For each pair k+, l+ ∈ Γop, we have the obvious
projection maps in ΓS

δk+l
k : (k + l)+ // k+ and δk+l

l : (k + l)+ // l+.
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The maps
Γop(δk+l

k ,−) : Γk // Γk+l and Γop(δk+l
l ,−) : Γl // Γk+l

induce a map of Γ-spaces on the coproduct which we denote as follows:

Γ(hlk)
[

: Γ(Γl)
[ t Γ(Γl)

[
// Γ(Γl+k)

[
.

We now define a set of maps ΓE∞S in ΓS+:

ΓE∞S := {Γ(hlk)
[

: Γ(Γk)
[ t Γ(Γl)

[
// Γ(Γk+l)

[
: l, k ∈ Z+}

6.10. Definition. We call a Γ-space X a (∆×ΓE∞S)-local object if it is a fibrant object
in the strict JQ model category and for each map hlk ∈ ΓE∞S, the induced simplicial map

Maph
ΓS+(∆[n] �

S
Γ(hlk)

[
, X) :Maph

ΓS+(∆[n] �
S

Γ(Γk+l)
[
, X) //

Maph
ΓS+(∆[n] �

S
(Γ(Γk)

[ t Γ(Γl)
[
), X),

is a homotopy equivalence of simplicial sets for all n ≥ 0 whereMaph
ΓS+(−,−) is the sim-

plicial function complexes associated with the strict JQ model category ΓS+, see [DK80a],
[DK80b] and [DK80c].

Appendix B tell us that the Kan complex J(MapΓS+(X, Y )), namely the maximal Kan
complex contained in the quasicategory MapΓS+(X, Y ), is a model for Maph

ΓS+(X, Y ),
whenever X is cofibrant and Y is fibrant.

The following proposition gives a characterization of E∞S-local objects

6.11. Proposition. A Γ-space X is a (∆×ΓE∞S)-local object in ΓS+ if and only if its
underlying Γ-space U(X) satisfies the Segal condition, namely the functor

(U(X)(δ
(k+l)
k ), U(X)(δ

(k+l)
l )) : U(X)((k + l)+) // U(X)(k+)× U(X)(l+)

is a categorical equivalence of quasi-categories for all k+, l+ ∈ Ob(Γop).

Proof. We begin the proof by observing that each element of the set ΓE∞S is a map
of marked Γ-spaces between cofibrant marked Γ-spaces. Theorem B.10 and 6.7 together
imply that X is a (∆× ΓE∞S)-local object if and only if the following simplicial map

MapΓS(hkl , U(X)) :MapΓS(Γk+l, U(X)) //MapΓS(Γk t Γl, U(X))

is a categorical equivalence of quasi-categories.
We observe that we have the following commutative square in (S,Q)

MapΓS(Γ(k+l), U(X))

∼=
��

MapΓS(hkl ,U(X))
//MapΓS(Γk t Γl, U(X))

∼=
��

U(X)((k + l)+)
(U(X)(δk+l

k ),U(X)(δk+l
l ))

// U(X)(k+)× U(X)(l+)

This implies that the simplicial map (U(X)(δk+l
k ), U(X)(δk+l

l )) is a categorical equivalence
of quasi-categories if and only if the functor MapΓS(hkl , U(X)) is one.
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6.12. Definition. We will refer to a (∆ × ΓE∞S)-local object as a coherently commu-
tative monoidal marked quasi-category.

6.13. Definition. A morphism of marked Γ-spaces F : X // Y is a (∆ × ΓE∞S)-
local equivalence if for each coherently commutative monoidal marked quasi-category Z
the following simplicial map

Maph
ΓS+(F,Z) :Maph

ΓS+(Y, Z) //Maph
ΓS+(X,Z)

is a homotopy equivalence of simplicial sets.

The following proposition follows from an argument similar to the one in the proof of
Proposition 4.7:

6.14. Proposition. A morphism between two cofibrant marked Γ-spaces F : X // Y is
an (∆× ΓE∞S)-local equivalence if and only if the simplicial map

MapΓS+(F,Z) :MapΓS+(Y, Z) //MapΓS+(X,Z)

is an equivalence of quasi-categories for each coherently commutative monoidal marked
quasi-category Z.

6.15. Definition. We will refer to a (∆×ΓE∞S)-local equivalence either as an equiva-
lence of coherently commutative monoidal marked quasi-categories or as a JQ equivalence
of marked Γ-spaces.

We construct a new model category structure on the category ΓS+, by localizing the
strict JQ model category of marked Γ-spaces with respect to morphisms in the set ΓE∞S.

6.16. Theorem. There is a left proper, combinatorial model category structure on the
category of marked Γ-spaces, ΓS+, in which

1. The class of cofibrations is the same as the class of JQ cofibrations of marked
Γ-spaces.

2. The weak equivalences are equivalences of coherently commutative monoidal marked
quasi-categories.

An object is fibrant in this model category if and only if it is a coherently commu-
tative monoidal marked quasi-category. A fibration between two coherently commutative
monoidal marked quasi-categories is a strict JQ equivalence of marked simplicial sets.

Proof. The strict model category of Γ-spaces is a combinatorial model category therefore
the existence of the model structure follows from Theorem 4.9. The last statement follows
from (1).
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6.17. Notation. The model category constructed in Theorem 6.16 will be referred to
either as the model category of coherently commutative monoidal marked quasi-categories
or as the JQ model category of marked Γ-spaces. We will denote this model category by
(ΓS+

⊗,Q).

6.18. Theorem. The adjoint pair

Γ(−)[ : (ΓS⊗,Q) � (ΓS+
⊗,Q) : U

is a Quillen pair.

Proof. As observed above, the adjunction (3) determines a Quillen equivalence between
the strict JQ model category of marked Γ-spaces and the strict JQ model category of
Γ-spaces. Since the two model categories in context are constructed as a left Bousfield
localization of the corresponding strict model categories, therefore the cofibrations are
the same as the corresponding strict model categories. This implies that the left adjoint
Γ(−)[ preserves cofibrations. We observe that the fibrations between fibrant objects,
in the JQ model category of marked Γ-spaces, are the same as strict JQ fibrations of
marked Γ-spaces. Now it follows from the aforementioned Quillen equivalence that the
right adjoint U preserves fibrations between fibrant objects. In light of Proposition [Joy08,

Prop. E.2.14.], we conclude that (Γ(−)[, U) is a Quillen pair between the two JQ model
categories in the context of the theorem.

6.19. Proposition. The right adjoint functor U maps JQ equivalences of marked Γ-spaces
to JQ equivalences of Γ-spaces.

Proof. Let us first assume that F : X // Y is a JQ equivalence of marked Γ-spaces
between strict JQ fibrant and cofibrant marked Γ-spaces, i.e., X and Y are both cofibrant
and fibrant objects in the strict JQ model category of marked Γ-spaces. By Lemma 6.9
we have the following commutative square:

Γ(U(X))[
Γ(F )[

//

εX

��

Γ(U(Y ))[

εY

��

X
F

// Y

wherein the vertical maps are strict JQ equivalences of marked Γ-spaces. This implies
that Γ(F )[ is a JQ equivalence whenever F is one. Now for each coherently commutative
monoidal quasi-category Z, we have the following commutative diagram of maps between
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mapping spaces in S:

MapΓS+(Γ(U(Y ))[,Γ(Z)[)
MapΓS+ (Γ(U(F ))[,Γ(Z)[)

//

∼=
��

MapΓS+(Γ(U(X))[,Γ(Z)[)

∼=
��

MapΓS(U(Y ), U(Γ(Z)[))
MapΓS(U(F ),U(Γ(Z)[))

//MapΓS(U(X), U(Γ(Z)[))

MapΓS(U(Y ), Z)
MapΓS(U(F ),Z)

//MapΓS(U(X), Z)

where the vertical isomorphisms follow from Lemma 6.7 and the vertical equalities follow
from the observation that the unit map of the adjunction in the context is the identity.
The above commutative diagram of mapping spaces implies that U(F ) is a JQ equivalence
of Γ-spaces whenever F is a JQ equivalence of marked Γ-spaces.

Let F : X //Y be a JQ equivalence of marked Γ-spaces. By [Hir02, Prop. 8.1.17] we
can choose a cofibrant- fibrant replacement functor (R, r) in the strict JQ model category
structure on marked Γ-spaces. This functor gives us the following commutative square:

R(X)
R(F )

// R(Y )

X

rX

OO

F
// Y

rY

OO

The vertical maps are strict JQ equivalences (acyclic cofibrations) of marked Γ-spaces
and the top horizontal arrow is a JQ equivalence of marked Γ-spaces between objects
which are both cofibrant and fibrant in the strict JQ model category of marked Γ-spaces.
It is easy to see that U maps strict JQ equivalences of marked Γ-spaces to strict JQ
equivalences of Γ-spaces. Further, U(R(F )) is a (strict) JQ equivalences of Γ-spaces from
the arguments made earlier in the proof. Now the 2 out of 3 property of weak equivalences
in a model category tells us that U(F ) is a JQ equivalences of Γ-spaces.

