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A CATEGORICAL APPROACH TO QUANTUM MOMENT MAPS

PAVEL SAFRONOV

Abstract. We introduce quantum versions of Manin pairs and Manin triples and de-
fine quantum moment maps in this context. This provides a framework that incorporates
quantum moment maps for actions of Lie algebras and quantum groups for any quantum
parameter. We also show how our quantum moment maps degenerate to known classical
versions of moment maps and describe their fusion.

Introduction

In this paper we define quantum Manin pairs and quantum Manin triples and describe
quantum moment maps in this setting.

Moment maps. Given a Poisson manifold X with an action of a Lie group G that
preserves a Poisson structure, a moment map (see [Marsden and Ratiu, 1994, Chapter
11]) is a G-equivariant map µ : X → g∗ which gives the Hamiltonian for the infinitesimal
g-action on X. This concept goes back to the works of Kostant, Souriau, Marsden and
Weinstein. If G is compact and it acts freely on µ−1(0), we have the reduced space
X//G = µ−1(0)/G which is still a Poisson manifold.

In problems related to quantum groups, the group G usually does not preserve the
Poisson structure on X. Instead, G is a Poisson-Lie group, i.e. it carries a multiplicative
Poisson structure, and the action map G × X → X is Poisson. The first theory of
moment maps in this setting was proposed by Lu and Weinstein (see [Lu, 1991] and
[Lu and Weinstein, 1990]) where the moment maps are maps µ : X → G∗ satisfying
certain conditions, where G∗ is the Poisson-Lie dual group. For instance, if G carries
the zero Poisson-Lie structure, we may take g∗ as the Poisson-Lie dual group thought of
as an abelian group under addition equipped with the Kirillov–Kostant–Souriau Poisson
structure. So, in this case the theory reduces to ordinary moment maps µ : X → g∗.

To provide a finite-dimensional description of the symplectic structure on character
varieties, Alekseev, Malkin and Meinrenken [Alekseev et al., 1998] introduced a version
of moment maps µ : X → g∗ for symplectic manifolds. Namely, given a nondegenerate
pairing c ∈ Sym2(g∗)G they consider group-valued moment maps µ : X → G together
with a certain quasi-symplectic structure on X satisfying certain conditions. They also
prove that under standard assumptions X//G = µ−1(e)/G is a symplectic manifold.
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Generalizing Lu–Weinstein moment maps, Alekseev and Kosmann-Schwarzbach [Alek-
seev and Kosmann-Schwarzbach, 2000] defined moment maps for actions of quasi-Poisson
groups G. These are moment maps µ : X → D/G, where D is the double Lie group of the
quasi-Poisson group G. Moreover, in the Poisson-Lie case there is a natural morphism
G∗ → D/G and the Alekseev–Kosmann-Schwarzbach notion of moment maps factoring
through G∗ recovers Lu’s notion. If G is equipped with a nondegenerate pairing c, we
have the double D = G×G where G ⊂ D is embedded diagonally. So, D/G ∼= G and in
this case we get moment maps µ : X → G. It was shown in [Alekseev et al., 2002] that
under a further nondegeneracy assumption on the quasi-Poisson manifold X, the resulting
theory is equivalent to quasi-symplectic group-valued moment maps of Alekseev–Malkin–
Meinrenken.

Quantum moment maps. Quantum analogs of the moment maps X → g∗ are given as
follows. One considers an algebra A equipped with a compatible action of an algebraic
group G and a G-equivariant map µ : Ug → A such that [µ(x),−] is the infinitesimal
action of x ∈ g on A. These moment maps are ubiquitous in the physics literature on the
quantum BRST method.

Quantum analogs of Lu–Weinstein moment maps were introduced in [Lu, 1993]. Con-
sider a Hopf algebra H and an H-module algebra A. A moment map is then a map of
algebras µ : H → A such that h ▷ a = µ(h(1))aµ(S(h(2))) for every h ∈ H and a ∈ A,
where h ▷ a denotes the H-action on A. Here we think of H as the quantization of the
Poisson-Lie dual group G∗.

A variant of Lu’s quantum moment maps was proposed by Varagnolo and Vasserot in
[Varagnolo and Vasserot, 2010]. There one considers a left H-coideal subalgebra H ′ ⊂ H,
i.e. the coproduct on H restricts on H ′ to a coaction H ′ → H ⊗ H ′. Then a quantum
moment map is an algebra map µ : H ′ → A such that µ(h)a = h(1) ▷ a · µ(h(2)). Recall
that the Alekseev–Kosmann-Schwarzbach moment maps factoring as X → G∗ → D/G
are the same as Lu’s classical moment maps. On the quantum level Varagnolo–Vasserot
definition for H ′ = H also recovers Lu’s quantum moment maps. In applications to
quantum groups (see e.g. [Jordan, 2014] and [Balagovic and Jordan, 2018]), one takes
H = Uq(g), the quantum group associated to a Lie algebra g, and H ′ ⊂ H as the reflection
equation algebra Oq(G) ⊂ Uq(g) (see [Kulish and Sklyanin, 1992], [Majid, 1993] and [Kolb
and Stokman, 2009] for its definition). In particular, in [Jordan, 2014, Section 3.1] it is
explicitly suggested that the classical limit of the Varagnolo–Vasserot moment maps are
the Alekseev–Kosmann-Schwarzbach moment maps.

Shifted Poisson geometry. The goal of the present paper is to provide a comprehen-
sive study of moment maps on the quantum level and show that they recover Alekseev–
Kosmann-Schwarzbach notion after classical degeneration. Our results and constructions
are heavily inspired by the theory of shifted symplectic structures [Pantev et al., 2013] and
shifted Poisson structures [Calaque et al., 2017]. Let us briefly explain how to understand
previous constructions from this point of view.

One may organize n-shifted symplectic stacks into the following symmetric monoidal
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2-category LagrCorrn:

� Its objects are n-shifted symplectic stacks.

� 1-morphisms from an n-shifted symplectic stack X to an n-shifted symplectic stack
Y are given by a Lagrangian correspondence X ← L → Y , i.e. by an n-shifted
Lagrangian map L → X × Y , where X denotes the stack X with the opposite
n-shifted symplectic structure.

� 2-morphisms from X ← L1 → Y to X ← L2 → Y are given by homotopy classes of
stacks M equipped with an (n− 1)-shifted Lagrangian map M → L1 ×X×Y L2.

Such a 2-category was constructed by Amorim and Ben-Bassat [Amorim and Ben-Bassat,
2017] and it is extended to an (∞,m)-category (for any m) in the upcoming work of
Calaque, Haugseng and Scheimbauer. The unit of LagrCorrn is given by the point pt and
LagrCorrn has duals and adjoints described as follows:

� The dual of an n-shifted symplectic stack is the same stack equipped with the
opposite n-shifted symplectic structure.

� The Lagrangian correspondence X ← L→ Y admits a left and right adjoint given
by the Lagrangian correspondence Y ← L→ X.

Given a group pair (D,G), it is shown in [Safronov, 2021, Proposition 4.16] that the
map on classifying stacks BG→ BD has a 2-shifted Lagrangian structure. In other words,
a group pair gives rise to a 1-morphism pt→ BD in LagrCorr2 encoding BG.

We may then consider the 1-shifted symplectic stack

BG×BD BG ∼= [G\D/G]

obtained as the composite pt → BD → pt (of BG and its adjoint) and define classical
moment maps to be 1-shifted Lagrangian morphisms L → [G\D/G]. This definition of
classical moment maps is motivated by the following results:

� As shown by Bursztyn and Crainic [Bursztyn and Crainic, 2009], the quotient
D/G carries a natural exact Dirac structure encoding the 1-shifted symplectic stack
[G\D/G]. Moreover, one can reinterpret quasi-Poisson moment maps of Alekseev–
Kosmann-Schwarzbach in terms of Dirac morphisms to D/G.

� It is shown by Calaque [Calaque, 2015] (see also [Safronov, 2016]) that moment maps
X → g∗ can be encoded in terms of 1-shifted Lagrangian morphisms [X/G]→ [g∗/G]
and quasi-symplectic group-valued moment maps X → G can be encoded in terms
of 1-shifted Lagrangian morphisms [X/G]→ [G/G]. These two cases correspond to
the group pairs (T ∗G,G) and (G×G,G) respectively.
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Given a group triple (D,G,G∗), it is shown in [Safronov, 2021, Proposition 4.17] that
we have an iterated Lagrangian correspondence

pt

{{ ""
BG∗

##

BG

||
BD

More explicitly, we have a 2-shifted symplectic structure on BD, 2-shifted Lagrangian
structures on BG→ BD and BG∗ → BD and a 1-shifted Lagrangian structure on

pt→ BG∗ ×BD BG ∼= [G∗\D/G].

This may be interpreted within the 2-category LagrCorr2 in terms of the following data:

� An object BD ∈ LagrCorr2.

� 1-morphisms f : 1→ BD and g : BD → 1 encoding BG and BG∗.

� A 2-morphism g ◦ f ⇒ id1 encoding the 1-shifted Lagrangian pt→ [G∗\D/G]

Quantum Manin pairs. The previous definitions of Manin pairs and Manin triples may
be phrased in any (pointed) 2-category. Given an n-shifted symplectic stack X, one may
consider En-monoidal deformations of the symmetric monoidal category QCoh(X). Given
an n-shifted Lagrangian map L→ X, its deformation quantization is a pair (C,D) where
C is an En-monoidal deformation of QCoh(X) and D is an En−1-monoidal deformation
of QCoh(L) together with an action of C on D. Note that an E2-monoidal category is
the same as a braided monoidal category. So, we may define quantum Manin pairs and
quantum Manin triples by replacing the 2-category LagrCorr2 by BrTens, the 2-category
of braided monoidal categories defined as follows:

� Its objects are braided monoidal categories.

