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DESCENT DATA AND ABSOLUTE KAN EXTENSIONS

FERNANDO LUCATELLI NUNES

Abstract. The fundamental construction underlying descent theory, the lax descent
category, comes with a functor that forgets the descent data. We prove that, in any 2-
category A with lax descent objects, the forgetful morphisms create all Kan extensions
that are preserved by certain morphisms. As a consequence, in the case A = Cat, we
get a monadicity theorem which says that a right adjoint functor is monadic if it is, up
to the composition with an equivalence, (naturally isomorphic to) a functor that forgets
descent data. In particular, within the classical context of descent theory, we show that,
in a fibred category, the forgetful functor between the category of internal actions of a
precategory a and the category of internal actions of the underlying discrete precategory
is monadic if and only if it has a left adjoint. More particularly, this shows that one
of the implications of the celebrated Bénabou-Roubaud theorem does not depend on
the so called Beck-Chevalley condition. Namely, we prove that, in indexed categories,
whenever an effective descent morphism induces a right adjoint functor, the induced
functor is monadic.
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Introduction

The various notions of descent objects, the 2-dimensional limits underlying descent the-
ory, can be seen as 2-dimensional analogues of the equalizer. While equalizers encompass
equality and commutativity of diagrams in 1-dimensional category theory, the (lax) de-
scent objects encompass 2-dimensional coherence: morphism (or 2-cell) plus coherence
equations.
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For this reason, results on the (lax) descent objects usually shed light on a wide range of
situations, including, of course, Grothendieck descent theory (e.g. [11, 27, 17]), Janelidze-
Galois theory [8], algebraic topology [5], two-dimensional monad theory (e.g. [14, 15]),
and two-dimensional category theory (e.g. [19]).

As shown in [11], in the classical case of the 2-category Cat of categories, internal
category theory provides a useful perspective to introduce descent theory or, more partic-
ularly, the lax descent category. The lax descent category can be seen as a generalization
of the 2-functor

Mon(Set)op → Cat, m 7→ m-Set

in which Mon(Set) denotes the usual category of monoids (of the cartesian monoidal
category Set), and m-Set is the category of sets endowed with actions of the monoid m,
usually called m-sets.

Recall that every small category a (internal category in Set) has an underlying trun-
cated simplicial set, called the underlying precategory

Cat(j−, a) : ∆op
3 → Set

Cat (1, a) Cat (2, a)Cat(s0,a) // Cat (2, a)Cat (1, a)

Cat(d0,a)

zz
Cat (2, a)Cat (1, a)

Cat(d1,a)

dd
Cat (3, a)Cat (2, a) Cat(D1,a)oo Cat (3, a)Cat (2, a)

Cat(D0,a)

zz
Cat (3, a)Cat (2, a)

Cat(D2,a)

dd

in which, denoting by ∆ the category of the finite non-empty ordinals and order preserving
functions, j : ∆3 → Cat is the usual inclusion given by the composition of the inclusions
∆3 → ∆→ Cat.

It is well known that there is a fully faithful functor Σ : Mon(Set)→ Cat(Set) between
the category of monoids (internal monoids in Set) and the category of small categories
(internal categories in Set) that associates each monoid with the corresponding single
object category. The underlying precategory of Σm is given by

Σm : ∆op
3 → Set

{m} mΣm(s0) //m{m}
vv

m{m} hh m×mm Σm(D1)oo m×mm

Σm(D0)

ww
m×mm

Σm(D2)

gg

in which m is the underlying set of the monoid, {m} is the singleton with m as element,
Σm(D2),Σm(D0) : m×m→ m are the two product projections, Σm(D1) is the operation
of the monoid, and Σm(s0) gives the unit. In this context, the objects and morphisms of
the category m-Set can be described internally in Set as follows.
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Since Set has pullbacks, we can consider the (basic) indexed category, that is to say,
the pseudofunctor

Set/− : Setop → Cat

w 7→ Set/w

f 7→ f ∗

in which Set/w denotes the comma category, and f ∗ denotes the change of base functor
(given by the pullback along f).

An m-set is a set w endowed with an endomorphism ξ of the projection projm :
m× w → m in the comma category Set/m, subject to the equations

p ·m(s0)∗(ξ) · p = idSet, m(D0)∗(ξ) · p ·m(D2)∗(ξ) = p ·m(D1)∗(ξ) · p
in which, by abuse of language, we denote by p the appropriate canonical isomorphisms
given by the pseudofunctor Set/− (induced by the universal properties of the pullbacks
in each case). These equations correspond to the identity and associativity equations for
the action. The morphisms (w, ξ)→ (w′, ξ′) of m-sets are morphisms (functions) w → w′

between the underlying sets respecting the structures ξ and ξ′.
This viewpoint gives m-Set precisely as the lax descent category of the composition of

op (Σm) : ∆3 → Setop with the pseudofunctor Set/− : Setop → Cat. More generally, given
a small category a, the lax descent category (see Definition 1.2) of

Cat (2, a)Cat (1, a) Cat(s0,a)
∗ooCat (1, a) Cat (2, a)

Cat(d1,a)
∗

::
Cat (1, a) Cat (2, a)

Cat(d0,a)
∗

$$
Cat (2, a) Cat (3, a)Cat(D1,a)

∗ //Cat (2, a) Cat (3, a)

Cat(D2,a)
∗

::
Cat (2, a) Cat (3, a)

Cat(D0,a)
∗

$$

is equivalent to the category Cat [a, Set] of functors a→ Set and natural transformations,
that is to say, the category of actions of the small category a in Set.

In order to reach the level of abstraction of [11], firstly it should be noted that the
definitions above can be considered in any category C with pullbacks, using the basic
indexed category C/− : Cop → Cat. That is to say, we get the (basic) internal notion
of the category of actions a → C for each internal category a. Secondly, we can replace
the pseudofunctor C/− by any other pseudofunctor (indexed category) F : Cop → Cat of
interest. By definition, given an internal (pre)category a : ∆op

3 → C of C, the lax descent
category of

F a(2)F a(1) F a(s0)ooF a(1) F a(2)

F a(d1)

::
F a(1) F a(2)

F a(d0)

$$
F a(2) F a(3)F a(D1) //F a(2) F a(3)

F a(D2)

::
F a(2) F a(3)

F a(D0)

$$
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is the category of F-internal actions of a in C.
Recall that, if C has pullbacks, given a morphism p : e → b, the kernel pair induces

a precategory which is actually the underlying precategory of an internal groupoid of C,
denoted herein by Eq(p). Following the definition, given any pseudofunctor F : Cop → Cat,
we have that the category of F -internal actions of Eq(p) is given by the lax descent
category lax-Desc (F · op (Eq(p))). In this case, the universal property of the lax descent
category induces a factorization

F(b) F(p) //

))RRRRRRRRRRRRRRR F(e)

lax-Desc (F · op (Eq(p)))

55lllllllllllllll

(F -descent factorization of F(p))

in which lax-Desc (F Eq(p))→ F(e) is the forgetful functor that forgets descent data (see,
for instance, [11, Section 3] or, more appropriately to our context, Lemma 3.6 below).

In this setting, Bénabou and Roubaud [3] showed that, if F : Cop → Cat comes
from a bifibration satisfying the so called Beck-Chevalley condition (see, for instance, [17,
Section 7] or Section 4 below), then the F -descent factorization of F(p) is equivalent
to the Eilenberg-Moore factorization of the adjunction F(p)! a F(p). In particular, in
this case, F(p) is monadic if and only if p is of effective F-descent (which means that
F(b)→ lax-Desc (F · op (Eq(p))) is an equivalence).

The main result of the present paper is within the general context of the lax descent
object of a truncated pseudocosimplicial object inside a 2-category A. More precisely, our
main theorem says that, for any given truncated pseudocosimplicial object

A : ∆3 → A

A(2)A(1) A(s0)ooA(1) A(2)

A(d1)

::
A(1) A(2)

A(d0)

$$
A(2) A(3)A(D1) //A(2) A(3)

A(D2)

::
A(2) A(3)

A(D0)

$$

the forgetful morphism d
A : lax-Desc (A) → A creates the right Kan extensions that

are preserved by A(d0) and A(D0) · A(d0). In particular, such forgetful morphisms
create absolute Kan extensions. If A = Cat, we get in particular that the functor
d
A : lax-Desc (A)→ A that forgets descent data creates absolute limits and colimits.