Now we state and prove the main result of this section:

6.20. Theorem. The Quillen pair of Theorem (6.18) is a Quillen equivalence.

Proof. Let X be a Q-cofibrant Γ-space and Y be a JQ fibrant marked Γ-space. We will
show that a map F : Γ(X)[ // Y is a JQ equivalence of marked Γ-spaces if and only
if its adjunct map φ(F ) : X // U(Y ) is a JQ equivalence of Γ-spaces. We consider the

following commutative diagram provided by the adjunction (Γ(−)[, U)

U(Γ(X)[) F // U(Y )

X

ηX

OO

φ(F )

99
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where ηX is the unit map. Now the result follows from this diagram, Proposition 6.19
and the observation that the unit ηX is the identity map.

The next lemma is a consequence of the fact that the left adjoint functor Γ(−)[ pre-
serves fibrant objects, which follows easily from the above characterization of coherently
commutative monoidal marked Γ-spaces. The following lemma tells us a strong property
of the left adjoint Γ(−)[ which is not possessed by every left Quillen functor of a Quillen
adjunction:

6.21. Lemma. The left adjoint functor Γ(−)[ preserves weak equivalences namely the JQ

equivalences. Further, the left adjoint Γ(−)[ reflects weak equivalences whose codomain is
fibrant.

Proof. Let F : X // Y be a morphism of Γ-spaces then it can be factored as follows:

P (F )
p(F )

""

X

i(F )
<<

F
// Y

where i(F ) is an acyclic JQ cofibration and p(F ) is a JQ fibration of Γ-spaces. Let us
first assume that F is a JQ equivalence of Γ-spaces. Now the 2 out of 3 property of weak
equivalences in a model category tells us that p(F ) is a acyclic JQ fibration which is the

same as a strict acyclic JQ fibration. Theorem 6.18 tells us that Γ(−)[ is a left Quillen
functor and therefore it preserves acyclic JQ cofibrations. By Lemma 6.8 it also preserves
strict JQ equivalences. In other words both Γ(i(F ))[ and Γ(p(F ))[ are JQ equivalences

of marked Γ-spaces. Therefore their composite Γ(F )[ = Γ(i(F ))[ ◦ Γ(p(F ))[ is also a JQ
equivalence. Hence we have shown that the left adjoint preserves all weak equivalences.

Now let us assume that Y is a JQ fibrant marked Γ-space. Let us further assume
that Γ(F )[ : Γ(X)[ // Γ(Y )[ is a JQ equivalence of marked Γ-spaces. Applying the

left adjoint functor Γ(−)[ to the above factorization of F gives us the equality Γ(F )[ =

Γ(i(F ))[ ◦ Γ(p(F ))[. Since Γ(−)[ is a left Quillen functor therefore Γ(i(F ))[ is an acyclic

JQ cofibration of marked Γ-spaces. By assumption Γ(F )[ is a weak equivalence, therefore

Γ(p(F ))[ is a JQ equivalence of marked Γ-spaces. By Proposition 6.11, both Γ(P (F ))[

and Γ(Y )[ are JQ fibrant marked Γ-spaces. The right adjoint U is a right Quillen functor

therefore it preserves weak equivalences between fibrant objects, hence U(Γ(p(F ))[) =
p(F ) is a JQ equivalence of marked Γ-spaces. Since i(F ) is an acyclic JQ cofibration of
Γ-spaces therefore F = p(F ) ◦ i(F ) is a JQ equivalence of Γ-spaces.
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7. Comparison with Symmetric monoidal quasi-categories

In this section we compare our functor-based model for coherently commutative monoidal
quasi-categories with a recent coCartesian fibration based model for similar objects which
have been named symmetric monoidal quasi-categories. The main result of this paper
is presented in this section as Corollary 7.14. The result states that a homotopy theory
of symmetric monoidal quasi-categories is equivalent to a homotopy theory of coherently
commutative monoidal quasi-categories. We begin by recalling the following definition
from [Lur]:

7.1. Definition. A symmetric monoidal quasi-category is a coCartesian fibration p :
X // N(Γop) such that for each pair of objects k+, l+ ∈ Γop the projection maps δk+l

k :
(k+ l)+ //k+ and δk+l

l : (k+ l)+ // l+ induce morphisms of quasi-categories on the fibers

X((k + l)+) //X(k+) and X((k + l)+) //X(l+)

which determine a categorical equivalence X((k + l)+) //X(k+)×X(l+).

The main result of this section implies that the underlying coCartesian fibrations of
symmetric monoidal quasi-categories can be rectified (up to equivalence) into an honest
functor. We recall that a coCartesian fibration p : X //N(Γop) can be viewed as an object
(X\, p) in S+/N(Γop) wherein the marked edges of X\ are exactly the p-coCartesian edges.
An object is fibrant in the coCartesian model category (S+/N(Γop), cC) if and only if it
is isomorphic to some (X\, p). In this section we will construct another model category
structure on S+/N(Γop), denoted (S+/N(Γop),⊗), in which an object is fibrant if and
only if it is isomorphic to some (X\, p) whose underlying coCartesian fibration represents
a symmetric monoidal quasi-category. A prominent theorem of this section shows that
the relative nerve functor defined in [Lur09, Sec. 3.2.5] is a right Quillen functor of a
Quillen equivalence between the JQ model category of marked Γ-spaces ΓS+ and the
model category (S+/N(Γop),⊗). This theorem is instrumental in proving the main result
of the paper.

For each k+ ∈ Γop we define a simplicial set N(k+/Γop) which is the nerve of the
overcategory k+/Γop. This simplicial set is a quasi-category and is equipped with an
obvious projection map

p : N(k+/Γop) //N(Γop).

This map is a pseudo-fibration i.e. a fibration in the Joyal model category. We regard
this projection map as a morphism of marked simplicial sets as follows:

p : N(k+/Γop)
]

//N(Γop)]

7.2. Remark. We observe that N+
Γk(Γop) ∼= N(k+/Γop). We will denote the quasi-

category N+
Γk(Γop) by N(k+/Γop).
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7.3. Notation. We will denote the value of the functor N+
• (Γop) on a marked Γ-space

X either as N+
X (Γop) or as N+

• (Γop)(X).

For each pair of objects k+, l+ ∈ Γop we can define a map in the overcategory
S+/N(Γop) by the following commutative triangle:

N(k+/Γop)
] tN(k+/Γop)

]

))

// N((k + l)+/Γop)
]

ww

N(Γop)]

where the diagonal maps are the obvious projections. We denote the above morphism by
Υ(k, l) We define a set of maps

ΥS = {Υ(k, l) : k, l ∈ N}

The category S+/N(Γop) is tensored over S therefore we can define the following set of
maps:

∆×ΥS = {Υ(k, l) �
S

∆[n] : n, k, l ∈ N} (19)

The following proposition is an easy consequence of the enrichment of the coCartesian
model category S+/N(Γop) over (S,Q) and the main result of Appendix B.

7.4. Proposition. A coCartesian fibration p : X // N(Γop) viewed as an object of
S+/N(Γop), namely (X\, p), is a (∆×ΥS)-local object if and only if the following simplicial
morphism of mapping spaces is a categorical equivalence of quasi-categories:[

Υ(k, l), X\
][

Γop :
[
N((k + l)+/Γop), X\

][
Γop

//
[
N(k+/Γop) tN(l+/Γop), X\

][
Γop
∼=[

N(k+/Γop), X\
][

Γop ×
[
N(l+/Γop), X\

][
Γop

for each pair k+, l+ ∈ Γop.

7.5. Notation. The fiber of a coCartesian fibration X //S over s ∈ S0 will be denoted
by X(s).

7.6. Remark. Each fibrant object in (S+/N(Γop), cC) is isomorphic to an object which
represents a coCartesian fibration [Lur09, Prop. 3.1.4.1]. The above proposition encodes
the idea that for each pair of objects k+, l+ ∈ Γop, the fiber over (k + l)+, X((k + l)+) is
equivalent (as quasi-categories) to the product of fibers over k+ and l+, X(k+) ×X(l+).
We recall from [Sha, Lemma 3.12] that there is a categorical equivalence

[
N(k+/Γop), X\

][
Γop

[idk+ ,X\]
[

Γop
//
[
∆[0], X\

][
Γop
∼= U(X(k+))

for each k+ ∈ Γop.

