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TENSOR-RESTRICTION CATEGORIES

CHRIS HEUNEN AND JEAN-SIMON PACAUD LEMAY

Abstract. Restriction categories were established to handle maps that are partially
defined with respect to composition. Tensor topology realises that monoidal categories
have an intrinsic notion of space, and deals with objects and maps that are partially de-
fined with respect to this spatial structure. We introduce a construction that turns a firm
monoidal category into a restriction category and axiomatise the monoidal restriction
categories that arise this way, called tensor-restriction categories.

1. Introduction

The tensor product in a monoidal category encodes a notion of space. For example, in
the category of sheaves over a topological space, as well as in the category of continuous
fields of Banach spaces over a topological space, the open sets correspond precisely to
so-called subunits : subobjects of the tensor unit that are idempotent (in a sense made
precise below). Under the mild condition that the monoidal category is firm, meaning that
its subunits are closed under tensor product, we may think about the semilattice they
form as a base space underlying the monoidal category. Moreover, the tensor product
provides methods to deal with partiality, restriction, and support, with respect to this
base space. Tensor topology [Enrique Moliner et al., 2020] deals with objects and maps
that are partially defined with respect to the tensor structure.1

There is another dimension to monoidal categories than the tensor product, namely
composition of morphisms. Restriction categories [Cockett et al., 2002] were established
to deal with maps that are partially defined with respect to composition. For restriction
categories, the elegantly simple main technique is to record the domain of definition of a
morphism f : A → B in an endomorphism f : A → A. Thus each object A has a space
O(A) = {e : A→ A | e = e} underlying it, and there are methods to deal with partiality,
restriction, and support, with respect to this base space and in terms of composition.

This article brings the two notions of partiality together. We introduce a construction
that turns a firm monoidal category C into a restriction category S[C] in a functorial way.
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1Tensor topology should not be confused with monoidal topology [Hofmann et al., 2014].

635



636 CHRIS HEUNEN AND JEAN-SIMON PACAUD LEMAY

We analyse which restriction categories arise this way, and axiomatise them as tensor-
restriction categories. In the other direction, we will show that the known construction
of taking the restriction-total maps turns a tensor-restriction category X back into a firm
monoidal category T [X]. Indeed, S[T [X]] ' X and T [S[C]] ' C, and this gives an
equivalence of categories.

This result has advantages to both tensor topology and restriction category theory. On
the one hand, restriction categories are relatively more established, and tensor topology is
relatively more recent, so one may hope that techniques from restriction category theory
can usefully be applied to tensor topology. On the other hand, tensor topology gives a
new source of examples of restriction categories, and these are in a sense more naturally
dealt with as tensor-restriction categories.

Another advantage of tensor topology over restriction categories may be that monoidal
categories afford a graphical calculus [Heunen et al., 2019]. We leave to future work
the idea of adapting the graphical calculus to subunits, but make some initial remarks
in Section 6, which may lead to appealing visual methods to deal with partiality and
restriction in general. More generally, the two dimensions of composition and tensor
product are brought together in bicategories. We leave open the question of whether
our results have a common generalisation in ‘restriction bicategories’, but point out that
the orthogonal factorisation system of tensor-restriction categories (see Proposition 5.14)
strongly resembles the interchange law of bicategories; see also [Cockett et al., 2020].

We start by recalling the basics of tensor topology in Section 2. The required notions
from restriction category theory are recalled in Section 3. This section simultaneously
introduces the S-construction and analyses it to illustrate these notions. Section 4 starts
to consider categories that have both a tensor product and a restriction structure, and
Section 5 axiomatises the resulting tensor-restriction categories. We conclude, in Sec-
tion 6, by discussing possible alternative characterisations of tensor-restriction categories.
As a matter of terminology, to distinguish between similar notions from tensor topology
and restriction categories, we will consistently prefix them, so that a morphism can for
example be restriction-total or tensor-total.

2. Subunits

In this section, we recall the notion of a subunit and its properties [Enrique Moliner et
al., 2020], and draw them in the graphical calculus of monoidal categories [Heunen et al.,
2019]. For a monoidal category C, denote the monoidal product as ⊗, the monoidal unit
as I, and the coherence natural isomorphisms as λA : I ⊗ A → A, ρA : A ⊗ I → A, and
αA,B,C : A⊗ (B⊗C)→ (A⊗B)⊗C. If C is braided, write σA,B : A⊗B → B⊗A for the
braiding. We will often omit subscripts and simply write λ, ρ, α, and σ when there can
be no confusion. We will also abbreviate identity morphisms 1A : A→ A simply as A.

First recall that in any category C, a subobject of an object A is an equivalence
class of monomorphisms s : S � A, where s is equivalent to s′ : S ′ � A if there is an
isomorphism m : S → S ′ with s′ ◦ m = s. For subunits, we will use a small letter s to
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denote a representing monomorphism and a capital letter S for its domain.

2.1. Definition. [Enrique Moliner et al., 2020, Definition 2.1] A subunit in a monoidal
category C is a subobject s : S � I of the monoidal unit such that s⊗ S : S ⊗ S → S ⊗ I
is invertible. We write ISub(C) for the class of subunits in C.

Note that for a subunit s : S � I, the composite ρ ◦ (s ⊗ S) : S ⊗ S → S is also an
isomorphism, so S ∼= S ⊗ S. Furthermore since s is monic and s ⊗ S is invertible, then
S ⊗ s is also invertible. The following is a very useful property of subunits.

2.2. Lemma. If s : S � I is a subunit then λ ◦ (s⊗ S) = ρ ◦ (S ⊗ s).

Proof. Note that we have the following equality:

s ◦ λS ◦ (s⊗ S) = λI ◦ (I ⊗ s) ◦ (s⊗ S) (naturality of λ)

= λI ◦ (s⊗ s)
= ρI ◦ (s⊗ s) (coherence)

= ρI ◦ (s⊗ I) ◦ (S ⊗ s)
= s ◦ ρS ◦ (S ⊗ s) (naturality of ρ)

Since s is monic, it follows that λ ◦ (s⊗ S) = ρ ◦ (S ⊗ s).

Subunits behave smoothly in a firm monoidal category. The following definition means
that the subunits are closed under tensor product. It implicitly uses the fact that a
subunit t : T � I is completely determined by its domain T [Enrique Moliner et al.,
2020, Lemma 2.4].

2.3. Definition. [Enrique Moliner et al., 2020, Definition 2.5] A braided monoidal cat-
egory C is firm when s⊗T : S⊗T → I⊗T is a monomorphism for any subunits s : S � I
and t : T � I.

The subunits in a firm monoidal category form a semilattice; as in [Enrique Moliner
et al., 2020], we will ignore the fact that the subunits may form a proper class rather than
a set.

2.4. Proposition. [Enrique Moliner et al., 2020, Proposition 2.9] If C is a firm monoidal
category, then ISub(C) is a semilattice where the meet ∧ of subunits s : S � I and
t : T � I is (s : S � I)∧ (t : T � I) = (s ∧ t : S ⊗ T � I) where s∧ t = λ ◦ (s⊗ t), and
with top element the (equivalence class of the identity on) the monoidal unit 1: I → I.
The induced order ≤ on ISub(C) is precisely the order of subunits: s ≤ t if and only if
s = t ◦m for some m : S → T .

To ease definitions and proofs, we will freely use the graphical calculus for monoidal
categories. (We invite readers unfamiliar with string diagrams to see [Heunen et al., 2019]
for an introduction). String diagrams in this paper are read from bottom to top.
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Subunits are determined by their domain: if s, s′ : S � I are subunits, then they
represent the same subobject. Therefore we may draw a subunit S � I as:

S

In particular, the equality of Lemma 2.2 is drawn as:

SS
=

SS
(1)

We draw the inverse of λ ◦ (s⊗ S) = ρ ◦ (S ⊗ s) as:

S

SS

and so in particular:

S

S

=

S

S

=

S

S

We conclude this section with some running examples of firm monoidal categories and
their subunits; for more details and other examples see [Enrique Moliner et al., 2020,
Section 3].

2.5. Example. Let (L,∧, 1) be a semilattice. Then L can be regarded as a category
whose objects are the elements x ∈ L and where there is a unique x → y if x ≤ y.
Furthermore, L is a firm monoidal category with x⊗ y = x∧ y and unit 1. Every element
of L is a subunit, and therefore ISub(L) = L.

2.6. Example. Let X be a locale, with frame of opens O(X) and top element >, and
let Sh(X) be the category of sheaves over X. For every open U ∈ O(X), define the sheaf
χU : O(X)op → Set as follows:

χU(V ) =

{
{∗} if U ≤ V

∅ if U 6≤ V

Now Sh(X) is a firm monoidal category where the monoidal structure is given by finite
products, so the monoidal product is given by the pointwise cartesian product ⊗ = ×
and the monoidal unit is the terminal sheaf I = χ>. The subunits of Sh(X) are given by
the opens of X, that is, they are precisely the subterminal sheaves χU , so ISub(Sh(X)) ∼=
O(X).
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2.7. Example. Let R be a commutative unital ring and ModR be its category of R-
modules and R-linear morphisms between them. ModR is a firm monoidal category where
the monoidal structure is given by the standard tensor product of R-modules and so the
monoidal unit is the ring itself I = R. The subunits of ModR are the idempotent ideals
of R, that is, ideals J ⊆ R such that J = J2, where J2 = {

∑n
i=1 rir

′
i | ri, r′i ∈ J}.