The main theorem implies that, given any pseudofunctor F : Cop → Cat, the forgetful
functor

lax-Desc (F ◦ op(a))→ F a(1)

between the F -internal actions of a precategory a : ∆op
3 → C and the category of internal

actions of the underlying discrete precategory of a creates absolute limits and colimits.
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This generalizes the fact that, if a is actually a small category, the forgetful functor
(restriction functor)

Cat [a, Set]→ Cat
[
a(1), Set

]
creates absolute limits and colimits, in which, by abuse of language, a(1) denotes the
underlying discrete category of a (see, for instance, [12, Proposition 2.21]).

As a particular case of this conclusion, given any indexed category F : Cop → Cat,
whenever p is of effective F -descent, F(p) creates absolute limits and colimits. Therefore,
by Beck’s monadicity theorem, assuming that F(p) has a left adjoint, if p is of effective
F -descent then F(p) is monadic (Theorem 2.8 and Theorem 4.7).

This shows that, if F comes from a bifibration, one of the implications of the Bénabou-
Roubaud theorem does not depend on the Beck-Chevalley condition. Namely, in a bifibred
category with pullbacks, effective descent morphisms always induce monadic functors.

It should be observed that it is known that, without assuming the Beck-Chevalley
condition, monadicity of F(p) does not imply that p is of effective F -descent. This is
shown for instance in [24, Remark 7], where Sobral, considering the indexed category
catop → Cat of op-fibrations in the category of small categories, provides an example of a
morphism that is not of effective descent but does induce a monadic functor.

In Section 1, we briefly give the basic definition of the lax descent category, and present
the corresponding definition for a general 2-category. Namely, a 2-dimensional limit called
the lax descent object (see [26, Section 5] or, for pseudofunctors, [16, Section 3]). We
mostly follow the approach of [19, Section 2] except for starting with pseudofunctors
(A, a) : ∆3 → A instead of using a strict replacement of the domain.

In Section 2, we establish our main theorems on the morphisms that forget descent data.
In order to do so, we start by recalling the definitions on Kan extensions inside a 2-category
(e.g. [28, Section 2]). Then, we prove Theorem 2.4 and show the main consequences,
including a monadicity theorem (Theorem 2.8). We also show how Theorem 2.8 and the
monadicity theorem of [19, Section 5] implies in a new monadicity characterization in
Remark 2.10 (Theorem 2.11). It says that a right adjoint functor is monadic if, and only
if, it is a functor that forgets descent data composed with an equivalence.

Section 3 establishes the setting of Grothendieck descent theory [10, 17]. The main aim
of the section is to establish Lemma 3.6 in order to recover the usual descent factorization
(see, for instance, [11, Section 3]) directly via the universal property of lax descent category.

In Section 4, we give aspects of the relation between monadicity and effective descent
morphisms in the context of [3, 10, 17]. We recall the Beck-Chevalley condition and
the Bénabou-Roubaud theorem. We discuss examples of non-effective descent morphisms
inducing monadic functors. Finally, we also establish and discuss the main consequences of
our Theorem 2.4 in this context, including the result that, in bifibred categories, effective
descent morphisms always induce monadic functors, even without satisfying the Beck-
Chevalley condition.
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1. The lax descent category

Let Cat be the cartesian closed category of categories in some universe. We denote the
internal hom by

Cat[−,−] : Catop × Cat→ Cat,

which of course is a 2-functor (Cat-enriched functor). Moreover, we denote by

Cat(−,−) : Catop × Cat→ Cat

the composition of Cat[−,−] with the functor that gives the underlying discrete category.
Finally, a small category is a category S such that the underlying discrete category, i.e.
Cat(1,S), and the collection of morphisms, i.e. Cat(2,S), consist of sets. Equivalently, a
small category is an internal category of Set.

A 2-category herein is the same as a Cat-enriched category. We denote the enriched
hom of a 2-category A by

A(−,−) : Aop × A→ Cat

which, again, is of course a 2-functor. As usual, the composition of 1-cells (morphisms) are
denoted by ◦, · or omitted whenever it is clear from the context. The vertical composition
of 2-cells is denoted by · or omitted when it is clear, while the horizontal composition is de-
noted by ∗. From the vertical and horizontal compositions, we construct the fundamental
operation of pasting [22], introduced in [2, Section 1] and [13, pag. 79].

We denote by ∆ the full subcategory of the underlying category of Cat whose objects
are finite nonempty ordinals seen as posets (or thin categories). We are particularly inter-
ested in the subcategory ∆3 of ∆ with the objects 1, 2 and 3 generated by the morphisms

21 s0oo1 2

d1

>>1 2

d0

  
2 3D1 //2 3

D2

>>2 3

D0

  

with the following relations:

s0d1 = id1 = s0d0; Dtdk = Dkdt−1, if t > k.

In order to fix notation, we briefly recall the definition of pseudofunctor between a cat-
egory C and a 2-category A below. For the case of A = Cat, this definition was originally
introduced by Grothendieck [7] in its contravariant form, while its further generalization
for arbitrary bicategories was originally introduced by Bénabou [2, Section 4] under the
name homomorphism of bicategories.

1.1. Definition. Let C be a category (which can be seen as a locally discrete 2-category)
and A a 2-category. A pseudofunctor F : C→ A is a pair (F , f) with the following data:

– A function F : obj(C)→ obj(A);
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– For each pair (x, y) of objects in C, functors Fx,y : C(x, y) → A(F(x),F(y)), in
which C(x, y) is seen as a discrete category;

– For each pair g : x→ y, h : y → z of morphisms in C, an invertible 2-cell in A:

fhg : F(h)F(g)⇒ F(hg);

– For each object x of C, an invertible 2-cell in A:

fx : idF(x) ⇒ F(idx);

such that, if g : x → y, h : y → z and e : w → x are morphisms of C, the following
equations hold in A:

1. Associativity:

Fw F(e) //

F(hge)

��

F(ge)
AAAAAAAA

  AAAAAAAA

Fx

F(g)

��

fge⇐==
Fw F(e) //

F(hge)

��

f(hg)e⇐===

Fx

F(g)

��

F(hg)
}}}}}}}}

~~}}}}}}}}=

Fz

fh(ge)⇐===

Fy
F(h)

oo Fz Fy
F(h)

oo

fhg⇐==

2. Identity:

Fw F(e) //

F(idxe)

��

Fx

F(idx)

  

fx⇐= idFx

~~

Fw

F(eidw)

��

Fw

F(idw )

  

fw⇐= idFw

~~

Fw

F(e)

��

= F(e)

��

fidxe⇐=== =
f
eidw⇐=== =

Fx Fx Fx Fw
F(e)

oo Fx

In this paper, we are going to be particularly interested in pseudofunctors of the type

(A, a) : ∆3 → A,

also called truncated pseudocosimplicial objects. For simplicity, given such a truncated
pseudocosimplicial category, we define:

A(σ01) = a−1

D0d0
· a

D1d0
;

A(σ02) = a−1

D0d1
· a

D2d0
;

A(σ12) = a−1

D1d1
· a

D2d1
;

A(n0) = a−1
1
· a

s0d0
;

A(n1) = a−1
1
· a

s0d1
.

Using this terminology, we recall the definition of the lax descent category of a pseudo-
functor ∆3 → Cat.
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1.2. Definition. [Lax descent category] Given a pseudofunctor (A, a) : ∆3 → Cat, the
lax descent category lax-Desc (A) of A is defined as follows:

1. The objects are pairs (w,ϕ) in which w is an object of A(1) and

ϕ : A(d1)(w)→ A(d0)(w)

is a morphism in A(2) satisfying the following equations:

Associativity:

A(D0)(ϕ) · A(σ02)w · A(D2)(ϕ) = A(σ01)w · A(D1)(ϕ) · A(σ12)w;

Identity:
A(n0)w · A(s0)(ϕ) = A(n1)w.