Next we define another model category structure on the overcategory S+/N(Γop):
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7.7. Theorem. There is a left proper, combinatorial model category structure on the
category S+/N(Γop), in which a map is a

1. cofibration if it is a cofibration in (S+/N(Γop), cC) namely its underlying simplicial
map is a monomorphism.

2. weak equivalence if it is a (∆×ΥS)-local equivalence.

3. fibration if it has the right lifting property with respect to all maps which are simul-
taneously cofibrations and weak equivalences.

Proof. The desired model category is obtained by a left Bousfield localization of the
coCartesian model category (S+/N(Γop), cC). The model category structure follows from
Theorem 4.9 with the set of generators for the localization being the set ∆×ΥS.

It follows from Remark 7.6 and [Lur09, Prop. 3.1.4.1] that each fibrant object in
(S+/N(Γop),⊗) is isomorphic to a (fibrant) object which represents a symmetric monoidal
quasi-category.

7.8. Notation. We will refer to the above model category as the model category of sym-
metric monoidal quasi-categories and denote this model category by (S+/N(Γop),⊗).

7.9. Theorem. The adjoint pair

N+
• (Γop) : (S+/N(Γop),⊗) � (ΓS⊗,Q) : F+

• (Γop)

is a Quillen pair.

Proof. In light of [Joy08, Prop. E.2.14], it is sufficient to show that the left adjoint
F+
• (Γop) maps cofibrations to cofibrations and the right adjoint N+

• (Γop) maps fibrations
between fibrant objects to fibrations. We recall from [Lur09, Prop. 3.2.5.18(2)] that the
adjoint pair (F+

• (Γop), N+
• (Γop)) is a Quillen pair with respect to the coCartesian model

category structure (S+/N(Γop), cC) and the strict JQ model category structure on ΓS+.
Since the two model category structures in context are left Bousfield localizations, which
preserves cofibrations, therefore the left adjoint F+

• (Γop) will (still) preserve cofibrations.
The fibrations between fibrant objects in the JQ model category are strict JQ fibrations,
by Lemma 4.17, therefore the right adjoint N+

• (Γop) will map such a fibration to a fibration
in (S+/N(Γop),⊗). Further the right adjoint functor N+

• (Γop) maps fibrant objects in the
JQ model category to fibrant objects in (S+/N(Γop),⊗). This implies that the right
adjoint preserves fibrations between fibrant objects.
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7.10. Definition. An object Z in S+/N(Γop) is called a local object if the following
composite map:

Z
ηZ
//N+
• (Γop)

(
F+
• (Γop)(Z)

) r
//N+
• (Γop)

(
R
(
F+
• (Γop)(Z)

))
is a weak equivalence in (S+/N(Γop), cC), where (R, r) is a fibrant replacement replace-
ment functor in the JQ model category and ηZ is the unit map.

7.11. Remark. The notion of a local object is invariant under coCartesian equivalences.

The following lemma will be useful in writing the proof of the main theorem of this
section:

7.12. Lemma. Each fibrant object Z in (S+/N(Γop),⊗) is a local object.

Proof. In light of [Lur09, Prop. 3.1.4.1] we may assume that the underlying simplicial
map U(p) : U(Z) // U(N(Γop)]) is a coCartesian fibrations and the marked edges of
Z are the p-coCartesian edges i.e., Z = U(Z)\. We begin by making the observation
that for each k+ ∈ Γop, the marked simplicial set F+

Z(Γop)(k+) is equivalent to the fiber
over k+ of Y . Since Z is fibrant therefore F+

Z(Γop) satisfies the Segal condition. Now a
fibrant replacement in the strict JQ model category will produce a coherently commuta-
tive monoidal marked quasi-category. It follows that any fibrant replacement of F+

Z(Γop)
in the JQ model category is a fibrant replacement in the strict JQ model category. This
gives us the following map in S+/N(Γop):

Z
ηZ
//N+
• (Γop)

(
F+
• (Γop)(Z)

) r
//N+
• (Γop)

(
R
(
F+
• (Γop)(Z)

))
.

We recall that for each marked Γ-space X, the fiber over each k+ ∈ Γop of

p : N+
X (Γop) //N(Γop)

is isomorphic to X(k+). This implies that the above map is a pointwise equivalence i.e.
for each k+ ∈ Γop the above map induces a categorical equivalence of (marked) simpli-
cial sets on the fiber over k+. Since both Z = U(Z)\ and N+

• (Γop) (R (F+
• (Γop)(Z))) =

U(N+
• (Γop) (R (F+

• (Γop)(Z))))
\
, it follows from [Lur09, Prop. 3.3.1.5] that the above map

is a coCartesian equivalence. Now Remark 7.11 implies that Z is a local object.

Now we state and prove the main result of this section:

7.13. Theorem. The Quillen pair of Theorem 7.9 is a Quillen equivalence.

Proof. We will prove this theorem by verifying [Hov99, Prop. 1.3.13(b)]. We choose a
fibrant replacement functor (R, r) in the JQ model category of marked Γ-spaces. We will
first show that the following composite map

X
ηX
//N+
• (Γop)

(
F+
• (Γop)(X)

)
//N+
• (Γop)(R

(
F+
• (Γop)(X)

)
)
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is a weak equivalence in the model category (S+/N(Γop),⊗), for each cofibrant object
X. We choose another fibrant replacement functor (R⊗, r⊗) in (S+/N(Γop),⊗). Now we
have the following commutative diagram in ΓS+:

X
ηX //

r⊗X
��

N+
• (Γop) (F+

• (Γop)(X)) A //

��

N+
• (Γop)(R (F+

• (Γop)(X)))

C
��

R⊗(X)ηR⊗(X)

// N+
• (Γop) (F+

• (Γop)(R⊗(X)))
B
// N+
• (Γop)(R (F+

• (Γop)(R⊗(X))))

where A is the map N+
• (Γop)

(
r(F+

• (Γop)(X))

)
, B is the map

N+
• (Γop)

(
r(F+

• (Γop)(R⊗(X)))

)
and the downward map C is the map

N+
• (Γop)

(
R
(
F+
• (Γop)(r⊗(X))

))
.

Since the object R⊗(X) is a fibrant object in (S+/N(Γop),⊗), it follows from Lemma
7.12 that the bottom row of the above diagram is a coCartesian equivalence. Since r⊗X
is an acyclic cofibration therefore the left Quillen functor F+

• (Γop) preserves it. Thus,
R(F+

• (Γop)(r⊗(X))) is a weak equivalence between fibrant objects which the right Quillen
functor N+

• (Γop) will preserve. Thus, the rightmost vertical arrow is also a weak equiva-
lence in (S+/N(Γop),⊗). Now the 2 out of 3 property of weak equivalences implies that
the top row of the above diagram is a weak equivalence in (S+/N(Γop),⊗).

Next we choose a cofibrant replacement functor (Q, q) in (S+/N(Γop),⊗). We will
show that the following map is a weak equivalence for each coherently commutative
monoidal marked quasi-category Y :

F+
• (Γop)(Q

(
N+
• (Γop)(Y )

)
)

G
// F+

Γop(Γop)(N+
• (Γop)(Y ))

εY
// Y

whereG is the map F+
• (Γop)(qN+

• (Γop)(Y )). The Quillen equivalence [Lur09, Prop. 3.2.5.18(2)]
implies that for each fibrant object Y , the counit map εY is a coCartesian equivalence
and hence a weak equivalence in (S+/N(Γop),⊗). Since qN+

• (Γop)(Y ) is a weak equivalence
between fibrant objects in (S+/N(Γop),⊗) therefore it is a coCartesian equivalence which
will be preserved by the left Quillen functor F+

• (Γop). Thus, we have shown that the above
composite map is a weak equivalence in (S+/N(Γop),⊗).

Now we state the main result of this paper:

7.14. Corollary. The model category (S+/N(Γop),⊗) is Quillen equivalent to the model
category (ΓS⊗,Q) by the following zig-zag of Quillen equivalences:

(S+/N(Γop),⊗)
N+
• (Γop)

�
F+
• (Γop)

(ΓS+
⊗,Q)

U

�
Γ(−)[

(ΓS⊗,Q)
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Finally, we give another characterization for symmetric monoidal quasi-categories. We
recall a right Quillen functor R+

Γop : S+/N(Γop) // ΓS+ defined in the paper [Sha]:

R+
Γop(X)(k+) = [N(k+/Γop), X]+Γop .

The following corollary provides another characterization of fibrant objects. It is an easy
consequence of the above theorem:

7.15. Corollary. A coCartesian fibration p : X // N(Γop) viewed as an object of
(S+/N(Γop),⊗) is a fibrant object if and only if the marked Γ-space R+

Γop(X) is a coherently
commutative monoidal marked quasi-category.

