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DISCRETE DOUBLE FIBRATIONS

MICHAEL LAMBERT

Abstract. Presheaves on a small category are well-known to correspond via a cate-
gory of elements construction to ordinary discrete fibrations over that same small cate-
gory. Work of R. Paré proposes that presheaves on a small double category are certain
lax functors valued in the double category of sets with spans. This paper isolates the
discrete fibration concept corresponding to this presheaf notion and shows that the cat-
egory of elements construction introduced by Paré leads to an equivalence of virtual
double categories.
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1. Introduction

A discrete fibration is functor F : F → C such that for each arrow f : C → FY in C ,
there is a unique arrow f ∗Y → Y in F whose image under F is f . These correspond to
ordinary presheaves

DFib(C ) ≃ [C op,Set]

via a well-known “category of elements” construction [MacLane, 1998]. This is a “repre-
sentation theorem” in the sense that discrete fibrations over C correspond to set-valued
representations C .

Investigation of higher-dimensional structures leads to the question of analogues of
such well-established developments in lower-dimensional settings. In the case of fibrations,
for example, ordinary fibrations have their analogues in “2-fibrations” over a fixed base
2-category [Buckley, 2014]. Discrete fibrations over a fixed base 2-category have their
2-dimensional version in “discrete 2-fibrations” [Lambert, 2020]. The justification that
the notion of (discrete) fibration is the correct one in each case consists in the existence
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of a representation theorem taking the form of an equivalence with representations of the
base structure via a category of elements construction.

In the double-categorical world, R. Paré proposes [Paré, 2011] that certain span-
valued, lax functors on a double category B are presheaves on B. This paper aims to
isolate the notion of “discrete double fibration” corresponding to this notion of presheaf.
As justification of the proposed definition, Paré’s double category of elements will be
used to exhibit a representation theorem on the pattern of those reviewed above. The
technically interesting part of the results is that ultimately an equivalence of virtual double
categories is achieved. For this the language of monoids and modules in virtual double
categories as in [Leinster, 2004] will be used.

1.1. Overview and Motivation. To give away the answer completely, a discrete dou-
ble fibration should be a category object in the category of discrete fibrations. This follows
the approach to double category theorizing that a “double ” is a category object in the
category of ’s. The point of the paper is thus to show that this expected definition com-
ports with Paré’s notion of presheaf by exhibiting the representation theorem as discussed
above. This will be proved directly for all the 1-categorical structure involved.

However, lax functors and their transformations are fragments of a higher double-
dimensional structure. That is, modules and their multimodulations make lax functors
into a virtual double category. The question, then, arises as to the corresponding virtual
double category structure on the discrete fibration side of the desired equivalence. It turns
out that there is already well-established language for these structures from [Leinster,
2004].

For a category with finite limits C , the category of monoids in the bicategory of spans
in C is equivalent to the category of category objects in C . In fact the correspondence is
much stronger than this, since the data on either side of the equivalence is the same modulo
rearrangement of tuples. This general result leads to the special case for C = DFib,
yielding the equivalence

Mon(Span(DFib)) ≃ Cat(DFib).

This is the main clue leading to a natural candidate for virtual double category struc-
tures on discrete double fibrations. For monoids in the bicategory part of any double
category D form the 1-categorical part of the virtual double category of monoids and
modules in D. That is, there is a virtual double category Mod(D) of modules whose
underlying 1-category is precisely monoids in the bicategory part of D. This leads to the
natural candidate for virtual double category structure on discrete double fibrations as
Mod(Span(DFib)). The ultimate objective of the paper is thus to show that an appro-
priate slice of such modules is equivalent to the virtual double category of lax presheaves
via the double category of elements construction.

1.2. Organization and Results. Section 2 reviews lax functors, their transformations
and the elements construction from [Paré, 2011]. The main definition of “discrete double
fibration” is given as a double functor P : E → B for which both P0 and P1 are discrete
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fibrations. This is equivalently a category object in the category of discrete fibrations.
The section culminates in the first main contribution of the paper, proved as Theorem
2.27 below. This result says that for any strict double category B, there is an equivalence
of 1-categories

DFib(B) ≃ Lax(Bop,Span)

between the category of discrete double fibrations over B and span-valued lax functors
on B, induced by the double category of elements construction. This is achieved by
constructing a pseudo-inverse for the double category of elements.

Section 3 introduces the virtual double category structure on lax span-valued functors
as in [Paré, 2011] and [Paré, 2013] with the goal of extending the theorem above to an
equivalence of virtual double categories. It turns out that a convenient language for setting
up the virtual double category structure on discrete double fibrations is that of monoids
and modules in virtual double categories as in [Leinster, 2004] and later [Cruttwell &
Shulman, 2010].

Section 4 extends the elements construction and its pseudo-inverse to functors of vir-
tual double categories and culminates in the second result, proved as Theorem 4.14. That
is, for any strict double category B, there is an equivalence of virtual double categories

DFib(B) ≃ Lax(Bop,Span)

induced by the elements functor.

1.3. Conventions and Notation. Double categories go back to Ehresmann [Ehres-
mann, 1963]. Other references include [Grandis & Paré, 1999], [Grandis & Paré, 2004],
and [Shulman, 2008]. One quirk of our presentation is that, owing to different conventions
concerning which arrows are “vertical” and which are “horizontal,” we prefer to use the
more descriptive language of “arrows,” “proarrows,” and “cells.” Arrows are of course
the ordinary arrows between objects (the horizontal arrows in [Grandis & Paré, 2004]
and [Grandis & Paré, 2004] vs. the vertical ones in [Shulman, 2008] and [Cruttwell &
Shulman, 2010]); whereas the proarrows are the objects of the bicategory part (that is,
the vertical ones of [Grandis & Paré, 1999] and [Grandis & Paré, 2004] vs. the horizontal
ones of [Shulman, 2008] and [Cruttwell & Shulman, 2010]). In this language, the arrows of
the canonical example of categories and profunctors would be the ordinary functors while
the proarrows are the profunctors. This choice is inspired by the language of a “proarrow
equipment” developed in [Wood, 1982] and [Wood, 1985], which sought to axiomatize this
very situation as a 2-category “equipped with certain proarrows.”

Throughout use blackboard letters A, B, C, D for double categories. The 0-part
of such D is the category of objects and arrows, denoted by ‘D0’. The 1-part is the
category of proarrows and cells, denoted by ‘D1’. The category structures of D0 and D1

are referred to as the “internal” structure of D. So-called “external structure” is given
by the functors relating D0 and D1. External composition is written with a tensor ‘⊗’.
Internal and external compositions satisfy an “interchange law,” essentially stating that ⊗
is a bifunctor. The external unit is denoted with u : D0 → D1. External source and target
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functors are src, tgt : D1 ⇒ D0. Internal composition is denoted by juxtaposition in the
usual order. The terms “domain” and “codomain” refer to internal structure, whereas
“source” and “target” refer to external structure. Generally, external composition is
associative only up to coherent natural isomorphism. For emphasis these are sometimes
called “pseudo-” double categories. Double categories for which external composition is
strictly associative are called “strict” double categories. These are equivalently category
objects in categories.

The notation ‘Dop’ indicates the opposite of D, obtained by formally reversing only
the arrows of D. One result requires the notion of the “transpose” of a double category
D, denoted here by ‘D†’. This is obtained by reversing both the arrows and proarrows of
D. When D is strict, D† is a strict double category and transposing extends to a functor
(−)† : Dbl→ Dbl on the 1-category of strict double categories and double functors.

Script letters C and D denote ordinary categories with objects sets C0 and arrow sets
C1. Well-known 1-, 2-, and bi-categories referred to throughout are given in boldface such
as Set, Cat, Span, and Rel. We always refer to the highest level of structure commonly
associated with the objects of the category. Thus, Cat is the 2-category of categories,
unless specified otherwise. The main exception is that DFib is the ordinary category of
discrete fibrations. Throughout we take for granted the notions of monoid and category
internal to a given category with finite limits. Some 2-categorical concepts are referenced
but not in a crucial way. Common double-categories are presented in mixed typeface and
named by their proarrows. In particular Prof is the double category of profunctors; Rel
is the double category of sets and relations; Span (rather than Set) is the double category
of sets and spans. Note that these are genuinely pseudo-double categories.

1.4. Acknowledgments. Thanks to Dr. Dorette Pronk for supervising the author’s
thesis where some of the ideas for this paper were first conceived. Thanks also to Geoff
Cruttwell, Dorette Pronk and Martin Szyld for a number of helpful conversations, com-
ments, and suggestions on the material in this project and related research. Thanks in
particular to Geoff Cruttwell for clarifying some questions on virtual double categories.
Special thanks are due to Bob Paré for his encouragement when the author was just
getting into double-categorical Yoneda theory.