� 1-morphisms from a braided monoidal category C1 to a braided monoidal category
C2 is a monoidal category D equipped with compatible right C1- and left C2-actions.

� 2-morphisms from D1 to D2 which are both equipped with a right C1- and left
C2-action are equivalence classes of (D2,D1)-bimodule categories.

We refer to [Brochier et al., 2021, Definition 1.2] for a precise description of the 4-category
of braided monoidal categories (following previous works [Haugseng, 2017], [Scheimbauer,
2014], [Johnson-Freyd and Scheimbauer, 2017]), so that the 2-category BrTens is obtained
from this 4-category by taking the homotopy 2-category.
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Unpacking, a quantum Manin pair (see Definition 2.2) is a pair (C,D) consisting of a
braided monoidal category C acting in a compatible way on a monoidal category D via
a monoidal functor T : C → D. The right adjoint TR : D → C is lax monoidal and in
this setting the algebra TR(1) ∈ C is commutative (see Proposition 2.12). For an algebra
A ∈ D we define the quantum moment map to be an algebra map µ : F = TTR(1) → A
such that its adjoint TR(1)→ TR(A) is a central map of algebras in C. A closely related
formalism on the classical level has previously appeared in [Ševera, 2015].

It is instructive to consider the following example. For a closed subgroup G ⊂ D we
have a quantum Manin pair (RepD,RepG) where both categories are symmetric monoidal
and T : RepD → RepG is the symmetric monoidal restriction functor. Then TR(1) is the
algebra O(D/G) ∈ RepD and so a quantum moment map is a map O(D/G) → A of
G-representations.

Note that the notion of a 1-shifted Lagrangian L→ [G\D/G] can also be interpreted
purely within the 2-category LagrCorr2. Its quantization (i.e. the corresponding notion
in BrTens) is therefore given as follows. Consider the monoidal category HC = D ⊗C D
quantizing [G\D/G]. Then the quantization of a 1-shifted Lagrangian L → [G\D/G] is
given by a module category over HC. We show that if µ : TTR(1) → A is a quantum
moment map in the above sense, then LModA indeed becomes an HC-module category in
Proposition 3.8.

To relate our definition of quantum moment maps to Varagnolo–Vasserot’s, we also
consider quantum Manin triples (see Definition 2.23). Unpacking the categorical def-
inition, a quantum Manin triple consists of a braided monoidal category C, a pair of
monoidal categories D, E such that (C,D) and (C, E) are quantum Manin pairs and a
monoidal functor E ⊗C D → Modk. Here E ⊗C D carries a monoidal structure such that
the projection E⊗op⊗D → E⊗CD is monoidal (see Section 1.13 for details). In particular,
E ⊗C D → Modk gives rise to monoidal functors F : D → Modk and F̃ : E⊗op → Modk.

The reader may have noticed that we have not included any nondegeneracy assump-
tions into our definitions of quantum Manin pairs and quantum Manin triples while on the
classical level we consider shifted symplectic rather than just shifted Poisson structures.
The author is not aware of any nondegeneracy assumptions one may put on quantum
Manin pairs which are satisfied in all examples of interest. Furthermore, such nonde-
generacy assumptions are not necessary for the applications we consider. In the setting
of fusion categories, a closely related definition of quantum Manin pairs and quantum
Manin triples was given in [Davydov et al., 2013, Section 4] and we refer the reader there
for possible nondegeneracy assumptions (however, none of the categories we consider are
fusion).

We show that a quantum Manin triple encodes a wealth of information: there is an
important algebra F = TTR(1) ∈ D, a monoidal category HC = D ⊗C D, a pair of
bialgebras FFR(k) and F̃ F̃R(k), an algebra map F (F) → F̃ F̃R(k) and a skew-Hopf
pairing

ev : F̃ F̃R(k)⊗ FFR(k) −→ k
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which allows to turn FFR(k)-comodules into F̃ F̃R(k)-modules, i.e. it gives a functor

CoModFFR(k) −→ LModF̃ F̃R(k).

Let us explain this structure in examples:

� (See Section 2.36). Given an algebraic group G, we have a quantum Manin triple

(CoModUg(RepG),RepG,CoModUg).

In this case F = Ug ∈ RepG, FFR(k) = O(G), F̃ F̃R(k) = Ug and F (F)→ F̃ F̃R(k)
is an isomorphism and ev : Ug⊗O(G)→ k is the obvious pairing. The category HC
is the monoidal category of Harish–Chandra bimodules, i.e. Ug-bimodules where the
diagonal action integrates to a G-action. Let us recall that the category of Harish–
Chandra bimodules has a long history in representation theory: for instance, they
are related to blocks in category O [Bernstein and Gelfand, 1980] and to character
sheaves [Bezrukavnikov et al., 2012].

� (See Section 2.41). Let Repq(G) be the category of representations of the Lusztig
form of the quantum group at an arbitrary quantum parameter q. Then

(RepqG⊗ Repq(G)σop,Repq(G),Repq(G
∗))

is a quantum Manin triple, where Repq(G
∗) is the category of comodules over the

De Concini–Kac form UDK
q (g) of the quantum group. In this case F = Oq(G) ∈

Repq(G) is the reflection equation algebra, FFR(k) = Oq(G) and F̃ F̃R(k) = UDK
q (g).

The map F → F̃ F̃R(k) is the Rosso homomorphism Oq(G) → UDK
q (g) (see e.g.

[Klimyk and Schmüdgen, 1997, Proposition 10.16]) and the functor Repq(G) →
LModUDK

q (g) realizes objects in Repq(G) as modules over the De Concini–Kac quan-
tum group. Note that for q generic this functor is fully faithful. The category HC is
the quantum version of the category of Harish–Chandra bimodules and is equivalent
to the Hochschild homology category of Repq(G).

Let us state informally some of our results.

0.1. Theorem. [See Theorem 3.17] Suppose (D,H,H∨) is a triple of Hopf algebras giving
rise to a quantum Manin triple (CoModD,CoModH ,CoModH∨). Then an algebra map
µ : F → A in H-comodules is a quantum moment map iff it satisfies

µ(h)a = (h(1) ▷ a)µ(h(2))

for every a ∈ A and h ∈ F , where ∆(h) = h(1)⊗ h(2) ∈ H∨⊗F is the H∨-coaction on F .

Thus, our quantum moment maps reduce to the quantum moment maps of Varagnolo–
Vasserot when we consider quantum Manin triples coming from Hopf algebras.
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0.2. Theorem. [See Theorem 4.30] Suppose (D,G) is a group pair and (RepℏD,RepℏG)
is a quantum Manin pair quantizing it. If an algebra map µℏ : F → Aℏ in RepℏG is a
quantum moment map, then its value µ0 : O(D/G)→ A0 at ℏ = 0 is a classical moment
map.

Combining the two results, we conclude that a classical degeneration of Varagnolo–
Vasserot moment maps gives Alekseev–Kosmann-Schwarzbach moment maps.

Organization of the paper. In Section 1 we recall the necessary facts about monoidal
categories that we will use. Since we are interested in categories such as RepG, the
category of all (not necessarily finite-dimensional) representations, we work in the setting
of locally presentable categories. It is also a convenient setting for us since the 2-category
PrL of such admits a natural symmetric monoidal structure. In this section we define the
notion of a C-monoidal category, i.e. a monoidal category D with a compatible action of a
braided monoidal category C. The pair (C,D) can be thought of as an algebra in PrL over
the two-dimensional Swiss-cheese operad similar to the description of E2-algebras in PrL

in terms of braided monoidal categories. In particular, we show that the relative tensor
product E ⊗C D of C-monoidal categories E and D carries a natural monoidal structure
and describe its universal property (see Proposition 1.25).

In Section 2 we give the main definitions of the paper. There we define and study
quantum Manin pairs and quantum Manin triples. In particular, we describe the as-
sociated algebraic structures, such as analogs of the reflection equation algebra, Rosso
homomorphism and the category of Harish–Chandra bimodules. Sections 2.29,2.36 and
2.41 are devoted to examples of quantum Manin triples from Hopf algebras, classical Lie
algebras and quantum groups.

Given a quantum Manin pair, we define in Section 3 a quantum moment map (see Def-
inition 3.2) and give several ways to describe them (see Proposition 3.15). An important
observation is that the data of a quantum moment map allows one to extend a D-module
structure to an HC-module structure. We also describe a procedure of fusion of algebras
equipped with quantum moment maps. On the level of categories, given two HC-module
categoriesM1,M2 it is simply given by the relative tensor productM1 ⊗DM2.

Finally, in Section 4 we recall definitions of quasi-Poisson groups and quasi-Poisson
spaces and provide a definition of moment maps in this setting (Definition 4.15). This def-
inition is a slight variant of the definition given in [Alekseev and Kosmann-Schwarzbach,
2000] and we show that the two are equivalent (see Proposition 4.20). We also show that
for moment maps factoring as X → G∗ → D/G, this definition reduces to Lu’s defini-
tion of the moment map (see Lemma 4.24). In Section 4.26 we prove that the classical
degeneration of quantum moment maps recovers classical moment maps.

Conventions.

� We work over the ground commutative ring k.

� PrL denotes the symmetric monoidal 2-category of k-linear locally presentable cate-
gories and k-linear colimit-preserving functors (see [Adámek and Rosický, 1994] for
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a general theory and [Brandenburg et al., 2015, Section 2] for a discussion). For
C,D ∈ PrL we denote by C ⊗ D the corresponding symmetric monoidal structure.
The unit object Modk ∈ PrL is the category of k-modules; it is compactly generated
by finitely presentable k-modules.

� Given two locally presentable categories C,D ∈ PrL we denote by FunL(C,D) ∈ PrL

the category of k-linear colimit-preserving functors.