A. Quillen Bifunctors

The objective of this section is to recall the notion of Quillen Bifunctors. In order to do
so, we begin with the definition of a two-variable adjunction:

A.1. Definition. Suppose C, D and E are categories. An adjunction of two variables
from C × D to E is a quintuple (⊗,homC,MapC, φ, ψ), where

⊗ : C × D // E , homC : Dop × E // C, and MapC : Cop × E //D

are functors and φ, ψ are the following natural transformations

C(C,homC(D,E))
φ−1

//
∼=
E(C ⊗D,E)

ψ
//

∼=
D(D,MapC(C,E)).

The following definition is based on Quillen’s SM7 axiom, see [Qui67].

A.2. Definition. Given model categories C, D and E, an adjunction of two variables,
(⊗,homC,MapC, φ, ψ) : C × D // E, is called a Quillen adjunction of two variables, if,
given a cofibration f : U // V in C and a cofibration g : W //X in D, the induced map

f�g : (V ⊗W )
∐
U⊗W

(U ⊗X) // V ⊗X

is a cofibration in E that is trivial if either f or g is. We will refer to the left adjoint of
a Quillen adjunction of two variables as a Quillen bifunctor.

The following lemma provides three equivalent characterizations of the notion of a
Quillen bifunctor. These will be useful in this paper in establishing enriched model cate-
gory structures.
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A.3. Lemma. [Hov99, Lemma 4.2.2] Given model categories C, D and E, an adjunction
of two variables, (⊗,homC,MapC, φ, ψ) : C ×D // E. Then the following conditions are
equivalent:

(1) ⊗ : C × D // E is a Quillen bifunctor.

(2) Given a cofibration g : W //X in D and a fibration p : Y // Z in E, the induced
map

hom�
C (g, p) : homC(X, Y ) // homC(X,Z) ×

homC(W,Z)
homC(W,Y )

is a fibration in C that is trivial if either g or p is a weak equivalence in their
respective model categories.

(3) Given a cofibration f : U // V in C and a fibration p : Y // Z in E, the induced
map

Map�
C (f, p) :MapC(V, Y ) //MapC(V, Z) ×

MapC(W,Z)
MapC(W,Y )

is a fibration in C that is trivial if either f or p is a weak equivalence in their
respective model categories.

B. On local objects in a model category enriched over quasi-categories

A very detailed sketch of this appendix was provided to the author by André Joyal. This
appendix contains some key results which have made this research possible.

B.1. Introduction. A model category C is enriched over quasi-categories if the cate-
gory C is simplicial, tensored and cotensored, and the hom functor

MapC(−,−) : Cop × C // S.

is a Quillen functor of two variables, where S = (S,Q) is the model structure for quasi-
categories. The purpose of this appendix is to introduce the notion of local object with
respect to a map in a model category enriched over quasi-categories.

B.2. Preliminaries. Recall that a Quillen model structure on a category C is deter-
mined by its class of cofibrations together with its class of fibrant objects. For example,
the category of simplicial sets S = [∆op, Set] admits two model structures in which the
cofibrations are the monomorphisms: the fibrant objects are the Kan complexes in one,
and they are the quasi-categories in the other. We call the former the model structure for
Kan complexes and the latter the model structure for quasi-categories. We shall denote
them respectively by (S,Kan) and (S,Q).

Recall that a simplicial category is a category enriched over simplicial sets. There
is a notion of simplicial functor between simplicial categories, and a notion of strong
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natural transformation between simplicial functors. If C = (C,MapC(−,−)) is a sim-
plicial category, then so is the category SFunc(C;S) of simplicial functors C // S
[GJ99, Thm. 4.4]. A simplicial functor F : C // S isomorphic to a simplicial functor
MapC(A,−) : C //S is said to be representable. Recall the Yoneda lemma for simplicial
functors [GJ99, IX, Lem. 1.2]: if F : C // S is a simplicial functor and A ∈ C, then the
map y : Nat(MapC(A,−), F ) //F (A)0 defined by putting y(α) = α(A)(1A) for a natural
transformation of simplicial functors [GJ99, Pg. 432.] α :MapC(A,−) //F , is bijective.
The simplicial functor F is said to be represented by a pair (A, a), with a ∈ F (A)0 , if
the unique natural transformation of simplicial functors α :MapC(A,−) //F such that
α(A)(1A) = a is invertible. We say that a simplicial category C = (C,MapC(−,−)) is
tensored by ∆ if the simplicial functor

MapC(A,−)∆[n] : C // S

is representable (by an object denoted ∆[n]�
S
A) for every object A ∈ C and every n ≥ 0.

If C has finite colimits and is tensored by ∆, then it is tensored by finite simplicial sets:
the simplicial functor is representable (by an object K �

S
A) for every object A ∈ C and

every finite simplicial set K. Dually, we say that a simplicial category C is cotensored by
∆ if the simplicial functor

MapS(−, A)∆[n] : Cop // S

is representable (by an object denoted X∆[n]) for every object X ∈ C and every n ≥ 0. If
C has finite limits and is cotensored by ∆, then it is cotensored by finite simplicial sets:
the simplicial functor

MapS(−, A)K : Eop // S

is representable by an object XK for every object X ∈ C and every finite simplicial set
K. Recall that a model category C is said to be simplicial if the category C is simplicial,
tensored and cotensored by ∆ and the functor MapC(−,−) : Cop × C // S is a Quillen
functor of two variables, where S = (S,Kan). The last condition implies that if A ∈ C is
cofibrant and X ∈ C is fibrant, then the simplicial setMapC(A,X) is a Kan complex. For
this reason, we shall say that a simplicial model category is enriched over Kan complexes.

B.3. Definition. We shall say that a model category C is enriched over quasi-categories
if the category C is simplicial, tensored and cotensored over ∆ and the functor

MapC(−,−) : Cop × C // S

is a Quillen functor of two variables, where S = (S,Q).

The last condition of Definition B.3 implies that if A ∈ C is cofibrant and X ∈ C is
fibrant, then the simplicial set MapC(A,X) is a quasi-category. If C is a category with
finite limits than so is the category [∆op, C] of simplicial objects in C. The evaluation
functor ev0 : [∆op, C] // C defined by putting ev0(X) = X0 has a left adjoint sk0 and a
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right adjoint cosk0. If A ∈ C, then sk0(A)n = A and cosk0(A)n = A[n] = An+1 for every
n ≥ 0 (the simplicial object sk0(A) is the constant functor cA : ∆op //C with values A).
The category [∆op, C] is simplicial. If X, Y ∈ [∆op, C] then we have

(Map[∆op,C](X, Y ))n = Nat(X ◦ pn, Y ◦ pn)

for every n ≥ 0, where pn is the forgetful functor ∆/[n] //∆. If A ∈ C and cA := sk0(A),
then

(Map[∆op,C](cA,X))n = C(A,Xn)

for every n ≥ 0. The simplicial category [∆op, C] is tensored and cotensored by ∆. By
construction, if X ∈ [∆op, C] and K is a finite simplicial set, then

(K �
S
X)n = Kn �

S
Xn and (XK)n =

∫
[k] // [n]

XKk
k

The object Mn(X) := (X∂∆[n])n is called the nth matching object of X. If S(n) denotes
the poset of non-empty proper subsets of [n] then we have

Mn(X) = lim−→
S(n)

X ◦ s(n)

where s(n) : S(n) // ∆ is the canonical functor. From the inclusion ∂∆[n] ⊂ ∆[n] we
obtain a map X∆[n] //X∂∆[n] hence also a map Xn

//Mn(X). We observe that the nth
matching object of X is the value of the right adjoint of the restriction functor

in∗ : [∆op, C] // [∆op
≤n, C].

Thus another way to describe it is the following:

Mn(X) = lim−→
[k] // [n]

X([k]),

where the limit is taken over all monomorphisms in ∆ having codomain [n]. Now we
obtain the first description given above by identifying a monomorphism [k] // [n] with a
proper subset of [n].