2.8. Example. Recall that a Boolean ring is a commutative unital ring R such that
x2 = x for all x ∈ R. Every ideal of a boolean ring is idempotent. Therefore, for a Boolean
ring R, the subunits of ModR correspond precisely to the ideals of R. Equivalently, R is
a Boolean algebra, and ISub(ModR) consists of its order ideals.

2.9. Example. The category Set of sets and functions is a firm monoidal category under
the Cartesian product with monoidal unit a chosen singleton set I = {∗}. There are only
two subunits in Set: the empty set ∅ and the singleton {∗}.

2.10. Example. Let R be a commutative semiring, and consider the category SModR

of R-semimodules [Golan, 1999, Chapters 14 and 16]. There are always two subunits
in SModR: R itself, and the zero object 0 = {0}. Similar to the previous example, if
these are the only two subunits, then SModR is a firm monoidal category. This situation
includes the case where R is a semifield, such as the category Vectk of vector spaces over
a field k, and the category Rel of sets and relations where the semiring is that of Boolean
truth values [Heunen et al., 2019, Definition 0.5].

3. Restriction Categories from Subunits

This section introduce the S[−]-construction, that turns a firm monoidal category C into
a restriction category S[C] where the restriction structure is determined by the subunits
of C. We will recall various important notions of restriction categories, such as restriction
idempotents, restriction-total morphisms, and restriction isomorphisms, and study them
in S[C]. (For a more in-depth introduction and more details on restriction categories,
see [Cockett et al., 2002].)

We begin with the S[−] construction itself.

3.1. Definition. Let C be a firm monoidal category. Define a category S[C] as follows:

� Objects are the same as in C;

� Morphisms [s, f ] : A→ B in S[C] are equivalence classes of pairs (s, f) of a subunit
s : S � I and a morphism f : A ⊗ S → B in C, where pairs (s, f) and (s′, f ′) are
identified when s′ = s ◦m for an isomorphism m : S ′ → S and f ′ = f ◦ (A ⊗m).
We will draw morphisms graphically:

[s, f ] =
[
s, f

A S

B
]
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� Identity morphisms are [1I , ρ] = [1I ,
A

] : A→ A

� Composition of
[
s, f

A S

B
]

and
[
t, g

B T

C
]

is defined as follows:

[
t, g

B T

C
]
◦
[
s, f

A S

B
]

=

[
s ∧ t,

f

g

A S T

C ]

It is straightforward to check that S[C] is indeed a well-defined category when C is a
firm monoidal category. Our next objective is to explain how S[C] is in fact a restriction

category in such a way that the restriction of
[
s, f

A S

B
]

is determined by the subunit s.

First recall the definition of a restriction category.

3.2. Definition. [Cockett et al., 2002, Section 2.1.1] A restriction category is a category
X equipped with a choice of endomorphism f : A → A for each morphism f : A → B
satisfying:

f ◦ f = f (R1)

f ◦ g = g ◦ f if dom(f) = dom(g) (R2)

g ◦ f = g ◦ f if dom(f) = dom(g) (R3)

g ◦ f = f ◦ g ◦ f if cod(f) = dom(g) (R4)

We call f the restriction of f .

3.3. Example. The canonical example of a restriction category is Par, the category of
sets and partial functions. The restriction f : X → X of a partial function f : X → Y is

f(x) =

{
x if f(x) is defined

↑ otherwise

where ↑ means “undefined”.

For more examples of restriction categories, see [Cockett et al., 2002, Section 2.1.3].
We move to the restriction structure of S[C].

3.4. Proposition. If C is a firm monoidal category, then S[C] is a restriction category
with: [

s, f

A S

B
]

=
[
s,

A S

]
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Proof. We start with verifying (R1):[
s, f

A S

B
]
◦
[
s, f

A S

B
]

=
[
s, f

A S

B ]
◦
[
s,

A S

]
=
[
s ∧ s, f

A S

B

S

]
=

[
s, f

A

B

S

]
=
[
s, f

A S

B
]

Next, (R2):[
s, f

A S

B
]
◦
[
t, g

A T

C
]

=
[
s,

A S

]
◦
[
t,

A T

]
=
[
s ∧ t,

A S T

]
=
[
t, g

A T

C
]
◦
[
s, f

A S

B
]

For (R3):

[
t, g

A T

C
]
◦
[
s, f

A S

B
]

=
[
t, g

A T

C
]
◦
[
s,

A S

]
=
[
t ∧ s, g

A T

C

S

]
=
[
s ∧ t,

A S T

]
=
[
t, g

A T

C
]
◦
[
s, f

A S

B
]

Finally, (R4):

[
s, f

A S

B
]
◦
[
t, g

B T

C
]
◦
[
s, f

A S

B
]

=
[
s, f

A S

B
]
◦

[
s ∧ t, f

g

A S T

]
=
[
s, f

A S

]
◦
[
s ∧ t,

A S T

]
=
[
s ∧ s ∧ t, f

A S S T

]
=
[
s ∧ t, f

A S T

]
=
[
t, g

B T

C
]
◦
[
s, f

A S

B
]

So we conclude that S[C] is a restriction category.

We now apply the S[−] construction to our examples of firm monoidal categories from
the previous section and discuss their restriction structure. Most examples are extensions
of the following general principle: S[C×D] ' S[C]× S[D] for firm monoidal categories
C and D.
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3.5. Example. Regard a semilattice (L,∧, 1) as a firm monoidal category. Then S[L]
can be described as follows:

� Objects are elements x ∈ L;

� Morphisms x→ y are elements s ∈ L such that x ∧ s ≤ y;

� Identity morphisms are 1 : x→ x;

� Composition of s : x→ y and t : y → z is s ∧ t : x→ z;

� Restriction of s : x→ y is s : x→ x.

This is a typed version of the known construction of depressing downsets : the homset
S[L](b, a) is denoted as a ↓ b in [Ball et al., 1986, Section 2.7]. If L is an implicative
semilattice, also called a Heyting semilattice, that is, if L is closed as a monoidal category,
then S[L](a, b) = ↓(a( b). Note that S[L] is enriched over posets. In fact, every homset
again has finite meets, but may not have a top element. If L is pro-Heyting [Ball et al.,
1986, Definition 3.1], that is if s < t ∈ L implies that the subset {r ∈ L | r∧ t ≤ s} equals
the set of upper bounds of the set of lower bounds of itself, then L is implicative if and
only if every homset has a top element [Ball et al., 1986, Observation 3.2]. In this sense,
the S[L] construction “approximates” the construction of the free Heyting algebra on a
semilattice L.

3.6. Example. Let X be a locale. If F,G ∈ Sh(X) are sheaves, then a morphism F → G
in S[Sh(X)] consists of an open U ∈ O(X) and a natural transformation α : F ×χU ⇒ G.
Now let V ∈ O(X) be an open such that V 6⊆ U . Then (F × χU)(V ) = ∅, and so αV can
only be the empty function ∅ → G(V ). In other words, α is completely determined by
α|U : F |U ⇒ G|U , where we write F |U : O(U)op → Set for the restriction of the sheaf F
to U given by F |U(V ) = F (V ) for U ≤ V . Therefore, S[Sh(X)] can be described as:

� Objects are sheaves F : O(X)op → Set;

� Morphisms [U, α] : F → G are pairs of an open U ∈ O(X) and a natural transfor-
mation α : F |U → G|U ;

� Identity morphisms are the pairs [X, 1 : F → F ] : F → F (since F = F |X);

� Composition of [U, α] : F → G and [V, β] : G→ H is [V, β]◦[U, α] = [U∧V, β|U◦α|V ],
where we write α|V for the restriction of α : F |U ⇒ G|U to F |U∧V ⇒ G|U∧V ;

� Restriction of [U, α] : F → G is [U, α] = [U, F |U ].

In short: for categories of sheaves Sh(X), the S[−]-construction makes the morphisms
partial in recording an open domain of definition.
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3.7. Example. Let R be a unital commutative ring. Then S[ModR] can be described
as follows:

� Objects are R-modules A;

� Morphisms [I, f ] : A → B are pairs of an idempotent ideal I and an R-linear map
f : A⊗R I → B;

� Identity morphisms are the pairs [R,A⊗R R ' A];

� Composition of [I, f ] and [J, g] is [IJ, g ◦ (f ⊗R J) : A⊗R I ⊗R J → C];

� Restriction of [I, f ] : A→ B is [I, f ] = [I, ρ : A⊗R I → A] with ρ(a⊗ i) = ai.