2. Lax Functors, Elements, and Discrete Double Fibrations

In this section, the double category of elements is recalled, and it is seen how its construc-
tion leads naturally to the definition of a discrete double fibration. As groundwork, first
review the definitions of lax functor and their natural transformations.

2.1. Definition. [See e.g. §7.2 of [Grandis & Paré, 1999] or §1.1.2 of [Paré, 2013]] A
lax functor between double categories F : A→ B consists of assignments

A 7→ FA f 7→ Ff m 7→ Fm α 7→ Fα



DISCRETE DOUBLE FIBRATIONS 675

on objects, arrows, proarrows and cells, respecting domains, codomains, sources and tar-
gets; and laxity cells

FA

ϕA

uFA� // FA FA

ϕn,m

Fm� // FB Fn� // FC

FA
FuA

� // FA FA
F (n⊗m)

� // FC

for each object A and composable proarrows m : A −7−→ B and n : B −7−→ C, all subject to
the following axioms.

1. [Internal Functoriality] The object and arrows assignments A 7→ FA, f 7→ Ff define
an ordinary functor F0 : A0 → B0; and the proarrow and cell assignments define an
ordinary functor F1 : A1 → B1 with respect to internal identities and composition
of cells.

2. [Naturality] For any f : A→ B, there is an equality

·
uFfFf

��

uFA� // ·
Ff

��

·
ϕA

uFA� // ·

·
ϕB

� // · = ·
FufFf

��

� // ·
Ff

��
·
FuB

� // · ·
FuB

� // ·

and for any externally composable cells α : m⇒ p and β : n⇒ q, there is an equality

·
FαFf

��

Fm� // ·
Fβ

��

Fn� // ·
Fh
��

·
ϕn,m

Fm� // · Fn� // ·

·
ϕq,p

Fp

� // ·
Fq

� // · = ·
F (β⊗α)Ff

��

F (n⊗m) // ·
Ff

��
·

F (q⊗p)
� // · ·

F (q⊗p)
� // ·

of composite cells.

3. [Unit and Associativity] Given a proarrow m : A −7−→ B, the unit laxity cells satisfy

·
ϕA

uFA� // ·
Fum
��

Fm� // · ·
∼=

uFA� // · Fm� // ·

·
ϕm,uA

FuA

� // ·
Fm

� // · = ·
∼=

Fm // ·

·
F (m⊗uA)

� // · ·
F (m⊗uA)

� // ·
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and
·
Fum

Fm� // ·
ϕB

��

uFB� // · ·
∼=

Fm� // · uFB� // ·

·
ϕuB,m

Fm

� // ·
FuB

� // · = ·
∼=

Fm // ·

·
F (uB⊗m)

� // · ·
F (uB⊗m)

� // ·

and for any three composable proarrows m : A −7−→ B, n : B −7−→ C, and p : C −7−→ D,
the laxity cells are associative in the sense that

·
Fum

Fm� // ·
ϕp,n

Fn� // · Fp� // · ·
ϕn,m

Fm� // · Fn� // ·
Fup

Fp� // ·

·
ϕp⊗n,m

� // · � // · = ·
ϕp,n⊗m

� // · � // ·

·
F ((p⊗n)⊗m)

� // · ·
F (p⊗(n⊗m))

� // ·

are equal, modulo composition with the image under F of the associativity iso cell

(p⊗ n)⊗m ∼= p⊗ (n⊗m)

given with the structure of A.

The structural isomorphisms reduce to strict identities when A and B are strict double
categories. A pseudo double functor is a lax double functor where the laxity cells are
isomorphisms; a strict double functor is one whose laxity cells are identities.

2.2. Remark. Generally speaking, use lower-case Greek letters for the laxity cells corre-
sponding to the Latin capital letter for the functor. Thus, F is a lax functor with laxity
cells denoted by ‘ϕ’ with subscripts; ‘γ’ is used for a lax functor G.

2.3. Example. [Cf. §1.2 of [Paré, 2011]] The usual object functor (−)0 : Cat → Set
extends to a lax double functor (−)0 : Prof → Span in the following way. On a category C
take the object set C0 to be the image as usual; likewise take the object part F0 : C0 → D0

to be the image of a given functor F : C → D . On a profunctor P : C −7−→ D – that is, a
functor P : C op ×D → Set – take the image to be the disjoint union

(P )0 :=
∐
C,D

P (C,D).

The assignment on a given transformation of profunctors is induced by the universal
property of the coproduct. This is a bona fide lax functor
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2.4. Definition. [Cf. §1.1.5 [Paré, 2013]] Let F,G : A ⇒ B denote lax functors with
laxity cells ϕ and γ. A natural transformation τ : F → G assigns to each object A an
arrow τA : FA→ GA and to each proarrow m : A −7−→ B a cell

FA

τm

Fm� //

τA
��

FB

τB
��

GA
Gm

� // GB

in such a way that the following axioms are satisfied.

1. [Naturality] Given any arrow f : A→ B, the usual naturality square

FA
Ff //

τA
��

FB

τB
��

GA
Gf
// GB

commutes; and given any cell α : m⇒ n, the corresponding naturality square com-
mutes in the sense that the compositions

·
Fα

��

Fm� // ·

��

·
τm

Fm� // ·

·
τn

� // · = ·
Gα

��

� // ·

��
·

Gn

� // · ·
Gn

� // ·

are equal.

2. [Functoriality] For any object A, the compositions

·
uτA
��

uFA� // ·

��

·
ϕA

uFA� // ·

·
γA

� // · = ·
τuA
��

� // ·

��
·
GuA

� // · ·
GuA

� // ·

are equal; and for any composable proarrows m : A −7−→ B and n : B −7−→ C, the
composites

·
τmτA

��

Fm� // ·
τn

��

Fn� // ·
τC
��

·
ϕn,m

Fm� // · Fn� // ·

·
γn,m

Gm

� // ·
Gn

� // · = ·
τn⊗mτA

��

� // ·
τC
��

·
G(n⊗m)

� // · ·
G(n⊗m)

� // ·
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are equal.

Let Lax(A,B) denote the category of lax functors A→ B and their transformations. The
composition is “component-wise” and identity transformations are those with identity
morphisms in each of their components.

In several cases, this category can be described in terms of well-known structures.
These equivalences are given by the functor induced by the double category of elements
in Lemma 2.9.

2.5. Example. A lax functor 1 → Span is essentially a small category. In fact, taking
elements induces an equivalence

Lax(1,Span) ≃ Cat.

In terms of monoids and their morphisms (i.e. a 1-category of monoids and their mor-
phisms in a bicategory), this means that

Lax(1,Span) ≃Mon(Span(Set)).

as 1-categories. This is a primordial example or special case of our main results, Theorem
2.27 and Theorem 4.14.

2.6. Example. [See §3.13 of [Paré, 2011]] If C is an ordinary category, let VC denote
the “vertical double category” formed from the objects of C and using the morphisms of
C as the proarrows with only identity arrows and cells. There is then an equivalence

Lax(VC ,Span) ≃ Cat/C

of ordinary categories given by taking elements.

The fibration properties of the double category of elements construction lead to the
axiomatization of our notion of “discrete double fibration.” Let us recall the details of
this double category and its associated projection functor.

2.7. Construction. [§3.7 [Paré, 2011]] Let F : Bop → Span denote a lax functor on a
double category B with laxity cells ϕ. The double category of elements El(F ) has

1. as objects those pairs (B, x) with x ∈ FB;

2. as arrows f : (B, x)→ (C, y) those arrows f : B → C of B such that f ∗y = x holds
under the action of the transition function f ∗ : FC → FB;

3. as proarrows (B, x) −7−→ (C, y) pairs (m, s) consisting of a proarrow m : B −7−→ C and

an element s ∈ Fm of the vertex of FB
(−)0←−− Fm

(−)1−−→ FC such that s0 = x and
s1 = y both hold; and
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4. as cells (m, s) ⇒ (n, t) those cells θ of B as at left below for which the associated
morphism of spans on the right

A

θf
��

m� // B

g
��

FC

f∗

��

Fn
(−)0oo

θ∗

��

(−)1 // FD

g∗

��
C n

� // D FA Fm
(−)0

oo
(−)1

// FB

satisfies θ∗(t) = s.

The 1-category structure on objects and morphisms is the same as the ordinary category
of elements. Internal composition of cells uses the internal composition in B and the strict
equalities of the form θ∗(t) = s in the definition. External composition uses the given
laxity morphisms. For example, given composable proarrows (m, s) : (B, x) −7−→ (C, y) and
(n, t) : (C, y) −7−→ (D, z), the composite is defined as

(n, t)⊗ (m, s) := (n⊗m,ϕn,p(s, t)).

This is a well-defined proarrow. Identities and external composition of cells is similar.
This makes El(F ) a double category. It is only as strict as B. There is a projection
double functor Π: El(F ) → B taking the indexing objects, morphisms, proarrows and
cells to B. This is strict even if B is pseudo.