If C is a model category, then a map f : X //Y in [∆op, C] is called a Reedy fibration
if the map Xn

// Yn ×
Mn(Y )

Mn(X) obtained from the square

Xn

fn
��

//Mn(X)

Mn(f)
��

Yn //Mn(Y )

is a fibration for every n ≥ 0. There is then a model structure on the category [∆op, C]
called the Reedy model structure whose fibrations are the Reedy fibrations and whose
weak equivalences are the level-wise weak equivalences. A simplicial object X : ∆op //C
is Reedy fibrant if and only if the canonical map Xn

//Mn(X) is a fibration for every
n ≥ 0. The Reedy model structure is simplicial. If X is Reedy fibrant and A ∈ C then
the simplicial set C(A,X) :=Map[∆op,C](cA,X) is a Kan complex.
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B.4. Definition. Let C be a model category. Then a simplicial object Z : ∆op // C is
called a frame (see [Hov99]) if the following two conditions are satisfied:

1. Z is Reedy fibrant;

2. Z(f) is a weak equivalence for every map f ∈ ∆.

The frame Z is cofibrant if the canonical map sk0Z0
//Z is a cofibration in the Reedy

model structure. A coresolution of an object X ∈ C is a frame Fr(X) : ∆op //C equipped
with a weak equivalence X // Fr(X)0. Every fibrant object X ∈ C has a (cofibrant)
coresolution Fr(X) : ∆op // C with Fr(X)0 = X. Let C be a model category. If
A,X ∈ C, then the homotopy mapping spaceMaph

C(A,X) is defined to be the simplicial
set

Maph
C(A,X) = C(Ac, F r(X)) (20)

where Ac // A is a cofibrant replacement of A and Fr(X) is a coresolution of X. The
simplicial set C(Ac, F r(X)) is a Kan complex and it is homotopy unique. If C is enriched
over Kan complexes, A is cofibrant and X is fibrant, then the simplicial setMaph

C(A,X)
is homotopy equivalent to the simplicial set MapC(A,X) (see [Hir02]).

B.5. Function spaces for quasi-categories. If C is a category, we shall denote by
J(C) the sub-category of invertible arrows in C. The sub-category J(C) is the largest
sub-groupoid of C. More generally, if X is a quasi-category, we shall denote by J(X) the
largest sub-Kan complex of X. By construction, we have a pullback square

J(X) //

��

X

h
��

J(τ1(X)) // τ1(X)

where τ1(X) is the fundamental category of X and h is the canonical map. The function
space XA is a quasi-category for any simplicial set X. We shall denote by X(A) the full
sub-simplicial set of XA whose vertices are the maps A // X that factor through the
inclusion J(X) ⊆ X. The simplicial set X(∆[1]) is a path-space for X.

B.6. Lemma. If X is a quasi-category, then the simplicial object P (X) ∈ [∆op, sSet]
defined by putting P (X)n = X(∆[n]) for every n ≥ 0 is a cofibrant coresolution of X.

B.7. Proposition. If X is a quasi-category and A is a simplicial set, then

Maph
S(A,X) ' J(XA).

Proof. By Lemma B.6 and the fact that each simplicial set is cofibrant, we have

Maph
S(A,X)n = S(A,P (X)n) = S(A,X(∆[n]))

But a map f : A // X∆[n] factors through the inclusion X(∆[n]) ⊆ X∆[n] if and only if
the transposed map f t : ∆[n] // XA factors through the inclusion J(XA) ⊆ XA, by
[Joy08, Prop. 5.2]. Thus, S(A,X(∆[n])) = S(∆[n], J(XA)) = J(XA)n and this shows that
Maph

S(A,X) ' J(XA).
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B.8. Proposition. Let C be a model category enriched over quasi-categories. If A ∈ C
is cofibrant and X ∈ C is fibrant, then the function space Maph

C(A,X) is equivalent to
the Kan complex J(MapC(A,X)).

Proof. The functor MapC(A,−) : C // S is a right Quillen functor with values in
the model category (S,Q), since A is cofibrant. It thus takes a coresolution Fr(X) of
X ∈ C to a coresolution MapC(A,Fr(X)) of the quasi-category MapC(A,X). We have
Maph

S(1,MapC(A,X)) ' S(1, P (MapC(A,X))), since the (terminal) simplicial set 1 is
cofibrant. By Lemma B.6, the quasi-category MapC(A,X) has a cofibrant coresolution
P (MapC(A,X)). We have Maph

S(1,MapC(A,X)) ' S(1,MapC(A,Fr(X))), since the
simplicial set 1 is cofibrant. There exists a level-wise weak categorical equivalence φ :
P (MapC(A,X)) //MapC(A,Fr(X)) such that the map φ(0) is the identity, since the
coresolution P (MapC(A,X)) is cofibrant. Moreover, the map

S(1, φ) : S(1, P (MapC(A,X))) // S(1,MapC(A,Fr(X)))

is a weak homotopy equivalence. But we have

S(1, P (MapC(A,X))) = J(MapC(A,X))

by Lemma B.6, Proposition B.7 and (20). Moreover,

S(1,MapC(A,Fr(X))) = C(A,Fr(X)),

since

S(1,MapC(A,Fr(X)))n = S(1,MapC(A,Fr(X))n) =

S(1,MapC(A,Fr(X)n)) = C(A,Fr(X)n)

for every n ≥ 0.

B.9. Local objects. Let Σ be a set of maps in a model category C. An object X ∈ C
is said to be Σ-local if the map

Maph
C(u,X) :Maph

C(A′, X) //Maph
C(A,X)

is a homotopy equivalence for every map u : A // A′ in Σ. Notice that if an ob-
ject X is weakly equivalent to a Σ-local object, then X is Σ-local. If the model cate-
gory C is simplicial (= enriched over Kan complexes) and Σ is a set of maps between
cofibrant objects, then a fibrant object X ∈ C is Σ-local iff the map MapC(u,X) :
MapC(A′, X) //MapC(A,X) is a homotopy equivalence for every map u : A // A′ in
Σ. We refer the interested reader to [Hir02, Ch. 17] for a proof of this fact and more
details on homotopy function complexes.
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B.10. Lemma. Let C be a model category enriched over quasi-categories. If u : A // B
is a map between cofibrant objects in C, then the following conditions on a fibrant object
X ∈ C are equivalent

1. the map MapC(u,X) :MapC(B,X) //MapC(A,X) is a categorical equivalence;

2. the object X is local with respect to the map ∆[n] �
S
u : ∆[n] �

S
A //∆[n] �

S
B for

every n ≥ 0.

Proof. (1 ⇒ 2) The map MapC(u,X)∆[n] : MapC(B,X)∆[n] //MapC(A,X)∆[n] is a
categorical equivalence for every n ≥ 0, since the mapMapC(u,X) is a categorical equiv-
alence by the hypothesis. Hence the mapMapC(∆[n]�

S
u,X) is a categorical equivalence,

since
MapC(∆[n] �

S
u,X) ∼=MapC(u,X)∆[n].

It follows that the map J(MapC(∆[n] �
S
u,X)) is a homotopy equivalence, since the

functor J : QCat //Kan takes a categorical equivalences to homotopy equivalences by
[Joy08, Prop. 6.27] and [Joy08, Prop. 6.26]. But we have

Maph
E(∆[n] �

S
u,X) = J(MapC(∆[n] �

S
u,X))

by Proposition B.8, since ∆[n] �
S
u is a map between cofibrant objects. Hence the map

Maph
E(∆[n] �

S
u,X) is a homotopy equivalence for every n ≥ 0. This shows that the

object X is local with respect to the map ∆[n] �
S
u for every n ≥ 0.

(1 ⇐ 2) By Proposition B.8, we have

Maph
C(∆[n] �

S
u,X) = J(MapC(∆[n] �

S
u,X))

for every n ≥ 0, since ∆[n] �
S
u is a map between cofibrant objects. Hence the map

J(MapC(∆[n] �
S
u,X)) is a homotopy equivalence for every n ≥ 0. But we have

MapC(∆[n] �
S
u,X) =MapC(u,X)∆[n].

Hence the map J(MapC(u,X)∆[n]) is a homotopy equivalence for every n ≥ 0. By
Theorem 4.11 and Proposition 4.10 of [JT08] a map between quasi-categories f : U //V
is a categorical equivalence if and only if the map J(f∆[n]) : J(U∆[n]) // J(V ∆[n]) is
a homotopy equivalence for every n ≥ 0. This shows that the map MapC(u,X) is a
categorical equivalence.
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Finally, we want to discuss left Bousfield localization of a monoidal model category
which is also enriched over quasi-categories.

B.11. Definition. A closed monoidal categoryM which is also enriched over simplicial-
sets is called compatible with simplicial enrichment if we have the following natural iso-
morphism for each pair of objects A,B ∈M and each simplicial-set K:

(A ⊗
M
B) �

S
K ∼= (A�

S
K) ⊗

M
B

B.12. Remark. In a closed monoidal category M which is compatible with simplicial
enrichment, the following natural isomorphism follows from [GJ99, Lem. 2.9]:

MapM(A ⊗
M
B,D) ∼=MapM(B,MapM(A,D)),

where MapM(−,−) is the internal hom for M.