Thus, for categories of modules ModR, the S[−]-construction makes the morphisms par-
tial in recording an ideal in the domain where a morphism acts on. This is closely related
to the idea of localisation in algebra. For example, if the ring R is semisimple, then any
ideal is generated by an idempotent element, so ISub(ModR) is the Boolean algebra of
idempotent elements. Morphisms in S[ModR] are thus pairs of an idempotent e2 = e ∈ R
and a morphism f : eA→ B.

3.8. Example. The previous two examples are related. For example, if R is a Boolean
ring, then ModR is equivalent to the category of sheaves of Z2-vector spaces over the Stone
space of R by Pierce’s representation theorem [Johnstone, 1982, Chapter V.2]. Ideals of
the Boolean ring R correspond to open sets of its Stone space.

3.9. Example. Recall that in Set, the empty set ∅ is an initial object and so for every
set X there is a unique function ∅ : ∅ → X, called the empty function. On the other
hand, the only function whose codomain is ∅ is the identity function 1∅. Also X × ∅ = ∅
for any set X. So S[Set] is described as follows:

� Objects are sets X;

� Morphisms include the usual functions [1, f ] : X → Y as well as an extra map
[∅,∅] : X → Y , so S[Set](X, Y ) ' Set(X, Y ) + 1;

� Identity morphisms are the pairs [1, X × {∗} ' X];

� Composition of [s, f ] and [t, g] can be described in the following three cases: if
s = t = 1, then [1, g]◦[1, f ] = [1, g◦f ]; if s = ∅, then f = ∅ and [t, g]◦[∅,∅] = [∅,∅Y ];
if t = ∅, then g = ∅ and [∅,∅] ◦ [s, f ] = [0, 0].

� Restriction of [1, f ] is the identity [1, f ] = [1, X ×{∗} ' X], while the restriction of
[∅,∅] is itself [∅,∅] = [∅,∅].



644 CHRIS HEUNEN AND JEAN-SIMON PACAUD LEMAY

Recall that a category C is said to have zero morphisms if there is a family of morphisms
z : A→ B (for every pair of objects) which are absorbing in the sense that z ◦ f = z and
f ◦ z = z. When they exist, zero morphisms are unique. Now S[Set] has zero morphisms
[∅,∅]. In fact, S[Set] is the free category with zero morphisms over Set with respect to the
functor U : Set→ S[Set] defined on objects as U(A) = A and on maps as U(f) = [1, f ].
So given a category C with zero morphisms z and a functor F : Set→ C, there exists a
unique functor G : S[Set] → C which preserves zero morphisms, that is, G(z) = [∅,∅],
and satisfying G ◦ U = F . Explicitly, G is defined on objects as G(X) = F (X) and on
morphisms as G([1, f ]) = F (f) and G([∅,∅]) = z. While ∅ is an initial object in Set, ∅
is no longer initial in S[Set]; it is a terminal object instead.

3.10. Example. Let R be a commutative semiring, such that only subunits in SModR

are R and 0. Then similar to the previous example, S[SModR] can be described as the free
category with zero morphisms over SModR where the zero morphisms are [0, 0]. However,
while SModR already had zero morphisms 0 : A → B, the morphisms [1, 0] : A → B
in S[SModR] are no longer zero morphisms. Similarly, while 0 was a zero object in
SModR, this is no longer the case in S[SModR]; instead 0 becomes a restriction-terminal
object [Cockett et al., 2011, Definition 2.16].

3.11. Remark. The S[−]-construction resembles the construction of the free restriction
category on a fibration of semilattices [Cockett et al., 2006]. In our case, the semilattice
over each object is the same, namely ISub(C). But S[C] does not fit neatly in that
framework, for it is not what is called unitary: it is not the case that [s, f ] = [t, g] as soon
as s = t and f ⊗ r = g ⊗ r for some r.

We return to studying the restriction structure of the S[−]-construction, by taking a
closer look at various classes of maps that are important in restriction category theory.

3.12. Definition. [Cockett et al., 2002, Section 2.1.1] A restriction idempotent is an
endomorphism e in a restriction category with e = e. Write O(A) for the set of all
restriction idempotents of type A→ A.

3.13. Example. In Par, the restriction idempotents of a set X correspond precisely to its
subsets U ⊆ X. Indeed, for every subset U ⊆ X, define the partial function χU : X → X
as follows:

χU(x) =

{
x if x ∈ U
undefined if x /∈ U

Then clearly χU = χU . Conversly, given a restriction idempotent e : X → X, consider the
subset Ue = {x | e(x) = x} ⊆ X. Then χUe = e because e = e, and so O(X) is isomorphic
to the powerset P(X) of X.

Note that f is a restriction idempotent for any morphism f [Cockett et al., 2002,
Lemma 2.1]. Therefore, e is a restriction idempotent if and only if e = f for some
morphism f . Furthermore, O(A) is a semilattice where e∧ e′ = e ◦ e′ and the top element
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is the identity morphism 1A : A→ A [Cockett et al., 2012, Section 2.1]. So in particular,
e ≤ e′ if e ◦ e′ = e. In the S[−]-construction, restriction idempotents correspond precisely
to the subunits of the base category.

3.14. Proposition. Let C be a firm monoidal category. The restriction idempotents in

S[C] are precisely the morphisms of the form
[
s,

A S

]
. This gives a semilattice isomor-

phism O(A) ∼= ISub(C).

Proof. As in any restriction category,
[
s, f

A S

A ]
∈ O(A) if and only if

[
s, f

A S

A
]

=
[
t, g

A T

B
]

for some
[
t, g

A T

B ]
. Thus

[
s,

A S

]
7→ s is a bijection φA : O(A) → ISub(C). It is clear

that φA preserves the top element. It remains to show that it preserves meets:

φA

([
s,

A S

]
∧
[
t,

A T

])
= φA

([
s,

A S

]
◦
[
t,

A T

])
= φA

([
s ∧ t, A S T

])
=
(
s ∧ t : S ⊗ T � I

)
=
(
s : S � I

)
∧
(
t : T � I

)
= φA

([
s,

A S

])
∧ φA

([
t,

A T

])
Hence O(A) is isomorphic to ISub(C) as semilattices.

An important subclass of morphisms of a restriction category is its class of restriction-
total morphisms. Intuitively, these are the morphisms which are “totally defined”.

3.15. Definition. [Cockett et al., 2002, Section 2.1.2] In a restriction category X, a
restriction-total morphism is a morphism f : A → B such that f = 1A. The subcategory
of all restriction-total morphisms of X is denoted by T [X].

3.16. Example. In Par, the restriction-total morphism are precisely the total functions
in the classical sense. So T [Par] = Set.

For S[C], its subcategory of total morphisms is precisely the base category C.

3.17. Proposition. Let C be a firm monoidal category. A morphism in S[C] is restric-

tion-total if and only if it is of the form
[
1, f

A

B ]
for some morphism f : A → B in C.

This induces an isomorphism of categories C ∼= T [S[C]].
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Proof. If
[
s, f

A S

B ]
is a restriction-total morphism, then:

[
s,

A S

]
=
[
s, f

A S

B ]
= [1, A ]

Therefore s = 1, and the restriction-total morphisms are of the form claimed. It is
straightforward that this induces an isomorphism of categories C ∼= T [S[C]].

The last class of morphisms that we will study are restriction isomorphisms.

3.18. Definition. In a restriction category X, a restriction isomorphism is a morphism
f : A→ B which has a map f ◦ : B → A, called its restriction inverse, such that f ◦ ◦f = f
and f ◦ f ◦ = f ◦.

If a restriction inverse exists, it is unique.

3.19. Example. In Par, define the domain and image of f : X → Y as usual:

dom(f) = {x | f(x) = x} ⊆ X im(f) = {y | ∃x ∈ X : f(x) = y} ⊆ Y

Then f is a restriction isomorphism if and only if the canonical total function dom(f)→
im(f) given by x 7→ f(x) is a bijection.

Restriction isomorphisms in S[C] correspond to isomorphisms of a certain type in C.

3.20. Proposition. Let C be a firm monoidal category. A morphism
[
s, f

A S

B ]
in S[C]

is a restriction isomorphism if and only if

f

B

A S

S

(2)

is an isomorphism in C.

Proof. By definition,
[
t, g

B T

A ]
is a restriction inverse of

[
s, f

A S

B ]
if and only

[
s, f

A S

B ]
=
[
t, g

B T

A ]
◦
[
s, f

A S

B ]
[
t, g

B T

A ]
=
[
s, f

A S

B ]
◦
[
t, g

B T

A ]
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In S[C], this means t = s and:

f

g

SA

B

A

=

A

A

S

g

f

SB

A

B

=

B

B

S

(∗)

We will show that this is the case if and only if (2) is an isomorphism, with inverse:

g

A

B S

S

(3)

If (3) inverts (2), then:

f

g

SA

B

A

= f

g

SA

B

A

=

A

A

S

Similarly with the composition in the other order. Therefore (∗) holds.
Conversely, if (∗) holds then:

f

g

SA

B

A S

= f

g

SA

B

A S

=

A

A

S

S

=

A

A

S

S

The composition in the other order is similar, showing that (2) is invertible.