It is remarked in [Paré, 2011] that taking elements extends to a functor. Here are the
details.

2.8. Construction. [Morphism from a Transformation of Lax Functors] Let τ : F → G
denote a transformation of lax functors F,G : Bop ⇒ Span as in Definition 2.4. Define
what will be a strict functor of double categories El(τ) : El(F ) → El(G) over B. On
objects and arrows, take

(D, x) 7→ (D, τDx) f 7→ f

The arrow assignment is well-defined because f ∗τD = τCf
∗ holds by the strict naturality

condition in the definition. This assignment is functorial by construction. Now, for
proarrows, send

(m, s) 7→ (m, τms) α 7→ α

similarly to the object and arrow assignments. Well-definition again follows from natu-
rality. Functoriality is by construction. The rest of the important content is in the next
result.

Suppose for convenience throughout the rest of the section that B is strict.

2.9. Lemma. Given a transformation τ : F → G of span-valued, lax functors, the as-
signments above yield a morphism from Π: El(F ) → B to Π: El(G) → B over B. This
association is functorial, meaning that the elements functor

El(−) : Lax(Bop,Span) −→ Dbl/B

valued in the slice of double categories over B is well-defined.
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Proof. It is left to see that El(τ) : El(F ) → El(G) preserves external composites and
units. The definition of external composition in the elements construction incorporates
the laxity morphisms coming with F and G. So, the preservation of external composition
reduces to the statement that these laxity morphisms interact in the proper way with the
components of τ used in the definition. But this is precisely what the “Functoriality”
condition of Definition 2.4 axiomatizes. Unit preservation follows similarly.

Those double functors in the image of this functor possess certain fibration properties
leading to the definition of a “discrete double fibration.” First the properties:

2.10. Lemma. Let F : Bop → Span denote a lax double functor. The projection functors
Π0 and Π1 underlying the canonical projection Π: Elt(F )→ B are discrete fibrations.

Proof. Here are the required lifts. Given (D, x) and f : C → D, the lift is

f : (C, f ∗x)→ (D, x)

where f ∗ : FD → FC is the transition function. Similarly, given (n, s) for a proarrow n
and s ∈ Fn and a cell α : m⇒ n, the cartesian cell above α with codomain (n, s) is

(A, f ∗x)

αf

��

(m,α∗s)� // (B, g∗y)

g

��
(C, x)

(n,s)

� // (D, y)

where α∗ : Fn→ Fm is the transition function between the vertices of the spans. Notice
that by the fact that α∗ induces a morphism of spans, the source and target of (m,α∗s)
are well-defined.

Such functors are equivalently characterized with a distinctly double categorical flavor.

2.11. Proposition. A double functor P : E → B between strict double categories for
which P0 and P1 are discrete fibrations is equivalently a category object in DFib, and
thus equivalently a monoid in the bicategory of spans in DFib.

Proof. In the first place DFib has strict pullbacks, so the statement itself makes sense.
On the one hand, a category object in any subcategory of an arrow category closed under
finite limits is an internal functor. Thus, a category in DFib is a double functor. Its
object and arrow parts must be objects of DFib, that is, discrete fibrations. On the
other hand, a double functor is a category object in the arrow category of Cat. But if
P0 and P1 are discrete fibrations, then such P lives in Cat(DFib). A monoid in spans
in categories is equivalently a double category; similarly a monoid in spans in the arrow
category of Cat is equivalently a double functor. Thus, the components of such a double
functor are discrete fibrations if and only if the double functor is in fact a monoid in spans
in DFib.



DISCRETE DOUBLE FIBRATIONS 681

2.12. Definition. A discrete double fibration is a category object in DFib. A
morphism of discrete double fibrations is a pair of double functors (H,K) making a
commutative square. Let DDFib denote the category of discrete double fibrations. Let
DFib(B) denote the full subcategory of discrete double fibrations with fixed target B
and morphisms with K = 1B. This is equivalently the fiber of the codomain projection
cod: DDFib→ Dbl over B.

2.13. Remark. Although the official definition has a succinct and philosophically ap-
propriate phrasing, as it is convenient, any of the equivalent characterizations of discrete
double fibrations in Proposition 2.11 may be used throughout.

2.14. Remark. The name used is “discrete double fibration” because this is a discretiza-
tion of a more general concept of “double fibration.” This will be a double functor
P : E → B whose underlying functors P0 and P1 are fibrations but that satisfy some
further compatibility conditions.

2.15. Remark. The results so far means that by fiat the elements functor is valued in
discrete double fibrations

El(−) : Lax(Bop,Span) −→ DFib(B)

over B. The purpose of this section is now to exhibit the pseudo-inverse yielding an
equivalence of categories. First some general results.

2.16. Example. [Domain Projection] For any double category, the domain projection
functor

dom: B/X −→ B

from the double slice B/X is a discrete double fibration. This is the image under the ele-
ments functor El(−) : Lax(Bop,Span)→ DFib(B) of the canonical representable functor
on X.

2.17. Proposition. A double functor P : E → B is a discrete double fibration over a
strict double category B if, and only if, the transpose square

E†
1

P †
1
��

cod // E†
0

P †
0
��

B†
1 cod

// B†
0

is a pullback in Cat.

Proof. Straightforward verification.
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2.18. Remark. Lemma 2.17 is the analogue of the characterization of ordinary discrete
fibrations, saying that a functor F : F → C is a discrete fibration if, and only if, the
square

F1

F1

��

d1 //F0

F0

��
C1 d1

// C0

is a pullback in Set. This characterization will be important in the monadicity develop-
ments in forthcoming work.

The next goal is to construct a pseudo-inverse for the elements functor. This will be
a functor from discrete double fibrations back to lax span-valued double functors. For a
discrete double fibration P : E→ B, begin correspondences leading to a lax double functor
FP : Bop → Span in the following way.

2.19. Construction. [Transition Morphisms] On objects, take B 7→ EB, the set of
objects of E0 over B ∈ B0 via P0. Call this the “fiber” over B. Since P0 is a discrete
fibration, for every horizontal morphism f : B → C, there is a corresponding transition
function f ∗ : EC → EB given on x ∈ EC by taking the domain f ∗x of the unique horizontal
morphism over f with codomain x. Given a proarrow m : A −7−→ B, required is a span from
EA to EB. For this, let Em denote the fiber of P1 over m, and send m to the span

EA
src←− Em

tgt−→ EB.

Finally, associated to a cell α of B of the form

A

αf
��

m� // B

g
��

C n
� // D

will be a cell of Span, that is, a morphism of the spans associated to m and n. In light
of the definitions so far, required is a function En → Em making the diagram

EC

��

Enoo

α∗

��

// ED

��
EA Emoo // EB

commute. But such a function En → Em is given by the fact that P1 is a discrete fibration.
That is, given u ∈ En, there is a unique cell of E with codomain u over α, which, by the
fact that P0 is a discrete fibration, must be of the form

f ∗x

⇓
��

� // g∗y

��
x �

u
// y
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with source and target the unique lifts over f and g respectively. Thus, send u to the
vertical source of this lifted cell, which, by construction, is over m, hence well-defined.
The cell diagram in Span displayed above then commutes by construction of En → Em.

2.20. Construction. [Laxity Cells I] Let D denote an object of B. The laxity cell for
the corresponding unit proarrow is of the form

ED ED1oo

��

1 // ED

ED EuDsrc
oo

tgt
// ED

The functor between vertices ϕD : ED → EuD is given by x 7→ ux. Notice that the unit
condition of Definition 2.1 is satisfied because the external composition for E is strict.

2.21. Construction. [Laxity Cells II] Let m : A −7−→ B and n : B −7−→ C denote proarrows
of B. Required for FP are laxity cells for such m and n of the form

EA
ϕn,m

Emsrcoo tgt // EB Ensrcoo tgt // EC

EA En⊗msrc
oo

tgt
// EC

between spans. The composed span in the domain of the cell has vertex given by the
pullback. The cell amounts to a functor between vertices respecting the source and target
functors. This is given by external composition of proarrows and cells over m and n
respectively:

Em ×EB
En

ϕn,m

��

u : x −7−→ y, v : y −7−→ z
_

��
En⊗m v ⊗ u

This is strictly functorial and a well-defined span morphism by the assumptions on P : E→
B. The laxity coherence law follows from the fact that external composition for E is
associative.

2.22. Lemma. Let P : E→ B denote a discrete double fibration. The assignments

D 7→ ED f 7→ f ∗ m 7→ Em α 7→ α∗

with unit and laxity cells as above define a lax functor FP : Bop → Span.
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Proof. What remains to check is the naturality conditions in Definition 2.1. Take cells
α : m ⇒ p and β : n ⇒ q of B. The first condition amounts to the commutativity of the
square made by the functors between vertices:

Ep ×EN
Eq

ϕ //

α∗×β∗

��

Eq⊗p
(β⊗α)∗
��

Em ×EB
En ϕ

// En⊗m

But this follows by uniqueness assumptions. Naturality for the unit cells follows similarly.