B.13. Lemma. LetM be a monoidal model category enriched over quasi-categories whose
underlying closed monoidal category is compatible with the simplicial enrichment. Let S
be a set of maps in M such that each morphism in S is between cofibrant objects of M
and let LS(M) be a left Bousfield localization of M with respect to maps in S. Then the
following map is a weak equivalence in LS(M):

Ac ⊗
M
f : Ac ⊗

M
K // Ac ⊗

M
L

for each morphism f : K //L in S and A ∈ Ob(M), where Ac is a cofibrant replacement
of A.

Proof. In light of Proposition B.8 and the observation that Ac ⊗
M
f is a map between

cofibrant objects, it is sufficient to show that for each fibrant object X in LS(M), the
following simplicial map is a homotopy equivalence of Kan complexes:

J(MapM(Ac ⊗
M
f,X)) : J(MapM(Ac ⊗

M
L,X)) // J(MapM(Ac ⊗

M
K,X)).

By the remark above, this map is a homotopy equivalence if and only if the following
simplicial map is a homotopy equivalence of Kan complexes:

J(MapM(f,MapM(Ac, X))) : J(MapM(L,MapM(Ac, X))) //

J(MapM(K,MapM(Ac, X))).

Since f is an S-local equivalence and the internal function objectMapM(Ac, X) is fibrant
in LS(M), it follows from Proposition B.8 that J(MapM(f,MapM(Ac, X))) is a homo-
topy equivalence of Kan complexes.
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The above lemma simplifies the charaterization of monoidal left Bousfield localization,
presented in [Whi14], for a monoidal model category whose underlying closed monoidal
category is compatible with simplicial enrichment:

B.14. Corollary. Let M be a cofibrantly generated monoidal model category which is
enriched over quasi-categories, whose underlying closed monoidal category is compatible
with simplicial enrichment and cofibrant objects in M be flat. Let S be a set of maps in
M. Then the left Bousfield localization LS(M) is monoidal.

Proof. The set of generating maps S can be replaced by another set of generating maps
S ′ whose maps are between cofibrant objects. This can be done by using a cofibrant
replacement functor. Now the corollary follows from the above lemma and [Whi14, Thm.
4.6]

C. The model category of normalized coherently commutative monoidal
quasi-categories

A normalized Γ-space is a functor X : Γop // S• such that X(0+) = 1, where 1 is
the terminal simplicial set (which we also denote by ∗). The category of all normalized
Γ-spaces ΓS• is the category whose objects are normalized Γ-spaces. This category is
defined by the following equalizer diagram in Cat:

ΓS• // [Γop;S•]

##

[0;S•]
// [1;S•]

1
0

<<

where [0;S•] is the functor which precomposes a functor in [Γop;S•] with the unique
(pointed) functor 1 // Γop whose image is 0+ ∈ Γop and the upward diagonal functor 0
maps the terminal category 1 to the identity functor on the terminal simplicial sets. It
follows from [Hov99, Prop. 1.1.8] that the category of (pointed) simplicial sets S• inherits
a model category structure from the Joyal model category (S,Q). We denote this model
category by (S•,Q). In this appendix we reproduce the theory developed in sections 3
and 4 of this paper, in the setting of normalized Γ-spaces. As mentioned earler in this
paper, Γ-spaces have been tradionally studied as normalized objects and we want to carry
forward this tradition. Here we will construct two model category structures on ΓS•,
namely, the strict JQ model category structure of normalized Γ-spaces and the JQ model
category structure of normalized Γ-spaces. These two model categories are normalized
versions of the strict JQ and JQ model categories of (unnormalized) Γ-spaces constructed
earlier in this paper. We recall that the Kan model category of (pointed) simplicial sets
(S•,Kan) can be obtained as left Bousfield localization of (S•,Q). We conjecture that,
along the same lines, the strict Q model category structure and the stable Q model
category structure constructed in [Sch99] can be obtained as a left Bousfield localization
of the strict JQ and the JQ model category structures constructed in this appendix
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respectively. Thus, one prominent reason for developing the theory in this appendix is to
establish a strong connection with the traditional theory of Γ-spaces.

Moreover, we want to show that the theory of coherently commutative monoidal quasi-
categories is a generalization of that of simplicial abelian monoids. In a future paper, we
would like to show that a (model) category of simplicial abelian monoids can be embedded
as a full sub-category in the (JQ model category of) normalized Γ-spaces.

Our first goal in this section is to construct a combinatorial model category structure
on the category ΓS• which is a version of the strict JQ model category structure, defined
in Section 3, for normalized Γ-spaces.

C.1. Definition. A morphism F : X // Y of Γ-spaces is called

1. a strict JQ equivalence of normalized Γ-spaces if it is degreewise weak equivalence
in the Joyal model category structure on S• i.e. F (n+) : X(n+) // Y (n+) is a weak
categorical equivalence of (pointed) simplicial sets.

2. a strict JQ fibration of normalized Γ-spaces if it is degreewise a fibration in the Joyal
model category structure on S• i.e. F (n+) : X(n+) // Y (n+) is an pseudo-fibration
of (pointed) simplicial sets.

3. a JQ cofibration of normalized Γ-spaces if it has the left lifting property with respect
to all morphisms which are both strict JQ equivalence and strict JQ fibrations of
normalized Γ-spaces.

In order to describe the generating cofibrations and generating acyclic cofibrations
in the proposed combinatorial model category structure on ΓS•, we want to describe an
enrichment of ΓS• over S•:

We recall that the smash product of two (pointed) simplicial sets (X, x) and (Y, y),
where the simplicial maps x : 1 //X and y : 1 // Y specify the respective basepoints,
is defined by the following pushout square:

X ∨ Y

��

// X × Y

��

1 // X ∧ Y

(21)

where the top horizontal arrow is the canonical map between the coproduct and product
of the two (pointed) simplicial sets. To any pair of objects (X,K) ∈ Ob(ΓS•) × Ob(S•)
we can assign a Γ-space X ∧

S•
K which is defined in degree n as follows:

(X ∧
S•
K)(n+) := X(n+) ∧K, (22)

where the pointed category on the right is the smash product of (pointed) simplicial sets,
see (21). This assignment is functorial in both variables and therefore we have a bifunctor

− ∧
S•
− : ΓS• × S• // ΓS•.
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Next,we define a couple of function objects for the category Γ-space. The first function
object enriches the category ΓS• over S• i.e. there is a bifunctor

MapΓS•(−,−) : ΓSop• × ΓS• // S•
which assigns to any pair of objects (X, Y ) ∈ Ob(ΓS•) × Ob(ΓS•), a pointed simplicial
set MapΓS•(X, Y ) which is defined in degree zero as follows:

MapΓS•(X, Y )0 := ΓS•(X, Y ).

The mapping simplicial set is defined in degree n as follows:

MapΓS•(X, Y )n := ΓS•(X ∧∆[n]+, Y )

For any Γ-space X, the functor X ∧
S•
− : S• // ΓS• is left adjoint to the functor

MapΓS•(X,−) : ΓS• // S•.

The counit of this adjunction is the evaluation map

ev : X ∧
S•
MapΓS•(X, Y ) // Y

and the unit is the obvious functor

K //MapΓS•(X,X ∧S•
K),

where Y is a normalized Γ-space and K is a (pointed) simplicial set.
The mapping objectMapΓS•(X, Y ) is a (pointed) simplicial set whose basepoint is the

composite map X //Γ0 //Y , where Γ0 is the zero object in ΓS•. Let U(MapΓS•(X, Y ))
denote the simplicial set obtained by forgetting the basepoint ofMapΓS•(X, Y ). We also
recall the forgetful functor U which forgets the normalization of a Γ-space, see (11).

C.2. Lemma. Let X and Y be two normalized Γ-spaces. The mapping simplicial set
U(MapΓS•(X, Y )) is an equalizer of the following diagram:

MapΓS(U(X), U(Y )) //

((

MapΓS(Γ0, U(Y ))

1
0

77

Proof. Each normalized Γ-space X uniquely determines a morphism 0X : Γ0 // U(X).
It is sufficient to observe that a morphism f : U(X) // U(Y ) lies in the image of the
forgetful functor U if and only if the following diagram commutes:

Γ0

0X

||

0Y

""

U(X)
f

// U(Y )
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C.3. Corollary. For each pair of normalized Γ-spaces X and Y we have the following
canonical isomorphism of mapping simplicial sets

U(MapΓS•(X, Y )) ∼=MapΓS(U(X), U(Y )).

Proof. It is sufficient to observe that for any normalized Γ-space Y , Yoneda lemma tells
us that the mapping simplicial set MapΓS(Γ0, U(Y )) ∼= 1.

