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A HUREWICZ MODEL STRUCTURE FOR DIRECTED TOPOLOGY

SANJEEVI KRISHNAN AND PAIGE RANDALL NORTH

Abstract. This paper constructs an h-model structure for diagrams of streams, lo-
cally preordered spaces. Along the way, the paper extends some classical characteriza-
tions of Hurewicz fibrations and closed Hurewicz cofibrations. The usual characteriza-
tion of classical closed Hurewicz cofibrations as inclusions of neighborhood deformation
retracts extends. A characterization of classical Hurewicz fibrations as algebras over a
pointed Moore cocylinder endofunctor also extends. An immediate consequence is a long
exact sequence for directed homotopy monoids, with applications to safety verifications
for database protocols.
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1. Introduction

A complex process in nature can be described by a state space equipped with some kind
of directionality reflecting the arrow of time. The qualitative behavior of such a process is
often invariant with respect to dihomotopy equivalences, deformations of the state space
that respect the given directionality. A precise definition of dihomotopy equivalence de-
pends upon the precise application of interest (cf. [2, 4, 9, 10, 15, 16, 12]). This paper
focuses on the simplest kind, a straightforward refinement of classical homotopy equiv-
alence where all homotopies are taken to be dihomotopies, or equivalently homotopies
through directed maps. Examples of behavior invariant in this sense include periodicity
in certain dynamical systems [7, Example 2.8], and some types of non-determinism in
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concurrent computations [9]. A model structure on a category of directed spaces, where
the weak equivalences are dihomotopy equivalences, provides convenient structure for ex-
tending classical homotopical constructions for the directed setting. An example is an
h-model structure, a generalization of the Hurewicz model structure on spaces, for some
suitable topologically enriched category of directed spaces.

The purpose of this paper is to construct an h-model structure for streams, spaces
equipped with cosheaves of local preorders. There exist h-model structures in the liter-
ature for other formalisms of directed spaces [11, 19], although one of these formalisms
(pospaces) is too restrictive to model the states of a looping process and the other two
formalisms (multipointed d-spaces and flows) are not purely topological in the sense that
they can be arbitrarily subdivided in time in a way that changes the directed space, even
up to dihomotopy equivalence. Streams, purely topological models of state spaces that can
model looping processes, provides a convenient formalism for describing salient directed
structure in order-theoretic terms. For example, it is possible to identify a large class of
state spaces where the global preorder together with the topology completely determines
the local causal preorders [20, Lemmas 4.2, 4.4] For another example, the local causal or-
ders on a spacetime define such a cosheaf; in turn, the local causal orders on small enough
open neighborhoods [22, Theorem 1], and hence the entire cosheaf of a stream, completely
determines the smooth, causal, conformal structure of the spacetime. For yet another ex-
ample, group-freeness of fundamental monoids is a simple dihomotopical constraint on
spacetimes and other streams covered by open sets whose local preorders are antisym-
metric [13, Lemma 2.18]. In practice, the existence of h-model structures on topologically
enriched categories formally follows from the commutativity of certain filtered colimits
with certain finite limits [1, Corollary 5.23]. That kind of commutativity is difficult if not
impossible to prove for streams because the cosheaf condition, a preservation of certain
colimits, interacts poorly with limits.

The existence proof for streams and more general G -shaped diagrams instead relies on
certain explicit characterizations of the (co)fibrations. Classical h-fibrations can be char-
acterized as algebras over the underlying pointed endofunctor of a certain monad, defined
as a kind of mapping cocylinder based on Moore paths [23]. Recent work extends that
monad to other bicomplete topologically enriched categories containing an object that
suitably behaves like the non-negative reals [28]. This paper recalls that construction and
extends the classical characterization of h-fibrations, at least for streams [Theorem 3.4].
A characterization of classical closed Hurewicz cofibrations as neighborhood deformation
retracts extends [Theorem 4.1]; the proof mimics classical arguments, but also requires
some non-formal properties of streams. The characterization of cofibrations will turn
out to explain why directed spaces in nature, such as spacetimes or state spaces of con-
current programs, almost never decompose into h-homotopy colimits of simpler directed
subspaces. The characterization also underscores the necessity of working in the setting
of G -shaped diagrams: it is impossible to bootstrap an h-model structure on streams
for, say, based streams in such a way that based streams in nature are both fibrant and
cofibrant [Example 4.2]. The desired existence follows [Theorem 5.1].
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Section §2 recalls the definition and some properties of streams. Section §3 defines and
characterizes h-fibrations. Section §4 defines and characterizes h-cofibrations. Section §5
proves the existence of an h-model structure whose (co)fibrations are the h-(co)fibrations.
Running examples [Examples 2.2, 2.5, 2.13, 2.14, 2.15, 2.16, 2.17, 3.2, 3.5, 5.2, 5.3] apply
the main results to understand some basic properties of bigraded dihomotopy monoids
πp,qX of based streams X. Section §6 sketches an example where an associated long exact
sequence for πp,q streamlines geometric arguments of practical interest on state spaces.
Proofs often directly cite formal properties of h-(co)fibrations in general bicomplete topo-
logically enriched categories; the reader is referred elsewhere [5, 25, 31] for the general
theory. The main results of this paper carry over to other purely topological models of
directed spaces like d-spaces [15] (that are not multipointed and with enrichment induced
by forgetting to spaces).

Conventions. Notate special categories and functors as follows.

[n] ordinal {0 < 1 < · · · < n}
P preordered sets and monotone functions
K connected, compact Hausdorff topological lattices and homomorphisms
T weak Hausdorff k-spaces and continuous maps
U weak Hausdorff k-streams and stream maps

Write ? for a terminal object in a given category. Let 1o denote the identity of an object
o in a given category. Write πo for the component of a universal cone in a given category,
evident from context, with codomain o. Let G denote an arbitrary small category. The
prefix G will indicate that an object is indexed by G . For example, a G -set is a G -
shaped diagram in the category of sets and a G -function is a natural transformation of
G -sets. Write [1] for the free category on the arrow 0 → 1. Write Y X for the functor
category of X -shaped diagrams in Y and natural transformations between them. Given
an adjunction F a G, the adjoint of a morphism of the form x → Gy or Fx → y will
denote the corresponding morphism of the other form; let adj(ζ) denote the adjoint of
a morphism ζ in a given category across a given adjunction. The phrases left lifting
property, right lifting property will be respectively abbreviated LLP, RLP. Let R+ denote
the subspace [0,∞) ⊂ R.