Recall that an inverse category is a restriction category where every morphism has
a restriction inverse [Cockett et al., 2002, 2.3.2]. The previous proposition immediately
gives us a characterisation of when S[C] (and hence, jumping ahead slightly, any tensor-
restriction category) is an inverse category. Later on, we will show that this gives an
instance of the S-construction after Corollary 5.19 below.
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3.21. Corollary. Let C be a firm monoidal category. Then S[C] is an inverse category
if and only if C is a groupoid.

Proof. By definition, S[C] is an inverse category if and only if every morphism is a
restriction isomorphism. By Proposition 3.20 this happens exactly when any map of the
form (2) is an isomorphism in C for every subunit s. Taking s = 1 implies that C is a
groupoid. Conversely, if C is a groupoid, then ISub(C) = {1}, and hence (2) is invertible.

We finish this section by exhibiting an important aspect of the S[−]-construction:
it produces an orthogonal factorisation system, that intuitively separates the restriction
aspect from the base category aspect.

3.22. Proposition. If C is a firm monoidal category, then S[C] has an orthogonal
factorisation system given by:

E =
{

restriction isomorphisms of the form
[
s, f

A S

B S ]}
M =

{
restriction-total morphisms

[
1, f

A

B ]}
Proof. Clearly both M and E are closed under composition and contain all isomor-

phisms. Furthermore, any morphism
[
s, f

A S

B ]
factors as the restriction isomorphism

[s,
A S

] : A→ A⊗S in E followed by the restriction-total morphism
[
1, f

A S

B ]
: A⊗S → B

in M.

A B

A⊗ S

[
s, f

A S

B
]

E 3 [s, A S ]
[
1, f

A S

B ]
∈M

We will show that any commuting square as below has a unique diagonal fill-in:

A B ⊗ S

C D

[
s, f

A S

B ]
∈ E

[t, h][r, g]

[1I , k] ∈M

[t,m]
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That the outer square commutes means that r = s ∧ t and:

h

f

D

A S T

=
g

k

D

A S T

The fact that
[
s, f

A S

B S
]
∈ E means that it has a restriction inverse

[
s, f◦

B S

A

S

]
:

f

f◦

SB

SB

=

B

B

S

S

f◦

f

SA

A

=

A

A

S

Define m : B ⊗ S ⊗ T → C as follows:

m

B T

C

S

=

g

f◦

C

TSB

Then both triangles commute by Lemma 2.2:

m

f

C

A S T

= g

C

A S T

m

k

D

B S T

= h

D

B S T

Clearly
[
t, m

B T

C

S

]
is the unique map achieving this.

4. Monoidal Restriction Categories

In this section, we will show that S[−]-construction results in a firm monoidal category
whose subunits are precisely those of the base category. Furthermore, we will also explain
how this monoidal structure is compatible with the restriction structure, which we call a
monoidal restriction category.
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4.1. Proposition. If C is a firm monoidal category, then S[C] is a firm monoidal
category with monoidal unit I and the monoidal product ⊗ defined on objects as A ⊗ B
and on morphisms as follows:[

s, f

A S

B
]
⊗
[
t, g

C T

D
]

=

[
s ∧ t, f g

A C S T

B D
]

Subunits in S[C] are exactly the maps
[
1,

S

]
for subunits s : S � I in C. Hence

ISub(C) ∼= ISub(S[C]) as semilattices.

Proof. The coherence isomorphisms α, ρ, λ, and σ of C induce coherence isomorphisms
[1I , α], [1I , ρ], [1I , λ], and [1I , σ] for S[C], in such a way that the triangle, pentagon, and
hexagon equations are satisfied. In particular, we note that the interchange law comes
down to: s ∧ s′ ∧ t ∧ t′, f

f ′

g

g′

T T ′S S′

 =

s ∧ t ∧ s′ ∧ t′, f

f ′

g

g′

T T ′S′S


It is clear that any subunit s in C induces a subunit

[
1,

S

]
in S[C]. Conversely, because

monomorphisms are total [Cockett et al., 2002, Lemma 2.2.i], a subunit in S[C] is of

the form
[
1, f

A

]
. Since by Proposition 3.17, we have the isomorphism C ∼= T [S[C]], it

follows that f◦ρ−1 must also be monic in C, and that f⊗A⊗I is invertible in C. Therefore
f ◦ ρ−1 represents a subunit A → I in C. So we conclude that ISub(C) ∼= ISub(S[C]).

Finally, if
[
1,

S

]
and

[
1,

T

]
are subunits in S[C], then by construction so is their tensor

product. Hence S[C] is firm.

The monoidal structure of S[C] is compatible with the restriction structure.

4.2. Definition. A monoidal restriction category is a monoidal category X that is also
a restriction category where:

f ⊗ g = f ⊗ g
A firm restriction category is a monoidal restriction category whose underlying monoidal
category is firm.

Because isomorphisms are always total [Cockett et al., 2002, Lemma 2.2.i], the coher-
ence isomorphisms in a monoidal restriction category are always total.

4.3. Example. Every cartesian restriction category [Cockett et al., 2011, Definition 2.16]
is a monoidal restriction category, just as every cartesian category is a monoidal category.
So in particular, Par is a monoidal restriction category with monoidal structure given by
the cartesian product of sets, and so f × g = f × g. Furthermore, Par is a firm monoidal
restriction category where the subunits are (up to isomorphism) the singleton {∗} and
the empty set ∅.
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4.4. Corollary. If C is a firm monoidal category, then S[C] is a firm restriction cate-
gory. Furthermore, the isomorphism C ' T [S[C]] of Proposition 3.17 is an isomorphism
of firm monoidal categories.

Proof. It is clear from the monoidal product defined in Propostion 4.1 that:[
s, f

A S

B
]
⊗
[
t, g

C T

D
]

=
[
s, f

A S

B
]
⊗
[
t, g

C T

D
]

So S[C] is a firm restriction category. It is clear that the isomorphism C → T [S[C]] of
Propostion 4.1 is (strong) monoidal and preserves subunits.

We conclude this section by observing that having dual objects or being closed in
the S[−]-construction is closely related to the same properties of the base category, and
vice-versa. We denote dual objects in a monoidal category C as A a A∗ (see [Heunen et
al., 2019, Chapter 3] for the full definition), and if C is closed, we write ( for internal
homs.

4.5. Lemma. A a A∗ is a duality in C if and only if A a A∗ is a duality in S[C].

Proof. The functor C→ S[C] given by A 7→ A on objects and f 7→ [1, f ] on morphisms
is (strong) monoidal, and monoidal functors preserve dual objects [Heunen et al., 2019,
Theorem 3.14]. So if A a A∗ in C, then also A a A∗ in S[C]. Conversely, suppose that
A a A∗ in S[C]. Then there are [s, η] : I → A∗ ⊗ A and [t, ε] : A ⊗ A∗ → I in S[C]
satisfying:

[1, A] =
[
t, ε

A∗A TA

A ]
◦
[
s, η

A∗ A

SA

A ]
=

[
s ∧ t,

ε

η

A

A∗

S

A

T

]

But then s = t = 1, and η and ε witness A a A∗ in C.

4.6. Lemma. A firm monoidal category C is closed if and only if S[C] is closed.

Proof. Suppose C is closed. If ε : (A ( B) ⊗ A → B is the counit of the adjunction
(−)⊗ A a A( (−) in C, then

S[C](A,B( C)→ S[C](A⊗B,C)[
s, f

A S

B
]
7→

[
s,

ε

f

B ( C

C

A SB

]

is a well-defined natural bijection. Hence S[C] is closed. Conversely, suppose that S[C]
is closed. Then there are morphisms:

[s, ηB] : B → A( (B ⊗ A) [t, εB] : (A( B)⊗ A→ B

satisfying: [t, εA⊗B] ◦ [s, ηB ⊗ A] = [1I , A⊗B]. But then s ∧ t = 1 so s = t = 1, and so η
and ε are the unit and counit of an adjunction (−)⊗ A a A( (−) in C.



652 CHRIS HEUNEN AND JEAN-SIMON PACAUD LEMAY

5. Tensor-restriction categories

The goal of this section is to axiomatise the restriction categories of the form S[C] for
some firm monoidal category C. We call such restriction categories tensor-restriction
categories. Explicitly, we will show that X ' S[T [X]] for a tensor-restriction category
X. In fact, the category of firm monoidal categories is equivalent to the category of
tensor-restriction categories.

A key concept for this section is the notion of restriction in the sense of [Enrique
Moliner et al., 2020, Section 4], which can be defined in arbitrary monoidal categories.