If the pair (w,ϕ) is an object of lax-Desc (A), we say that ϕ is a descent datum for
w w.r.t. A, or just an A-descent datum for w.

2. A morphism m : (w,ϕ)→ (w′, ϕ′) is a morphism m : w → w′ in A(1) such that

A(d0)(m) · ϕ = ϕ′ · A(d1)(m).

The composition of morphisms is given by the composition of morphisms in A(1).

The lax descent category comes with an obvious forgetful functor

d
A : lax-Desc (A) → A(1)

(w,ϕ) 7→ w

m 7→ m

and a natural transformation ψ : A(d1) ◦ dA =⇒ A(d0) ◦ dA pointwise defined by

ψ(w,ϕ) := ϕ : A(d1)(w)→ A(d0)(w).

Actually, the pair
(
d
A : lax-Desc (A)→ A(1),ψ : A(d1) ◦ dA ⇒ A(d0) ◦ dA

)
is a two

dimensional limit of A (see [26, pag. 177] or, for instance, in our cause of pseudofunctors,
[16, Section 3]). Namely, the lax descent category of

(A, a) : ∆3 → Cat

is the lax descent object, as defined below, of the pseudofunctor A in the 2-category Cat.
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1.3. Definition. [Lax descent object [19, Section 2]] Given a pseudofunctorA : ∆3 → A,
the lax descent object of A is, if it exists, an object lax-Desc (A) of A together with a pair

lax-Desc (A) A(1)dA // ,

lax-Desc (A)

A(1)

dA

||zzzzzzzzz
lax-Desc (A)

A(1)

dA

""DDDDDDDDD

A(1)

A(2)

A(d1) ""DDDDDDDDD
A(1)

A(2)

A(d0)||zzzzzzzzz

ψ +3


of a morphism d

A : lax-Desc (A)→ A(1), called herein the forgetful morphism (of descent
data), and a 2-cell ψ satisfying the following universal property.

1. For each pair (F : S→ A(1), β : A(d1) ◦ F ⇒ A(d0) ◦ F ) in which F is a morphism
and β is a 2-cell such that the equations

A(1)

A(2)

A(d1)

��









A(1)

A(2)

A(d1)

444

��444

SA(1) Foo S

A(1)

F

��4444444444

A(2)

A(3)

A(D2)

��444444444
A(2)

A(3)

A(D1)





��




A(1)A(2) A(d0)oo A(1)

A(2)

A(d0)

��










A(2)A(3)
A(D0)
oo

A(σ12) +3

β +3

A(σ01) +3

=

S

A(1)

F

��4444444444S

A(1)

F






��





A(1) Soo FA(1)

A(2)

A(d1)

��










A(1)

A(2)

A(d0)

��









A(1)

A(2)

A(d1)

444

��444

A(2) A(1)oo A(d0)A(2)

A(3)

A(D2)

��444444444

A(3) A(2)oo
A(D0)

β +3

β +3

A(σ02) +3

(1.3.1)

S A(1)F //S

A(1)

F

��

A(1)

A(2)

A(d0)

��

A(1)

A(1)

A(1) A(2)A(d1) //A(1)

A(1)

A(2)

A(1)

A(s0)

99

��99
A(n1)−1

+3

A(n0) +3

β +3

=

S

A(1)

F

��

S

A(1)

F

��

(1.3.2)

hold in A, there is a unique morphism

F̌ : S→ lax-Desc (A) (1.3.3)
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in A making the equations

F = d
A ◦ F̌ (1.3.4)

S

lax-Desc (A)

F̌
��

lax-Desc (A)

A(1)

dA

zzttttttt
lax-Desc (A)

A(1)

dA

$$JJJJJJJ

A(1)

A(2)
A(d1) $$JJJJJJJ

A(1)

A(2)
A(d0)zzttttttt

ψ +3

=

S

A(1)

F

����������������
S

A(1)

F

��77777777777777

A(1)

A(2)
A(d1) $$JJJJJJJ

A(1)

A(2)
A(d0)zzttttttt

β +3 (1.3.5)

hold. In this case, we say that the 2-cell β is an A-descent datum for the morphism
F .

2. The pair (dA,ψ) satisfies the descent associativity (Equation (1.3.1)) and the descent
identity (Equation (1.3.2)). In this case, the unique morphism induced is clearly
the identity on lax-Desc (A).

3. Assume that
F ′1, F

′
0 : S→ lax-Desc (A)

are morphisms of A. For each 2-cell ξ : dA ◦ F ′1 ⇒ d
A ◦ F ′0 : S → A(1) satisfying

the equation

A(2)

A(1)

��
A(d1)

??????????

A(2)

A(1)

��
A(d0)

����������

A(1)

lax-Desc (A)

��

dA
����

����

A(1)

lax-Desc (A)

��

dA????

????

lax-Desc (A)

S

��

F ′0

A(1)

S

��

dA ◦F ′1

ψ +3

ξ +3

=

A(2)

A(1)

��
A(d1)

??????????

A(2)

A(1)

��
A(d0)

����������

A(1)

lax-Desc (A)

��

dA
����

����

A(1)

lax-Desc (A)

��

dA????

????

lax-Desc (A)

S

��

F ′1

A(1)

S

��

dA ◦F ′0

ψ +3

ξ +3

there is a unique 2-cell

ξ′ : F ′1 ⇒ F ′0 : S→ lax-Desc (A)
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such that

lax-Desc (A)

S

!!

F ′1

lax-Desc (A)

S

}}

F ′0

A(1)

lax-Desc (A)

��
dA

ξ′ +3

= ξ.

1.4. Lemma. Let A : ∆3 → A be a pseudofunctor. The pseudofunctor A has a lax descent
object lax-Desc (A) if and only if there is an isomorphism

A (S, lax-Desc (A)) ∼= lax-Desc (A (S,A−))

2-natural in S, in which A (S,A−) : ∆3 → Cat is the composition below.

∆3
A //

A(S,A−)

88A
A(S,−) // Cat

2. Forgetful morphisms and Kan extensions

Assuming the existence of the lax descent object of a pseudofunctor (A, a) : ∆3 → A, the
forgetful morphism d

A has many properties that are direct consequences of the definition.
Among them, the morphism d

A is faithful and conservative (by which we mean that, for
any object S of A, the functor A(S,dA) is faithful and reflects isomorphisms).

In this section, we give the core observation of the present paper. Namely, we inves-
tigate the properties of creation of Kan extensions by d

A. We start by briefly recalling
the basic definitions of preservation and creation of Kan extensions (see, for instance, [6,
Section I.4] and [25, Section 2]).

Let J : S → C and H : S → B be morphisms of a 2-category A. The right Kan
extension of J along H is, if it exists, the right reflection RanH J of J along the functor

A(H, C) : A(B, C)→ A(S, C).

This means that the right Kan extension is actually a pair

(RanH J : B→ C, γ : (RanH J) ◦H ⇒ J)

consisting of a morphism RanH J and a 2-cell γ, called the universal 2-cell, in A such
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that, for each morphism R : B→ C of A,

B

C

RanH J

???????

��???????

B

C
R

00

β +3

7→

B

C

RanH J

???????

��???????

B

C
R

00

SB
Hoo S

C

J

��

γ +3

β +3

(2.0.1)

defines a bijection A(B, C)(R,RanH J) ∼= A(S, C)(R ◦H, J).
Let J : S→ C, H : S→ B and G : C→ D be morphisms in A. If (Ĵ , γ) is the right Kan

extension of J along H, we say that G preserves the right Kan extension RanH J if the
pair 

G ◦ Ĵ ,

B

C

Ĵ

##GGGGGGGGGGGGGGG SB
Hoo S

C

J

��
C

D

G
��

γ +3


is the right Kan extension RanH GJ of GJ along H. Equivalently, G preserves RanH J if
RanH GJ exists and, in addition to that, the unique 2-cell

G ◦ Ĵ ⇒ RanH GJ,

induced by the pair (G ◦ Ĵ , idG ∗ γ) and the universal property of RanH GJ , is invertible
(see, for instance, a discussion on canonical (iso)morphisms in [18]).