2. Streams

This section recalls some of the theory of streams ; the reader is referred elsewhere for the
point-set theory [20], including comparisons with other formalisms for directed spaces,
and the associated homotopy theory [21]. A circulation on a space X is a function

6: U 7→ 6U

assigning to each open subset U ⊂ X a preorder 6U on U such that 6 sends the union
of a collection O of open subsets of X to the preorder with smallest graph containing the
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graph of 6U for each U ∈ O [20]. A stream is a space equipped with a circulation on it
[20].

2.1. Example. Every space admits an initial circulation 6 defined by

x 6U y ⇐⇒ x = y ∈ U

2.2. Example. For each n-spacetime M , the function

U 7→ 6U

assigning to each open subspacetime U ⊂M the causal order 6U on U defines a circulation
on M . In particular, the circle S1 will henceforth be regarded as a stream S(1,0) by equipping
it with the circulation defined by a time-orientation on S1. On a sufficiently fine open
cover, the circulation on S1 assigns each open subset a total order.

A continuous map f : X → Y of streams is a stream map if f(x) 6U f(y) whenever
x 6f−1U y [20]. A k-space if X is a colimit of compact Hausdorff spaces in the category
of spaces and continuous maps. Similarly, a k-stream is a colimit of compact Hausdorff
streams in the category of streams and stream maps [20]. The underlying space of a k-
stream is a k-space because the forgetful functor from streams and stream maps to spaces
and continuous maps is cocontinuous [20, Proposition 5.8]. A space X is weak Hausdorff
if images of compact Hausdorff spaces in X are Hausdorff.

2.3. Theorem 5.4, [20]. Locally compact Hausdorff streams are weak Hausdorff k-
streams.

Let T denote the complete, cocomplete, and Cartesian closed [26] category of weak
Hausdorff k-spaces and continuous maps between them. Let U denote the category of
weak Hausdorff k-streams and stream maps. Redefine space and stream, like elsewhere
(cf. [20, 24]), to means objects in the respective categories T and U . Let K denote the
connected compact Hausdorff topological lattices whose underlying spaces are connected
and continuous lattice homomorphisms between them. Such objects will henceforth be
regarded as streams, as noted in the following special case of a more general observation
[20, Lemmas 4.2, 4.4 and Example 4.5].

2.4. Theorem. There exists a full and faithful embedding

K → U

naturally sending a topological lattice L to its underlying space equipped with the unique
circulation sending L to the given partial order 6L on L.

2.5. Example. Let BX denote the geometric realization of the simplicial nerve of a small
category X . The construction B preserves finite products and hence induces the structure
of a topological lattice on the compact Hausdorff, connected space BL natural in finite
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lattices L. In this manner, B[n] naturally defines a stream [Theorem 2.4]. Redefine BX
as

BX = colim[n]→XB[n]

in U . This classifying stream BX of a small category X encodes the directionality implicit
in the arrows of X as the circulation on BX .

The forgetful functor U → T lifts topological constructions in the following sense.

2.6. Proposition 5.8, [20]. The forgetful functor makes U topological over T .

In other words, each class of continuous maps fi : X → Yi from a space X to streams
Yi induces a terminal circulation on X making the fi’s stream maps X → Yi. Equivalently
and dually, each class of continuous maps from streams to a fixed space induces a suitably
initial circulation on that space. In particular, the forgetful functor U → T creates
limits and colimits. The reader is referred elsewhere [3] for the basic theory of categories
topological over other categories. The forgetful functor U → P to the category P of
preordered sets and monotone functions is the functor naturally sending a stream X to
its underlying set equipped with the preorder that the circulation 6 on X assigns to X
itself.

2.7. Proposition 5.11, [20]. The forgetful functor U →P is Cartesian monoidal.

The forgetful functor U → P preserves those colimits of streams which are colimits
of underlying sets [20, Lemma 3.18]; a special case is the following observation.

2.8. Lemma. The forgetful functor U →P preserves . . .

1. . . . coproducts; and

2. . . . quotients of streams by equivalence relations with closed graphs

Say that a stream map f : X → Y pushes forward the circulation on X to the
circulation on Y if x 6f−1U y whenever f(x) 6U f(y) for all choices of x, y ∈ X and open
U ⊂ Y .

2.9. Lemma. Consider a stream X and space Y . The stream map

qy∈YX
qy1X×({y}↪→Y )−−−−−−−−−→ X × Y

pushes forward the circulation on its domain to the circulation on its codomain.

Proof. Take open substreams U ⊂ X and V ⊂ Y . For x1, x2 ∈ U and y1, y2 ∈ V ,

(x1, y1) 6U×V (x2, y2) ⇐⇒ x1 6U x2, y1 6V y2

⇐⇒ x1 6U x2, y1 = y2

⇐⇒ (x1, y1) 6qy∈V U (x2, y2)
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with the first line by the forgetful functor U →P Cartesian monoidal [Proposition 5.11,
[20]], the second line by the initiality of the circulation on Y , and the third line by the
forgetful functor U →P preserving coproducts [Lemma 2.8].

A substream of a stream Z is a stream Y for which inclusion of underlying sets defines
a stream map Y → Z such that every stream map X → Z whose image is a subset of
Y corestricts to a stream map X → Y . Every subset of a stream has the structure of a
substream, where the topology is the k-ification of the subspace topology, by the forgetful
functor U → T topological. The circulation of a substream is generally difficult to
ascertain; an exception is when the substream defines an open subset.

2.10. Example. An open substream is an open subspace with a restricted circulation.

Let X ↪→ Y denote an inclusion of a substream X into a stream Y . More generally let
X ↪→ Y denote a G -stream map X → Y which, up to isomorphism of G -streams evident
from context, is an objectwise inclusion of streams.