5.1. Definition. [Enrique Moliner et al., 2020, Definition 4.1] In a monoidal category
C, a morphism f : A→ B tensor-restricts to a subunit s : S � I if it factors via B ⊗ s
in the sense that the following diagram commutes:

A B

B ⊗ S B ⊗ I

f

B ⊗ s

ρ

If a morphism f : A → B restricts to s, then the map A → B ⊗ S is not necessarily
unique. A special case is when identity morphisms restrict to subunits.

5.2. Proposition. [Enrique Moliner et al., 2020, Proposition 4.2] An identity morphism
1A : A→ A in a monoidal category restricts to a subunit s : S � I if and only if ρ◦(A⊗s)
is an isomorphism A⊗ S ' A.

It follows from that, if the identity morphism on A restricts to a subunit s, then any
morphism f : A→ B also restricts to s. The converse says that f is totally defined in the
tensor topology sense.

5.3. Definition. A morphism f : A → B in a monoidal category is tensor-total when
the identity morphism on A tensor-restricts to a subunit s as soon as f tensor-restricts
to s.

Equivalently, f : A → B is tensor-total when f and A have the same support (for
any support datum) [Enrique Moliner et al., 2020, Section 6]. Furthermore, it follows
from Proposition 5.2 that if f : A → B is tensor-total and tensor-restricts to a subunit
s : S � I, then A⊗ S ' A. The S[−]-construction has a similar property.

5.4. Lemma. Let C be a firm monoidal category. If
[
s, f

A S

B ]
is tensor-total in S[C],

then A ' A⊗ S in C.
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Proof. Any morphism
[
s, f

A S

B ]
in S[C] restricts to the subunit

[
1,

S

]
:

A B

B ⊗ S

[
s, f

A S

B
]

[
s, f

A S

B S

] [
1I ,

B S

]

So if
[
s, f

A S

B ]
is tensor-total, then A restricts to

[
1I ,

S

]
too. Therefore A⊗S ∼= A in S[C]

by Proposition 5.2. However, since isomorphisms are total, and because C ' T [S[C]] by
Proposition 4.1, it follows that A ' A⊗ S in C.

The next key ingredient in characterising the S[−]-construction is points (in the sense
of morphisms I → X) that are restriction isomorphisms whose restriction inverse is
tensor-total.

5.5. Definition. A tensor-restriction point in a firm restriction category X is a mor-
phism d : I → X with a restriction inverse d◦ : X → I such that d◦ is tensor-total.

In the S[−]-construction, tensor-restriction points are characterised by the subunits
of the base category.

5.6. Lemma. Let C be a firm category. The tensor-restriction points in S[C] are precisely

the morphisms of the form [s,
S

] : I → S for a subunit s : S � I in C.

Proof. We will prove that tensor-total restriction isomorphisms into I are precisely the

morphisms in S[C] of the form
[
s,

S S

]
. Because this has [s, S ] : I → S as restriction

inverse, and restriction inverses are unique, the claim then follows.

It is clear that
[
s,

S S

]
: S → I is a restriction isomorphism from Proposition 3.20.

To see that it is tensor-total: if it restricts to
[
1I ,

T

]
, then s ∧ s = t ◦ m for some

m : S ⊗ S → T , whence s = t ◦m ◦ (S ⊗ s)−1, and so s ≤ t.

For the converse, suppose that
[
s, f

A S

B ]
: A → I is a tensor-total restriction isomor-

phism. Then A ' A⊗S by Lemma 5.4, and A⊗S ' S by Proposition 3.20, giving A ' S
by the following isomorphism m : A→ S:

f

(A⊗ s)−1
A

S

A
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Define a = s ◦m : A� I. Lemma 2.2 now gives:

f ⊗ f =

f

f

SAAS

It follows that
[
s, f

A S

B ]
= [a, f ◦ (A⊗m)] = [a, a ∧ a].

The last preparation we need before we can define a tensor-restriction category is to
recall the notion of scalar multiplication in a monoidal category [Heunen et al., 2019,
Section 2.1.3]. In a monoidal category C, given a scalar s : I → I and a morphism
f : A→ B, define the (left) scalar multiplication s • f : A→ B as the composite s • f =
λB ◦ (s⊗ f) ◦ λ−1B .

Now we can axiomatise the types of restriction categories we are interested in, and
show that they characterise the S[−]-construction.

5.7. Definition. A tensor-restriction category is a firm restriction category where:

(TR1) any restriction idempotent scalar e = e : I → I factors through a subunit s : S � I
via a tensor-restriction point d : I → S:

I I

S

e = e

d s

(TR2) any subunit s : S � I has a tensor-restriction point d : I → S as restriction section
in the sense that the following diagram commutes:

I I

S
s

d

d

(TR3) any restriction idempotent f = f : X → X equals f = e •X for a unique restriction
idempotent scalar e = e : I → I;

(TR4) any tensor-total morphism f : X → Y equals f = dfe ◦ f for a unique restriction-
total morphism dfe : X → Y ;



TENSOR-RESTRICTION CATEGORIES 655

(TR5) tensor-restriction points d : I → X have the left-lifting property against subunits
s : S � I: if s ◦ f = g ◦ d then f = m ◦ d and g = s ◦m;

I X

S I

d

gf

s

m (4)

(TR6) if d : I → X and d′ : I → X ′ are tensor-restriction points, then so is their tensor
product (d⊗ d′) ◦ λ−1 : I → X ⊗X ′;

(TR7) tensor-restriction points are determined by their codomain: if d, d′ : I → X are
tensor-restriction points, then d′ = d ◦m for a unique scalar m : I → I.

The seven axioms (TR1)–(TR7) essentially demand that a notion from restriction
category theory agrees with the corresponding notion from tensor topology.

5.8. Proposition. If C is a firm monoidal category, S[C] is a tensor-restriction cate-
gory.

Proof. The previous section already showed that S[C] is a firm restriction category. It
remains to verify (TR1)–(TR7).

For (TR1), recall that by Proposition 3.14, restriction idempotent scalars in S[C] are
of the form [s, ] for a subunit s : S � I in C. But this morphism factors through the
subunit [1I , s] as follows:

I I

S

[s,
S

]

[s, S ] [1I , S
]

Axiom (TR2) holds similarly.
For (TR3), recall by Proposition 3.14 that restriction idempotents on A in S[C] are

of the form
[
s, A S

]
for a subunit s in C. But this is precisely the scalar multiplication

of the identity on A with the restriction idempotent scalar [s, ].

We turn to (TR4). If
[
s, f

A S

B ]
is tensor-total in S[C], then [1I ,

A S
] has an inverse[

1I , g
A S

A

]
by Lemma 5.4 and [Enrique Moliner et al., 2020, Proposition 4.2]. Define:

⌈[
s, f

A S

B ]⌉
= [1I , f ◦ g] : A→ B
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Then
[
s, f

A S

B ]
=
⌈[
s, f

A S

B ]⌉
◦
[
s, f

A S

B ]
, and

⌈[
s, f

A S

B ]⌉
is the unique such map: if[

s, f

A S

B ]
= [1I , h] ◦

[
s, f

A S

B ]
, then f = h⊗ s, and so h = f ◦ g.

To see (TR5), notice that (4) in S[C] becomes:

I R

S I

[r, 1R] [
t, g

B T

C ]
[r ∧ t, f ]

[1I , s]

[t,m]

There is indeed a unique diagonal fill-in, and it is m = f .
Finally, (TR6) and (TR7) follow from Corollary 5.6.

We will now show that every tensor-restriction category X is in fact of the form S[C] for
some firm monoidal category C. To explain this, let us investigate some basic properties
of tensor-restriction categories, specifically regarding its restriction idempotents. Since
ISub(C) ∼= ISub(S[C]) in S[C] and O(A) ∼= ISub(C) for every object A, we have O(A) ∼=
O(I) ∼= ISub(S[C]). This holds generally: if X is a tensor restriction category then
O(X) ∼= O(I) ∼= ISub(X). To set the scene, we first consider scalars.

5.9. Lemma. If X is a monoidal restriction category, then the semilattice O(I) is a
retract of the scalar monoid X(I, I).

O(I) X(I, I)

(−)
1

Proof. Recall that the scalars X(I, I) of a monoidal category are always a commutative
monoid under composition s◦ t, which equals scalar multiplication s• t = λ◦ (s⊗ t)◦λ−1;
see [Heunen et al., 2019, Section 2.1]. Now:

s ◦ t = s • t (by [Heunen et al., 2019, Lemma 2.6(b)])

= λ ◦ (s⊗ t) ◦ λ−1 (because f ⊗ g = f ⊗ g)

= λ ◦ λ ◦ (s⊗ t) ◦ λ−1 (λ is total)

= λ ◦ λ ◦ (s⊗ t) ◦ λ−1 (by [Cockett et al., 2002, Lemma 2.1(iii)])

= λ ◦ λ−1 ◦ λ ◦ (s⊗ t) ◦ λ−1 (R4)

= λ ◦ (s⊗ t) ◦ λ−1 (λ is iso)

= s ◦ t (by [Heunen et al., 2019, Lemma 2.6(b)])

It follows that restriction is a monoid homomorphism X(I, I) → O(I). Finally, if e ∈
O(I), then by definition e = e, making O(I) a retract of X(I, I), where we regard a
semilattice as a commutative idempotent monoid.
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5.10. Lemma. If X is a monoidal restriction category, then there is a semilattice mor-
phism (−) •X : O(I)→ O(X) for any object X.