2.23. Construction. [Pseudo-Inverse on Morphisms of Discrete Double Fibrations]
Start with a morphism H : P → B of discrete double fibrations P : E→ B and Q : G→ B.
Define correspondences for what will be a transformation FH : FP → FQ between lax dou-
ble functors FP and FQ arising as in Lemma 2.22. On objects B, define (FH)B to be the
restriction of H to the fibers H0 : EB → GB. This is well defined since QH = P holds.
Similarly, for a proarrow m : B −7−→ C, take the component proarrow (FH)m in Span to be
the span

EB
H0

��

Emoo

H1

��

// EC
H0

��
GB Gm
oo // GC

Again this is well-defined since QH = P holds.

2.24. Proposition. The assignments in Construction 2.23 make a transformation FH :
FP → FQ of lax functors as in Definition 2.4. These assignments result in a functor

F(−) : Lax(Bop,Span) −→ DFib(B).

Proof. The first naturality condition holds because H commutes with P and Q and
because Q0 is a discrete fibration; the second naturality condition holds again because
QH = P is true and because Q1 is also a discrete fibration. Proarrow functoriality follows
from the fact that H is a strict double functor.

The pseudo-inverse construction of the last subsection in fact induces an equivalence
of categories, leading to the first representation theorem.

2.25. Construction. To define a natural isomorphism η : 1 ∼= FEl(−) between functors,
needed are component transformations of lax functors indexed by lax H : Bop → Span.
For such a lax functor H, the required transformation of lax functors ηH : H → FEl(H) is
given by

ηH,A : HA −→ El(H)A X 7→ (A, x)

on objects A ∈ |B0| and by

ηH,m : Hm −→ El(F )m s 7→ (m, s)
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for a proarrow m : B −7−→ C, giving a morphism of spans

HB

η

��

Hmoo

η

��

// HC

η

��
El(H)B El(H)moo // El(H)C .

Since the maps ηH,A and ηH,v just add in indices, they are both bijections of sets. More-
over, these components result in a transformation of lax functors as in Definition 2.4 by
construction. Thus, such ηH is the vertical component of a supposed transformation of
ordinary functors. Naturality in H is proved in the theorem below.

2.26. Construction.A natural isomorphism ϵ : El(F(−)) ∼= 1 has components ϵP : El(FP )
−→ E indexed by discrete double fibrations P : E→ B. On objects and arrows take

(D, x) 7→ x (C, x)
f−→ (D, y) 7→ f ∗y

!−→ y

where f ∗y → y is the unique arrow above f with codomain y. It is well-defined because
f ∗y = x holds. These are bijections by uniqueness of these lifts; they are functorial and
respect the fibering over B. On proarrows and cells, take

(m, s) 7→ s α 7→ α∗s⇒ s

where α∗s ⇒ s is the unique lift in E of α with codomain s. Again these are bijections,
functorial and fiber-respecting. Naturality in P is proved in the following result.

2.27. Theorem. For any strict double category B, there is an equivalence of categories

DFib(B) ≃ Lax(Bop,Span)

induced by the double category of elements construction.

Proof. It remains to check the naturality of the isomorphisms in Constructions 2.25 and
2.26. If H and G are lax functors with a transformation τ : H → G, the diagram

H

τ

��

η // FEl(H)

��
G η

// FEl(G)

commutes because indexing commutes with applying the components of τ . Naturality
in P also follows. Let H : P → Q be a morphism of double fibrations P : E → B and
Q : G→ B. For naturality, it is required that the square

El(FP )
El(FH)

��

ϵ // E

H

��
El(FQ) ϵ

// G



686 MICHAEL LAMBERT

commutes. Chasing an object (D, x) or a proarrow (m, s) around each side of the square,
the result either way is HX in the former case and is Hs in the latter case. Thus, to
check are the arrows and cells. Given an arrow f : (C, x)→ (D, y), the counter-clockwise
direction gives the unique lift ! : f ∗Hy → Hy whereas the clockwise direction gives the
image of one H(!) : Hf ∗y → Hy. These are strictly equal, however, by uniqueness of lifts.
A formally similar argument works to show that the square commutes also at the level of
cells.

2.28. Remark. The primordial examples of §§2.5-2.6 are thus special cases of the theo-
rem.

3. Monoids, Modules and Multimodulations

The main representation theorem of the paper asserts an equivalence of certain virtual
double categories. To define these first recall the definition, presented here in the form
of [Cruttwell & Shulman, 2010]. Virtual double categories have been known under the
name “f .c.-multicategories,” that is, as an example of a “generalized multicategory,” in
this case relative to the free-category monad in [Leinster, 2004].

3.1. Definition. [See §2.1 of [Cruttwell & Shulman, 2010]] A virtual double category
D consists of an underlying category D0, giving the objects and morphisms of D, together
with, for any two objects C and D, a class of proarrows v : C −7−→ D and for any “arity” k
multicells

A0

µf
��

m1� // A1
m2� // · · · mk� // Ak

g

��
B0 n

� // B1

all subject to the unit, composition and associativity axioms, as detailed in the reference.
The list of proarrows (m1,m2, . . . ,mk) is a “k-ary multisource.” The definition allows
nullary multisources with k = 0. A functor of virtual double categories F : C→ D sends
objects to objects, arrows to arrows, proarrows to proarrows and multicells to multicells
in such a way as to preserve domains, codomains, multisources (so arities in particular),
targets, identities and compositions.

3.2. Example. Every double category is a virtual double category by forgetting external
composition of proarrows and cells. In particular, for C with pullbacks Span(C ) is a
virtual double category and given a span

X = (X0
d0←− X1

d1−→ X0)

the projection
Span(C ) −→ Span(C )/X

given by taking the product is a functor of virtual double categories.



DISCRETE DOUBLE FIBRATIONS 687

3.3. Definition. [Cf. §5.1 [Cruttwell & Shulman, 2010]] A multicell

·
µ

m1� // · m2� // · · · mk� // ·

· n
� // ·

in a virtual double category D is opcartesian if any cell of the form

·
ρf

��

p1� // · p2� // · · · ps� // · m1� // · m2� // · · · mk� // · q1� // · · · qt� // ·
g

��
· n

� // ·

factors through µ via a unique multicell γ in the sense that ρ is equal to

· p1� // · p2� // · · · ps� // ·
µ

m1� // · m2� // · · · mk� // · q1� // · · · qt� // ·

·
γf

��

p1

� // · p2

� // · · · ps
� // · n

� // · q1

� // · · · qt
� // ·

g

��
· n

� // ·

A unit proarrow for an objectD ∈ D in a virtual double category is a proarrow uD : D −7−→
D and a nullary opcartesian cell

D

⇓

D

D uD

� // D.

A virtual double category has units if it is equipped with a choice of unit for each object.

3.4. Remark. The unit proarrow of any double category is a unit in this sense. Existence
of units is one of the requirements for a virtual equipment as described in [Cruttwell &
Shulman, 2010]. The full structure will not be needed here. All the interesting examples
possess units, so without further ado all virtual double categories will be assumed to have
units. Functors of virtual double categories will be assumed to be normal in the sense
that they preserve nullary opcartesian cells.

3.5. Remark. The universal property of any unit uD on a given object D implies that
D possesses generic multicells

·
⇓

uD� // · uD� // · · · uD� // ·

· uD

� // ·
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of any arity k. These are given from the unique factorization. Moreover, by uniqueness of
these factorizations, a correct multicomposite of any such cells gives the generic multicell
of the proper arity determined in this way.

A notion of transformation gives the 2-categorical structure on virtual double cate-
gories.

3.6. Definition. Let F,G : C ⇒ D denote functors of virtual double categories. A
transformation τ : F → G assigns to each object C of C an arrow τC : FC → GC and
to each proarrow m : C −7−→ D a cell

FC

τmτC
��

Fm� // FD

τD
��

GC
Gm

� // GD

in such a way that

1. [Arrow Naturality] for each arrow f : C → D, the square

FC

τC
��

Ff // FD

τD
��

GC
Gf
// GD

commutes; and

2. [Cell Naturality] for each multicell

·
µf

��

m1� // · m2� // · · · mk� // ·
g

��
· n

� // ·

the composed multicells on either side of

·
τm1

��

Fm1� // ·
τm2

��

Fm2� // · · ·
τmk

Fmk� // ·

��

·
Fµ

��

Fm1� // · Fm2� // · · · Fmk� // ·

��
·

Gµ

��

Gm1

� // ·
Gm2

� // · · ·
Gmk

� // ·

��

= ·
τn

��

Fn

� // ·

��
·

Gn

� // · ·
Gn

� // ·

are equal.