To each pair of objects (K,X) ∈ Ob(S•)×Ob(ΓS•) we can assign a Γ-space XK which
is defined in degree n as follows:

(XK
• )(n+) := X(n+)K•

where the (pointed) simplicial set on the right is is defined by the following equalizer
diagram:

X(n+)K• //MapS(K,X(n+))

''

MapS(c,X(n+))
//MapS(1, X(n+))

1
0

77

where c : 1 //K is the basepoint map. This assignment is functorial in both variables
and therefore we have a bifunctor

−− : Sop• × ΓS• // ΓS•.

For any Γ-spaceX, the functorX•
− : S• //ΓSop• is left adjoint to the functorMapΓS•(−, X) :

ΓSop• // S•.
The following proposition summarizes the above discussion.

C.4. Proposition. There is an adjunction of two variables

(− ∧
S•
−,−•−,MapΓS•(−,−)) : ΓS• × S• // ΓS•. (23)

Now we are ready to describe the generating cofibrations and generating acyclic cofi-
brations of the desired model category: A map of Γ-spaces F : X // Y is a strict acyclic
fibration of normalized Γ-spaces if and only if it has the right lifting property with respect
to all maps in the set

I• = {Γn ∧
S•
∂+
i : Γn ∧

S•
∂∆[i]+ // Γn ∧

S•
∆[i]+ : n, i ∈ N}, (24)

where the product with pointed simplicial sets is defined in (22). From the results of
[Joy08, Appendix D], one can deduce that a set of generating acyclic cofibrations in the
Joyal model category JS consists of representatives of isomorphism classes of monomor-
phisms between finite simplicial sets which are also weak equivalences in (S,Q). A mor-
phism of normalized Γ-spaces F is a strict JQ fibration of normalized Γ-spaces if and only
it has the right lifting property with respect to all maps in the set

J = {Γn ∧
S•
j+ | ∀n ∈ Ob(N ), j ∈ JS}. (25)
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C.5. Remark. The category ΓS• is a locally presentable category. The small object
argument (for presentable categories), [Lur09, Proposition A.1.2.5], implies that the sets
I and J provide two functorial factorization systems on the category Γ-space. The first
one factors each morphism in Γ-space into a composite of a strict cofibration of Γ-spaces
followed by a strict acyclic fibration of Γ-spaces and the second functorial factorization
system factors each morphism in Γ-space into a composite of a strict acyclic cofibration
of Γ-spaces followed by a strict fibration of Γ-spaces.

The main aim of this subsection is to construct a model category structure on the
category of all Γ-spaces whose three classes of morphisms are the ones defined above.

C.6. Theorem. Strict JQ equivalences, strict JQ fibrations and strict JQ cofibrations
of normalized Γ-spaces provide the category ΓS• with a combinatorial model category
structure.

Proof. The category of all functors from Γop to S•, namely [Γop,S•] has a model category
structure, called the projective model category structure, in which a map is a weak equiv-
alence (resp. fibration) if and only if it is a weak equivalence (resp. fibration) degreewise,
see [Lur09, Prop. A.3.3.2] for a proof. The category ΓS• is a subcategory of [Γop,S•].
This implies that the axioms CM(2), CM(3) and CM(4), see [Qui67], [GJ99, Chap. 2] are
satisfied by Γ-space because they are satisfied by the projective model category [Γop,S•].
Finally, CM(5) follows from Remark C.5 above. The category Γ-space is locally pre-
sentable. The sets I and J defined above form the sets of generating cofibrations and
generating acyclic cofibrations respectively of the strict model category structure.

C.7. Notation. We will refer to the above model category as the strict JQ model cate-
gory of normalized Γ-spaces and we denote it by ΓSstr

• .

C.8. Theorem. The strict model category of normalized Γ-spaces, ΓS•, is a S•-enriched
model category.

Proof. We will show that the adjunction of two variables (6) is a Quillen adjunction for
the strict JQ model category structure on ΓS• and the Joyal model category structure
on S•. In order to do so, we will verify condition (2) of Lemma A.3. Let g : C //D be
a cofibration in S• and let p : Y // Z be a strict fibration of Γ-spaces. We have to show
that the induced map

hom�
ΓS•(g, p) : Y•

X // Z•
D ×
Z•C

Y•
C

is a fibration in S• which is acyclic if either of g or p is acyclic. It would be sufficient to
check that the above morphism is degreewise a fibration in S•, i.e. for all n+ ∈ Γop, the
morphism

hom�
ΓS•(g, p)(n

+) :MapS•(D, Y (n+)) //

MapS•(D,Z(n+)) ×
MapS• (C,Z(n+))

MapS•(C, Y (n+)),
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is a fibration in S•. This follows from the observations that the functor

p(n+) : Y (n+) // Z(n+)

is a fibration in S• and the natural model category S• is a S•-enriched model category
whose enrichment is provided by the bifunctor MapS•(−,−).

The adjunction −+ : S 
 S• : U provides us with an enrichment of the strict JQ
model category of normalized Γ-space, over the Joyal model category of simplicial sets
(S,Q).

C.9. Corollary. The strict model category of normalized Γ-spaces, ΓS•, is a (S,Q)-
enriched model category.

A proof of this corollary follows from the above theorem and [Bar10, Lem. 1.31].

C.10. The JQ model category of normalized Γ-spaces. The objective of this
subsection is to construct a new model category structure on the category ΓS• which
is an analog of the JQ model category structure on ΓS. This new model category is
constructed along the same lines as the JQ model category structre, namely, it is obtained
by localizing the strict JQ model category of normalized Γ-spaces (see Section C) and we
refer to it as the JQ model category of normalized Γ-spaces. We go on further to show
that this new model category is symmetric monoidal closed with respect to the smash
product which is a categorical version of the smash product constructed in [Lyd99].

C.11. Notation. We denote by 1/ΓS the overcategory whose objects are maps in ΓS
having domain the terminal Γ-space 1. We denote by (1/ΓS)• the subcategory of 1/ΓS
whose objects are those maps 1 //X in ΓS whose codomain Γ-space satisfies the following
normalization condition:

X(0+) = ∗.

C.12. Remark. We observe that the category of normalized pointed objects (1/ΓS)• is
isomorphic to the category of normalized Γ-spaces ΓS•.

We want to construct a left Bousfield localization of the strict model category of
Γ-spaces. For each pair k+, l+ ∈ Γop, we have the obvious projection maps in Γop

δk+l
k : (k + l)+ // k+ and δk+l

l : (k + l)+ // l+.

The following two inclusion maps between representable Γ-spaces

Γop(δk+l
k ,−) : Γk // Γk+l and Γop(δk+l

l ,−) : Γl // Γk+l

together induce a map of Γ-spaces on the coproduct which we denote as follows:

hlk : Γl ∨ Γk // Γl+k.

We now define a set of maps E∞S• in ΓS•:

E∞S• := {hlk : Γl ∨ Γk // Γl+k : l, k ∈ Z+}
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Next we define the set of arrows in ΓS• with respect to which we will localize the strict
JQ model category of normalized Γ-spaces:

∆× E∞S• := {∆[n]+ ∧
S•
hlk : hlk ∈ ∆× E∞S•}

C.13. Definition. We call a Γ-space X a (∆×E∞S•)-local object if it is a fibrant object
in the strict JQ model category of normalized Γ-spaces and for each map ∆[n]+ ∧

S•
hlk ∈

∆× E∞S•, the induced simplicial map

Maph
ΓS•(∆[n]+ ∧

S•
hlk, X) :Maph

ΓS•(∆[n]+ ∧
S•

Γk+l, X) //

Maph
ΓS•(∆[n]+ ∧

S•
(Γk ∨ Γl), X),

is a homotopy equivalence of simplicial sets for all n ≥ 0 where Maph
ΓS•(−,−) is the

simplicial function complexe associated with the strict model category ΓS•, see [DK80a],
[DK80b] and [DK80c].

Corollary C.9 above and Appendix B tell us that a model for Maph
ΓS•(X, Y ) is the

Kan complex J(MapΓS•(X, Y )) which is the maximal Kan complex contained in the
quasicategory MapΓS•(X, Y ).

The following proposition gives a characterization of ∆× E∞S•-local objects

C.14. Proposition. A normalized Γ-space X is a (∆ × E∞S•)-local object if and only
if it satisfies the Segal condition, namely the functor

(X(δk+l
k ), X(δk+l

l )) : X((k + l)+) //X(k+)×X(l+)

is an equivalence of (pointed) quasi-categories for all k+, l+ ∈ Ob(Γop).