Proof. It is a monoid homomorphism by [Heunen et al., 2019, Lemma 2.6].

Next we use (TR1) to construct a semilattice morphism O(I)→ ISub(X).

5.11. Lemma. If X is a firm restriction category satisfying (TR1), (TR5), and (TR6),
then there is a semilattice morphism O(I)→ ISub(X).

Proof. If e = e : I → I, axiom (TR1) provides a least subunit s through which e factors.
Say e = s ◦ d; because s is monic, d is unique. If s and s′ are both least subunits through
which e factors, then s ≤ s′ and s′ ≤ s so s′ = s. Thus also s is unique, and we may call
these morphisms se and de. Hence e 7→ se is a well-defined function O(I) → ISub(X).
This function preserves top elements, s1 = 1. Indeed, 1I is the least subunit through
which 1I factors: if 1I = s′ ◦ d′, then 1I ≤ s′.

I I

I

S ′

1

1 1

d′

d′ s′

To show that the function also preserves meets, first notice that de⊗ df : I ⊗ I → Se⊗Sf

is a restriction isomorphism, with restriction inverse (e◦se)⊗(f ◦sf ). Now if t◦m = e◦se
for a subunit t and some m : Se → T , then t ◦m ◦ de = e ◦ se ◦ de = e ◦ e = e and so se ≤ t
by (TR1). Therefore e ◦ se is tensor-total. Similarly f ◦ sf is tensor-total. By (TR6) the
tensor product de ⊗ df is a tensor-restriction point.

I I ⊗ I Se ⊗ Sf

Se∧f I

' de ⊗ df

se ∧ sfde∧f

se∧f

Now apply (TR5) to find se ∧ sf = se∧f . So we conclude that we have a semilattice
morphism O(I)→ ISub(X).

Using (TR2) we can construct a semilattice morphism ISub(X) → O(I) in the other
direction.

5.12. Lemma. If X is a firm restriction category satisfying (TR2), (TR6), and (TR7),
then there is a semilattice morphism ISub(X)→ O(I).
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Proof. If s is a subunit, axiom (TR2) provides a tensor-restriction point d : I → S such
that s ◦ d = d = s ◦ d. By (TR7) this morphism d is unique up to scalar, and we may
call it ds. Thus s 7→ es = s ◦ ds is a well-defined function ISub(X)→ O(I). This function
preserves top elements, e1 = 1I , as 1I is a tensor-restriction-point as well as the unique
restriction-section of 1I : if 1I ◦d′ = d′, then d′ = 1I ◦d′. This function also preserves meets:
if r and s are subunits, then d = (dr⊗ds)◦λ−1 : I → R⊗S is a tensor-restriction point by
(TR6), and is a restriction-section of r∧s because (r∧s)◦d = (r◦dr)◦(s◦ds) = dr•ds = d.
We conclude there is a semilattice morphism ISub(X)→ O(I). Hence er ∧ es = er∧s.

In fact, in the presence of (TR5), the semilattice morphisms in the previous two
lemmas are each other’s inverse.

5.13. Proposition. If X is a firm restriction category satisfying (TR1), (TR2), (TR5),
(TR6), and (TR7), then there is a semilattice isomorphism O(I) ' ISub(X).

Proof. We will prove that the functions of Lemmas 5.11 and 5.12 are inverses. Let s be
a subunit, and e = e : I → I be a restriction idempotent scalar.

On the one hand, (TR1) and (TR5) guarantee that ses = s.

I I

Sds

S

sds

dds sds = ses
ds

The dashed morphism m exists by (TR5) and is unique because s is monic. But there is
also a morphism n in the opposite direction. Because m ◦ n is unique by (TR5) it has to
be the identity, and similarly for n ◦m. Hence m is an isomorphism, and ses = s.

On the other hand, de and dse have the same codomain.

I I

I

Se

sede

dse = ese
e = e

dse

Hence the dashed morphism exists by (TR7), and similarly there is a unique morphism
in the opposite direction, showing that ese = e.
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It follows from (TR3) that O(I) ' ISub(X) for any object X in a tensor-restriction
category.

From now on, for a restriction idempotent scalar e : I → I, write se for the least
subunit through which e factors, and de for the (unique) mediating map.

I I

Se

e = e

de se

By (TR3) and Lemma 5.10, the notion of restriction from the restriction category agrees
with the notion of restriction from the firm monoidal category. Write ef for the restriction
idempotent scalar satisfying f = ef •dom(f), and sf and df for the corresponding subunit
and mediating map as above. Combining (TR1) and (TR3) then factors any morphism
as follows:

X

X ⊗ I

X ⊗ Sf

Y

Y ⊗ I

Y ⊗ Sf

f

f ⊗ ef

f ⊗ Sf

λ−1 λ

X ⊗ df Y ⊗ sf

(TR4) says that the notion of totality from the restriction category agrees with the
notion of totality from the firm monoidal category as in Definition 5.3, and that we may
replace the bottom map in the previous diagram by a total one.

5.14. Proposition. Any morphism f : X → Y in a tensor-restriction category factors
via the restriction-total morphism T (f) = ρ ◦ (Y ⊗ sf ) ◦ df ⊗ Sfe : X ⊗ Sf → Y .

Proof. Suppose that f⊗Sf : X⊗Sf → Y⊗Sf restricts to a subunit r, say via g : X⊗Sf →
Y ⊗ Sf ⊗R. Then:

f = ρ ◦ (Y ⊗ (sf ∧ r)) ◦ g ◦ (X ⊗ df ) ◦ ρ−1

= (Y ⊗ (sf ∧ r)) ◦ g ◦ (X ⊗ df ) ◦ ρ−1 (by [Cockett et al., 2002, 2.1.iii,vi])

= (Y ⊗ (sf ∧ r)) ◦ g ◦ (X ⊗ df ◦ ρ−1) (by [Cockett et al., 2002, 2.1.iii])

= (Y ⊗ (sf ∧ r)) ◦ g ◦ (X ⊗ df ◦ ρ−1)
= g ◦ (X ⊗ df ) ◦ ρ−1 (by [Cockett et al., 2002, 2.1.vi])

Therefore:

g ◦ (X ⊗ df ) ◦ ρ−1 = (X ⊗ df ) ◦ ρ−1 ◦ g ◦ (X ⊗ df ) ◦ ρ−1 (by R4)
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= (X ⊗ df ) ◦ ρ−1 ◦ f

Because g = eg • (X ⊗ Sf ), now (X ⊗ sf ) ◦ g ◦ (X ⊗ df ) = eg • (X ⊗ sf ) ◦ (X ⊗ df ). It
follows that:

ef = ef • eg = sg ◦ dg ◦ sf ◦ df = (sf ∧ sg) ◦ (1 ⊗ dg) ◦ ρ−1 ◦ df

But sf is the least subunit through which ef factors, so sf ≤ sf ∧ sg. Because g =

(X ⊗ Sf ⊗ r) ◦ g by firmness, similarly ef = er•eg•ef , so sf ≤ sg∧r. Hence X⊗Sf⊗R '
X ⊗ Sf , so that X ⊗ Sf restricts to r [Enrique Moliner et al., 2020, Proposition 4.2]. So
f ⊗ Sf is tensor-total, and f factors as:

X Y

X ⊗ I Y ⊗ I

X ⊗ Sf Y ⊗ Sf

X ⊗ Sf

f

ρ−1 ρ
f ⊗ ef

X ⊗ df f ⊗ Sf
Y ⊗ sf

f ⊗ Sf

df ⊗ Sfe

As the right vertical morphisms are restriction-total, so is their composition.

5.15. Lemma. If X is a tensor-restriction category, then T [X] is a firm monoidal cate-
gory.

Proof. First, T [X] is a well-defined braided monoidal category: if f and g are restriction-
total, then f ⊗ g = f ⊗ g makes f ⊗ g restriction-total too, and all (coherence) isomor-
phisms are restriction-total.

Let s : S → I be a subunit in T [X]. Then S⊗s : S⊗S → S⊗I is invertible in T [X] and
hence in X. Suppose that f, g : A→ S in X satisfy s◦f = g ◦s. Then f = s ◦ f = s ◦ g =
g, and so df = dg. Observe that s is tensor-total in X, because if s = t ◦m for a subunit
t in X, then S ⊗ t : S ⊗ T → S is an isomorphism with inverse (S ⊗m) ◦ (S ⊗ s)−1. Now
s = s ◦ 1S = s ◦ s, so dse = s in X. Therefore T (s) = (1⊗ s) ◦ ds⊗Se = s∧ s : S⊗S → I.
It follows from (TR4) that T (s) ◦ T (f) = T (s ◦ f) = T (s ◦ g) = T (s) ◦ T (g) and so
T (f) = T (g). Thus f = T (f) ◦ (f ⊗ df ) = T (g) ◦ (g⊗ dg) = g. So s is monic and hence a
subunit in X, too. Thus T [X] is firm because X is firm.