Denote the 2-category of virtual double categories, their functors and transformations by
vDbl.
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3.7. Example. [Terminal Object] The terminal object 1 in vDbl is peculiar and is
needed later. It has a single object •, an identity arrow 1• and an “identity proarrow” u•.
Whereas one might expect there to be only a single multicell u• ⇒ u•, in fact required
are generic multicells with multisources of all arities k

•
µk1•

��

u•� // • u•� // · · · u•� // •
1•
��

• u•
� // •

as otherwise the natural definitions on objects, arrows and proarrows will not extend to
a unique functor of virtual double categories D→ 1. Multi-composition is defined to give
the generic multicell with the appropriate arity. Notice, then, that in particular 1 has
units by fiat. A point of a virtual double category is a (normalized) functor D : 1→ D.
A point thus consists of an object D, its identity arrow 1D, its unit proarrow uD and the
corresponding generic multicells.

3.8. Proposition. vDbl has (strict 2-)pullbacks.

Proof. Given two functors F : A→ C and G : B→ C, the pullback has as its underlying
category

(A×C B)0 = A0 ×B0 C0.

Proarrows are pairs (m,n) for a proarrow m of A and one n of B satisfying Fm =
Gn. Similarly, multicells are pairs (µ, ν) with µ in A and ν in B such that Fµ = Gν.
Composition uses composition in A and B. This is a virtual double category fitting into
a commutative square

A×C B
d0
��

d1 // B
G
��

A
F

// C

with the expected 2-categorical universal property [Street, 1976].

Further limits of a 2-categorical variety abound in vDbl. Comma categories are well-
known in Cat (e.g. §I.6 [MacLane, 1998]). The formal abstraction and and elementary
phrasing of its universal property in an arbitrary 2-category appear in §1 of [Street, 1974].

3.9. Proposition. The 2-category vDbl has comma objects.

Proof. Given functors F : A → C and G : B → C, the (purported) comma F/G has its
underlying 1-category as (F/G)0 = F0/G0. Proarrows are triples (m,α, n) with m and n
proarrows of A and B, respectively, and α a cell α : Fm ⇒ Gn of C. A multicell is thus
a pair of multicells

·
µ

��

m1� // · m2� // · · · mk� // ·

��

·
ν

��

n1� // · n2� // · · · nk� // ·

��
· p

� // · · q
� // ·
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from A and B, respectively, of the same arity and satisfying the equation

·
α1

��

Fm1� // ·
α2

��

Fm2� // · · ·
αk

Fmk� // ·

��

·
Fµ

��

Fm1� // · Fm2� // · · · Fmk� // ·

��
·

Gν
��

Gn1

� // ·
Gn2

� // · · ·
Gnk

� // ·

��

= ·
β

��

Fp

� // ·

��
·

Gq

� // · ·
Gq

� // ·

Composition is given by that in A and B. So defined, F/G comes with evident projection
functors to A and B. The expected transformation

F/G

⇒d0
��

d1 // B
G
��

A
F
// C

has components f for objects (A, f,B) and α for proarrows (m,α, n). It satisfies the
required 2-categorical universal property in the reference by construction.

3.10. Remark. Thus vDbl is a “representable 2-category” [Gray, 1974], [Street, 1974].

3.11. Example. [Slice Virtual Double Category] Let D denote an object in a virtual
double category D. The slice virtual double category over D is defined as the comma
1/D

1/D

⇒
��

d1 // 1

D
��

D
1
// D

Denote this as usual by D/D. The coslice is defined analogously.

The virtual double category structure on Lax(Bop,Span) will be given by taking
so-called “modules” as proarrows and “multimodulations” as the multicells. Here we
revisit the the definitions for lax functors between arbitrary double categories. A path of
proarrows is a sequence m = (m1, . . . ,mk) such that, reading left to right, the target of
one proarrow is the source of the next. The external composite is denoted by [m].

3.12. Definition. [Cf. §3.2 [Paré, 2011]] A module between lax functors M : F −7−→
G : A ⇒ B of double categories assigns

1. to each proarrow m : A −7−→ B of A, a proarrow Mm : FA −7−→ GB of B;
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2. to each cell of A as at left, one of B as at right

A

θ

m� //

f
��

B

g
��

FA

Mθ

Mm� //

Ff
��

GB

Gg
��

C n
� // D FC

Mn

� // GD

3. for each pair of proarrows m : A −7−→ B and n : B −7−→ C, action multicells of B

·
λm,n

Fm� // · Mn� // · ·
ρm,n

Mm� // · Gn� // ·

·
M(n⊗m)

� // · ·
M(n⊗m)

� // ·

in such a way that the following axioms hold.

1. [Functoriality] For any (internal) composite of monocells βα and any proarrow m,
the equations MβMα = M(βα) and M1m = 1Mm hold;

2. [Naturality] For any external composite β ⊗ α, the equalities

·
λ

Fm� // · Mn� // · ·
Fα

Fm� //

��

·
Mβ

Mn� //

��

·

��
·

M(β⊗α)

� //

��

·

��

= ·
λ

� // · � // ·

·
M(q⊗p)

� // · ·
M(q⊗p)

� // ·

and
·

ρ

Mm� // · Gn� // · ·
Mα

Mm� //

��

·
Gβ

Gn� //

��

·

��
·

M(β⊗α)

� //

��

·

��

= ·
ρ

// · // ·

·
M(q⊗p)

� // · ·
M(q⊗p)

� // ·

both hold.

3. [Associativity] For any composable sequence of proarrows (m,n, p) of A, the equal-
ities (modulo suppressed associativity isomorphisms)

·
1

Fm� // ·
λ

Fn� // · Mw� // · ·
Fγ

Fm� // · Fn� // ·
1

Mw� // ·

·
λ

� // · � // · = ·
λ

� // · � // ·

·
M(p⊗(n⊗m))

� // · ·
M((p⊗n)⊗m)

� // ·
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and

·
ρ

Mm� // · Gn� // ·
1

Gp� // · ·
1

Mm� // ·
Gγ

Gn� // · Gp� // ·

·
ρ

� // · � // · = ·
ρ

� // · � // ·

·
M(p⊗(n⊗m))

� // · ·
M((p⊗n)⊗m)

� // ·

are valid.

4. [Compatibility] The composites

·
λ

Fm� // · Mn� // ·
1

Gp� // · ·
1

Fm� // ·
ρ

Mn� // · Gp� // ·

·
ρ

� // · � // · = ·
λ

� // · � // ·

·
M(p⊗(n⊗m))

� // · ·
M((p⊗n)⊗m)

� // ·

are equal.

5. [Unit] For any proarrow m : A −7−→ B of A, the composites

·
γ

uFA� // ·
1

Mm� // · ·
1

Mm� //

��

·
γ

uGB� //

��

·

��
·

λ

FuA

� //

��

· � // ·

��

and ·
ρ

� // ·
GuB

� // ·

·
M(m⊗uA)

� // · ·
M(uB⊗m)

� // ·

are equal to the respective canonical composition multicells for (mFA,Mm) and
(Mu,mGA).

Multicells are given by the notion of a “multimodulation,” recalled next. A path of
cells θ : (θ1, . . . , θk) is a sequence of cells θ1 : m1 ⇒ n1, . . . , θk : mk ⇒ nk such that the
target of a given cell is equal to the source of the next. Externally composable sequences
of modules M1, . . . ,Mk between lax functors will be thought of as proarrows F i −7−→ F i+1

from a lax functor F i to one F i+1, notated with superscripts so as not to confuse these
with the components of the functors.
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3.13. Definition. [See §4.1 of [Paré, 2011] and §1.2.3 of [Paré, 2013]] A multimodu-
lation

·
µτ

��

M1� // · M2� // · · · Mk� // ·
σ

��
·

N

� // ·

from modules Mi to N , with source and target transformations τ and σ, assigns to each
path m = (m1, . . . ,mk) of proarrows of A, a multicell

·
µmτ

��

M1m1� // · M2m2� // · · ·Mkmk� // ·
σ

��
·

N [m]

� // ·

in such a way that the following axioms are satisfied.

1. [Naturality] for any path of cells θ1 : m1 ⇒ n1, . . . , θk : mk ⇒ nk, the two composites

·

��
M1θ1

M1m1� // ·

��
M2θ2

M2m2� // · · ·
Mkθk

Mkmk // ·

��

·
µm

��

M1m1� // · M2m2� // · · ·Mkmk // ·

��
·

��
µn

M1n1

� // ·
M2n2

// · · ·
Mknk

// ·

��

= ·

��
N [θ]

N [m]

� // ·

��
·

N [n]
// · ·

N [n]

� // ·

are equal.