Acknowledgements. The author would like to thank David Jordan for many conversa-
tions about quantum groups which in particular inspired the writing of this paper. This
research was supported by the NCCR SwissMAP grant of the Swiss National Science
Foundation.

1. Background

1.1. Monoidal categories. We refer to [Brochier et al., 2021], [Douglas et al., 2019],
[Etingof et al., 2015] for a more complete discussion of the notions which we will only
briefly recall here.

Let us recall a description of totalizations of cosimplicial categories (i.e. pseudolimits
with shape ∆). Suppose ∆ → PrL is a pseudofunctor defining a cosimplicial category
C•. Denote by si : Cn → Cn−1 and di : Cn → Cn+1 the codegeneracy and coboundary
functors. The limit of C• may be computed by the category of Cartesian sections of the
Grothendieck construction (see [SGA4, 1972, Exposé VI, Chapitre 6.11]) which has the
following explicit description.

1.2. Lemma. Let C• be a cosimplicial category. Then the limit of C• is equivalent to the
following category:

� Its objects are pairs (x, α) where x ∈ C0 and α : d1(x)
∼−→ d0(x) such that the diagrams

d0d1(x)
d0(α) // d0d0(x)

d2d0(x)

∼
99

d1d0(x)

∼
ee

d2d1(x)
d2(α)

ee

∼ // d1d1(x)
d1(α)

99

s0d1(x)
s0(α) //

∼
##

s0d0(x)

∼
{{

x

commute.

� Its morphisms (x, α)→ (y, β) are morphisms f : x→ y such that the diagram

d1(x) α //

d1(f)
��

d0(x)

d0(f)
��

d1(y)
β // d0(y)
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commutes.

1.3. Remark. From Lemma 1.2 we see that we may truncate the cosimplicial object to
the first three terms without changing the limit. See also [Nunes, 2018, Theorem 4.11].

By a monoidal category we will always mean a presentably monoidal category, i.e. a
locally presentable category D ∈ PrL equipped with a monoidal structure whose tensor
product functor commutes with colimits in each variable. We denote by Alg(PrL) the
2-category of monoidal categories (i.e. pseudo-algebra objects in PrL). Given a monoidal
category D, we denote by D⊗op the same category equipped with the opposite tensor
structure.

Given a monoidal category D we denote by

LModD = LModD(Pr
L)

the 2-category of (left) D-module categories which are assumed to be locally presentable
and such that the action functor D ⊗M→M preserves colimits in each variable.

Given a left D-module categoryM and a right D-module category N we get a sim-
plicial object

N ⊗M N ⊗D ⊗Moo oo . . .oooo
oo

(1)

in PrL where the maps come from the action functors on N and M and the monoidal
structure on D. Note that by a simplicial object in PrLk we mean a pseudofunctor ∆op →
PrL. Unless the monoidal structure on D and the D-actions onM and N are strict, this
will not be a strict simplicial object.

1.4. Definition. LetM be a left D-module category and N a right D-module category.
Their relative tensor product is the colimit

N ⊗DM = colim
(
N ⊗M N ⊗D ⊗Moo oo . . .oooo

oo
)

(2)

in PrL.

1.5. Remark. We may compute the pseudo-colimit in PrL as a homotopy colimit in the
canonical model structure on PrL, see [Gambino, 2008]. Therefore, if PrL1 denotes the
∞-category obtained by applying the Duskin nerve to the underlying (2, 1)-category of
PrL, the pseudo-colimit may also be computed as the ∞-categorical colimit in PrL1 .

1.6. Remark. Since all functors in (1) admit a right adjoint, we may compute the colimit
in (2) as a limit of the cosimplicial diagram obtained by passing to right adjoints. In
particular, from Remark 1.3 we see that we may truncate the diagram (1) to the first
three terms without changing the colimit.

The relative tensor product N ⊗DM satisfies the following universal property. Let
A ∈ PrL be a category. Recall the following notion (see [Etingof at al., 2010, Definition
3.1], [Douglas et al., 2019, Definition 3.1]).
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1.7. Definition. A D-balanced functor F : N ×M → A is a bifunctor preserving col-
imits in each variable equipped with an isomorphism

αW,X,V : F (W ⊗X, V ) ∼= F (W,X ⊗ V )

natural in X ∈ D,W ∈ N , V ∈M which makes the obvious diagrams commute.

1.8. Proposition. Let A ∈ PrL be a locally presentable category. Then

FunL(N ⊗DM,A)

is equivalent to the category of D-balanced functors N ⊗M→ A.

Proof. The category FunL(N ⊗DM,A) is equivalent to the limit

lim
(
FunL(N ⊗M,A) // // FunL(N ⊗D ⊗M,A) // //// . . .

)
of the cosimplicial object in PrL. So, by Lemma 1.2 we get that an object in FunL(N ⊗D
M,A) is given by a colimit-preserving functor F : N ⊗M→ A together with a natural
transformation α as above which satisfies a pair of coherence relations. This is exactly
the description of D-balanced functors N ⊗M→ A.

1.9. Definition. Let C be a monoidal category. An object A ∈ C is faithfully flat if the
functor A⊗− is conservative and preserves equalizers.

We will use the following result to work with the category of comodules over a Hopf
algebra (it was previously proved in [Bruguières and Virelizier, 2007, Example 4.8] under
similar assumptions).

1.10. Theorem. [Fundamental theorem of Hopf modules] Let C be a braided monoidal
category (not necessarily locally presentable) which admits equalizers and H ∈ C a faith-
fully flat Hopf algebra in C. Then there is an equivalence

C ∼−→ CoModH(LModH(C))

given by V 7→ H ⊗ V .

Proof. Consider the functor F : C → LModH(C) given by F (V ) = H ⊗ V (the free left
H-module). It admits a right adjoint G : LModH(C)→ C given by the forgetful functor.

The functor G is conservative and preserves limits. Moreover, by assumption GF is
conservative and preserves equalizers. Therefore, F is conservative and preserves equal-
izers. By the Barr–Beck theorem [MacLane, 1971, Theorem VI.7.1] we conclude that F
is comonadic. The comonad T = FG on LModH(C) sends V to H ⊗ Vtriv, where Vtriv

denotes the trivial H-module structure (i.e. H acts via the counit).
We have another comonad T ′ on LModH(C) given by T ′(V ) = H ⊗ V . We have a

natural morphism
αV : H ⊗ Vtriv −→ H ⊗ V
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given by
αV (h⊗ v) = h(1) ⊗ h(2)v

and it is easy to see that it is compatible with the comonad structures on T and T ′. α
has an inverse

βV (h⊗ v) = h(1) ⊗ S(h(2))v

and hence
C ∼= CoAlgT ′(LModH(C)) = CoModH(LModH(C))

1.11. Remark. Note that if C is abelian and the tensor product preserves direct sums,
for any Hopf algebra H ∈ C the functor H ⊗− is conservative since H ∼= 1⊕ ker(ϵ).

We will also often use the following statement (see [Ben-Zvi et al., 2018a, Corollary
4.13]) which is an application of the Barr–Beck theorem [MacLane, 1971, Theorem VI.7.1].

1.12. Proposition. Let D be a monoidal category,M a D-module category and A ∈ D
an algebra object. Then the functor

LModA(D)⊗DM−→ LModA(M)

given by M ⊠ V 7→M ⊗ V is an equivalence.

1.13. Monoidal module categories. A monoidal category D is naturally a left and
right module over itself, so it defines an object D ∈ LModD⊗D⊗op .

1.14. Definition. Let D ∈ PrLk be a monoidal category. Its Drinfeld center is the
category

Z(D) = HomLModD⊗D⊗op (D,D).

Explicitly, Z(D) has objects given by pairs (x, β) of an object x ∈ D and a natural
isomorphism β : x⊗ (−) ∼−→ (−)⊗ x. It is naturally a braided monoidal category.

For a braided monoidal category C we denote by Cσop the same monoidal category
with the inverse braiding. Then for a monoidal category D we have a natural braided
monoidal equivalence

Z(D⊗op) ∼= Z(D)σop.

1.15. Definition. Let C be a braided monoidal category. A C-monoidal category is a
monoidal category D ∈ PrLk together with a braided monoidal functor C → Z(D).

1.16. Remark. The same notion was previously called a tensor category over C in [Drin-
feld et al., 2010, Definition 4.16] and a C-algebra in [Brochier et al., 2021, Definition 3.2].

Explicitly (see [Bezrukavnikov, 2004, Definition 2.1]) we have a monoidal action func-
tor T : C → D and isomorphisms

τX,V : T (X)⊗ V
∼−→ V ⊗ T (X)

natural in X ∈ C and V ∈ D which make obvious diagrams commute.
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1.17. Example. If C is a braided monoidal category, it can also be considered as a
C-monoidal category.

1.18. Example. Suppose A ∈ C is a commutative algebra. Then the category LModA(C)
of (left) A-modules in C becomes a C-monoidal category with the functor C → LModA(C)
given by X 7→ A⊗X and the isomorphism τ given by the braiding.

1.19. Example. Suppose A ∈ C is a bialgebra. Then the category CoModA(C) of A-
comodules in C becomes a C-monoidal category with the functor C → CoModA(C) given
by the trivial module and the isomorphism τ the braiding on C.

1.20. Remark.Using the braided monoidal equivalence Z(D⊗op) ∼= Z(D)σop, a C-monoidal
category gives rise to a Cσop-monoidal category.

Since T : C → D is monoidal and continuous, there is a right adjoint TR : D → C which
is moreover lax monoidal.

1.21. Proposition. The right adjoint TR : D → C is a lax C-monoidal functor, i.e. the
diagram

X ⊗ TR(V )
σ
X,TR(V ) //

��

TR(V )⊗X

��
TRT (X)⊗ TR(V )

σ
TRT (X),TR(V )//

��

TR(V )⊗ TRT (X)

��
TR(T (X)⊗ V )

TR(τX,V )
// TR(V ⊗ T (X))

commutes.