Furthermore, we say that G reflects the right Kan extension of J along H if, whenever
(G◦ Ĵ , idG ∗γ) is the right Kan extension of GJ along H, (Ĵ , γ) is the right Kan extension
of J along H.

Finally, assuming the existence of RanH GJ , we say that G : C → D creates the right
Kan extension of GJ : S → D along H if we have that (1) G reflects RanH GJ and (2)
RanH J exists and is preserved by G.

2.1. Remark. [Left Kan extension] Codually, we have the notion of left Kan extension
of a morphism J : S → C along H : S → B, denoted herein by LanHJ . We also have
the appropriate codual definitions of those introduced above. Namely, the concepts of
preservation, reflection and creation of left Kan extensions.

2.2. Remark. [Conical (co)limits] For A = Cat, right Kan extensions along functors
of the type S → 1 give the notion of conical limits. This is the most elementary and
well known relation between Kan extensions and conical limits, which gives the most
elementary examples of right Kan extensions. We briefly recall this fact below (see, for
instance, [6, Section 4]).
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Let J : S→ C be a functor in which S is a small category. Recall that a cone over J
is a pair w,

S

κ========⇒����������

J

xx

1

w
��>>>>>>>

C


in which 1 is the terminal category, w : 1 → C denotes the functor whose image is the
object w, and κ is a natural transformation.

Denoting the composition of

S // 1 w // C

by w, a morphism ι : w → w′ of C defines a morphism between the cones (w, κ : w ⇒ J)
and (w′, κ′ : w′ ⇒ J) over J if the equation

S

κ========⇒����������

J

xx

1

w
��>>>>>>>

C

=

S

��
J

vv

κ′===⇒1
ι==⇒w

,,

w′

��
C

holds, in which, by abuse of language, ι denotes the natural transformation defined by
the morphism ι : w → w′.

The above defines a category of cones over J . If it exists, the conical limit of J is
the terminal object of this category. This is clearly equivalent to saying that the conical
limit of J , denoted herein by limJ , is the right Kan extension RanS→1 J in the 2-category
of categories Cat, either one existing if the other does. In this context, the definitions of
preservation, reflection and creation of conical limits coincide with those coming from the
respective notions in the case of right Kan extensions along S→ 1 (e.g. [6, Section 4]).

Codually, the notion of conical colimit of J : S → C coincides with the notion of
left Kan extension of J along the unique functor S → 1 in the 2-category Cat. Again,
the notions of preservation, reflection and creation of conical colimits coincide with those
coming from the respective notions in the case of left Kan extensions along S→ 1.

It is well known that there is a deeper relation between conical (and weighted) limits
and Kan extensions for much more general contexts. For instance, in the case of 2-
categories endowed with Yoneda structures [28], the concept of pointwise Kan extensions
encompasses this relation (e.g. [6, pag. 50] for the original case of the 2-category of V-
enriched categories). Although this concept plays a fundamental role in the theory of
Kan extensions, we do not give further comment since we do not use this concept in the
present paper.
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In order to prove our main theorem, we present an elementary result below, whose
version for limits and colimits is well known.

2.3. Lemma. Let A be a 2-category and H, J,G morphisms of A. Assume that RanHJ :
B→ C exists and is preserved by G : C→ D. If G is conservative, then G creates the right
Kan extension of GJ along H.

Proof. By hypothesis, (G ·RanHJ, idG ∗ γ) is the right Kan extension of GJ along H. If
(G · J̌ , idG ∗ γ′) is also the right Kan extension of GJ along H, we get a (unique) induced
invertible 2-cell G · J̌ ⇒ G · RanHJ . By the uniqueness property, this induced invertible
2-cell should be the image by A(S, G) of the 2-cell J̌ ⇒ RanHJ induced by the universal
property of RanHJ and the 2-cell γ′. Since A(S, G) reflects isomorphisms, the proof is
complete.

2.4. Theorem. [Main Theorem] Assume that the lax descent object of the pseudofunctor
(A, a) : ∆3 → A exists. Let J : S→ lax-Desc (A) and H : S→ B be morphisms of A.

– The forgetful morphism d
A : lax-Desc (A) → A(1) creates the right Kan extension

of dAJ along H, provided that RanH
(
d
AJ
)

exists and is preserved by A(d0) and
A(D0) · A(d0).

– Codually, the forgetful morphism d
A : lax-Desc (A) → A(1) creates the left Kan

extension of dAJ along H, provided that LanH
(
d
AJ
)

exists and is preserved by
A(d1) and A(D2) · A(d1).

Proof. By Lemma 2.3, since d
A is conservative, in order to prove that dA creates the

right Kan extension of dAJ : S→ A(1) along H, it is enough to prove that RanH J exists
and is preserved by d

A.
Let

(
d
A,ψ

)
be the universal pair that gives the lax descent object lax-Desc (A). We

assume that (J : S→ lax-Desc (A) , H : S→ B) is a pair of morphisms in A such that the
right Kan extension (

RanH d
AJ, ν :

(
RanH d

AJ
)
◦H ⇒ d

AJ
)

of dAJ along H is preserved by A(d0) and A(D0) · A(d0).

– By the universal property of the right Kan extension
A(d0) · RanH

(
d
AJ
)
,

B

A(1)

RanH(dAJ)

��???????????????? SB
Hoo S

lax-Desc (A)

J
��

lax-Desc (A)

A(1)

dA��
A(1)

A(2)

A(d0)
��

ν +3
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we get that there is a unique 2-cell

ϕ : A(d1) · RanH
(
d
AJ
)
⇒ A(d0) · RanH d

AJ

in A such that the equation

B

A(1)

RanH(dAJ)

��

SB
Hoo S

lax-Desc (A)

J

��
lax-Desc (A)

A(1)

dA
����

������

A(1)

A(2)

A(d1)
��??????????

lax-Desc (A)

A(1)

dA

��
A(1)

A(2)

A(d0)

��

ν +3

ψ +3

=

B

A(1)

RanH(dAJ)

��

SB
Hoo S

lax-Desc (A)

J

��

B

A(1)

RanH(dAJ)
DDDDDDDDDDDD

!!DDDDDDDDDDDD

A(1)

A(2)

A(d1)
QQQQQQQQ

((QQQQQQQQ

lax-Desc (A)

A(1)

dA

��
A(1)

A(2)

A(d0)

��

ν +3

ϕ +3

(2.4.1)
holds. We prove below that (RanH

(
d
AJ
)
, ϕ) satisfies the descent associativity

(Eq. (1.3.1)) and the descent identity (Eq. (1.3.2)) w.r.t. A.

By the definition of ϕ (see Eq. (2.4.1)), we have that

ϕ′ :=

A(1)

A(2)

A(d1)

��









A(1)

A(2)

A(d1)

444

��444

S

lax-Desc (A)

J

��4444444444SB
Hoo

lax-Desc (A)A(1)
dA
oo

BA(1)
RanH(dAJ)
oo B

A(1)

RanH(dAJ)

444

��444

A(2)

A(3)

A(D2)

��444444444
A(2)

A(3)

A(D1)





��




A(1)A(2) A(d0)oo A(1)

A(2)

A(d0)

��










A(2)A(3)
A(D0)
oo

A(σ12) +3

ϕ +3

A(σ01) +3

ν +3

is equal to

A(1)

A(2)

A(d1)

����������
A(1)

A(2)

A(d1)

??

��??

lax-Desc (A)A(1) dAoo lax-Desc (A)

A(1)

dA

��????????

A(2)

A(3)

A(D2) ��????????
A(2)

A(3)

A(D1)
��

����

A(1)A(2) A(d0)oo A(1)

A(2)

A(d0)����������

A(2)A(3)
A(D0)

oo

SB
Hoo S

lax-Desc (A)

J

��?????????B

A(1)

RanH(dAJ)
??