2. The following equivariance axioms are satisfied:

(a) [Left and Right Equivariance] For any paths of proarrows ym = (m1, . . . ,mk, y)
and mx = (x,m1, . . . ,mk), the composites on either side of

·
τx

F 0x� //

��

·
µ[m]

M1m1� //

��

· M2m2� // · · ·Mkmk� // ·

��

·
λ

F 0x� // · M1m1� // ·
1

M2m2� // · · ·
1

Mkmk� // ·

·
λ

G0x

� // ·
N [m]

� // · = ·
µ[mx]

M1(m1⊗x)
� //

��

·
M2m2

� // · · ·
Mkmk

� // ·

��
·

N [mx]

� // · ·
N[mx]

� // ·
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and

·
µ[m]

��

M1m1� // · · · � // · Mkmk� // ·
τy

��

Fny� // ·

��

·
1

M1m1� // · · ·
1

� // ·
ρ

Mkmk� // · Fny� // ·

·
ρ

N [m]

� // ·
Gny

� // · = ·
µ[ym]

��

M1m1

� // · · · � // ·
Mk(y⊗mk)

� // ·

��
·

N [ym]

� // ·
N [ym]

� // ·

are equal.

(b) [Inner Equivariance] For any path of proarrows (m1, . . . ,mi, x,mi+1, . . . ,mk),
the composite

·
1

M1m1� // · · ·
1

� // ·
ρ

Mimi� // · F ix� // ·
1

� // · · ·
1

Mkmk� // ·

·
µ[m]

��

� // · · · � // · � // · � // · · · � // ·

��
·

N [m]

� // ·

is equal to

·
1

M1m1� // · · ·
1

� // ·
λ

F ix� // ·Mi+1mi+1� // ·
1

� // · · ·
1

Mkmk� // ·

·
µ[m]

��

� // · · · � // · � // · � // · · · � // ·

��
·

N [m]

� // ·

for i = 1, . . . , k − 1.

3.14. Theorem. [Paré] Double functors F : A → B and horizontal transformations, to-
gether with modules and their multi-modulations giving the proarrows and multicells, give
the data of a virtual double category denoted by Lax(A,B).

Proof. See the lead-up to Theorem 1.2.5 of [Paré, 2013].

3.15. Remark. Our main interest is of course in the virtual double category Lax(Bop
,Span). By the Theorem, in general, this is not a genuine double category. This is
because composition of proarrows need not exist. The paper [Paré, 2013] is a dedicated
study of this issue.

The additional structure on DFib(B) making it a virtual double category goes by
well-known terminology from another context. We already know that DFib(B) could
have been defined as Cat(DFib)/B. Another way of look at Cat(DFib) is that it is
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the category Mon(Span(DFib)) of monoids in spans in discrete fibrations. In general
Mon(Span(C )) for a category C with finite limits is the underlying category of the virtual
double category Prof(C ) = Mod(Span(C )) of modules in spans in C as in [Leinster,
2004] or [Cruttwell & Shulman, 2010]. So, we take the modules and their multicells from
this context as the virtual double category structure onDFib(B). Here are the definitions.

3.16. Definition. [Cf. §5.3.1 [Leinster, 2004] or §2.8 of [Cruttwell & Shulman, 2010]]
Let D denote a virtual double category. Define its virtual double category of monoids
and modules, denoted by Mod(D), by taking

1. objects: monoids, namely, triples (r, µ, η) consisting of a proarrow r : A −7−→ A and
cells

A

µ

r� // A r� // A A

η

A

A r
� // A A r

� // A

satisfying the usual axioms for a monoid, namely, the multiplication law µ(1, µ) =
µ(µ, 1) and the unit laws µ(1, η) = 1 and µ(η, 1) = 1;

2. arrows: monoid homomorphisms (r, µ, η)→ (s, ν, ϵ), namely, those pairs (f, ϕ) con-
sisting of an arrow f : A→ B and a cell

A

ϕf
��

r� // A

f
��

B s
� // B

satisfying the unit axiom ϕη = ϵf and multiplication axiom ν(ϕ, ϕ) = ϕµ.

3. proarrows: so-called modules (r, µ, η) −7−→ (s, ν, ϵ), namely, triples (m,λ, ρ) with
m : A −7−→ B a proarrow and λ, ρ left and right action cells

A

λ

r� // A
m� // B A

ρ

m� // B
s� // B

A m
� // B A m

� // B

satisfying the module axioms λ(µ, 1) = λ(1, λ) and ρ(1, µ) = ρ(ρ, 1) for the multipli-
cation and λ(η, 1) = 1 and ρ(1, η) = 1 for the units; a sequence of modules consists
of finitely many modules (mi, λi, ρi) for which srcmi+1 = tgtmi and si+1 = ri both
hold;

4. multicells from a sequence of modules (mi, λi, ρi) to one (n, λ, ρ) consist of those
multicells in A

·
γf

��

m1� // · · · mp� // ·
g

��
· n

� // ·
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satisfying the equivariance axioms expressed by the equalities of composite cells:

(a) [Left]

·
ϕ

r1� //

f

��

·
γ

m1� //

f

��

· m2� // · · · mp� // ·
g

��

·
λ

r1� // · m1� // ·
1

m2� // · · ·
1

mp� // ·

·
λ

s1

� // · n
� // · = ·

γ

m1

� //

f

��

· m2

� // · · · mp

� // ·
g

��
· n

� // · · n
� // ·

(b) [Right]

·
γf

��

m1� // · · ·
mp−1� // · mp� // ·

ψg

��

rp� // ·
g

��

·
1

m1� // · · ·
1

mp−1� // ·
ρ

mp� // · rp� // ·

·
ρ

n
� // · sq

� // · = ·
γf

��

m1

� // · · ·mp−1

� // · mp

� // ·
g

��
· n

� // · n
� // ·

(c) [Inner]

·
1

m1� // · · ·
1

mi−1� // ·
ρ

mi� // · ri� // ·
1

mi+1� // · · ·
1

mp� // ·

·
γf

��

� // · · · � // · � // · � // · · · � // ·
g

��
· n

� // ·

is equal to

·
1

m1� // · · ·
1

mi� // ·
λ

ri� // · mi+1� // ·
1

mi+2� // · · ·
1

mp� // ·

·
γf

��

� // · · · � // · � // · � // · · · � // ·
g

��
· n

� // ·

for i = 1, . . . , p− 1.

Compositions and identities are given by those in A.

3.17. Proposition. For any virtual double category D, Mod(D) has units.

Proof. Any object in Mod(D) is a monoid. Its equipped multiplication gives the unit
proarrow. For more see §5.5 of [Cruttwell & Shulman, 2010].
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3.18. Remark. The definition above omits most of the diagrams and states just the
equations out of space considerations. However, upon writing down all the diagrams,
one might notice a formal similarity between these axioms and those for modules and
multimodulations in Lax(Bop,Span). It is the point of the next section to show that this
is in fact an equivalence of virtual double categories. First, however, let us consider some
examples.

Let C denote a category with finite limits. Then Span(C ) is a double category. As in
[Cruttwell & Shulman, 2010], denote Mod(Span(C )) by Prof(C ). Several choices of C
are of interest. First note that modules in Span(C ) are already known by well-established
terminology.

3.19. Definition. [Cf. §2.41 of [Johnstone, 2014]] Let C denote a category with finite
limits; and let C and D denote internal categories. An internal profunctor M : C −7−→ D
is a module, i.e. a proarrow in Prof(C ). A multicell of internal profunctors is thus
a multicell as above.

3.20. Example. The virtual double category Prof(Set) is Prof . That is, a monoid in
Span(Set) is a category. A unit proarrow for such C is thus the span C0 ← C1 → C0

formed from the domain and codomain maps with actions given by composition.

3.21. Example. Letting C = Cat as a 1-category, Prof(Cat) consists of usual double
categories and double functors as the objects and arrows. Internal profunctors M : A −7−→ B
between double categories consist of a span A0

∂0←− M
∂1−→ B0 and left and right action

functors
L : A1 ×A0 M −→M R : M ×B0 B1 −→M

satisfying the axioms above. A multicell of internal profunctors (M1, . . . ,Mk)⇒ N thus
consists of a functor

m : M 1 ×A1
0
· · · ×Ak

0
M k −→ N

from the vertex of the composite of (M1, . . . ,Mk), making a morphism of spans, and
satisfying the various equivariance requirements as in the definition. Notice that owing to
the peculiarities of the cell structure of 1 as in Example 3.7, a point D : 1→ Prof(Cat)
is a double category D, with the identity double functor 1 : D → D, the unit proarrow
u : D −7−→ D, namely, the span formed by the external source and target functors with
actions given by external composition, and finally multicells of all arities given by iterated
external composition. This can all be generalized to Cat(C ) for arbitrary C with finite
limits.

3.22. Example. Let C = Cat2, the “arrow category” of Cat and consider Prof(Cat2).
A monoid is then a double functor, a morphism is a commutative square of double functors.
A module consists of two modules in the former sense – one between domains of the two
double categories and one between the codomains; the vertices of these modules are
related by a functor making a morphism of spans. Multicells have a similar “two-tiered”
structure.
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3.23. Example. Letting C = DFib, the virtual double category Prof(DFib) is the
sub-virtual double category of the previous example where all the objects are not just
double functors but are instead discrete double fibrations. There is a codomain functor

cod: Prof(DFib) −→ Prof(Cat)

taking an object P : E→ B its codomain B and every proarrow M : P −7−→ Q to the module
between double categories giving the codomains of M . Take Prof(DFib)/B to be the
pullback of cod in vDbl along the point B : 1→ Prof(Cat).