The proof of the above theorem is identical to the proof that the right adjoint of a
braided monoidal functor preserves the braiding, so we omit it.

1.22. Lemma. Let C be a braided monoidal category and D a C-monoidal category. Then:

1. The tensor product functor C ⊗ C → C carries a natural monoidal structure.

2. The action functors C ⊗D → D given by X, V 7→ T (X)⊗ V and D⊗op⊗C → D⊗op

given by V,X 7→ V ⊗ T (X) carry a natural monoidal structure.

Proof.

1. The monoidal structure on C ⊗ C → C is the natural isomorphism

(X1 ⊗X2)⊗ (X3 ⊗X4) ∼= (X1 ⊗X3)⊗ (X2 ⊗X4)

given by the braiding σX2,X3 .
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2. Let T : C → D be the monoidal action functor. The monoidal structure on the
functor C ⊗ D → D is the natural isomorphism

(T (X1)⊗ V1)⊗ (T (X2)⊗ V2) ∼= T (X1 ⊗X2)⊗ (V1 ⊗ V2)

given by τ−1
X2,V1

and the monoidal structure on T .

Given a C-monoidal category D and a C-monoidal category E , we can therefore upgrade
the simplicial object (1) in PrL to a simplicial object

E⊗op ⊗D E⊗op ⊗ C ⊗Doo oo . . .oooo
oo

in Alg(PrL). By [Lurie, 2017, Proposition 3.2.3.1] the forgetful functor Alg(PrL) → PrL

creates geometric realizations of simplicial objects, so the relative tensor product E ⊗C D
carries a natural structure of a monoidal category. We are now going to explain a universal
property of the monoidal structure on the relative tensor product E ⊗C D.

1.23. Definition. Let D, E ,A be monoidal categories and FE : E → A and FD : D → A
be monoidal functors. Then a distributive law between FE and FD is given by an isomor-
phism

βW,V : FE(W )⊗ FD(V )
∼−→ FD(V )⊗ FE(W )

compatible with the monoidal structures on FE and FD.

Let Fun⊗(−,−) denote the category of colimit-preserving monoidal functors of monoidal
categories. The following is then well-known.

1.24. Lemma. Suppose E ,D,A are monoidal categories. Then Fun⊗(E ⊗D,A) is equiva-
lent to the category of triples (FE , FD, β) of monoidal functors FE : E → A and FD : D → A
and a distributive law between them.

One also has a similar description of the functor category for several tensor factors.
Let TE : C → E⊗op and TD : C → D the monoidal action functors.

1.25. Proposition. Suppose C is a braided monoidal category, D and E are C-monoidal
categories and A is another monoidal category. Then Fun⊗(E ⊗C D,A) is equivalent to
the following category:

� Its objects are quadruples (FE , FD, β, α), where FE : E⊗op → A and FD : D → A are
monoidal functors, βW,V : FE(W )⊗ FD(V )

∼−→ FD(V )⊗ FE(W ) is a distributive law
and α : FD ◦TD

∼−→ FE ◦TE is a monoidal natural isomorphism such that the diagram

FD(TD(X)⊗ V )
FD(τX,V )

//

∼
��

FD(V ⊗ TD(X))

∼
��

FD(TD(X))⊗ FD(V )

αX⊗id
��

FD(V )⊗ FD(TD(X))

id⊗αX

��
FE(TE(X))⊗ FD(V )

βTE (X),V// FD(V )⊗ FE(TE(X))
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and its analog for E commute.

� Its morphisms (FE , FD, β, α) → (F ′
E , F

′
D, β

′, α′) are monoidal natural transforma-
tions FE → F ′

E and FD → F ′
D compatible with the isomorphisms α and β.

Proof. The proof is analogous to the proof of Proposition 1.8 where we use Lemma 1.24
to describe the categories Fun⊗(E⊗op ⊗D,A) and Fun⊗(E⊗op ⊗ C ⊗D,A).

2. Manin pairs

Our goal in this section is to provide a definition and examples of quantization of Manin
pairs and Manin triples.

2.1. Quantum Manin pairs.

2.2. Definition. A quantum Manin pair (C,D) is a pair of a braided monoidal category
C and a C-monoidal category D.

2.3. Example. A somewhat degenerate example of a quantum Manin pair is the pair
(Modk,D) for a monoidal category D. Namely, by the Eilenberg–Watts theorem [Nyman
and Smith, 2016] k-linear colimit-preserving functors Modk → Z(D) are uniquely specified
by their value on k ∈ Modk and we send k ∈ Modk to the unit object of Z(D).

2.4. Example. If D is a braided monoidal category, the pair (D⊗Dσop,D) is a quantum
Manin pair via the natural braided monoidal functor D ⊗ Dσop → Z(D) (see [Etingof et
al., 2015, Proposition 8.6.1]) corresponding to the left and right action of D on itself.

2.5. Remark. Suppose (d, g) is a Manin pair which integrates to a group pair (D,G)
[Alekseev and Kosmann-Schwarzbach, 2000]. As shown in [Safronov, 2021, Proposition
4.16], in this case the map of classifying stacks BG→ BD carries a 2-shifted Lagrangian
structure and the quantum Manin pair (C,D) may be thought of as a quantization of this
Lagrangian.

We are now going to define several important objects associated to a quantum Manin
pair (C,D). By the results of Section 1.13 the category

HC = D ⊗C D

carries a natural structure of a monoidal category such that the projection

D⊗op ⊗D −→ HC

is monoidal.
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2.6. Example. Suppose D is a braided monoidal category and consider the quantum
Manin pair (D ⊗Dσop,D). Then the monoidal category

HC = D ⊗D⊗Dσop D

is a twisted version of the cocenter (or zeroth Hochschild homology) category of D, see
[Ben-Zvi et al., 2018b, Lemma 3.9]. If D is balanced, the two coincide.

2.7. Remark. In the setting of Remark 2.5 the monoidal category HC may be thought
of as a quantization of the 1-shifted symplectic stack BG×BD BG ∼= [G\D/G].

We have the following description of HC-monoidal categories.

2.8. Proposition. An HC-module category is a D-bimodule category M together with
an identification of the two induced C-actions such that the diagram

(T (X)⊗ V )⊗M
τX,V ⊗id

//

∼
��

(V ⊗ T (X))⊗M

∼
��

T (X)⊗ (V ⊗M)

∼
��

V ⊗ (T (X)⊗M)

∼
��

(V ⊗M)⊗ T (X) ∼ // V ⊗ (M ⊗ T (X))

for X ∈ C, V ∈ D and M ∈M commutes and similarly for the right action.

Proof. An HC-module category is a categoryM together with a monoidal functor

D ⊗C D → FunL(M,M).

The latter can be unpacked using Proposition 1.25.

2.9. Example. D is a D-bimodule category with respect to the left and right actions on
itself. The identification of the induced C-actions is given by the isomorphism τ , so D is
an HC-module category.

2.10. Remark. Consider the quantum Manin pair (D ⊗ Dσop,D) from Example 2.4
and an HC-module category M. Then we get two identifications of the left and right
D-actions. Therefore, in this case an HC-module category is a D-module category M
together with an automorphism of the action functor D ⊗M → M satisfying certain
compatibilities. In other words, M is a D-braided module category, see [Ben-Zvi et al.,
2018b, Definition 3.4] and [Ben-Zvi et al., 2018b, Theorem 3.11].

We may introduce a relative version of the Drinfeld center, see also [Laugwitz, 2020,
Definition 3.28] for a related notion.
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2.11. Definition. Let D be a C-monoidal category. The relative Drinfeld center is

ZC(D) = FunL
HC(D,D),

the category of colimit-preserving functors D → D as HC-module categories.

Explicitly (see [Laugwitz, 2020, Proposition 3.34]), ZC(D) is a full subcategory of the
Drinfeld center Z(D) consisting of pairs (V, β) such that βT (x) : V ⊗ T (x)

∼−→ T (x)⊗ V is
the inverse of τx,V .

Let T : C → D be the monoidal action functor. Its right adjoint TR : D → C is lax
monoidal and so TR(1) ∈ C is an algebra object.

2.12. Proposition. The algebra TR(1) ∈ C is commutative.

Proof. Consider the diagram

TR(1)⊗ TR(1)
σ
TR(1),TR(1) //

��

TR(1)⊗ TR(1)

��
TR(TTR(1)⊗ 1)

τ
TR(1),1 //

''

TR(1⊗ TTR(1))

ww
TR(1)

The top square commutes by Proposition 1.21 and the bottom square commutes since
τ−,1 is the unit isomorphism. The two composites TR(1)⊗ TR(1)→ TR(1) coincide with
the multiplication TR(1)⊗ TR(1)→ TR(1) and so the diagram expresses commutativity
of the algebra TR(1).

2.13. Remark. There is a related notion of quantum Manin pairs (C, A) introduced in
[Davydov et al., 2013, Definition 4.2] which are given by a non-degenerate braided fusion
category C and a commutative algebra A in C satisfying certain assumptions. Then the
pair (C,LModA(C)) is a quantum Manin pair in our sense.

Define
F = TTR(1)

which is an algebra in D. The counit of the adjunction T ⊣ TR gives rise to an algebra
map

ϵ : F → 1 (3)

in D.

2.14. Remark. Consider a group pair (D,G). Recall from [Alekseev and Kosmann-
Schwarzbach, 2000, Section 3.5] that D/G is a quasi-Poisson D-space. Then we may
think of TR(1) as a quantization of O(D/G) ∈ RepD.

2.15. Monadic case. Consider a quantum Manin pair (C,D).
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2.16. Definition. The action functor T : C → D satisfies the projection formula if the
natural morphism

X ⊗ TR(V ) −→ TR(T (X)⊗ V )

is an isomorphism for every X ∈ C and V ∈ D.