2.11. Theorem 5.12, [20]. The category U is Cartesian closed.

2.12. Corollary. The category U G is complete, cocomplete, and Cartesian closed.

Henceforth U G will be regarded as Cartesian monoidal. For each G -stream X, write
X(−) for the right adjoint to X ×−. A based stream (X, x) is a stream X equipped with
a distinguished point x ∈ X, regarded as the [1]-stream {x} ↪→ X; a based stream map is
a [1]-stream map of based streams. Henceforth regard a stream as a constant G -stream
and a G -space as a G -stream with objectwise initial circulations.

2.13. Example. Let I(1,0) denote the unit interval with the usual ordering. Let

I(p,q) = (I(1,0))p × Iq S(p,q) = I(p,q)
/∂Ip+q ,

where ∂In = {(x1, . . . , xn) ∈ In |
∏

i xi(1 − xi) = 0}. In a sense that can be made
precise, S(p,q) is the terminal compactification of the (p + q)-dimensional ordered vector
space whose positive cone is the product Rp

>0; the quotiented point will thus be denoted by
∞. The underlying space of S(p,q) is the (p+ q)-sphere.

2.14. Example. Let Ω
(p,q)
? (X, x) denote the based mapping substream

Ω(p,q)
? (X, x) = (X, x)(S(p,q),∞) (1)

by regarding based streams as [1]-streams. In other words, (1) is the stream of all based
(p+ q)-fold loops directed in its first p suspension coordinates.

In particular, U G is bicomplete T -enriched with enrichment and cotensor defined by
restrictions of the closed structure and tensor defined by restriction of binary products.
The dihomotopy relation can be defined in terms of this enrichment. Fix G -stream maps
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f, g as in the left of the diagrams

Y
f //

Y×({0}↪→I)
��

Z

Y × I
h

99

Y
Y×({1}↪→I)
oo

g

OO X × I πX //

i×I
��

X

fe=ge

��
Y × I

h
// Z

Write h : f ∼ g for a dotted G -stream map making the left of the diagrams commute.
For a G -stream map i : X → Y , write h : f ∼ g relative i if the right diagram commutes.

2.15. Example. For a monoid M , the image of the stream map

B(0→M) : ?→ BM

naturally turns the classifying stream BM [Example 2.5] into a based classifying stream
B?M .

Call a G -stream map f : X → Y h-acyclic if there exists a G -stream map g : Y → X
with gf ∼ 1X and fg ∼ 1Y . An h-equivalence of G -streams is an h-acyclic G -stream map.
The working definition of a dihomotopy equivalence in this paper is an h-equivalence of
G -streams.

2.16. Example. Define a set πp,q(X, x), natural in based streams (X, x), by

πp,q(X, x) = π0Ω(p,q)
? (X, x),

where π0 denotes the ordinary path-component construction. Equivalently, πp,q(X, x) is
the set of all ∼-classes of based stream maps (S(p,q),∞) → (X, x) from the stream S(p,q)

based at ∞ [Example 2.13] . This set . . .

1. . . . defines a monoid for p+ q > 0 induced by the co-H structure on based spheres

2. . . . is commutative for p+ q > 1 by an Eckmann-Hilton argument

3. . . . is a group for p > 1 or q > 0 because commuting suspension coordinates gives
inverses in the first case and reversing a map gives inverses in the second case.

The construction πp,q unifies some invariants in the literature. The monoid π1,0X is called
the fundamental monoid of X [9]. More generally, the groups πn,0X have been introduced
previously [14] as higher homotopy monoids, at least with respect to a homotopy relation
that coincides with h-homotopy on examples of interest [21, Theorem 7.1 ]. The groups
π0,nX are the homotopy groups of the underlying based space of X. Stream maps S(p,q+i) →
S(p+i,q) defined by identity functions induce natural transformations πp+i,q → πp,q+i.
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2.17. Example. Directed simplicial approximation [21, Theorem 8.1] gives

π1,0B?M = M

for each discrete monoid M . The natural homomorphism π1,0B?M → π0,1B?M is then
group-completion M →M [M−1].

3. Fibrations

Call a G -stream map f an h-fibration if f has the RLP against X × ({0} ↪→ I) for
each G -stream X. The purpose of this section is to characterize the h-fibrations of G -
streams as algebras over the underlying pointed endofunctor of a Moore path monad
Γ, defined as follows. Define stream ΠX and stream maps codΠX , domΠX , idΠX by
the following commutative diagram below, where the outer right rectangle is a pullback
diagram defining ΠX as a pullback, natural in streams X.

X ΠX X

X

XR+ XR+ × R+ XR+

codΠXdomΠX

XR+→?

idΠX 1X

XR+→?×({0}↪→R+)

X{0}↪→R+

adj(X
max:R2

+→R+ )
π
X

R+

In other words, ΠX is a stream of all pairs (ζ, t) of stream map ζ : R+ → X, with
R+ regarded as a stream with initial circulation, and t ∈ R+ with ζ constant on [t,∞).
Thus ΠX is the classical Moore path space (cf [1]) of the underlying space of X equipped
with a natural circulation. This Moore path space underlying ΠX is the morphism part
of a Moore path category, a topological category with identity, codomain, and domain
structure maps respectively given by idΠX , codΠX , and domΠX .

3.1. Proposition. There exists a stream map

◦ΠX : (ΠX)×codΠX ,domΠX
(ΠX)→ ΠX

natural in streams X, defining the composition operation of a category internal to U with
object stream X, morphisms stream ΠX, and identity, domain, and codomain structure
maps given by idΠX , codΠX , domΠX .

In other words, X and ΠX are respectively the object and morphisms streams of a
category internal to U ; the composite (ζ2, t2) ◦ΠX (ζ1, t1) = (ζ1 ∗ ζ2, t1 + t2), where ζ1 ∗ ζ2

informally is the map R+ → X which first executes the path ζ1 on [0, t1], then executes the
path ζ2 on [t1, t1 + t2], and then stays constant on [t1 + t2,∞). This operation, continuous,



A HUREWICZ MODEL STRUCTURE FOR DIRECTED TOPOLOGY 621

defines the composition of a classical Moore path category (cf [1]). The main task of the
proof is to demonstrate that this operation defines a stream map.