��??

A(σ12) +3

ψ +3

A(σ01) +3

ν +3
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Since ψ is an A-descent datum for dA, we have that the 2-cell above (and hence ϕ′)
is equal to

lax-Desc (A)

A(1)

dA

��::::::::::
lax-Desc (A)

A(1)

dA
����

������

A(1) lax-Desc (A)oo dAA(1)

A(2)

A(d1)

������������

A(1)

A(2)

A(d0)
������������

A(1)

A(2)

A(d1)

:::

��:::

A(2) A(1)oo A(d0)A(2)

A(3)

A(D2)
��::::::::::

A(3) A(2)oo
A(D0)

SB
Hoo S

lax-Desc (A)

J

������������
B

A(1)

RanH(dAJ)

������������

ψ +3

ψ +3

A(σ02) +3

ν +3

which, by the definition of ϕ (see Eq. (2.4.1)), is equal to the 2-cell

lax-Desc (A)

A(1)

dA

%%LLLLLLLLLLLLLL
lax-Desc (A)

A(1)

dA
rrrrrr

yyrrrrrr

A(1)

B

��

RanH(dAJ)

A(1)

A(2)

A(d1)

������������
B

B

A(1)

A(2)

A(d0)
yyrrrrrrrrrrrrrr

A(1)

A(2)

A(d1)

LLLLL

%%LLLLL

A(2) A(1)oo A(d0)A(2)

A(3)

A(D2)
��::::::::::

A(3) A(2)oo
A(D0)

SB
Hoo S

lax-Desc (A)

J
��

BA(1)
RanH(dAJ)
oo

ψ +3

ϕ +3

A(σ02) +3

ν +3

which, by the definition of ϕ (see Eq. (2.4.1)) again, is equal to

B

A(1)

RanH(dAJ)
????

��????

B

A(1)

RanH(dAJ)
����

������

A(1) Boo
RanH(dAJ)

A(1)

A(2)

A(d1)

������������

A(1)

A(2)

A(d0)
������������

A(1)

A(2)

A(d1)

????

��????

A(2) A(1)oo A(d0)A(2)

A(3)

A(D2)
��??????????

A(3) A(2)oo
A(D0)

S

lax-Desc (A)

J

��???????????

lax-Desc (A)A(1)
dA

oo

SB
Hoo

ϕ +3

ϕ +3

A(σ02) +3

ν +3

(ϕ′′)

denoted by ϕ′′. It should be noted that we proved that ϕ′ = ϕ′′.
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By the universal property of the right Kan extension
A(D0) · A(d0) · RanH

(
d
AJ
)
,

B

A(1)

RanH(dAJ)

��???????????????? SB
Hoo S

lax-Desc (A)

J
��

lax-Desc (A)

A(1)

dA��
A(1)

A(2)

A(d0)
��

A(2)

A(3)

A(D0)
��

ν +3


the equality ϕ′ = ϕ′′ implies that the descent associativity w.r.t. A (Eq. (1.3.1)) for
the pair (RanH d

AJ, ϕ) holds.

Analogously, we have that, by the definition of ϕ (see Eq. (2.4.1)), the equation

S lax-Desc (A)J //S

B

H

��

lax-Desc (A)

A(1)

dA

��
B A(1)

RanH(dAJ)
//B

A(1)

RanH(dAJ)

��

A(1)

A(2)

A(d0)

��

A(1)

A(1)

A(1) A(2)
A(d1) //A(1)

A(1)

A(2)

A(1)

A(s0)

99

��99
A(n1)−1

+3

A(n0) +3

ϕ +3

ν +3

=

S

B

H

��

S lax-Desc (A)J //

B A(1)
RanH(dAJ)

//

lax-Desc (A) A(1)dA //lax-Desc (A)

A(1)

dA

��

A(1)

A(2)

A(d0)

��

A(1)

A(1)

A(1) A(2)
A(d1) //A(1)

A(1)

A(2)

A(1)

A(s0)

99

��99
A(n1)−1

+3

A(n0) +3

ψ +3ν +3

holds. Moreover, by the descent identity w.r.t. A (see Eq. (1.3.2)) for the pair(
d
A,ψ

)
, the right side (hence both sides) of the equation above is equal to ν.

Therefore, by the universal property of the right Kan extension (RanH
(
d
AJ
)
, ν), we

conclude that the descent identity (Eq. (1.3.2)) w.r.t. A for the pair (RanH
(
d
AJ
)
, ϕ)

holds.

This completes the proof that ϕ is an A-descent datum for RanH
(
d
AJ
)
.

– By the universal property of the lax descent object, we conclude that there is a
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unique morphism J̌ : B→ lax-Desc (A) of A such that

RanH
(
d
AJ
)

= d
A ◦ J̌

S

lax-Desc (A)

J̌
��

lax-Desc (A)

A(1)

dA

zzttttttt
lax-Desc (A)

A(1)

dA

$$JJJJJJJ

A(1)

A(2)
A(d1) $$JJJJJJJ

A(1)

A(2)
A(d0)zzttttttt

ψ +3

=

S

A(1)

J

����������������
S

A(1)

J

��77777777777777

A(1)

A(2)
A(d1) $$JJJJJJJ

A(1)

A(2)
A(d0)zzttttttt

ϕ +3

Moreover, by the universal property of the lax descent object (taking ξ = ν in
Eq. 3 of Definition 1.3) and Equation (2.4.1), it follows that there is a unique 2-cell
ν̃ : J̌ ·H ⇒ J in A such that

iddA ∗ ν̃ = ν.

We prove below that the pair (J̌ , ν̃) is in fact the right Kan extension of J along H.

Given any morphism R : B→ lax-Desc (A) and any 2-cell

B

lax-Desc (A)

R

��???????????????? SB
Hoo S

lax-Desc (A)

J

��

ω +3

(2.4.2)

of A, by the universal property of the right Kan extension(
RanH

(
d
AJ
)
, ν
)

=
(
d
A · J̌ , iddA ∗ ν̃

)
,

there is a unique 2-cell
β : dA ◦R⇒ RanH

(
d
AJ
)

in A such that

B

lax-Desc (A)

R ''OOOOOOOOOOO SB
Hoo S

lax-Desc (A)

J
��

lax-Desc (A)

A(1)

dA ��

ω +3

=

B

A(1)

RanH(dAJ)
??????

��??????

SB
Hoo S

A(1)

dA◦ J

��

B

lax-Desc (A)

R

��
lax-Desc (A) A(1)

dA
//

ν +3

β +3
=

B

lax-Desc (A)

J̌
OOOOO

''OOOOO

SB
Hoo S

lax-Desc (A)

J
��

lax-Desc (A)

A(1)

dA��

B

lax-Desc (A)

R

��
lax-Desc (A) A(1)

dA
//

ν̃ +3

β +3
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It should be noted that, by the definition of β, we have that

β′ :=

B

lax-Desc (A)

J̌
OOOOO

''OOOOO

SB
Hoo S

lax-Desc (A)

J
��

lax-Desc (A)

A(1)

dA ��

B

lax-Desc (A)

R

��
lax-Desc (A) A(1)

dA
//

lax-Desc (A) A(1)dA // A(1)

A(2)

A(d0)
��

A(1) A(2)
A(d1)

//

ν̃ +3

β +3 ψ +3
=

B

lax-Desc (A)

R ''OOOOOOOOOOO SB
Hoo S

lax-Desc (A)

J
��

lax-Desc (A)

A(1)

dA ��

lax-Desc (A) A(1)dA // A(1)

A(2)

A(d0)
��

A(1) A(2)
A(d1)

//

ω +3

ψ +3

(2.4.3)
holds. Again, by the definition of β, the right side of Equation (2.4.3) is equal to

β′′ :=

B

lax-Desc (A)

J̌
OOOOO

''OOOOO

SB
Hoo S

lax-Desc (A)

J
��

lax-Desc (A)

A(1)

dA��

B

lax-Desc (A)

R

��
lax-Desc (A) A(1)dA //

A(1) A(2)
A(d1)

//

A(1)

A(2)

A(d0)
��

lax-Desc (A)

A(1)

dA ��

ν̃ +3

β +3

ψ +3

which proves that β′ = β′′.