2.17. Remark. By Proposition 1.21 T satisfies the projection formula iff

TR(V )⊗X → TR(V ⊗ T (X))

is an isomorphism.

Suppose T satisfies the projection formula. Note that since TR(1) is a commutative
algebra, LModTR(1)(C) is a C-monoidal category by Example 1.18.

2.18. Proposition. The natural functor D → LModTR(1)(C) given by V 7→ TR(V ) is a
functor of C-monoidal categories.

Proof. The projection formula implies that D → LModTR(1)(C) is a functor of C-module
categories. Let us now show that it is strictly compatible with the monoidal structures.
The natural lax monoidal structure on TR : D → C gives a fork

TR(V )⊗ TR(1)⊗ TR(W ) //// TR(V )⊗ TR(W ) // TR(V ⊗W )

in C which we have to prove is a coequalizer which will give the required monoidal structure

TR(V )⊗TR(1) T
R(W ) ∼= TR(V ⊗W ).

Using the projection formula we may identify the above fork with TR(−⊗W ) applied
to the fork

TTR(V )⊗ TTR(1) // // TTR(V ) // V

in D.
Using the monoidal structure on T and the projection formula again, we identify the

above fork with
TTRTTR(V ) //// TTR(V ) // V

which is a split coequalizer.

2.19. Remark. Consider the quantum Manin pair from Example 2.4. If D is rigid, i.e.
every compact object is dualizable, then [Ben-Zvi et al., 2018a, Proposition 3.17] implies
that T : D ⊗D → D satisfies the projection formula and TR : D → D ⊗D is monadic.

We have a natural isomorphism

τTR(1),V : F ⊗ V
∼−→ V ⊗F

for any V ∈ D given by the C-monoidal structure on D called the field goal isomorphism
in [Ben-Zvi et al., 2018b, Corollary 4.6]. In particular, this induces a monoidal structure
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on LModF(D) given by turning a left F -module into a right F -module using the field
goal isomorphism and applying the relative tensor product of modules.

Recall TR : D → C is monadic if the natural functor

D −→ LModTR(1)(C)

is an equivalence.

2.20. Proposition. Suppose T : C → D satisfies the projection formula and TR : D → C
is monadic. Then there is a monoidal equivalence

HC ∼= LModF(D)

where the forgetful functor HC → D is right adjoint to the monoidal functor D → HC
given by V 7→ 1⊠ V .

Proof. The C-monoidal equivalence D ∼= LModTR(1)(C) gives rise to a monoidal equiva-
lence

HC ∼= LModTR(1)(C)⊗C D.

We have a natural monoidal functor

LModTR(1)(C)⊗C D −→ LModF(D)

given by M ⊠ V 7→ T (V )⊗ V which by Proposition 1.12 is an equivalence.

2.21. Example. In the case of the quantum Manin pair (D ⊗ Dσop,D) we get the
monoidal equivalence HC ∼= LModF(D) from [Ben-Zvi et al., 2018b, Section 4.2].

2.22. Quantum Manin triples.

2.23. Definition. A quantum Manin triple is a triple (C,D, E) where (C,D) and (C, E)
are quantum Manin pairs together with a monoidal functor

E ⊗C D −→ Modk.

2.24. Remark. There is a related notion of quantum Manin triples (C, A) introduced
in [Davydov et al., 2013, Definition 4.13] which are given by a non-degenerate braided
fusion category C and a pair of commutative algebras A,B in C such that the category
of (A,B)-bimodules in C is equivalent to Modk and which satisfy some extra assump-
tions. We have C-monoidal categories D = LModA(C) and E = LModB(C). Moreover,
the category E ⊗C D is equivalent to the category of (A,B)-bimodules in C and hence
(C,LModA(C),LModB(C)) gives a quantum Manin triple in our sense.
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2.25. Remark. Suppose (d, g, g∗) is a Manin triple which integrates to a group triple
(D,G,G∗). As shown in [Safronov, 2021, Proposition 4.17], in this case the maps of
classifying stacks

pt

{{ ""
BG∗

##

BG

||
BD

form an iterated Lagrangian correspondence. The notion of a quantum Manin triple may
be thought of as a quantization of this Lagrangian correspondence.

Let T : C → D and T̃ : C → E be the action functors. Using Proposition 1.25 we may
unpack the monoidal functor E ⊗C D → Modk in terms of the following data:

� A pair of monoidal functors F : D → Modk and F̃ : E⊗op → Modk.

� A distributive law βV,W : F (V )⊗ F̃ (W )
∼−→ F̃ (W )⊗ F (V ).

� A monoidal isomorphism α : F ◦ T ∼−→ F̃ ◦ T̃ .

In particular, we get two algebras FR(k) ∈ D and F̃R(k) ∈ E so that their images
FFR(k), F̃ F̃R(k) ∈ Modk are bialgebras, where the coproducts come from the comonad
structures on FFR and F̃ F̃R (see [Etingof et al., 2015, Section 5.4]). The algebra map
ϵ : F → 1 gives rise to an algebra map F (ϵ) : F̃ T̃ TR(1) ∼= F (F)→ k which by adjunction
gives an algebra map

T̃ TR(1) −→ F̃R(k). (4)

2.26. Definition. A factorizable quantum Manin triple is a quantum Manin triple
(D ⊗Dσop,D, E), where (D ⊗Dσop,D) is the quantum Manin pair from Example 2.4.

2.27. Proposition. Suppose T : D ⊗ D → D satisfies the projection formula and the
right adjoint TR : D → D ⊗ D preserves colimits. Then we have an isomorphism of
algebras

F (F) ∼= FFR(k).

Proof. The functor T : D ⊗ D → D is a 1-morphism in LModD⊗D and by assumptions
it admits a right adjoint TR : D → D ⊗ D in the same 2-category. We have a monoidal
functor F ⊗ id : D ⊗D → D which gives rise to a 2-functor

LModD⊗D −→ LModD
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under which the image of T is F . Therefore, the image of TR under the above functor is
FR. The commutative diagram of categories

D TR
//

��

D ⊗D

��
D ⊗D Modk

TR⊗id// (D ⊗D)⊗D Modk

then implies that the natural morphism

(F ⊗ id)TR → FRF

is an isomorphism. Therefore,

(F ⊗ F )TR → FFRF

is an isomorphism and the claim follows.

2.28. Example. As shown in [Ben-Zvi et al., 2018a, Propositions 3.11, 3.12], the as-
sumptions of the proposition are satisfied when D is rigid, i.e. every compact object is
dualizable.

2.29. Coalgebras. In this section we describe quantum Manin triples arising from a
triple of bialgebras. Recall the notion of a skew-pairing γ : H∨⊗H → k of Hopf algebras,
see e.g. [Klimyk and Schmüdgen, 1997, Definition 8.3]. We denote by γ−1 : H∨ ⊗H → k
the convolution inverse and by γ : H ⊗ H∨ → k the inverse skew-pairing which is γ−1

precomposed with the tensor flip. Then we have the following notion, see e.g. [Klimyk
and Schmüdgen, 1997, Definition 10.1].

2.30. Definition. Let D be a Hopf algebra. A coquasitriangular structure on D is a
skew-pairing rD : D ⊗D → k such that

rD(a(1), b(1))a(2)b(2) = rD(a(2), b(2))b(1)a(1). (5)

For a Hopf algebraD the category CoModD of rightD-comodules is locally presentable
[Wischnewsky, 1975, Corollary 26] and hence is a monoidal category in our sense. More-
over, if D is a coquasitriangular Hopf algebra, CoModD is a braided monoidal category,
where the braiding V ⊗W

∼−→ W ⊗ V is defined by

v ⊗ w 7→ rD(v(1), w(1))w(0) ⊗ v(0)

The opposite braided monoidal structure on CoModD is defined using r.

2.31. Definition. Let D be a coquasitriangular Hopf algebra and f : D → H a morphism
of Hopf algebras. A D-coquasitriangular structure on H is a skew-pairing rH : D⊗H → k
such that

1. rH(d1, f(d2)) = rD(d1, d2) for all d1, d2 ∈ D.

2. rH(d(1), h(1))f(d(2))h(2) = rH(d(2), h(2))h(1)f(d(1)) for all d ∈ D and h ∈ H.
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2.32. Remark. If f : D → H is surjective, a D-coquasitriangular structure on H exists
iff rD(d1, d2) = 0 for every d1, d2 ∈ D such that f(d2) = 0 in which case it is unique.

Given a D-coquasitriangular structure on a Hopf algebra H, we get a CoModD-
monoidal structure on CoModH . Now fix the following data:

� A coquasitriangular Hopf algebra D.

� A (D, rD)-coquasitriangular Hopf algebra H with a Hopf map f : D → H.

� A (D, rD)-coquasitriangular Hopf algebra H∨ with a Hopf map g : D → H∨.

� A skew-pairing ev : H∨ ⊗H → k such that

rH(d, h) = ev(g(d), h), r−1
H∨(d, h) = ev(h, f(d)).

2.33. Remark. The compatibility between the skew-pairings implies that the data boils
down to a triple of Hopf algebras (D,H,H∨) together with a skew-pairing ev : H∨⊗H → k
such that rH , rH∨ and rD defined in terms of ev satisfy the respective versions of (5).

2.34. Remark.We do not assume that ev is nondegenerate, so H∨ is not necessarily the
linear dual to H.

Define
C = CoModD, D = CoModH , E = CoModH∨op .

Using the skew-pairing ev we get a distributive law βW,V : W ⊗ V → V ⊗W for any
W ∈ E and V ∈ D defined by

βW,V (w ⊗ v) = v(0) ⊗ w(0)ev(w(1), v(1)).

Therefore, by Proposition 1.25 we get a monoidal functor

E ⊗C D −→ Modk

and hence (CoModD,CoModH ,CoMod(H∨)op) becomes a quantum Manin triple.