Proof. For t ∈ R+, define continuous maps

it : {t} ↪→ R+

rt = min(−, t) : R+ → [0, t]

δ−t : {0} ↪→ [0, t]

δ+t : {t} ↪→ [0, t]

Let a, b ∈ R+. Consider the solid morphisms in the diagram

X [0,a] ×X [0,b] X [0,a] ×Xδ+a ,Xδ−b X
[0,b] X [0,a+b] X [0,a+b]

(XR+ × R+)2 ΠX ×codΠX ,domΠX
ΠX ΠX XR+ × R+

(Xra×ia)×(Xrb×ib) I

∼=

II III Xra+b×ia+b

◦ΠX

where ∼= denotes the isomorphism induced from the identification [0, a]∪1,0 [0, b] ∼= [0, a+b]
induced from inclusion [0, a] ↪→ [0, a+ b] and the embedding x 7→ x+a : [0, b] ↪→ [0, a+ b].
There exist dotted vertical functions, stream maps by universal properties of substreams
and unique by monicity of the bottom left and right arrows, making I and III commute.
There exists a bottom dotted horizontal continuous map, defined by composition of paths
in classical Moore path categories, making II commute in T .

The coproduct over all a, b of the leftmost vertical arrow, and hence also the leftmost
dotted arrow, are objectwise bijective stream maps pushing forward objectwise circula-
tions of their domains onto objectwise circulations of their codomains [Lemma 2.9]. It
follows that ◦ΠX is a stream map because the middle top horizontal arrow is a stream map
for each a, b. The maps ◦ΠX , 1ΠX , codΠX , domΠX are the respective composition, identity,
domain, and codomain operations for a category internal to T , the classical Moore path
category. Hence those stream maps satisfy the requisite associativity and unitality prop-
erties for the composition, domain, and codomain operations of a category internal to
U .

3.2. Example. Moore dipaths on a stream X can be defined as a subcategory

TX ⊂ ΠX,

with domain and codomain stream maps domTX , codTX : TX → X defined by replacing
mapping streams from the undirected reals with mapping streams from the reals equipped
with its usual ordering.

More generally, let ΠX and codΠX , domΠX , idΠX , ◦ΠX denote the induced con-
structions of G -stream and G -stream maps, natural in G -streams X. These structure
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maps turn ΠX into the morphism G -stream of a category internal to U G by natural-
ity. A construction like Π formally yields an associated algebraic weak factorization
system (cf. [28, 32]), detailed as follows. Define G -stream X ×f ΠY and G -stream maps
dom∗ΠY f, f

∗domΠY , Lf,Γf by the following commutative diagrams, natural in G -stream
maps f : X → Y , in which the outer rectangle in the left diagram is a pullback diagram.

X ×f ΠY ΠY

X

X Y

dom∗ΠY f

f∗domΠY domΠY

Lf

1X

idΠY f

f

f

X X ×f ΠY

Y ΠY

ηf
f

Lf

dom∗ΠY fΓf

codΠY

Thus Γ will be regarded as an endofunctor on (U G )[1] pointed by the unit η whose
components are defined by the commutative triangle above.

3.3. Proposition. Commutative diagrams of the following form

X ×f ΠY ×codΠY ,domΠY
ΠY X ×f ΠY

Y Y

Γ2f Γf

where the top horizontal stream map is naturally induced by ◦ΠY : ΠY ×codΠY ,domΠY
ΠY ,

define a multiplication µ : Γ2 → Γ turning Γ into a monad.

The proof relies on the fact that the restriction and corestriction of Γ to a pointed end-
ofunctor on U [1] underlies a monad with monad multiplication defined as the restriction
and corestriction of the multiplication in the statement of the proposition [1].

Proof. The forgetful functor T : U [1] → T [1] is faithful and the composite TF of T
with its left adjoint F is the identity 1T [1] . In the case G = ?, TµF is a multiplication
turning the pointed endofunctor TΓF into a monad on T [1] and therefore µ turns Γ into
a monad. The case for general G follows by naturality.

More generally, Γ will denote the induced monad on (U G )[1].

3.4. Theorem. The following are equivalent for a G -stream map f .

1. f is an h-fibration

2. f underlies an algebra over the pointed endofunctor Γ

The proof of (2) =⇒ (1) uses a formal characterization of h-fibrations in a bicomplete
T -enriched category as algebras over a certain pointed endofunctor N [5, Proposition
2.5], constructed in the proof for the particular setting of G -streams, on the associated
arrow category.
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Proof. Take f : X → Y . (1) =⇒ (2): Assume (1). Consider the solid commutative

diagram

{0} [0, 1] [0, 2] [0, 3] · · · R+

{0} I I2 I3 · · · Iω

{0} [0, 1] [0, 2] [0, 3] · · · R+

i1 i2 i

I×({0}↪→I) I2×({0}↪→I)

v 7→v1+v2

I3×({0}↪→I)

v 7→v1+v2 r

of spaces and continuous maps defined by in(x) = (1, 1, . . . , 1, x − n + 1) for n − 1 6
x 6 n. In each column, the bottom solid vertical arrow is a retraction to the top solid
vertical arrow. Thus the vertical arrows induced dotted continuous maps i, r between the
transfinite composites of the rows with r a retraction to i. Let F be the endofunctor

F = (X ×f ΠY )×− : U G → U G ,

cocontinuous by U G Cartesian closed and therefore preserving transfinite composites.
Then f has the RLP against F ({0} ↪→ Iω) because it has the RLP against the image of
each of the middle horizontal arrows under F . Thus f has the RLP against F ({0} ↪→ R+)
by Fr a retraction to Fi. Then there exists a dotted G -stream map ` making the diagram

X X

X ×f ΠY

X ×f ΠY × R+

X ×f ΠY Y,

1X

Lf

Lf f

πX

F ({0}↪→R+)

`

adj(1
Y
R+

)(π
Y
R+
×R+)

Γf

(1X×fΠY )×πR+

commute. The composite ` ◦ (1× πR+) gives the desired algebra structure for f .
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(2) =⇒ (1): Define Nf, ηf , natural in f , by the commutative diagram

X ×f Y I Y I

X

X Y,

Nf Y {1}↪→I

ηf

1X

Y ({1}↪→I)f

f

f

(2)

whose outer square is a pullback diagram. Thus N defines a pointed endofunctor

N : (U G )[1] → (U G )[1].