3.24. Definition. The virtual double category of discrete double fibrations over a strict
double category B is Prof(DFib)/B. Denote this by DFib(B).

3.25. Remark. A module between discrete double fibrations M : P −7−→ Q thus consists
of a discrete fibration M : M → B1 and a morphism of spans

E0

P0

��

M
∂0oo ∂1 //

M
��

G0

Q0

��
B0 B1src
oo

tgt
// B0

and left and right actions functors making commutative squares

E1 ×E0 M L //

P1×M
��

M

M
��

M ×G0 G1
R //

M×Q1

��

M

M
��

B1 ×B0 B1 −⊗−
// B1 B1 ×B0 B1 −⊗−

// B1

that satisfy the action requirements as in the definition. A multicell µ : (M1, . . . ,Mk)⇒
N between such modules consists of a functor µ making a commutative square

M 1 ×E1
0
· · · ×Ek

0
M k

��

µ //N

N

��
B1 ×B0 · · · ×B0 B1 −⊗−···−⊗−

// B1

satisfying the equivariance requirements above.

3.26. Remark.As in §3.9 in [Cruttwell & Shulman, 2010], the mod-constructionMod(−)
defines an endo-2-functorMod(−) : vDbl→ vDbl. Another way to look at the codomain
functor from the previous example is that it is induced from the codomain functor
cod: DFib→ Cat, passing first through Span(−) and then Mod(−).
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4. The Full Representation Theorem

This section extends the result of Theorem 2.27, culminating in a proof that elements
construction extends to an equivalence of virtual double categories

DFib(B) ≃ Lax(Bop,Span)

for any strict double category B. This appears below as Theorem 4.14.
The elements functor of Lemma 2.9 extends to one between virtual double categories.

Needed are assignments on modules and multimodulations. Suppose throughout that B
is strict.

4.1. Construction. [Elements from a Module] Let M : F −7−→ G denote a module be-
tween lax double functors as in Definition 3.12. Construct a category El(M) in the
following way. Objects are pairs (m, s) with m : B −7−→ C a proarrow of B and s ∈Mm. A
morphism (m, s) → (n, t) is a cell α with source m and target n for which the equation
Mα(t) = s holds. So defined, El(M) is a category since M is strictly functorial on cells.
Notice that there are thus projection functors

El(F )0
∂0←− El(M)

∂1−→ El(G)0

taking an object (m, s) to ∂0(v, s) = (B, ∂0s) and ∂1(v, s) = (C, ∂1s) and extended to
morphisms as follows. Given a cell

A

αf
��

m� // B

g
��

C n
� // D

take ∂0α to be the morphism f : (A, ∂0s) → (B, ∂0t) and analogously for ∂1α. These are
well-defined by the commutativity conditions coming with the morphism of spans Mα.
The assignments are then functorial by that assumed for M .

4.2. Construction. [Actions] Form the pullback of ∂0 : El(M) → El(F )0 along the
target projection El(F )1 → El(F )0 and give assignments

L : El(F )1 ×El(F )0 El(M)→ El(M)

that will amount to an action. Summarize these assignments on objects and arrows at
once by the picture:

(A, x)

αf
��

(m,u)� // (B, y)

g

��

(p, r)

β
��

7→

(p⊗m,λ(u, r))

β⊗α
��

(C, z)
(n,v)

� // (D,w) (q, s) (q ⊗ n, λ(v, s))
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where λ is the action cell coming with M . Of course α and β are composable by the
construction of the pullback, but it needs to be seen that the composite β ⊗ α does give
a morphism of El(M) But this is equivalent to the validity of the equation

M(β ⊗ α)(λ(v, s)) = λ(u, r)

But this holds by the naturality condition for λ in Definition 3.12, since u = Fα(v) and
Mβ(s) = r both hold by the construction of morphisms in El(M). So defined, L is a
functor by the strict interchange law in B; by the fact that M is strictly horizontally
functorial; and by the normalization hypothesis for units. A functor R for a right action
of El(G)1 on El(M) is constructed analogously. It remains to see that the action axioms
are satisfied and that they are suitably compatible, yielding an internal profunctor.

4.3. Proposition. The assignments of Construction 4.2 are well-defined functors yield-
ing an internal profunctor between discrete double fibrations El(M) : El(F ) −7−→ El(G).

Proof. The action functors L and R are unital by the normalization assumption for
vertical composition with units in B. Required are action iso cells such as

El(F )1 ×El(F )0 El(F )1 ×El(F )0 El(M)

⊗×1

��

1×L // El(F )1 ×El(F )0 El(M)

L
��

El(F )1 ×El(F )0 El(M)
L

// El(M)

and similarly for R. But chasing an object of the domain around either of the square as
above and comparing, commutativity is given by associativity of proarrow composition in
B. Lastly, the actions L and R should be compatible in the sense that

El(F )1 ×El(F )0 El(M)×El(G)0 El(G)1

L×1

��

1×R // El(F )1 ×El(F )0 El(M)

L
��

El(M)×El(G)0 El(G)1 R
// El(M)

commutes. But again chasing objects and arrows around each side of the square shows
that commutativity follows from the compatibility assumption in Definition 3.12.

4.4. Construction. [Elements from a Multimodulation] Start with a multimodulation
of contravariant lax Span-valued functors

F 0

µτ
��

M1� // F 1 M2� // · · · Mk� // F k

σ
��

G0
N

� // G1
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as in Definition 3.13. This means that there are projection spans El(F i−1)0 ← El(Mi)→
El(F i)0 and one for N , each with appropriate left and right actions as in Construction
4.1. Define what will be a functor

El(µ) : El(M1)×El(F 1)0 · · · ×El(Fk−1)0 El(Mk) −→ El(N)

in the following way. On objects take

((m1, s1), . . . , (mk, sk)) 7→ ([m], µm(s))

where µm is the given function coming with µ and s = (s1, . . . sk). An arrow of the
supposed source is a sequence of externally composable cells θi : (mi, si)→ (ni, ti). Assign
to such a sequence the morphism of N represented by their composite

(θ1, . . . , θk) 7→ θk ⊗ θk−1 ⊗ · · · ⊗ θ1.

This does define a morphism ([m], µm(s)) → ([n], µn(t)) of El(N) by the strict compo-
sition for the module N as in Definition 3.12. This functor has several naturality and
equivariance properties, coming from the assumed properties of the original multimodu-
lation µ. For example, notice that El(µ) commutes with the projections and the 0-level
of the induced double functors El(τ)0 and El(σ)0 by construction. Further properties are
summarized in the next result.

4.5. Proposition. The functor El(µ) of Construction 4.1 defines a multicell between
internal profunctors of the form

El(F 0)

El(µ)
��

El(M1)� // El(F 1)
El(M2)� // · · ·El(Mk)� // El(F k)

��
El(G0)

El(N)

� // El(G1)

This completes assignments for the elements functor El(−) : Lax(Bop,Span)→ DFib(B)
between virtual double categories.

Proof. The appropriate commutativity at the 0-level was observed above. That the
action is left equivariant is the statement that the square

El(F 0)1 ×El(F 0)0 El(M1)×El(F 1)0 · · · ×El(Fk−1)0 El(Mk)
El(τ)×El(µ) //

L×1

��

El(G0)×El(G0)0 El(N)

L

��
El(M1)×El(F 1)0 · · · ×El(Fk−1)0 El(Mk) El(µ)

// El(N)

commutes. But chasing an object of the upper left corner around both sides of the square
reveals that commutativity at the object level is precisely the left equivariance condition
in Definition 3.13. Right and inner equivariance follow by the same type of argument.
The assignments are already known to be well-defined on objects and morphisms. It
follows easily that these assignments are suitably functorial in the sense of virtual double
categories.
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Likewise, the pseudo-inverse of Lemma 2.24 extends to a functor of virtual double
categories.