By the universal property of the right Kan extension(
A(d0) · RanH

(
d
AJ
)
, idA(d0) ∗ ν

)
=
(
A(d0) · dA · J̌ , idA(d0) ∗ iddA ∗ ν̃

)
,

since β′ = β′′, we conclude that

B

lax-Desc (A)

J̌

''OOOOOOOOOOO

lax-Desc (A)

A(1)

dA ��

B

lax-Desc (A)

R

��
lax-Desc (A) A(1)

dA
//

lax-Desc (A) A(1)dA // A(1)

A(2)

A(d0)
��

A(1) A(2)
A(d1)

//

β +3 ψ +3
=

B

lax-Desc (A)

J̌

''OOOOOOOOOOO

lax-Desc (A)

A(1)

dA��

B

lax-Desc (A)

R

��
lax-Desc (A) A(1)dA //

A(1) A(2)
A(d1)

//

A(1)

A(2)

A(d0)
��

lax-Desc (A)

A(1)

dA ��

β +3

ψ +3

By the universal property of lax-Desc (A) (see 3 of Definition 1.3), we get that there
is a unique 2-cell β̃ : R⇒ J̌ in A such that

iddA ∗ β̃ = β.
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By the faithfulness of dA, it is clear then that β̃ is the unique 2-cell such that

B

lax-Desc (A)

J̌

???????

��???????

B

lax-Desc (A)

R

++

SB
Hoo S

lax-Desc (A)

J

��

ν̃ +3

β̃ +3

=

B

lax-Desc (A)

R

��???????????????? SB
Hoo S

lax-Desc (A)

J

��

ω +3

This completes the proof that (J̌ , ν̃) is the right Kan extension of J along H.

– Finally, from the definition of RanHJ = (J̌ , ν̃), it is clear that RanHJ is indeed
preserved by d

A.

2.5. Creation of absolute Kan extensions. In a 2-category A, we say that a right
Kan extension RanHJ is absolute if it is preserved by any morphism whose domain is the
codomain of RanHJ . Moreover, we say that a morphism G creates absolute right Kan
extensions if, whenever RanHGJ is an absolute right Kan extension, G creates it. We, of
course, have evident codual notions for left Kan extensions.

Finally, we say that G creates absolute Kan extensions if it creates both absolute right
Kan extensions and absolute left Kan extensions.

The following is an immediate consequence of Theorem 2.4.

2.6. Corollary. Assume that (A, a) : ∆3 → A has a lax descent object. The forgetful
morphism d

A : lax-Desc (A)→ A(1) creates absolute Kan extensions.
Consequently, if a morphism F of A is equal to d

A composed with any equivalence, then
F creates absolute Kan extensions.

Proof. By Theorem 2.4, the morphism d
A creates all the right Kan extensions preserved

by A(d0) and A(D0) · A(d0). Since absolute right Kan extensions with codomain in A(1)
are preserved by A(d0) and A(D0) · A(d0), we have that dA creates absolute right Kan
extensions. Codually, dA creates absolute left Kan extensions. This completes the proof
d
A creates absolute Kan extensions.

To prove the second statement, it should be noted that equivalences create all Kan
extensions. Hence, whenever F is an equivalence, the composition F = F ◦ dA creates
any of the Kan extensions that are created by d

A. In particular, F creates absolute Kan
extensions.

Finally, as a consequence of Remark 2.2 and Corollary 2.6, since the notion of absolute
limits/colimits of diagrams J : S→ C coincides with the notion of absolute right/left Kan
extensions along S→ 1, we get:
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2.7. Corollary. Let (A, a) : ∆3 → Cat be a pseudofunctor. If a functor F is equal to
d
A composed with any equivalence, then F creates absolute limits and colimits.

Recall that, since split coequalizers, also called split forks, are examples of absolute
coequalizers (see the Proposition on [20, pag. 224]), a right adjoint functor is monadic if,
and only if, it creates absolute coequalizers (by Beck’s monadicity theorem [1]). Therefore,
by Corollary 2.7 we get:

2.8. Theorem. Assume that G : B → C has a left adjoint. If there is a pseudofunctor
(A, a) : ∆3 → Cat such that G = d

A ◦ K for some equivalence K, then G is monadic.

Proof. Assume that G has a left adjoint.
If there is a pseudofunctor (A, a) : ∆3 → Cat such that G = d

A ◦K for an equivalence
K, then G creates absolute coequalizers by Corollary 2.7. By Beck’s monadicity theorem,
we conclude that G is monadic.

Codually, we have:

2.9. Theorem. Assume that G : B→ C has a right adjoint. If G is equal to a forgetful
functor of descent data d

A composed with an equivalence, then G is comonadic.

2.10. Remark. If G is monadic, then, by the monadicity theorem of [19, Section 5], G
is an effective faithful functor. That is to say, G is the forgetful functor of descent data
w.r.t. its 2-dimensional cokernel diagram

(B, b) : ∆3 → Cat

composed with an equivalence (see [19, Section 2] for the definition of the 2-dimensional
cokernel diagram of a morphism).

Therefore, by the above and Theorem 2.8, we have:

2.11. Theorem. [Monadicity Theorem] Assume that G : B→ C has a left adjoint. The
functor G is monadic if, and only if, there is a pseudofunctor (A, a) : ∆3 → Cat such that
G = d

A ◦ K for some equivalence K.

2.12. Remark. [Creation of limits and of absolute colimits] We do not give full definitions
in this remark, since it is not the main point of this paper. The interested reader may
find the missing definitions and proofs in [19].

Employing the monadicity theorem of [19, Section 5], Theorem 2.4 can be seen as a
generalization of the well known results of creation of limits (and colimits) of monadic
functors.

More precisely, as mentioned in the proof of Theorem 2.8, by the monadicity theorem
of [19, Section 5], given a monadic functor G, denoted herein by (B, b) : ∆3 → Cat, we get
that G is the forgetful morphism (of the descent data) w.r.t. its 2-dimensional cokernel
diagram. Therefore:
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– Since G has a left adjoint, B(d0) and B(D0) · B(d0) have left adjoints (see [19,
Section 4]). Hence, since right adjoint morphisms preserve all right Kan extensions,
we get that G creates all right Kan extensions by Theorem 2.4. In particular, G
creates all limits.

– By Theorem 2.4, we have that G, being a forgetful morphism of descent data, does
create all absolute left Kan extensions. But, more generally, G creates the left Kan
extensions that are preserved by B(D2) · B(d1) and B(d1).

Therefore, by the definition of the 2-dimensional cokernel diagram B ([19, Sec-
tion 2]), we conclude that G creates the left Kan extensions that are preserved by
T and T 2 (in which T denotes the endofunctor underlying the codensity monad of
G).

3. Descent theory

Using the concepts previously introduced in this paper, we briefly recover the classical
setting of descent theory w.r.t. fibrations. The exposition in this section is heavily
influenced by [11, 17] but it is independent and different from both of them.

Following their approach, instead of considering fibrations, we start with a pseudo-
functor

F : Cop → Cat

which can be also called an indexed category.
A precategory in C is a functor a : ∆op

3 → C and, hence, each internal category or
groupoid of C has an underlying precategory. In particular, internal groups and monoids
w.r.t. the cartesian structure also have underlying precategories. By abuse of language,
whenever a precategory a is the underlying precategory of an internal category (internal
groupoid, monoid or group), we say that the precategory a is an internal category (internal
groupoid, monoid or group).

3.1. Remark. [Composition of pseudofunctors] Let a : ∆op
3 → C be a precategory.

Firstly, we can consider the functor op(a) : ∆3 → Cop, also denoted by aop, which is the
image of a by the usual dualization (invertible) 2-functor

op : Catco → Cat.