Consider the solid G -streams in the diagram

Y I Y I

ΠY Y R+ × R+

if Y min(−,1):R+→I×({1}↪→R+)

There exists a dotted G -function, unique by the right vertical arrow monic, hence a G -
stream map if by the bottom horizontal arrow an inclusion of substreams and natural in
f by unicity, making the entire diagram commute. Applying the pullback functor f ∗ to
if defines the f -component of a map N → Γ of pointed endofunctors. If (2), then f is an
N -algebra and therefore (1) [5, Proposition 2.5].

3.5. Example. For each pair (Y,X) of streams and x ∈ X, relative variants

π−p+1,q(Y,X, x) = πp,qT(Y,X, x)

= π0,qT(Ω(p,0)
? Y,Ω(p,0)

? X, {S(p,0) → {x}})

where T(Y,X, x) denotes the subcategory of TY consisting of all Moore dipaths [Example
3.2] starting at x and ending at a point in X, fit inside sequences of pointed sets below in
which functions strictly to the left of π−p,1(Y,X, x) are monoid homomorphisms:

· · · → π1,q(X, x)→ π1,q(Y, x)→ π−1,q(Y,X, x)→ π0,q(X, x)→ π0,q(Y, x)

These sequences are generally not even exact but are at least chain complexes (in the sense
that composites of successive functions are constant) due to an observation elsewhere [14,
§3.5].
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4. Cofibrations

Call a G -stream map f an h-cofibration if f has the LLP against E{0}↪→I for each G -stream
E.

4.1. Theorem. The following are equivalent for a G -stream map e : X → Y .

1. e has the LLP against all h-acyclic h-fibrations

2. e is an h-cofibration

3. There exist dotted arrow u making the square

X Y

{0} I

e

u (3)

a pullback square and a stream map f ∼ 1Y relative e such that for each G -object o,
fo(y) ∈ X(o) whenever uo(y) < 1

The proof of (1) =⇒ (2) follows from the formal fact that o{0}↪→I is an h-fibration for
all objects o in a bicomplete T -enriched model category M [25, Lemma 4.2.4 (i)]. The
proof of (2) ⇐⇒ (3) uses the established case where f is a continuous map of spaces
[31, Theorem 2], the characterization of h-cofibrations between spaces as neighborhood
deformation retracts, and mimics a classical argument [31, proof of Theorem 4]. The
proof of (3) =⇒ (1) mimics another classical argument [31, proof of Theorem 3], but also
uses the initiality of the circulation on I. The proof of (3) =⇒ (2) uses the facts that an
h-cofibration of spaces is a topological embedding [31, Theorem 1] and that the inclusion
of a mapping cylinder M(e : X → Y ) into Y × I admits a strong deformation retraction
if e is an h-cofibration of spaces [31, Lemma before Theorem 3].

Proof. Let o denote a G -object. Let T denote the forgetful functor

T : U → T .

Define Me and j by the commutative diagram whose outer square is a pushout square.

X × I Me

Y × I

X Y

e×I j

X×({0}↪→I)

e

Y×({1}↪→I)

Y×({1}↪→I)

(4)
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(1) =⇒ (2): Assume (1). Then e has the LLP against Z{0}↪→I, an h-acyclic h-fibration
[25, Lemma 4.2.4 (i)], for each G -stream Z.

(2) =⇒ (3): Assume (2). Then j admits a retraction r [5, Proposition 2.5]. Define
f, u, h : 1Y ∼ f relative e by the commutative diagrams

Y
f //

adj(r)
��

adj(h)

%%

Y = Y {1}

(Me)I
(πY j)

I
// Y I

Y {1}↪→I

OO Y
u //

adj(r)
��

I

(Me)I
(πIj)

I
// II
ζ 7→sup t∈I|t−ζ(t)|

OO

For each o and y ∈ Y (o) with uo(y) < 1,

|1− (πIj)o(ro(y, 1))| < 1 =⇒ (πIj)o(ro)(y, 1) > 0

=⇒ jo(ro(y, 1)) ∈ X(o)× I
=⇒ (πY j)o(ro(y, 1)) = fo(y) ∈ X(o)

Therefore f restricts and corestricts to a retraction, from the objectwise closed substream
Y ×u [0, 1/2] of Y , to e. Thus e can be taken to be an inclusion of a substream with
objectwise closed image.

Fix o. For each y ∈ u−1
o (0), ro(y, t) ∈ X(o) × I for all t > 0 and hence also for t = 0

by X(o) × I closed in Y (o) × I. Thus u−1
o (0) ⊂ X(o). Conversely for each x ∈ X(o),

ro(x, t) = (x, t) for all t ∈ I and hence uo(x) = 0. Thus X(o) ⊂ u−1
o (0).

Thus e = u∗({0} ↪→ I) as functions and hence as stream maps by X a substream of
Y . Hence (3).

(3) =⇒ (2): Posit u, f and h : 1X ∼ f relative e as in (3).
Note Te = T (u∗{0} ↪→ I) = (Tu)∗({0} ↪→ I) and Th : 1TY ∼ Tf relative Te

[Proposition 5.8, [20]]. The continuous map Te, having objectwise closed image by {0}
closed in I, is an objectwise Hurewicz cofibration [31, Theorem 2] and can therefore be
taken to be a objectwise inclusion of spaces [31, Theorem 1]. Then j admits a retraction
[31, Lemma before Theorem 3] and hence can also be taken to be an objectwise inclusion
of spaces.