2.35. Remark. The skew-pairing ev allows one to turn a right H-comodule V into a left
H∨-module via

h ▷ v = v(0)ev(h, v(1)). (6)

This gives a monoidal functor

CoModH −→ LMod⊗op
H∨ . (7)

Then the distributive law β can be written as

βW,V (w ⊗ v) = (w(1) ▷ v)⊗ w(0).
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2.36. Classical groups. In this section we work out an example of a quantum Manin
triple coming from an algebraic group.

Let G be an affine group scheme over k and g its Lie algebra which we assume is
flat over k. Consider the symmetric monoidal category RepG = CoModO(G). Ug is a
Hopf algebra in RepG, so C = CoModUg(RepG) is a monoidal category. We define the
skew-pairing

ev : Ug⊗O(G) −→ k

such that ev(x, f) is the derivative of f ∈ O(G) along x ∈ g at the unit. Then for
W ∈ CoModUg and V ∈ RepG we have a braiding isomorphism W ⊗ V → V ⊗W given
by

w ⊗ v 7→ (w(1) ▷ v)⊗ w(0). (8)

This endows C with a braiding and RepG and CoModUg with structures of C-monoidal
categories. The action functors T : C → RepG and T̃ : C → CoModUg are the forgetful
functors.

2.37. Proposition.

1. The functor TR : RepG → CoModUg(RepG) is given by the cofree Ug-comodule
TR(V ) = Ug⊗V , the counit TTR(V )→ V is given by the counit on Ug and the lax
monoidal structure on TR(V ) is given by the algebra structure on Ug.

2. The functor TR : RepG→ CoModUg(RepG) is monadic.

3. The functor T : CoModUg(RepG)→ RepG satisfies the projection formula.

Proof. By Theorem 1.10 we may identify

RepG ∼= LModUg(CoModUg(RepG))

via V 7→ Ug⊗ V . Under this identification the functor

T : CoModUg(RepG)→ RepG ∼= LModUg(CoModUg(RepG))

is given by V 7→ Ug ⊗ V . Its right adjoint TR is the forgetful functor. This proves the
first claim.

Clearly, the forgetful functor TR : LModUg(CoModUg(RepG)) → CoModUg(RepG) is
monadic with the corresponding monad on CoModUg(RepG) identified with Ug⊗−. This
proves the second claim.

The morphism appearing in the projection formula is given by the composite

X ⊗ (Ug⊗ V ) −→ Ug⊗ (X ⊗ (Ug⊗ V )) −→ Ug⊗X ⊗ V

for X ∈ CoModUg(RepG) and V ∈ RepG. Here the first morphism is given by the Ug-
coaction and the second morphism is given by applying counit to the second copy of Ug.
Explicitly, for x ∈ X and v ∈ V we have

x⊗ h⊗ v 7→ x(1)h(1) ⊗ x(0) ⊗ h(2) ⊗ v 7→ x(1)h⊗ x(0) ⊗ v,

but this is precisely the isomorphism (8) applied to the first two factors.
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2.38. Example. We see that TR(1) = Ug ∈ CoModUg(RepG). By Proposition 2.12 it is
a commutative algebra and let us show this explicitly. It is generated by g ⊂ Ug, so we
need to check that the generators commute. For x, y ∈ g the braiding (8) gives

x⊗ y 7→ [x, y]⊗ 1 + y ⊗ x.

Since xy = [x, y] + yx, this shows that Ug ∈ C is a commutative algebra.

From this proposition we obtain an isomorphism

F ∼= Ug.

For V ∈ RepG the isomorphism

τTR(1),V : F ⊗ V
∼−→ V ⊗F

given by (8) has the following expression:

h⊗ v 7→ (h(1) ▷ v)⊗ h(2).

Using Proposition 2.20 we may then identify

HC ∼= LModUg(RepG)

as monoidal categories. Given an object V ∈ LModUg(RepG) the isomorphism τTR(1),V

endows it with the right Ug-module structure, so that we may identify LModUg(RepG)
with the monoidal category of Harish–Chandra bimodules, i.e. Ug-bimodules where the
diagonal action of g is integrable.

We have the obvious forgetful functors F : RepG→ Modk and F̃ : CoModUg → Modk.
The isomorphism (8) provides a distributive law between them so that together they
assemble into a monoidal functor

CoModUg ⊗C RepG −→ Modk

which gives a quantum Manin triple (C,RepG,CoModUg).

2.39. Remark. The quantum Manin triple (C,RepG,CoModUg) is a quantization of the
group triple (T ∗G,G, g∗).

2.40. Remark. Using Theorem 1.10 we may identify RepG ∼= LModUg(C). Therefore,
by Proposition 1.12 we get an equivalence CoModUg ⊗C RepG ∼= LModUg(CoModUg) and
applying Theorem 1.10 again we deduce that CoModUg ⊗C RepG ∼= Modk which is easily
seen to be the same functor as above.

We have
FR(k) = O(G) ∈ RepG, F̃R(k) = Ug ∈ CoModUg

equipped with the obvious algebra structures.
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The counit ϵ : F → 1 in RepG is the counit of Ug. For W ∈ CoModUg the counit
V → F̃RF̃ (V ) is given by the coaction map V → Ug⊗ V , so the map (4) is given by the
composite

Ug
∆−→ Ug⊗ Ug

id⊗ϵ−−→ Ug

which is the identity map.
The functor (7) in our case is the obvious symmetric monoidal functor

RepG −→ LModUg.

2.41. Quantum groups. The standard references for quantum groups are [Lusztig,
2010] and [Chari and Pressley, 1995]. We will follow the categorical presentation from
[Gaitsgory, 2018, Sections 4, 5] (see also [Laugwitz, 2020, Section 4.3]). Let k = C.

We fix a connected reductive group G with a choice of a Borel subgroup B+ ⊂ G and
a maximal torus T ⊂ B+ ⊂ G. Denote by Λ̌ the character lattice. In addition, we fix a
symmetric bilinear Weyl-invariant form

b′ : Λ̌× Λ̌→ C×.

Denote the associated quadratic form by

q(λ) = b′(λ, λ).

Our assumption will be that for each simple root α̌i the value q(α̌i) is not a root of unity.
Let Repq(T ) be the usual monoidal category of Λ̌-graded vector spaces with braiding

kλ1⊗kλ2
∼−→ kλ2⊗kλ1 of one-dimensional vector spaces concentrated in weights λ1, λ2 ∈ Λ̌

given by multiplication by b′(λ1, λ2). Denote by inv : Repq(T ) → Repq(T ) the braided
autoequivalence given by reversing the grading.

We have a bialgebra Uq(n+) ∈ Repq(T ) and denote Uq(n−) = inv(Uq(n+)). In addition,
we have a nondegenerate Hopf pairing

ev : Uq(n+)⊗ Uq(n−) −→ k

in Repq(T ).
Denote by Oq(N+) ∈ Repq(T )

σop the bialgebra Uq(n−) with the opposite multiplica-
tion. Then we may define

Repq(B+) = CoModOq(N+)(Repq(T )
σop)

which is naturally a Repq(T )
σop-monoidal category (see Example 1.19). We may similarly

define
Repq(B−) = CoModUq(n+)(Repq(T ))

which is a Repq(T )-monoidal category.
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The relative Drinfeld center ZRepq(T )σop(Repq(B+)) is given by Oq(N+)-comodules M

in Repq(T )
σop together with a natural isomorphism βN : M ⊗N

∼−→ N ⊗M . In particular,

Oq(N+)⊗M
β−1
Oq(N+)

−−−−−→M ⊗Oq(N+)
id⊗ϵ−−→M

gives an Oq(N+)-module structure on M . We denote by

Repq(G) ⊂ ZRepq(T )σop(Repq(B+))

the full subcategory where the Oq(N+)-module structure is locally nilpotent, i.e. comes
from an Oq(N−)-coaction (see [Gaitsgory, 2018, Lemma 4.3.5]). We similarly have a fully
faithful braided monoidal functor

Repq(G)σop ⊂ ZRepq(T )(Repq(B−)).

To summarize:

� Repq(G) is a braided monoidal category.

� Repq(B+) is a monoidal Repq(G)⊗ Repq(T )
σop-category.

� Repq(B−) is a monoidal Repq(G)σop ⊗ Repq(T )-category.

Consider the Repq(T )-monoidal structure on Repq(B−) given by precomposing the
obvious one with inv.

2.42. Definition. The category of representations of the dual quantum group is

Repq(G
∗) = Repq(B−)⊗Repq(T ) Repq(B+).

By construction Repq(G
∗) is a Repq(G)⊗Repq(G)σop-monoidal category. We will now

construct a quantum Manin triple corresponding to the quantum group.
The forgetful functor Repq(T )→ Modk is comonadic and this gives the Hopf algebra

Oq(T ) = O(T ). Similarly, the forgetful functors Repq(G) → Repq(T ) → Modk and
Repq(B±)→ Repq(T )→ Modk are comonadic. This gives the following Hopf algebras:

� Oq(B±) with Hopf maps p± : Oq(B±)→ Oq(T ) and i± : Oq(T )→ Oq(B±).

� Oq(G) with Hopf maps f : Oq(G)→ Oq(B+) and g : Oq(G)→ Oq(B−).

The braiding on Repq(T ) corresponds to a coquasitriangular structure

evT : Oq(T )⊗Oq(T ) −→ k.

In addition, we have a skew-pairing

ev : Oq(B−)⊗Oq(B+) −→ k

with the following properties (we denote by ev the inverse skew-pairing):
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1. r(x, y) = ev(g(x), f(y)) for x, y ∈ Oq(G) gives a coquasitriangular structure on
Oq(G). Its inverse is r(x, y) = ev(f(x), g(y)).