Proof. Throughout this proof we slightly abuse notation by denoting the S valued func-
tor U(MapΓS•(−,−)) by MapΓS•(−,−). We begin the proof by observing that each
element of the set ∆ × E∞S• is a map of Γ-spaces between cofibrant Γ-spaces. Theorem
B.10 implies that X is a (∆ × E∞S•)-local object if and only if the following map of
simplicial sets

MapΓS•(h
k
l , X) :MapΓS•(Γ

k+l, X) //MapΓS•(Γ
k ∨ Γl, X)

is an equivalence of quasi-categories.
We observe that we have the following commutative square in (S,Q)

MapΓS•(Γ
k+l, X)

∼=
��

MapΓS• (hkl ,X)
//MapΓS•(Γ

k ∨ Γl, X)

∼=
��

X((k + l)+)
(X(δk+l

k ),X(δk+l
l ))

// X(k+)×X(l+)

By the two out of three property of weak equivalences in a model category the simpli-
cial map (X(δk+l

k ), X(δk+l
l )) is an equivalence of quasi-categories if and only if the map

MapΓS•(h
k
l , X) is an equivalence of quasi-categories.
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C.15. Definition. We will refer to a (∆×E∞S•)-local object as a normalized coherently
commutative monoidal quasi-category.

C.16. Definition. A morphism of normalized Γ-spaces F : X // Y is a (∆ × E∞S•)-
local equivalence if for each normalized coherently commutative monoidal quasi-category
Z the following simplicial map

Maph
ΓS•(F,Z) :Maph

ΓS•(Y, Z) //Maph
ΓS•(X,Z)

is a homotopy equivalence of simplicial sets. We may sometimes refer to a (∆× E∞S•)-
local equivalence as an equivalence of normalized coherently commutative monoidal quasi-
categories.

An argument similar to the proof of Proposition 4.7 proves the following proposition:

C.17. Proposition. A morphism between two JQ cofibrant normalized Γ-spaces F :
X // Y is an (∆× E∞S•)-local equivalence if and only if the simplicial map

MapΓS•(F,Z) :MapΓS•(Y, Z) //MapΓS•(X,Z)

is an equivalence of quasi-categories for each normalized coherently commutative monoidal
quasi-category Z.

The main objective of the current subsection is to construct a new model category
structure on the category of normalized Γ-spaces ΓS• by localizing the strict JQ model
category of normalized Γ-spaces with respect to morphisms in the set ∆ × E∞S•. The
desired model structure follows from Theorem 4.9

C.18. Theorem. There is a closed, left proper, combinatorial model category structure
on the category of normalized Γ-spaces, ΓS•, in which

1. The class of cofibrations is the same as the class of JQ cofibrations of normalized
Γ-spaces.

2. The weak equivalences are equivalences of normalized coherently commutative mon-
oidal quasi-categories.

An object is fibrant in this model category if and only if it is a normalized coherently
commutative monoidal quasi-category. Further, this model category structure makes ΓS•
a closed symmetric monoidal model category under the smash product.

Proof. The strict JQ model category of normalized Γ-spaces is a combinatorial model
category therefore the existence of the model structure follows from Theorem 4.9. The
statement characterizing fibrant objects also follows from Theorem 4.9. An argument
similar to the proof of Theorem 4.18 using the enrichment of the strict JQ model category
of normalized Γ-spaces over the (S•,Q) established in Proposition 3.12 shows that the
localized model category has a symmetric monoidal closed model category structure under
the smash product.
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C.19. Notation. The model category constructed in Theorem C.18 will be referred to
either as the JQ model category of normalized Γ-spaces or as the model category of
normalized coherently commutative monoidal quasi-categories.

References

[Bar10] C. Barwick, On left and right model categories and left and right Bousfield localizations,
Homology, Homotopy Appl. 12 (2010), no. 2, 245–320.

[BF78] A. K. Bousfield and E. M. Friedlander, Homotopy theory of Γ-spaces, spectra and
bisimplicial sets., Geometric applications of homotopy theory II, Lecture Notes in
Math. (1978), no. 658.

[BM03] C. Berger and I. Moerdijk, Axiomatic homotopy theory for operads, Comment. Math.
Helv. 78 (2003), 805–831.

[Day70] B. Day, On closed categories of functors, reports of the midwest category seminar IV,
Lecture notes in Mathematics, vol. 137, Springer-Verlag, 1970.

[dBM17] Pedro Boavida de Brito and Ieke Moerdijk, Dendroidal spaces, Γ-spaces and the special
Barratt-Priddy-Quillen theorem, arXiv:1701.06459, 2017.

[DK80a] W. G. Dwyer and D. M. Kan, Calculating simplicial localizations, Journal of Pure
and Appl. Algebra 18 (1980), 17–35.

[DK80b] W. G. Dwyer and D. M. Kan, Function complexes in homotopical algebra, Topology
19 (1980), 427–440.

[DK80c] W. G. Dwyer and D. M. Kan, Simplicial localizations of categories, Journal of Pure
and Appl. Algebra 17 (1980), 267–284.

[GJ99] P. G. Goerss and J. F. Jardine, Simplicial Homotopy Theory, Birkhauser Verlag, 1999.

[GS16] R. Garner and D. Schappi, When coproducts are biproducts, Mathematical Proceedings
of the Cambridge Philosophical Society 161 (2016), no. 1, 47–51.

[Hir02] Phillip S. Hirchhorn, Model Categories and their Localizations, Mathematical Surveys
and Monographs, vol. 99, Amer. Math. Soc., Providence, RI, 2002.

[Hov99] M. Hovey, Model Categories, Mathematical Surveys and Monographs, vol. 63, Amer.
Math. Soc., Providence, RI, 1999.

[Joy08] A. Joyal, Theory of quasi-categories and applications, http://mat.uab.cat/~kock/

crm/hocat/advanced-course/Quadern45-2.pdf, 2008.

[JT06] A. Joyal and M. Tierney, Quasi-categories vs segal spaces, arXiv:math/0607820, 2006.

[JT08] Notes on simplicial homotopy theory, http://mat.uab.cat/~kock/crm/hocat/

advanced-course/Quadern47.pdf, 2008.

http://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern45-2.pdf
http://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern45-2.pdf
arXiv:math/0607820
http://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern47.pdf
http://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern47.pdf


COHERENTLY COMMUTATIVE MONOIDAL QUASI-CATEGORIES 481

[KS15] D. Kodjabachev and S. Sagave, Strictly commutative models for E∞ quasi-categories,
Homology Homotopy Appl. 17 (2015).

[Lur] Jacob Lurie, Higher Algebra, http://www.math.harvard.edu/~lurie, Preprint.

[Lur09] Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University
Press, Princeton, NJ, 2009.

[Lyd99] M. Lydakis, Smash products and Γ- spaces, Math. Proc. Camb. Soc. 126 (1999).

[NS17] T. Nikolaus and S. Sagave, Presentably symmetric monoidal infinity-categories are rep-
resented by symmetric monoidal model categories, Algebr. Geom. Topol. 17 (2017),
3189–3212.

[Qui67] D. G. Quillen, Homotopical Algebra, Lecture notes in Mathematics, Springer-Verlag,
1967.

[Sch99] S. Schwede, Stable homotopical algebra and Γ- spaces, Math. Proc. Camb. Soc. 126
(1999), 329.

[Seg74] G. Segal, Categories and cohomology theories, Topology 13 (1974), 293–312.

[Sha] A. Sharma, A higher Grothendieck construction, https://arxiv.org/abs/1512.03698,
Preprint.

[Smi] J. Smith, Combinatorial model categories, unpublished.

[Whi14] David White, Monoidal Bousfield localizations and algebras over operads,
arXiv:1404.5197., 2014.

Department of Mathematical Sciences
Kent State university
Kent, OH
Email: asharm24@kent.edu

This article may be accessed at http://www.tac.mta.ca/tac/

http://www.math.harvard.edu/~lurie
https://arxiv.org/abs/1512.03698


THEORY AND APPLICATIONS OF CATEGORIES will disseminate articles that significantly advance
the study of categorical algebra or methods, or that make significant new contributions to mathematical
science using categorical methods. The scope of the journal includes: all areas of pure category theory,
including higher dimensional categories; applications of category theory to algebra, geometry and topology
and other areas of mathematics; applications of category theory to computer science, physics and other
mathematical sciences; contributions to scientific knowledge that make use of categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.

Subscription information Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. Full
text of the journal is freely available at http://www.tac.mta.ca/tac/.

Information for authors LATEX2e is required. Articles may be submitted in PDF by email
directly to a Transmitting Editor following the author instructions at
http://www.tac.mta.ca/tac/authinfo.html.

Managing editor. Geoff Cruttwell, Mount Allison University: gcruttwell@mta.ca

TEXnical editor. Michael Barr, McGill University: michael.barr@mcgill.ca

Assistant TEX editor. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin seal@fastmail.fm

Transmitting editors.
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