Secondly, we can consider that op(a) : ∆3 → Cop is actually a pseudofunctor between
locally discrete 2-categories. Therefore we can define the composition

F ◦ op(a) : ∆3 → Cat
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as a particular case of composition of pseudofunctors/homomorphisms of bicategories/2-
categories. Namely, the composition is defined by

F ◦ op(a) := B : ∆3 → Cat

x 7→ F (a(x))

g : x→ y 7→ F (aop(g : x→ y))

bx := fa(x) : idF(a(x)) ⇒ F
(
ida(x)

)
bhg := faop(h)aop(g) : F aop(h) · F aop(g) ⇒ F aop(hg).

By definition, the category of F-internal actions of a precategory a : ∆op
3 → C (actions

a → C) is the lax descent object of the composition F ◦ op(a) : ∆3 → Cat. That is to
say,

F -IntAct (a) := lax-Desc (F ◦ op(a)) .

As briefly mentioned in the introduction, this definition generalizes the well known defini-
tions of categories of actions. For instance, taking C = Set and F = Set/− : Setop → Cat,
if a : ∆op

3 → Set is an internal category, the category of (Set/−)-internal actions of a
coincides up to equivalence with the category Cat [a, Set] of functors a→ Set and natural
transformations. This shows that the definition above has as particular cases the well
known categories of m-sets (or g-sets) for a monoid m (or a group g).

Analogously, given a topological group g, we can consider the category of g-Top of
the Eilenberg-Moore algebras of the monad g × − with the multiplication g × g × − →
g × − given by the operation of g, that is to say, the category of g-spaces. This again
coincides with the category of (Top/−) -IntAct (g), in which g, by abuse of language, is
the underlying precategory of g.

A precategory is discrete if it is naturally isomorphic to a constant functor w : ∆op
3 → C

for an object w of C. Clearly, we have:

3.2. Lemma. The category of F-internal actions of a discrete precategory w is equivalent
to F(w).

Given a precategory a : ∆op
3 → C, the underlying discrete precategory of the precate-

gory a is the precategory constantly equal to a(1), which we denote by a(1) : ∆op
3 → C.

We have, then, that the functor

lax-Desc (F ◦ aop)→ F ◦ a(1)

that forgets the descent data is the forgetful functor

F -IntAct (a)→ F -IntAct
(
a(1)

)
between the category of F -internal actions of a and the category of F -internal actions of
the underlying discrete precategory of a.
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3.3. Remark. [Underlying discrete precategory] The definition of the underlying discrete
precategory of a precategory is motivated by the special case of internal categories, and/or
the case of precategories that can be extended to truncated simplicial objects ∆3

op → C,

1 s0 // 2

d0

aa

d1
}}

S0

EE

S1

��
3

D0

cc D1
oo

D2
{{ → C,

in which ∆3 is the full subcategory of ∆ with the objects 1, 2 and 3. We have an adjunction

Cat [∆op
3 ,C] 11⊥ Cat [1,C] ∼= C

qq

in which the left adjoint is given by the usual functor w 7→ w that associates each object to
the constant functor w : ∆3 → C. Of course, the right adjoint is given by the conical limit,
which, in this case, coincides with a(1), since 1 is the initial object of ∆3

op. The underlying
discrete precategory, in this case, is given by the monad induced by this adjunction.

3.4. Remark. [Forgetful functor] As particular case of Remark 3.3, in the case of C = Set
and F = (Set/−), if a : ∆op

3 → Set is an internal category, the forgetful functor

(Set/−) -IntAct (a)→ (Set/−) -IntAct
(
a(1)

)
coincides with the usual forgetful functor Cat[a, Set] → Seta(1) ' Set/a(1) between the
category of functors a→ Set and the category of functions between the set a(1) of objects
of a and the collection of objects of Set. In particular, this shows that, if a is a monoid,
we get that this forgetful functor coincides with the usual forgetful functor a-Set → Set.
Analogously, taking C = Top and F = (Top/−), if g : ∆op

3 → Top is an internal group
(topological group), then the forgetful functor

(Top/−) -IntAct (g)→ (Top/−) -IntAct
(
g(1)

)
coincides with the usual forgetful functor g-Top→ Top between the category of g-spaces
and Top.

As a consequence of Corollary 2.7:

3.5. Corollary. Given an indexed category F : Cop → Cat and a precategory a : ∆op
3 →

C, the forgetful functor

F-IntAct (a)→ F-IntAct
(
a(1)

)
creates absolute Kan extensions and, hence, in particular, it creates absolute limits and
colimits.
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Henceforth, we assume that C has pullbacks, and a pseudofunctor F : Cop → Cat is
given. Every morphism p : e → b of C induces an internal groupoid whose underlying
precategory, denoted herein by Eq(p), is given by

e e×b e// e×b ee

πe

ww
e×b ee

πe

gg e×b e×b ee×b e oo e×b e×b ee×b e
vv

e×b e×b ee×b e hh

in which e ×b e denotes the pullback of p along itself, and the arrows are given by the
projections and the diagonal morphism (see, for instance, [11, Section 3]). For short, we
denote by Fp : ∆3 → Cat the pseudofunctor obtained by the composition

F ◦ Eq(p)op : ∆3 → Cat.

3.6. Lemma. Let
(
d
Fp ,ψ

)
be the universal pair that gives the lax descent category of Fp.

For each morphism p : e→ b of C, we get a factorization

F(b)

Kp
NNNN

&&NNNN

F(p) // F(e)

lax-Desc (Fp)
d
Fp

pppp

88pppp

(3.6.1)

called the F-descent factorization of F(p), in which Kp is the unique functor such that
the diagram above is commutative and the equation

F(b)

lax-Desc (Fp)

Kp

��
lax-Desc (Fp)

Fp(1) = F(e)

dF
p

{{wwwwwwwwwwww
lax-Desc (Fp)

F(e) = Fp(1)

dF
p

##GGGGGGGGGGGG

Fp(1) = F(e)

F(e×b e) = Fp(2)

Fp(d1)=F(πe)
##GGGGGGGGGGGG

F(e) = Fp(1)

F(e×b e) = Fp(2)

F(πe)=Fp(d0)
{{wwwwwwwwwwww

ψ +3

=

F(b)

F(e)

F(p)

���������������������
F(b)

F(e)

F(p)

��3
333333333333333333

F(e)

F(e×b e)
F(πe)

!!DDDDDDDDDDD
F(e)

F(e×b e)
F(πe)

}}zzzzzzzzzzz

F(b)

F(e×b e)

F(πe·p)=F(πe·p)

��

f−1
πe p +3

fπe p +3

holds.

Proof. This factorization can be found, for instance, in [11, Section 3] or [17, Section 8].
In our context, in order to prove this result, it is enough to verify that

f−1
πe p · fπe p : Fp(d1) · F(p)⇒ Fp(d0) · F(p)

is an Fp-descent datum for F(p), which follows directly from the fact that F : Cop → Cat
is a pseudofunctor.
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3.7. Definition. [Effective descent morphism] A morphism p of C is of effective F-
descent if the comparison Kp of the F-descent factorization of F(p) (Eq. (3.6.1)) is an
equivalence.

3.8. Remark. By definition, if p is of effective F -descent, this means in particular that
F(p) : F(b)→ F(e) is, up to the composition with a canonical equivalence, the forgetful
functor between the category of F -internal actions of the internal groupoid Eq(p) and the
category of F -internal actions of the underlying discrete groupoid e.

4. Effective descent morphisms and monadicity

The celebrated Bénabou-Roubaud theorem (see [3] or, for instance, [17, Theorem 1.4])
gives an insightful connection between monad theory and descent theory. Namely, the
theorem says that the F -descent factorization of F(p) (Eq. (3.6.1)) coincides up to equiv-
alence with the Eilenberg-Moore factorization of the right adjoint functor F(p), provided
that F comes from a bifibration satisfying the so called Beck-Chevalley condition.

The theorem motivates what is often called monadic approach to descent (e.g. [10,
Section 2]), and it is useful to the characterization of effective descent morphisms in several
cases of interest (e.g. [9, 10, 23]).