4.6. Construction. [Pseudo-Inverse for Modules] Let M : P −7−→ Q denote an internal
profunctor between discrete double fibrations P : E → B and Q : G → B as in Remark
3.25. Construct what will be a module FM : FP −7−→ FQ between the associated lax functors
FP and FQ from Lemma 2.22 in the following way. Let Mm denote the inverse image of
the proarrow m : B −7−→ C of B under the discrete fibration Π: M → B1 coming with M .
To each such proarrow m assign the span of sets

EB
∂0←−Mm

∂1−→ GC

Note that this is well-defined by the first assumed commutativity condition for M . To
each cell of B, assign the morphism of spans

A

θf
��

m� // B

g

��
7→

EB
f∗

��

Mn
oo

θ∗

��

// GC

g∗

��
C n

� // D EA Mm
oo // GD

with θ∗ : Mn →Mm given by taking an object of M over n to the domain of the unique
morphism of M above θ via Π: M → B1. This is well-defined and makes a span mor-
phism. To complete the data, start with composable vertical arrows m : A −7−→ B and
n : B −7−→ C and give assignments λ and ρ by using the given actions L and R, taking

λm,n : Em ×ED
Mn →Mn⊗m (m̃, ñ) 7→ L(m̃, ñ)

and similarly for ρ. These are well-defined by the second row of commutativity conditions
in Definition 3.12. Additionally, these maps commute with the projections, in the sense
that the diagrams

EA Mm ×GB
Gnoo

ρ

��

// GC EA Em ×EB
Mn

oo

λ
��

// GC

EA Mn⊗moo // GC EA Mn⊗moo // GC

both commute.

4.7. Proposition. The assignments of Construction 4.6 make FM : FP −7−→ FQ a module
in the sense of Definition 3.12.

Proof. All of the requirements for FM to be a module between lax functors are met
by the corresponding properties of the original module M , together with the fact that
Π: M → B1 is a discrete fibration.
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4.8. Construction. [Pseudo-Inverse Assignment on Modulations] Start with a modu-
lation U in DFib(B) as in Remark 3.25. Thus, in particular, we have a functor

U : M 1 ×E1
0
· · · ×Ek−1

0
M k −→ N

commuting with the projections to the end factors and commuting with the (k − 1)-fold
proarrow composition on B. Required is a multi-modulation

FP 0

FU

FM1� //

FH

��

FP 1

FM1� // · · ·
FMk� // FPk

FK

��
FQ0

FN

� // FQ1

Unpacking the constructions at a path of proarrows m = (m1, . . .mk), this is just to ask
for a corresponding set function

M 1
m1
×E1

A1
× · · · ×Ek−1

Ak−1

M k
mk
−→ N[m]

which is given by the arrow part of U , namely, U1. Well-definition follows from the
fact that U commutes with the projections to B and the (k − 1)-fold iterated proarrow
composition of B.

4.9. Proposition. The choice of (FU)m = U1 in Construction 4.8 results in a multimod-
ulation of modules between lax functors as in Definition 3.13. This extends the functor
F(−) to a functor of virtual double categories

F(−) : DFib(B) −→ Lax(Bop,Span).

Proof. The horizontal naturality condition holds by construction of the transition func-
tions corresponding to cells θ and because Π1 : N → B1 is a discrete fibration. Right,
left and inner equivariance then follow from the corresponding properties of the original
functor U .

The extended elements construction and the purported pseudo-inverse induce an equiv-
alence of virtual double categories, leading to the full representation theorem, namely,
Theorem 4.14 below.

4.10. Construction. Extend the isomorphism of Construction 2.25 to an isomorphism
of functors of virtual double categories. The required multimodulation for the cell-
components is straightforward to produce. Given M : H −7−→ G and a proarrow m : B −7−→ C
of B, define a function

ηM,m : Mm −→ El(M)m s 7→ (m, s)
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again just adding in an index. This is a bijection fitting into a morphism of spans

HB

ηH,B

��

Mmoo

ηM,m

��

// GC

ηG,C

��
El(H)B El(M)moo // El(G)C

that defines the required invertible modulation

H

ηMηH
��

M� // G

ηG
��

El(FH) El(M)

� // El(FG)

as in Definition 3.13 by construction of the elements functor and its purported pseudo-
inverse. This is easy to check from the definitions.

4.11. Proposition. The assignments in Construction 4.10 yield a natural isomorphism
of functors of virtual double categories η : 1 ∼= El(F(−)).

Proof. As discussed above, the components of the purported transformation are all well-
defined, so it remains only to check the “cell naturality” condition of Definition 3.6. Start
with a generic multimodulation

H0

µτ
��

M1� // H1 M2� // · · · Mk // Hk

σ
��

G0
N

� // G1

in Lax(Bop,Span). By construction, the composite on right side of the condition sends
an k-tuple s = (s1, . . . , sk) to ((m1, s1), . . . , (mk, sk)) and then to ([m], µ[m](s)); where as
that on the left side sends the same element to µ[m](s) first and then to ([m], µ[m](s)).
The point is that by construction evaluating and indexing commute. In any case, the two
sides are equal, and η so defined is a natural isomorphism as claimed.

4.12. Construction. Extend the natural isomorphism of Construction 2.26 to one of
functors of virtual double categories ϵ : El(F(−)) ∼= 1. Take an internal profunctorM : P −7−→
Q of discrete double fibrations P : E→ B and Q : G→ B. The required span morphism

E0 El(FM)oo

ϵM

��

// G0 (m, s)
α−→ (n, t)

7→

E0 Moo // G0 s
!−→ t

is given by the fact that M : M → B1 is a discrete fibration. It is a functor and an iso-
morphism by uniqueness and equivariant by construction, making a morphism of internal
profunctors.
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4.13. Proposition. The assignments in Construction 4.12 are a natural isomorphism
of functors of virtual double categories.

Proof. The one condition to check is the “Cell Naturality” of Definition 3.6. Taking a
multicell between internal profunctors

P 0

µH
��

M1� // P 1 M2� // · · · Mk // P k

K
��

Q0
N

� // Q1

the statement of the condition reduces to checking that the equation

µ ◦ (ϵM1 × · · · ϵMk
) = ϵN ◦ El(Fµ)

holds. But this is true by definition of El(Fµ) and the components of ϵ. For on the one
hand, a k-tuple ((m1, s1), . . . , (mk, sk)) is sent to s = (s1, . . . , sk) and then to µ(s). On
the other hand, the same k-tuple is sent to ([m], s) by El(Fµ) and then to µ(s) by ϵN .
The same kind of check works at the level of arrows. Thus, ϵ is a natural isomorphism.

4.14. Theorem. There is an equivalence of virtual double categories

Lax(Bop,Span) ≃ DFib(B)

for any strict double category B induced by the elements functor El(−).

Proof. This is proved by Propositions 4.10 and 4.12.

5. Prospectus and Applications

Let us close with a preview of forthcoming work relating to the present results.

5.1. Monadicity. It is well-known that ordinary discrete fibrations over a fixed base
are monadic over a slice of the category of sets. This fact is of central importance in the
elementary axiomatization of results relating to presheaves and sheaves in the language of
an elementary topos [Diaconescu, 1973], [Diaconescu, 1975]. In this development, “base-
valued functors” (i.e. presheaves) are axiomatized as certain algebras for a monad on a
slice of the ambient topos.

Any parallel development in a double categorical setting of these presheaf results will
require an analogous monadicity result. Forthcoming work will establish that discrete
double fibrations over a fixed base double category are monadic over a certain slice of
the double category of categories. Pursing some notion of “double topos” as a forum for
formal category theory, this will give a setting for elementary axiomatization of elements
of presheaf and Yoneda theory for double categories.
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5.2. Double Fibrations. The main definition of the paper anticipates the natural
question about whether there is a more general notion of a “double fibration” of which
a discrete double fibration is a special case. For recall that each ordinary discrete fi-
bration F : F → C between 1-categories is a (split) fibration in a more general sense.
Split fibrations of course have lifting properties with respect to certain compatibly chosen
“cartesian arrows” and correspond via a category of elements construction to contravari-
ant category-valued 2-functors on the base category.

Since discrete double fibrations are essentially category objects in discrete fibrations,
the most double-categorical conjecture is that (split) double fibrations are just category
objects in (split) fibrations. That this turns out to be the “correct” definition for such
a fibration concept over an arbitrary base double category is the subject of forthcoming
work with G. Cruttwell, D. Pronk and M. Szyld. The evidence of the correctness of this
definition is the exhibition of a representation theorem like Theorem 2.27 in the present
paper, but suitably upping the dimension of the representing structure.

5.3. A Comprehensive Factorization. For any ordinary functor F : A → B, there
is the so-called “comprehensive factorization,” that is, a factorization F = PE realizing F
as an initial functor E followed by a discrete opfibration P [Street & Walters, 1973]. The
discrete opfibration arises as the category of elements of a certain left extension of F valued
in sets. The initial functor arises from the universal property of the comma category.
Ultimately, these are the two classes of an orthogonal factorization system on Cat. The
notion of “discrete double fibration” presented in this paper clearly raises the question of
the existence of a corresponding comprehensive factorization for a given double functor,
perhaps leading to an orthogonal factorization system on Dbl. Based on the sketch of
the 1-categorical case, this would involve a definition and useful characterization of some
notion of an initial double functor and more detailed work on the construction of left
extensions as colimits in sets with spans. Ultimately, this could lead to a study of higher
torsors and non-abelian cohomology following the developments of [Street & Verity, 2010].
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