Fix o. Let U denote an open subset of Y (o). Let V denote an open subset of I;
for each V , let V0 = V ∩ {0}. The topology of (Me)(o) has as a basis sets of the form
(Me)(o) ∩ (U × V ) by (Me)(o) a subspace of Y (o)× I. Consider sets of the form

ΓY (o)×I((Me)(o) ∩ (U × V )) (5)

ΓY (o)×V0((Y (o) ∩ U)× V0)q ΓX(o)×I((X(o) ∩ U)× V ) (6)

Γ(Me)(o)((Me)(o) ∩ (U × V )), (7)

where ΓZ(W ) denotes the graph of the preorder that the circulation on the substream
W of a stream Z assigns to W itself. Firstly, (5)=(6) [Lemma 2.9]. Secondly, (6)=(7)



A HUREWICZ MODEL STRUCTURE FOR DIRECTED TOPOLOGY 627

because: the circulation on (Me)(o) makes (7) the smallest graph of a preorder containing
(6) [Lemma 2.8 ] and (6) defines a circulation on (Me)(o). Thus (5)=(7)

Thus Me, whose objectwise circulations agree with the objectwise circulations of a
substream of Y × I on bases and hence everywhere, is a substream of Y × I. Hence h
corestricts to a retraction to j. Hence (2) [5, Proposition 2.5].

(2) =⇒ (1): Assume (2). Then j is an h-acyclic h-cofibration [5, Proposition 2.10].
For clarity, let X ′ = Me and Y ′ = Y × I. There exist retraction r to j and h : 1Y ′ ∼ jr
relative j [25, Lemma 4.2.5 (i)]. There exists u : Y ′ → I with ({0} ↪→ I)∗u = j by
(2) =⇒ (3). It suffices to show j has the LLP against all h-fibrations [25, Lemma 4.2.4
(ii)]. Let s be the continuous map I2 → I defined by

s(ε1, ε2) = min(1, ε−1
1 ε2).

Consider the left of the commutative diagrams

X ′
f ′ //

j
��

Z ′

g
��

Y ′
f ′′
//

f ′′′

==

Z ′′

Y ′
f ′r //

Y×({0}↪→I)
��

Z ′

g

��
Y ′ × I

((1Y ′×u)×I)
//

j′

11

Y ′ × I2

Y ′×s
// Y ′ × I

h
// Y ′

f ′′
// Z ′′

of solid arrows with g an h-fibration. There exists a dotted arrow j′ making the right
diagram commute by g an h-fibration. Then f ′′′ = j′(1Y ′ × u) makes the left diagram
commute.

The pullback criterion for h-cofibrations highlights a practical difference between clas-
sical homotopy and dihomotopy. Take G = ?. In the case where i is an inclusion of spaces
in nature (the circulations on X, Y both initial, the topology of Y normal), Urysohn’s
Lemma implies the existence of a pullback square (3). In the case where i describes an
inclusion of state streams in nature (there exist x ∈ X and y ∈ Y − X with x 6Y y or
y 6Y x), the triviality of 6I precludes the existence of a pullback square (3).

4.2. Example. An inclusion of streams of the form

? ↪→ S(p,q)

is not an h-cofibration if p > 0 because ∞ 6S1 x 6S1 ∞ for all x ∈ S1. Thus the
isomorphism type of πp,q(X, x) for p > 0 is generally dependent on the choice of basepoint
x, even on a path-connected stream X.

5. Model structure

The classical Hurewicz model structure on T thus extends to the following model struc-
ture on G -streams.
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5.1. Theorem. There exists a model structure on U G in which . . .

1. weak equivalences are the h-equivalences

2. fibrations are the h-fibrations

3. cofibrations are the h-cofibrations

This model structure is both proper and Cartesian monoidal. The forgetful functor U G →
T G is both a left and right Quillen maps from this model structure to an h-model structure
on G -spaces.

The proof hinges on the construction of an (h-acyclic h-cofibration, h-fibration) fac-
torization system. The argument that the left side of this system satisfies the requisite
lifting properties mimics a proof for the classical setting [1, proof of Corollary 3.12].

Proof. In the functorial factorization f = (Γf)(Lf), Γf is an algebra over the pointed
endofunctor Γ [Proposition 3.3] and hence an h-fibration [Theorem 3.4]. It suffices to show
that Lf is an h-acyclic h-cofibration. A proper model structure, Cartesian monoidal [30,
Theorem 2.7], satisfying (1), (2), and (3) would then exist [25, Theorem 4.3.1]. The last
sentence would follow from the forgetful functor U G → T G a T -enriched left and right
adjoint.

Therefore consider the diagram

X ×f ΠY × I X ×f ΠY

X × Y R+ × R+ × I X × Y R+ × R+
X×(adj(Y sπ

′
:Y R+→R+×R+×I)×sπR+×I)

where s : R+ × I → R+ is multiplication and π′ : R+ × R+ × I → R+ × I is projection
onto first and third factors. There exists a dotted G -function, a G -stream map and hence
(Lf)r ∼ 1X×Y ΠY relative Lf , by the right vertical arrow a G -stream embedding, making
the diagram commute.

Let r = f ∗domΠY . Define the G -stream map u by the commutative rectangle

X ×f ΠY I

ΠY R+

u

dom∗ΠY f

πR+

min(1,−)

Then u∗({0} ↪→ I) = Lf as G -functions and hence as G -streams maps because Lf , a
section to r, is a G -stream embedding. Thus Lf is an h-cofibration [Theorem 4.1], h-
acyclic by (Lf)r ∼ 1X×Y ΠY and r(Lf) = 1X .



A HUREWICZ MODEL STRUCTURE FOR DIRECTED TOPOLOGY 629

This h-model structure facilitates the construction of dihomotopy invariants with de-
sired formal properties. The following relative variants of πp,q illustrates this convenience.