In our context, the Bénabou-Roubaud theorem can be stated as follows. Assume that
F : Cop → Cat is a pseudofunctor such that, for every morphism p of C,

– there is an adjunction (F(p)! a F(p), εp, ηp) : F(b)→ F(e), and

– the 2-cell obtained from the pasting

F(e)
F(p)! // F(b)

ηp

=====⇒
F(p)

wwwwwwww

{{wwwwwwww F(p)

��
F(e)

f−1
πe p
·fπe p

======⇒

F(πe)

��

F(e)

επe======⇒
F(πe)

wwwwwwww

{{wwwwwwww

F(e×b e) F(πe)!
// F(e)

is invertible.

We have that, denoting by T p the monad
(
F(p) · F(p)!, idF(p) ∗ εp ∗ idF(p)!, η

p
)
, the Eilenberg-
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Moore factorization
F(b) F(p) //

$$HHHHHHHHH
F(e)

F(e)T
p

::vvvvvvvvv

is pseudonaturally equivalent to the F -descent factorization of F(p) (Eq. (3.6.1)). In
particular, we get that, assuming the above, a morphism p is of effective F-descent if and
only if F(p) is monadic.

4.1. Remark. [Basic bifibration] If C has pullbacks, the basic indexed category

C/− : Cop → Cat

satisfies the Beck-Chevalley condition. Therefore, in this case, by the Bénabou-Roubaud
theorem, one reduces the problem of characterization of effective descent morphisms to
the problem of characterization of the morphisms p for which the change of base functor
C/p = p∗ : C/b→ C/e is monadic.

For instance, if C is locally cartesian closed and has coequalizers, one can easily
prove that C/p is monadic if and only if p is a universal regular epimorphism, by Beck’s
(pre)monadicity theorem (e.g. [23, Corollary 1.3]). This result on locally cartesian closed
categories also plays an essential role in the usual framework to study effective (C/−)-
descent morphisms of more general categories via embedding results (see, for instance,
[23, Section 1.6], [10, Section 2] and [17, Section 1]).

4.2. Indexed categories not satisfying the Beck-Chevalley condition. The
Bénabou-Roubaud theorem answers the question of the comparison of the Eilenberg-
Moore factorization with the F -descent factorization of F(p) (Eq. (3.6.1)) whenever F
satisfies the Beck-Chevalley condition. One might ask what it is possible to prove in this
direction without assuming the Beck-Chevalley condition.

It should be noted that there are indexed categories F : Cop → Cat (coming from
bifibrations that do not satisfy the Beck-Chevalley condition) for which there are non-
effective descent morphisms inducing monadic functors.

For instance, in [21, Example 3.2.3] (Exemplo 3.2.3 of pag. 67), Melo gives a detailed
proof that the so called fibration of points of the category of groups does not satisfy the
Beck-Chevalley condition (in particular, w.r.t. the morphism 0→ S3). It is known that,
denoting by Pt the corresponding indexed category, Pt(0→ S3) is monadic but 0→ S3 is
not of effective Pt-descent.

We can produce examples of non-effective descent morphisms inducing monadic func-
tors as above, once we observe that:

4.3. Proposition. If the domain of a morphism p is the terminal object of C, then p is
of effective F-descent if and only if F(p) is an equivalence.
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Proof. Indeed, if the domain of p is the terminal object 1 of C, Eq(p) is discrete, naturally
isomorphic to the precategory ∆op

3 → C constantly equal to 1. Consequently,

F -IntAct (Eq(p)) ' F(1).

Therefore the result follows, since the F -descent factorization of F(p), in this case, is
given by

F(b)

Kp
OOOOO

''OOOOO

F(p) // F(1)

F -IntAct (Eq(p))

'oooooo

77oooooo

4.4. Remark. Proposition 4.3 gives us a way to study [21, Example 3.2.3].
In an exact protomodular category (e.g. [4]), denoting again by Pt the indexed category

corresponding to the fibration of points, whenever Pt(p) has a left adjoint, it is monadic
(see [4, Theorem 3.4]).

In the case of the category of groups, Pt(0 → S3) has a left adjoint but it is not an
equivalence.

Therefore, by [4, Theorem 3.4], the functor Pt(0 → S3) is monadic, while, by Propo-
sition 4.3, the morphism 0→ S3 is not of effective Pt-descent.

4.5. Remark. It should be noted that, if p : 1 → b is a morphism of C satisfying the
hypothesis of Proposition 4.3, the pasting

F(1)
F(p)! // F(b)

ηp

=====⇒
F(p)

qqqqqqq

xxqqqqqqq F(p)

��
F(1) =

F(π1)=idF(1)

��

F(1)

=

F(π1)=idF(1)

qqqqqqq

xxqqqqqqq

F(1×b 1) = F(1)
idF(1)

// F(1)

is invertible if and only if ηp is invertible. (or, equivalently, F(p)! is fully faithful). In
other words, p : 1→ b satisfies the Beck-Chevalley condition w.r.t. F if and only if F(p)!
is fully faithful.

Assuming that F(p)! is fully faithful in the situation above, we get that F(p) is
(pre)monadic if and only if it is an equivalence. That is to say, in this case, we get,
by Proposition 4.3, that F(p) is (pre)monadic if and only if p is of effective F-descent.

The most elementary examples of non-effective F -descent morphisms inducing monadic
functors can be constructed from Lemma 4.6. Namely, in order to get our desired exam-
ple, it is enough to consider a pseudofunctor G : 2op → Cat whose image of d is a monadic
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functor which is not an equivalence. In this case, by Lemma 4.6, we conclude that, despite
G(d) being monadic, d is not of effective G-descent.

4.6. Lemma. Consider the category 2 with the only non-trivial morphism d : 0 → 1.
Given a pseudofunctor G : 2op → Cat, d is of effective G-descent if and only if G(d) is an
equivalence.

Proof. Again, in this case, Eq(d) is discrete. We have that G-IntAct (Eq(d)) ' G(0),
and, hence, we get the result.

In [24], Sobral characterizes the effective E-descent morphisms in the category cat of
small categories, in which E : catop → Cat can be defined by

E : catop → Cat

e 7→ Cat [e, Set] (4.6.1)

p : e→ b 7→ Cat [p, Set] : Cat [b, Set]→ Cat [e, Set] .

As a consequence of her characterization, she shows that the functor h : 1 t 1 → 2
which is a bijection on objects (that is to say, induced by d0 and d1) is not an effective
E-descent morphism, but E(h) is monadic (see [24, Remark 7]). In this context, she also
informally suggests that, for the indexed category E , descent gives “more information”
than monadicity. We finish this article showing, as an immediate consequence of Theorem
2.8, that this is in fact the case for any indexed category.

4.7. Theorem. [Effective descent implies monadicity] Let F : Cop → Cat be any pseud-
ofunctor. If p is of effective F-descent and F(p) has a left adjoint, then F(p) is monadic.

Proof. It is clearly a particular case of Theorem 2.8.

By Theorem 4.7, given a pseudofunctor F : Cop → Cat coming from a bifibration,
every effective F -descent morphism p induces a monadic functor F(p).

4.8. Remark. It is worth noting that there are pairs (F , p) such that F is a pseud-
ofunctor coming from a bifibration and p is an F -descent morphism not satisfying the
Beck-Chevalley condition.

For instance, considering the pseudofunctor E defined in (4.6.1), the functor

h : 1 t 1→ 1

is an effective E-descent morphism, since it is a split epimorphism (by [11, Theorem 3.5]).
However h does not satisfy the Beck-Chevalley condition. For instance, taking f : 1t1→
Set defined by the pair (∅, {∅}), we get that

Lanπ1t1
(
f ◦ π1t1) : 1 t 1→ Set

is defined by the pair (∅, {∅} t {∅}), while

Lanh (f) ◦ h : 1 t 1→ Set

is defined by the pair ({∅} , {∅}).
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Tim Van der Linden, Université catholique de Louvain: tim.vanderlinden@uclouvain.be


	Introduction
	The lax descent category
	Forgetful morphisms and Kan extensions
	Descent theory
	Effective descent morphisms and monadicity