We now state the main result of this section.

5.16. Theorem. If X is a tensor-restriction category, then there is a firm monoidal
restriction category isomorphism X ' S[T [X]].
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Proof. Define a functor F : X→ S[T [X]] by F (f) = [sf , T (f)], which is well-defined by
Proposition 5.14. Because d1Xe = 1X and the least subunit s1X which 1I factors through
is 1I , we have T (1X) = ρ and F indeed preserves identities. To see that F preserves
composition, let f : X → Y and g : Y → Z in X. Then the following diagram commutes
by Lemmas 5.11 and 5.12:

X

X ⊗ I ⊗ I

X ⊗ Sf ⊗ I

X ⊗ Sf ⊗ Sg

X ⊗ Sgf

Y

Y ⊗ I ⊗ I

Y ⊗ Sf ⊗ I Y ⊗ I ⊗ Sg

Y ⊗ Sgf

Y ⊗ Sf ⊗ Sg

Z

Z ⊗ I ⊗ I

Z ⊗ I ⊗ Sg

Z ⊗ Sf ⊗ Sg

Z ⊗ Sgf

f g

f ⊗ I g ⊗ I

f ⊗ Sf g ⊗ Sg

f ⊗ Sgf g ⊗ Sgf

λ−1 λ−1 λ−1

1 ⊗ df 1 ⊗ sg1 ⊗ sf ⊗ sf 1 ⊗ dg

1 ⊗ dg 1 ⊗ dg 1 ⊗ sf ⊗ 1 1 ⊗ sf ⊗ 1

1 ⊗ dgf 1 ⊗ sgf

(g ◦ f) ⊗ Sgf

Hence sg◦f = sg ∧ sf . It follows that gf = egf •X = eg • ef •X = eg • f . Therefore the
uniqueness of (TR4) guarantees that the following diagram commutes:

X ⊗ Sgf Z ⊗ Sgf Z

X ⊗ Sf ⊗ Sg Z ⊗ Sf ⊗ Sg Z ⊗ Sg

Y ⊗ Sf ⊗ Sg Y ⊗ Sg

d(g ◦ f)⊗ 1e 1 ⊗ sgf

1 ⊗ sg

df ⊗ 1e ⊗ 1 σ ◦ (dg ⊗ 1e ⊗ 1) ◦ σ

1 ⊗ sf ⊗ 1

1 ⊗ sf ⊗ 1

dg ⊗ 1e

Thus F (g ◦ f) = [sg◦f , T (g ◦ f)] = [sg ∧ sf , T (g) ◦ (T (f)⊗ 1)] = F (g) ◦ F (f).

In the other direction, define G : S[T [X]] → X by G
[
s, f

A S

B ]
= f ◦ (1 ⊗ df ). This

is a well-defined functor by Lemmas 5.11 and 5.12. Clearly on objects we have that
F (G(X)) = X and G(F (X)). For morphisms, on the one hand we have G(F (f)) =
T (f)◦(1⊗df ) = f by construction. On the other hand, for restriction-total f : X⊗S → Y
we have s1⊗df = 1, and so:

F (G
[
s, f

A S

B ]
) = F (f ◦ (1 ⊗ df ))

= F (f) ◦ F (X ⊗ df )
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= [sf , T (f)] ◦ [1I , df ]

= [s, T (f) ◦ (1 ⊗ df )]

= [s, T (f) ◦ (f ⊗ df )]

=
[
s, f

A S

B ]
Thus F and G are inverses.

It is clear that F and G are strict monoidal functors. It follows directly that F and

G preserve subunits, and indeed G
[
1I ,

S

]
= s, and F (s) =

[
1I ,

S

]
.

Finally, T (f) = T (ef • 1) = T (ef ) • 1 = 1 ⊗ sf , therefore:

F (f) = [sf , T (f)] = [sf , 1 ⊗ sf ] = [sf , T (f)] = F (f)

so F preserves restriction. Similarly,

G(
[
s, f

A S

B ]
) = G

[
s,

A S

]
= (1 ⊗ s) ◦ (1 ⊗ ds) = 1 ⊗ ef

= 1 ⊗ df = f ◦ (1 ⊗ df ) = G
[
s, f

A S

B ]
so G preserves restriction too. So we conclude that it is an isomorphism of tensor-
restriction categories.

This main result easily lifts to functors. Recall that a morphism of firm monoidal
categories [Enrique Moliner et al., 2020, 10.1] is a (strong) monoidal functor that sends
subunits to subunits. They form a category FirmCat.

5.17. Definition. A morphism of tensor-restriction categories is a functor F : X → Y
that is (strong) monoidal, sends subunits to subunits, and satisfies F (f) = F (f) (i.e. F
is a restriction functor [Cockett et al., 2002, Section 2.2.1]). Tensor-restriction categories
and their morphisms form a category TensRestCat.

5.18. Theorem. There is an equivalence of categories FirmCat ' TensRestCat.

Proof. All that remains to be verified is that S and T are functors. But this is easy:
define S[F ] by A 7→ F (A) on objects and by [s, f ] 7→ [F (s), F (f)] on morphisms, and
define T [G] by A 7→ G(X) on objects and as G(f) = f on morphisms.

This lets us characterise the fixed points of the S-construction. Recall that a firm
category is simple when it has no nontrivial subunits [Enrique Moliner et al., 2020, Defi-
nition 5.3].

5.19. Corollary. A firm monoidal category C has S[C] ' C if and only if it is simple.

Proof. If ISub(C) = {1}, every map in S[C] is total, and so S[C] = T [S[C]] ' C.
Conversely, if S[C] ' C ' T [S[C]], then every map in S[C] is total, and so ISub(C) =
{1}.
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A particular example of a simple firm monoidal category C is when C is a groupoid.
Thus as a consequence of Corollary 3.21, if C is a groupoid, or equivalently if S[C] is an
inverse category, then S[C] ' C.

We conclude this section with examples pointing out that not every firm monoidal
category is a tensor-restriction category.

5.20. Example. Every category C is trivially a restriction category by setting f = 1,
so every map is total and T [C] = C. Thus every firm monoidal category is trivially a
firm monoidal restriction category. Suppose a tensor-restriction category X had a trivial
restriction, so T [X] = X. Theorem 5.16 then shows that X ∼= S[T [X]] = S[X]. But
Corollary 5.19 then implies that X is simple. Thus every firm monoidal category that is
not simple (i.e. has a nontrivial subunit), regarded as a firm monoidal restriction category
with the trivial restriction, is not a tensor-restriction category.

5.21. Example. There are also many examples of firm monoidal restriction categories
with nontrivial restrictions that are not tensor-restriction categories. Consider Par and
recall that T [Par] = Set. If it was a tensor-restriction category, Theorem 5.16 would
give Par ' S[T [Set]], but this is not the case. Indeed, it is clear that Par(X, Y ) 6'
Set(X, Y ) + 1 ∼ S[Set](X, Y ) as in Example 3.9). Therefore Par 6' S[T [Set]]. Thus
Par is not a tensor-restriction category.

6. Alternative axiomatisations

The axiomatisation of tensor-restriction categories of Definition 5.7 has several features.
First, of course, it works, in the sense that Theorem 5.16 holds. Second, it is elementary,
in the sense that it is phrased entirely in terms of basic notions from restriction category
theory and tensor topology. Third, it is intuitive in that it conveys the structure of the
S-construction. Nevertheless, there is room for alternative axiomatisations, which we
discuss in this section. In this sense, this section is not necessarily essential to this article,
but it does open the door to future investigation. We discuss two aspects:

� It is not clear that axioms (TR1)–(TR7) are independent. In fact, there does appear
to be some redundancy, which we will point out. We will argue that the “property-
based” axiomatisation of Definition 5.7 may be replaced by a “structure-based” one
where the tensor-restriction points d are given.

� The “uniformity” axiom (TR3) means that S[C] is not just a restriction category,
but its opposite is too. This may make for a more efficient axiomatisation. We will
make a start towards such an alternative axiomatisation by defining bi-restriction
categories and observing that S[C] is one.

Starting with the first goal, of taking the maps d as structure rather than emergent
properties, we first make precise the type of these maps.
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6.1. Definition. In a firm restriction category X, a restriction-subunit point of subunit
a s : S � I is a morphism d : I → S satisfying d = s ◦ d .

The next three lemmas show that these restriction-subunit points have some of the
properties of axioms (TR1)–(TR7) automatically.

6.2. Lemma. In a firm restriction category, if d : I → S and d′ : I → T are restriction-
subunit points, then d ∧ d′ : : I → S ⊗ T , defined as the composite d ∧ d′ = (d⊗ d′) ◦ λ−1
is a restriction-subunit point of S ⊗ T .