5.2. Example. The construction πp,q fits inside an exact sequence

· · · → πp,1(X, x)→ πp,1(Y, x)→ πp,1(Y,X, x)→ πp,0(X, x)→ πp,0(Y, x)

of pointed sets, where the functions strictly to the left of πp,1(Y,X, x) are monoid ho-
momorphisms, by letting πp,q+1(Y,X, x) be πp,q applied to the h-homotopy pullback of
X ↪→ Y ← {x} based at x, or equivalently πp,0 applied to the h-homotopy pullback of

Ω
(0,q)
? (X, x) ↪→ Ω

(0,q)
? (Y, x)←↩ {S(0,q) → {x}}; concretely, πp,q(Y,X, x) = πp,q+1Π(Y,X, x),

where Π(Y,X, x) is the subcategory of ΠY consisting of all Moore paths that start at a
point in X and end at x.

5.3. Example. The construction B? [Example 2.15] induces a full and faithful embedding

M ↪→ hU [1]

from the category M of monoids and monoid homomorphisms to the homotopy category
hU [1] because it admits a retraction F 7→ π1,0(F (1)/imF (0 → 1)) [Example 2.16] by an
application of simplicial approximation for directed topology [21, Theorem 8.14]. While
groups are often studied in terms of classical homotopy invariants on their based classifying
spaces (eg. reduced group cohomology), monoids can instead be studied in terms of more
refined h-homotopy invariants on their based classifying streams. In this manner, the h-
homotopy theory of based streams provides a setting to do homological algebra for monoids
(cf. [6, 29, 18]).

6. Verification

This section suggests a general strategy for state space analysis. Translate temporal
properties of interest in terms of dihomotopy invariants like π∗,∗ [Example 2.16] that are
bigraded in a temporal degree and a spatial degree. Use long exact sequences for such
invariants [Example 5.2] that vary in the spatial degree, constructed with minimal techni-
cal fuss by means of the h-model structure, to get spatio-temporal obstructions to those
properties. Then use some sort of geometric argument to transport those obstructions
along degree comparison maps, like πp+i,q → πp,q+i, to purely temporal obstructions. Then
translate these more interpretable obstructions into concrete properties of the system. We
illustrate this strategy below for a particular class of complex systems. For convenience,
we suppress notation for the basepoint when denoting a based (pair of) stream(s).

6.1. Concurrent systems. Consider a concurrent execution of n > 1 different se-
quential processes subject to various constraints on their simultaneous access to shared
resources. For example, these sequential processes might represent cash machines access-
ing a shared bank account, parallel threads of a computer saving files in a shared hard
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drive, or different logical circuits in an asynchronous microprocessor. In order to pro-
tect those shared resources against hazardous, simultaneous access by different processes,
each sequential process is often required to obtain some sort of lock for the resource be-
fore performing some operation on the resource. The outcome of a concurrent execution
is generally sensitive to the relative speeds at which those different sequential processes
acquire and release their locks. The state stream X can be constructed as a substream
of the directed hypercube I(n,0) containing the extrema of I(n,0). Intuitively, I(n,0) − X
consists of all states that are forbidden due to locks. The substream Xk ⊂ X, of all tuples
(t1, . . . , tn) ∈ X for which at least n− k of the coordinates take values in 0, 1, represents
the states of a restricted program that only runs at most k different processes at the same
time. An execution can be identified with a dipath on X, a stream map I(1,0) → X. We
assume each sequential process can run unimpeded if each of the processses has either
not started or not completed; equivalently take X1 = (In)1. We further assume our con-
straints on parallelism are simple in the sense that I(n,0) −X is a union of open isothetic
hyperrectangles.

6.2. Serializability. One desired property of a concurrent program is serializability,
an equivalence in outputs between each possible execution and an execution that operates
each sequential process one at a time in some order. Serializability admits an intuitive
geometric interpretation. Two executions yield identical discrete outputs if their corre-
sponding dipaths are h-homotopic relative endpoints. The concurrent program is thus
serializable if and only if each extrema-preserving dipath on X is h-homotopic relative
endpoints to a dipath with image in X1. Even though X1 ↪→ X is almost never an h-
cofibration [Theorem 4.1], serializability can be shown to be equivalent to the condition
that π1,0(X/X1) = 0. This dihomotopical condition is generally more subtle than its
classical homotopical counterpart, the condition that π0,1(X/X1) = 0.

6.3. 2PL. Two-phase locking (2PL) is a protocol that requires each sequential process
in a concurrent program goes through two phases in order: in the expansion phase, each
sequential process acquires all locks that it needs; in the shrinking phase phase, each
sequential process releases all locks that it had acquired. A standard result in formal
verification is the following.

6.4. Proposition. A concurrent computer program that follows 2PL is serializable.

Proofs are interpretable in dihomotopical terms [9, 17]. 2PL imposes strong constraints
on the geometry of the forbidden region I(n,0) − X. Those constraints make it then
possible to h-homotope an extrema-preserving dipath on X so that its image lies in X1.
The construction of the requisite homotopies is delicate and combinatorial [9], requiring
suitable cubical subdivisions of the state stream X as well as dipaths on X [8, Theorem
4.1]. However, these point-set constructions can be encapsulated into a diagram chase
that illustrates the general strategy. It suffices to show that π1,0(X/Xn−1) = 0 under 2PL
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by induction on the number n of processes. Consider the commutative diagram

π0,2(S(n,0)) π0,2(S(n,0), X/Xn−1) π0,1(X/Xn−1) π0,1S(n,0)

π1,1(S(n,0)) π1,1(S(n,0), X/Xn−1) π1,0(X/Xn−1) π1,0S(n,0)

π2,0(S(n,0)) π−2,0(S(n,0), X/Xn−1) π1,0(X/Xn−1) π1,0S(n,0)

whose top and middle rows are long exact sequences induced by based h-fiber sequences
[Example 5.2], vertical arrows are degree comparison maps, and the bottom row is a
chain complex defined as an analogue of the higher rows but with Moore paths replaced
by Moore diapths in the construction [Example 3.5].

6.5. Two processes. The case n = 2 reduces to classical homotopy theory. In this
case, X is non-positively curved in a suitably directed sense [27, Definition 1.28] and
hence the arrow π1,0(X/Xn−1) → π0,1(X/Xn−1) above is injective on monoid generators
[27, Theorem 2.30]. The forbidden region S(2,0) − X/X1 = I(2,0) − X is path-connected
under 2PL [17, p3]. Alexander Duality implies H1(X/X1;Z) vanishes. The Hurewicz
Theorem implies π0,1(X/X1), the fundamental group of a bouquet of spheres and hence
free, vanishes. Hence π1,0(X/X1) vanishes.