2. rB+(x, y) = ev(g(x), y) for x ∈ Oq(G) and y ∈ Oq(B+) gives an (Oq(G), r)-
coquasitriangular structure on Oq(B+).

3. rB−(x, y) = ev(f(x), y) for x ∈ Oq(G) and y ∈ Oq(B−) gives an (Oq(G), r)-
coquasitriangular structure on Oq(B−).

4. ev(i−(x), y) = evT (x, p+(y)) for every x ∈ Oq(T ) and y ∈ Oq(B+) and similarly for
B−.

We refer to [Klimyk and Schmüdgen, 1997, Proposition 6.34] for an explicit formula
for the pairing ev.

Note that the last property implies that

rB+(x, i+(y)) = rB−(x, i−(inv(y))) (9)

for any x ∈ Oq(G) and y ∈ Oq(T ).
Using the first three properties of ev we may construct a monoidal functor

(Repq(B−)⊗Repq(B+))⊗Repq(G)⊗Repq(G)σopRepqG
∼= Repq(B−)⊗Repq(G)Repq(B+) −→ Modk

as in Section 2.29. The equation (9) shows that this monoidal functor descends to a
monoidal functor

Repq(G
∗)⊗Repq(G)⊗Repq(G)σop Repq(G) −→ Modk

which gives a factorizable quantumManin triple (Repq(G)⊗Repq(G)σop,Repq(G),Repq(G
∗)).

2.43. Remark. The quantum Manin triple (Repq(G)⊗Repq(G)σop,Repq(G),Repq(G
∗))

is a quantization of the standard Manin triple (G×G,G,B+ ×T B−).

We are now going to explain various algebraic structures associated to this quantum
Manin triple in terms of some known constructions:

� The algebra F ∈ Repq(G) as an Oq(G)-comodule is equivalent to Oq(G) equipped
with the adjoint action of Oq(G) on itself. Moreover, by Proposition 2.27 as a plain
algebra it is isomorphic to Oq(G). Note, however, that under the adjoint action
Oq(G) is not a comodule algebra; instead, as explained in [Ben-Zvi et al., 2018a,
Example 6.3] F is the so-called reflection equation algebra.

� The algebra Uq(g) = F̃R(k) ∈ Repq(G
∗) is the quantum group.

� The homomorphism (4) is the so-called Rosso homomorphism

Oq(G) −→ Uq(g),

see [Klimyk and Schmüdgen, 1997, Proposition 10.16] for the case of matrix groups.

� The functor
Repq(G) −→ LModUq(g)

given by (7) realizes any object in Repq(G) as a module over the quantum group.
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2.44. Remark. The constructions we have described in this section work for an arbitrary
quantum parameter if we use modules over the Lusztig form of the quantum group for
Repq(G). In this case F̃R(k) recovers the De Concini–Kac form UDK

q (g) of the quantum
group.

3. Moment maps

In this section we define and study quantum moment maps for a quantum Manin pair.

3.1. Quantum moment maps. Let (C,D) be a quantum Manin pair. For V ∈ D we
have a natural isomorphism

τTR(1),V : F ⊗ V
∼−→ V ⊗F .

3.2. Definition. Let A ∈ D be an algebra. A quantum moment map is an algebra map
µ : F → A such that the diagram

F ⊗ A

τ
TR(1),A

��

µ⊗id // A⊗ A
m

##
A

A⊗F id⊗µ // A⊗ A

m

;;

commutes.

3.3. Remark. By adjunction the algebra map µ : F → A in D is the same as an algebra
map TR(1)→ TR(A) in C.

3.4. Example. Recall from Proposition 2.12 that TR(1) ∈ C is a commutative algebra.
Therefore, the identity map F → F is a quantum moment map.

3.5. Example. Consider the quantum Manin pair (CoModUg(RepG),RepG) from Sec-
tion 2.36. Since Ug is generated by g ⊂ Ug, it is enough to check the quantum moment
map condition on g. Using (8) the isomorphism τTR(1),A is x⊗ a 7→ x.a⊗ 1+ a⊗ x. Then
the quantum moment map condition is

µ(x)a = x.a+ aµ(x).

In other words, [µ(x), a] = x.a which is the usual quantum moment map equation.

3.6. Definition. Let M be a right D-module category and M ∈ M an object. The
internal endomorphism object EndD(M) is the universal object in D equipped with an
isomorphism

HomD(V,EndD(M)) ∼= HomM(M ⊗ V,M).

natural in V ∈ D.
Note that if the internal endomorphism object EndD(M) exists, it is naturally an

algebra in D.
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3.7. Example. Suppose A ∈ D is an algebra, M = LModA(D) and consider the free
A-module M = A. Then

HomD(V,A) ∼= HomLModA(D)(A⊗ V,A)

for every V ∈ D. In particular, A ∼= EndD(A).

Recall that there is a natural monoidal functor D → LModF(D) sending M 7→ F⊗M .
In particular, any LModF(D)-module category is naturally a D-module category. The
main observation about quantum moment maps is the following statement (see also [Ben-
Zvi et al., 2018b, Proposition 4.2]).

3.8. Proposition. Suppose A ∈ D is an algebra equipped with a quantum moment map
µ : F → A. Then LModA(D) is a right LModF(D)-module category. Conversely, suppose
M is a right LModF(D)-module category and M ∈ M an object admitting a D-internal
endomorphism object A = EndD(M). Then there is a quantum moment map µ : F → A.

Proof. Suppose A is an algebra equipped with a quantum moment map µ : F → A. Let
M ∈ LModA(D) be a left A-module. Using the quantum moment map µ we may turn
M into a left F -module. The quantum moment map equation then implies that the left
A-module structure and the left F -module structures commute using τ . Turning the left
F -module structure into a right F -module structure, we see that M canonically becomes
an (A,F)-bimodule.

Therefore, we may define the action functor LModA(D) ⊗ LModF(D) → LModA(D)
by

M ⊠ V 7→M ⊗F V.

Conversely, suppose we have an action functor

M⊗ LModF(D) −→M

and consider an object M ∈ M with A = End(M). The unit of LModF(D) is F .
Therefore, the image of (M,F) under the functor is M . Considering endomorphism
objects, this enhances the (A,A)-bimodule A to an (A,A⊗F)-bimodule, where the right
A and F -actions commute using τ . The right F -module structure on A induces a map
µ : F → A and the commutation of the right A and F -module structures is exactly the
quantum moment map equation.

3.9. Remark. Note that the moment map condition is missing in the statement of [Ben-
Zvi et al., 2018b, Proposition 4.2]. In the notation of that reference, suppose b is an
algebra in B equipped with an algebra map from FR(1B). The quantum moment map
condition is precisely the condition that the induced left and right actions of FR(1B) are
compatible, so b descends from an algebra in B to an algebra in FR(1B)-modules in B.
We are grateful to the authors for their correspondence confirming the correction.
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We will now define quantum Hamiltonian reduction in our context. Suppose µ : F → A
is a quantum moment map and let ϵ : F → 1 be the quantum moment map (3). Then
A⊗F 1 is naturally a left A-module. Consider the k-algebra

HomLModA(D)(A⊗F 1, A⊗F 1).

3.10. Proposition. There is a natural isomorphism

HomLModA(D)(A⊗F 1, A⊗F 1) ∼= HomD(1, A⊗F 1).

Proof. Note that the quantum moment map equation implies that A is an algebra in

LModF(D) ∼= RModF(D).

First, using the induction-restriction adjunction along the map ϵ : F → 1 we get an
isomorphism

HomLModA(D)(A⊗F 1, A⊗F , 1) ∼= HomLModA(RModF (D))(A,A⊗F 1),

where we view A⊗F 1 as a right F -module via ϵ : F → 1. But the natural left F -module
structure on A⊗F 1 is also via ϵ. Therefore, we get an isomorphism

HomLModA(RModF (D))(A,A⊗F 1) ∼= HomLModA(D)(A,A⊗F 1).

Finally, using the induction-restriction adjunction along the unit map 1 → A we get an
isomorphism

HomLModA(D)(A,A⊗F 1) ∼= HomD(1, A⊗F 1).

3.11. Definition. Let µ : F → A be a quantum moment map. The Hamiltonian reduc-
tion of A is the k-algebra

HomD(1, A⊗F 1).

3.12. Remark. Using Proposition 3.8 we have the following interpretation of Hamilto-
nian reduction. Assume for simplicity that the conditions of Proposition 2.20 are satisfied,
so that we have a monoidal equivalence HC ∼= LModF(D). Recall from Example 2.9 that
D is naturally a left HC-module category. Then we have a pointed category

LModA(D)⊗HC D

where the pointing is given by A⊠ 1. It is easy to see that the endomorphism algebra of
the pointing is exactly the Hamiltonian reduction of A, see e.g. [Ben-Zvi et al., 2018b,
Theorem 5.4].
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3.13. Example. Let X be a smooth affine algebraic variety with a free action of a
connected reductive algebraic group G. Consider the algebra of differential operators
A = D(X) ∈ Rep(G). The infinitesimal action of g defines a map of Lie algebras
g→ Vect(X) ⊂ D(X) which extends to a moment map µ : Ug → D(X). The Hamil-
tonian reduction

HomRep(G)(k,D(X)⊗Ug k) ∼= (D(X)/I)G,

where I ⊂ D(X) is the left ideal generated by µ(v) for v ∈ g, is isomorphic to D(X/G).
We refer to [Etingof, 2007, Section 4] for more details on quantum Hamiltonian reduction.

3.14. Monadic case. Suppose the conditions of Proposition 2.20 are satisfied, so that
we have a C-monoidal equivalence D ∼= RModTR(1)(C).

3.15. Proposition. Suppose µ : F → A is an algebra map in D and let µ′ : TR(1)→ TR(A)
be the adjoint algebra map in C. Then µ is a quantum moment map iff µ′ : TR(1)→ TR(A)
is central.