Proof. The computation

d ∧ d′ = (d⊗ d′) ◦ λ−1

= λ ◦ (d⊗ d′) ◦ λ−1

= λ ◦ (s⊗ t) ◦ (d⊗ d′) ◦ λ−1

= (s ∧ t) ◦ (d ∧ d′)

shows that (d ∧ d′) is a restriction-subunit point of S ⊗ T .

6.3. Lemma. In a firm restriction category, any restriction-subunit point d : I → S is a
restriction isomorphism with restriction inverse d◦ = d ◦ s.

Proof. First note that in a monoidal restriction category, a • f = a • f for any scalar

a : I → I and any map f : X → Y . Since s is total, d◦ = d • s = d • s = d • I = d and
therefore

d ◦ d◦ = d ◦ d ◦ s = d ◦ s = d = d◦.

Similarly d◦ ◦ d = d ◦ s ◦ d = d ◦ d = d, so d is a restriction isomorphism.

6.4. Lemma. Let d : I → S be a restriction-subunit point in a firm restriction category.
Suppose that it satisfies the left-lifting property against subunits: if t ◦ f = g ◦ ds for any
subunit T and maps f : I → T and g : S → I, then f = m ◦ d and g = t ◦m for some m:

I S

T I

d

gf

t

m

Then d◦ : S → I is tensor-total, and d : I → S is a tensor-restriction point.
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Proof. Suppose d◦ factors through a subunit T as follows:

S I

T
t

d◦

f

We need to show that S ⊗ T ' S. To do so, we will show that s ≤ t. Observe:

s ◦ d = d = d◦ ◦ d = t ◦ f ◦ d

The left lifting property gives m : S → T with:

I S

T I

S

d

s

d

f

t

m

In particular, t ◦m = s, and therefore s ≤ t. We conclude that S ⊗ T ' S, and so d◦ is
tensor-total. Since d◦ is also a restriction isomorphism, it follows by definition that d is a
tensor-restriction point.

The previous three lemmas seem to exhibit some redundancy in the properties that
(TR1)–(TR7) ask of the maps d. However, to progress in obtaining an equivalent axioma-
tisation, we need to demand a universal property of the restriction-subunit points d. Say
that a subunit S has a maximal restriction-subunit point if there is a restriction subunit
point ds : I → S that is initial amongst restriction-subunit points of S. More precisely,
every restriction-subunit point d : I → S satisfies d ≤ ds in the restriction category sense,
that is d = ds ◦ d.

6.5. Lemma. In a firm restriction category, if subunits S and T have maximal restriction-
subunit point ds : I → S and dt : I → T , then ds ∧ dt = (ds ⊗ dt) ◦ λ−1 : I → S ⊗ T is a
maximal restriction-subunit point of S ⊗ T .

Proof. Suppose d : I → S⊗T is a restriction subunit point of S⊗T , that is, d = (s∧t)◦d.
We need to show that d ≤ ds ∧ dt. First observe

λ ◦ (s⊗ T ) ◦ d = d = (s ∧ t) ◦ d = λ ◦ (s⊗ t) ◦ d = t ◦ λ ◦ (s⊗ T ) ◦ d,

where the first equality holds by totality of λ ◦ (s ⊗ T ). Therefore, λ ◦ (s ⊗ T ) ◦ d is a
restriction-subunit point of T and so λ ◦ (s⊗ T ) ◦ d ≤ dt:

λ ◦ (s⊗ T ) ◦ d = dt ◦ d
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Similarly ρ ◦ (S ⊗ t) ◦ d is a restriction-subunit point of S and so ρ ◦ (S ⊗ t) ◦ d ≤ ds:

ρ ◦ (S ⊗ t) ◦ d = ds ◦ d

Now we can show that (ds ∧ dt) ◦ d = d:

(ds ∧ dt) ◦ d = (ds ∧ dt) ◦ d ◦ d
= (ds ⊗ dt) ◦ λ−1 ◦ d ◦ d
= (ds ⊗ dt) ◦ (d⊗ d) ◦ λ−1

= ((λ ◦ (s⊗ T ) ◦ d)⊗ (ρ ◦ (S ⊗ t) ◦ d)) ◦ λ−1

= ((λ ◦ (s⊗ t) ◦ d)⊗ d) ◦ λ−1

= (((s ∧ t) ◦ d)⊗ d) ◦ λ−1

=
(
d⊗ d

)
◦ λ−1

= d ◦ d
= d

Therefore d ≤ ds ∧ dt.
As an intermezzo, we now discuss how to use the tensor-restriction points S in a

graphical normal form of maps in tensor-restriction categories. This strongly resembles a
monoidal version of [Nester, 2019] and is a first step towards a general calculus handling
restriction graphically. The factorisation system of Proposition 5.14 lets us decompose
any morphism f in a tensor-restriction category as follows:

f

B

A

= T (f)

Sf
A

B

total part

restriction part

In S[C], this says
[
s, f

]
=
[
1, f

]
◦
([

1, A

]
⊗
[
s, S

])
. Restriction and composition

become:

f

A

A

=

A

A

Sf
f

g

C

B

A

=
T (g ◦ f)

SgSf

A

C

Finally, we change to the second goal of this section, by observing that the S[−]-
construction also induces a corestriction category [Cockett et al., 2012, Cockett et al.,
2002].
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6.6. Definition. [Cockett et al., 2002, Example 2.1.3.12] A corestriction category is

a category X equipped with a choice of endomorphism f̂ : B → B for each morphism
f : A→ B satisfying:

f̂ ◦ f = f (CR1)

f̂ ◦ ĝ = ĝ ◦ f̂ if cod(f) = cod(g) (CR2)

̂̂g ◦ f = ĝ ◦ f̂ if cod(f) = cod(g) (CR3)

g ◦ f̂ = ĝ ◦ f ◦ g if dom(g) = cod(f) (CR4)

We call f̂ the corestriction of f .

6.7. Example. Let stabLat be the category whose objects are semilattices and whose
morphisms are stable homomorphisms, that is, morphisms between semilattices that pre-
serve binary meets but not necessarily the top element. This is a corestriction category,
where for a stable homomorphism f : L → L′, the corestriction is the stable homomor-
phism f̂ : L′ → L′ given by f̂(x) = x ∧ f(1).

The corestriction structure of S[C] is defined similarly to its restriction structure.

6.8. Proposition. If C is a firm monoidal category, S[C] is a corestriction category
with:

̂[
s, f

A S

B ]
=
[
s,

B S

]
Proof. Completely analogous to Proposition 3.4.

It turns out that the corestriction structure of the previous proposition also makes
S[C] into a range category.

6.9. Definition. [Cockett et al., 2002, Definition 2.12]. A range category is a restriction

category X which is additionally equipped with a choice of endomorphism f̂ : B → B for
each morphism f : A→ B satisfying:

f̂ = f̂ (RR1)

f̂ ◦ f = f (RR2)

ĝ ◦ f = g ◦ f̂ if cod(f) = dom(g) (RR3)

ĝ ◦ f̂ = ĝ ◦ f if cod(f) = dom(g) (RR4)

We call f̂ the range of f .

Note that not every range category is automatically a corestriction category. Indeed,
being a corestriction category does not require restriction structure, whereas being a range
category does. Here is the paradigmatic example.
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6.10. Example. Par is a range category where the range of a for a partial function
f : X → Y is defined as follows:

f̂(y) =

{
y if f(x) = y for some x ∈ X
undefined otherwise

However, this does not make Par a corestriction category since (CR4) fails.

If a category is both a restriction category and a corestriction category, and if the
restriction and corestriction operators are compatible, then in fact the corestriction oper-
ator is also a range category. We introduce a new notion of birestriction category (which
is a stronger version of a bisupport category [Cockett et al., 2002]).

6.11. Definition. A birestriction category is a category equipped with both a restriction
operator and a corestriction operator ̂ satisfying:

f̂ = f (BR1)

f̂ = f̂ (BR2)

6.12. Example. If X is both a restriction category and a dagger category [Heunen et al.,

2016], and restriction idempotents are self-adjoint, that is, f
†

= f , then X is automatically

a birestriction category with f̂ = f †.

6.13. Lemma. In a birestriction category, the corestriction operator is a range operator
for the restriction operator.

Proof. Let be the restriction operator and ̂ be the corestriction operator. We need
to show that ̂ satisfies (RR1)–(RR4). The first two are immediate since (RR1) is simply
(BR2) and (RR2) is (CR1). For (RR3), we use (CR3) and (BR1):

ĝ ◦ f = ̂̂g ◦ f = ĝ ◦ f̂ = g ◦ f̂

Finally, (RR4) is the dual of [Cockett et al., 2002, Lemma 2.1.(iii)]. So ̂ is a range
operator.

The point of introducing birestriction categories is that the S-construction induces
one, which may lead to an alternative axiomatisation.

6.14. Proposition. If C is a firm monoidal category, then S[C] is a birestriction cate-
gory.

Proof. It is straightforward to see that both (BR1) and (BR2) hold in S[C].
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