6.6. More processes. The case n > 2 is more subtle. We have π1,0S(n,0) = 0 by
directed simplicial approximation [21, Theorem 8.14]. The middle horizontal arrow in the
middle row is surjective by exactness. It suffices to show π1,1S(n,0) → π1,1(S(n,0), X/Xn−1)
is surjective by exactness. Therefore consider an element

[γ] ∈ π1,1(S(n,0), X/Xn−1),

represented by a Moore path γ in Ω
(1,0)
? S(n,0), starting with the basepoint and ending with

a based map taking values in X/Xn−1. We can take γ to lift to a Moore path γ̃ of dipaths
on I(n,0) without loss of generality by an application of directed simplicial approximation
[21, Theorems 7.1, 8.14]. We can assume γ̃ = γ1γ

†
2 · · · γ

†
2kγ2k+1 for choices γ1, γ2, . . . , γ2k+1

of Moore dipaths [Example 3.2], where ζ† denotes the reverse of a Moore path ζ by S(1,0)

compact and I(n,0) realizable as an edge-oriented cubical complex [21, Theorem 8.14]. If
k > 0, it is possible to use the lattice structure on I(n,0) to construct a Moore dipath δ that
ends in a dipath having image in ∂I(n,0), so that γ1δ represents an element in π1,1(S(n,0)).
Without changing [γ], we can replace γ1 with γ1δ and γ2 with γ2δ. Thus without changing
the image of [γ] in the cokernel of the left arrow in the middle row, we can take k = 0 by
an inductive argument. In particular, we can take [γ] to come from π−2,0(S(n,0), X/Xn−1)
without loss of generality.

The heart of the argument is to show that [γ] further comes from π2,0S(n,0). It suffices
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to take γ̃ to pass through the forbidden region; otherwise γ̃ can be replaced with γ̃−1γ̃ and
hence a constant Moore dipath. Then codTI(n,0) γ̃ represents an execution which, beyond
a certain time, occurs in the shrinking phase for all the processors (cf. [9, Lemma 7.4])
under 2PL. It can then be shown that γ̃ itself can be replaced, without loss of generality,
by its extension to a Moore dipath whose codomain has image in ∂In by the special
geometry of the forbidden region [9, Lemma 7.4]. In other words, γ represents an element
in π2,0S(n,0).

7. Conclusion

The goal is to extend these kinds of diagram chases for more computable invariants. The
classifying stream construction [Example 2.5] extends to an endofunctor on commutative
monoid objects in Str. Iterations of the based p-fold classifying stream construction with
the q-fold classifying space construction on discrete commutative monoids represent a
bigraded monoid-valued refinement H̃p,q((X, x);M) of ordinary reduced cohomology on
a based stream (X, x), taking coefficients in a discrete commutative monoid M . Based
h-cofiber sequences in Str? then induce long exact sequences of such directed cohomology
monoids. On streams of interest in state space analysis, directed simplicial approximation
[21, Theorems 7.1, 8.14] can be used to prove an excisive property for H̃p,q. We hope such
excisive properties can greatly simplify the kinds of arguments about relative dihomotopy
demonstrated in the previous section.

8. Acknowledgements

This work was supported by AFOSR grant FA9550-16-1-0212. The authors thank the
anonymous refeee and the editor for helpful comments, corrections, and suggestions.

References

[1] Tobias Barthel and Emily Riehl. On the construction of functorial factorizations for
model categories. Algebraic & Geometric Topology, 13(2):1089–1124, 2013.

[2] Robin Belton, Robyn Brooks, Stefania Ebli, Lisbeth Fajstrup, Brittany Terese Fasy,
Catherine Ray, Nicole Sanderson, and Elizabeth Vidaurre. An obstruction to con-
tractibility of spaces of directed paths. arXiv preprint arXiv:1902.01039, 2019.

[3] Francis Borceux. Handbook of Categorical Algebra: Volume 2, Categories and Struc-
tures, volume 2. Cambridge University Press, 1994.

[4] Peter Bubenik. Context for models of concurrency. Electronic Notes in Theoretical
Computer Science, 230:3–21, 2009.



A HUREWICZ MODEL STRUCTURE FOR DIRECTED TOPOLOGY 633

[5] Michael Cole. Many homotopy categories are homotopy categories. Topology and its
Applications, 153(7):1084–1099, 2006.

[6] Alain Connes and Caterina Consani. Homological algebra in characteristic one. arXiv
preprint arXiv:1703.02325, 2017.

[7] Lisbeth Fajstrup. Dicovering Spaces. Homology, Homotopy and Applications, 5(2):1–
17, 2003.

[8] Lisbeth Fajstrup. Dipaths and Dihomotopies in a Cubical Complex. Advances in
Applied Mathematics, 35(2):188–206, 2005.

[9] Lisbeth Fajstrup, Martin Raußen, and Eric Goubault. Algebraic Topology and Con-
currency. Theoretical Computer Science, 357(1):241–278, 2006.

[10] Philippe Gaucher. A model category for the homotopy theory of concurrency. Ho-
mology, homotopy and applications, 5(1):549–599, 2003.

[11] Philippe Gaucher. Six model categories for directed homotopy. arXiv preprint
1904.04159, 2019.

[12] Eric Goubault. On directed homotopy equivalences and a notion of directed topo-
logical complexity. arXiv preprint arXiv:1709.05702, 2017.

[13] Eric Goubault, Emmanuel Haucourt, and Sanjeevi Krishnan. Covering Space Theory
for Directed Topology. Theory and Applications of Categories, 22(9):252–268, 2009.

[14] Marco Grandis. Directed homotopy theory, II. Homotopy Constructs. Theory Appl.
Categ, 10(14):369–391, 2002.

[15] Marco Grandis. Directed Homotopy Theory, I. Cahiers de Topologie et Géométrie
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