Proof. By assumption TR is faithful, so the diagram in Definition 3.2 commutes in D iff
the pentagon in the diagram

TR(1)⊗ TR(A) //

σ

��

TR(TTR(1)⊗ A)
µ⊗id //

TR(τ
TR(1),A

)

��

TR(A⊗ A)
TR(m)

&&
TR(A)

TR(A)⊗ TR(1) // TR(A⊗ TTR(1))
id⊗µ // TR(A⊗ A)

TR(m)

88

commutes in C. TR : D → C is compatible with the C-monoidal structure, so the square
on the left commutes as well. But the commutativity of the resulting diagram precisely
expresses the condition that the map TR(1)→ TR(A) is central.

Let A be any algebra in D = RModTR(1)(C). Then we have an equivalence

LModA(D) ∼= ABiModTR(1)(C).

In particular, it carries a natural right D-module structure.
Now suppose A is equipped with a quantum moment map, i.e. we are given a central

map µ′ : TR(1)→ A in C. Let us explain how Proposition 3.8 works in this case, i.e.
how to enhance the right D-module structure to an HC-module structure. Recall from
Proposition 2.8 that it means we need to provide an additional left D-module structure
such that the resulting C-module structures are identified.

Given an (A, TR(1))-bimodule M , using the map µ′ : TR(1) → A we may turn it
into a (TR(1), TR(1))-bimodule. Given another right TR(1)-module V , the relative tensor
product V ⊗TR(1)M is still an (A, TR(1))-bimodule since TR(1)→ A is central. This gives
the required left D-action on LModA(D). The functor T : C → D is given by the free right
TR(1)-module construction, so the two C-actions are identified using the braiding.
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3.16. Coalgebras.Consider a triple of Hopf algebras (D,H,H∨) and the corresponding
quantum Manin triple (CoModD,CoModH ,CoMod(H∨)op) from Section 2.29. We denote
by F = TR(1) the D-comodule algebra we have considered previously.

3.17. Theorem. An algebra map µ : F → A in CoModH is a quantum moment map iff

µ(h)a = (h(1) ▷ a)µ(h(0))

for all h ∈ H and a ∈ A, where ∆(h) = h(0) ⊗ h(1) ∈ F ⊗H∨ is the H∨-coaction on F .

Proof. Let g : D → H∨ be the Hopf map in the definition of the triple (D,H,H∨) and

∆(h) = h(0) ⊗ h′
(1) ∈ F ⊗D

be the D-coaction. Then h(0) ⊗ h(1) = h(0) ⊗ g(h′
(1)).

The quantum moment map condition is

µ(h)a = rA(h
′
(1), a(1))a(0)µ(h(0)).

The compatibility of rA and the evaluation skew-pairing ev : H∨ ⊗H → k gives

rA(h
′
(1), a(1))a(0)µ(h(0)) = ev(h(1), a(1))a(0)µ(h(0))

and the definition of the H∨-action (6) gives

ev(h(1), a(1))a(0)µ(h(0)) = (h(1) ▷ a)µ(h(0)).

3.18. Remark. The previous proposition relates our notion of quantum moment maps
to a more common one used in the literature, see e.g. [Varagnolo and Vasserot, 2010,
Section 1.5]. In particular, the quantum Hamiltonian reduction defined in [Varagnolo and
Vasserot, 2010, Theorem 1.5.2] coincides with Definition 3.11.

3.19. Fusion. Fix a quantum Manin pair (C,D) and suppose M1,M2 are two HC-
module categories. In particular, both are (D,D)-bimodule categories, so we may consider
the relative tensor productM1⊗DM2. It is still an (D,D)-bimodule and it is clear that
the resulting C-actions are identified. Thus, it becomes an HC-bimodule.

3.20. Definition. LetM1,M2 be HC-modules. Their fusion is the HC-module

M1 ⊗DM2.
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3.21. Remark. Fusion gives a monoidal structure on the 2-category LModHC of HC-
module categories. Consider the quantum Manin pair (C⊗Cσop, C) for a braided monoidal
category C. As explained in [Ben-Zvi et al., 2018b, Section 3], an HC-module category
is a braided module category, i.e. an E2-module category over C. Then by [Lurie, 2017,
Theorem 3.3.3.9] fusion may be upgraded to a braided monoidal structure on the 2-
category LModHC.

From now on we assume that the conditions of Proposition 2.20 are satisfied, so that
we may identify D ∼= RModTR(1)(C).

Suppose A1, A2 are two algebras in D = RModTR(1)(C) equipped with central maps
µ′
i : T

R(1) → TR(Ai). We have a natural algebra structure on TR(A1) ⊗ TR(A2) in C.
Also, TR(A1) and TR(A2) are algebras in right TR(1)-modules. Using µ′

2 we induce a
left TR(1)-module structure on TR(A2) so that by centrality it becomes an algebra with
respect to the left TR(1)-module structure as well. Therefore,

TR(Afus) = TR(A1)⊗TR(1) T
R(A2)

is an algebra in right TR(1)-modules in C, i.e. an algebra in D. The map

µ′
fus : T

R(1)→ TR(A1)⊗TR(1) T
R(A2)

given by t 7→ µ′
1(t)⊗ 1 is still central, so it defines a moment map µfus : F → Afus.

3.22. Proposition. Suppose A1, A2 are two algebras in D equipped with quantum mo-
ment maps µi : F → A. Then the fusion of LModA1(D) and LModA2(D) is equivalent to
the category LModAfus

(D). Moreover, this equivalence respects the natural pointings on
both sides.

Proof. By Proposition 1.12 the functor

LModA1(D)⊗D LModA2(D) −→ LModA1(LModA2(D))

is an equivalence, where the left D-module structure on LModA2(D) is given in terms of µ′
2

as described in Section 3.14. Both categories LModA1(LModA2(D)) and LModA1⊗TR(1)
A2(D)

are monadic over D and the corresponding monads are given by A1⊗TR(1)A2⊗TR(1) (−)

3.23. Example. Consider the quantum Manin pair (CoModUg(RepG),RepG) from Sec-
tion 2.36. Recall that for A ∈ RepG the functor TR is given by TR(A) = A ⊗ Ug, the
cofree right Ug-comodule. TR(A) carries a natural (TR(1) = Ug)-module structure given
by the right Ug-action on itself. If µ : Ug→ A is a quantum moment map in RepG, then
its adjoint is

µ′ : Ug→ A⊗ Ug

given by h 7→ µ(h(1))⊗ h(2).
Now suppose A1, A2 ∈ RepG are two algebras and µi : Ug → Ai are two quantum

moment maps. Then
TR(Afus) = TR(A1)⊗TR(1) T

R(A2)
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as an object of C equipped with the right TR(1)-module structure from the right TR(1)-
action on TR(A2). In our case we get

TR(Afus) = (A1 ⊗ Ug)⊗Ug (A2 ⊗ Ug) ∼= A1 ⊗ A2 ⊗ Ug,

i.e. Afus
∼= A1 ⊗ A2 ∈ RepG. The algebra structure on TR(Afus) is uniquely determined

by the condition that TR(A1)⊗TR(A2)→ TR(Afus) is an algebra map and a computation
shows that the algebra structure on Afus

∼= A1 ⊗ A2 is the pointwise product.
For h ∈ Ug we have

µ′
fus(h) = (µ1(h(1))⊗ h(2))⊗ (1⊗ 1) ∈ (A1 ⊗ Ug)⊗Ug (A2 ⊗ Ug).

Under the isomorphism with A1 ⊗ A2 ⊗ Ug it corresponds to

µ′
fus(h) = µ1(h(1))⊗ µ2(h(2))⊗ h(3) ∈ A1 ⊗ A2 ⊗ Ug

and hence the moment map µfus : Ug→ A1 ⊗ A2 is given by h 7→ µ1(h(1))⊗ µ2(h(2)).

3.24. Example. Suppose D is a braided monoidal category and consider the quantum
Manin pair (D ⊗ Dσop,D). Consider an algebra A ∈ D equipped with a central map
µ′ : TR(1) → TR(A). Denote by u : TR(1) → TR(A) the image of the unit map under
TR(A). An HC-module category is a (D,D)-bimodule category with two identifications
of the D-module structure. Then we get an equivalence of the (TR(1), TR(1))-bimodules

µ′TR(A)u ∼= uT
R(A)u.

So, we may identify the fusion as

TR(Afus) = µ′
1
TR(A1)u ⊗TR(1) µ′

2
TR(A2)u ∼= µ′

1
TR(A1)u ⊗TR(1) uT

R(A2)u ∼= TR(A1 ⊗ A2),

i.e. Afus is equivalent to the usual tensor product A1 ⊗ A2 of algebras in D.

4. Classical moment maps

In this section we define moment maps in the classical setting and explain how they appear
as classical degenerations of quantum moment maps.

4.1. Quasi-Poisson geometry. Let G be an algebraic group.

4.2. Definition. A quasi-Poisson structure on G is a bivector π ∈ ∧2TG and a trivector
ϕ ∈ ∧3(g) such that

1. π is multiplicative.

2. 1
2
[π, π] = ϕL − ϕR.

3. [π, ϕR] = 0.

Since π is multiplicative, it vanishes at the unit e ∈ G. In particular, its linear part
at the unit defines a Lie cobracket δ ∈ g∗ ⊗ ∧2(g). We denote by J−,−K the natural Lie
bracket on ∧•(g∗)⊗ ∧•(g) given by pairing the g∗ and g factors.
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4.3. Definition. Let t ∈ ∧2(g) and suppose G is a quasi-Poisson group. The twist of
G is a new quasi-Poisson structure on G given by

π′ = π + tL − tR

ϕ′ = ϕ+
1

2
Jδ, tK +

1

2
[t, t].

4.4. Definition. Let G be a quasi-Poisson group. A quasi-Poisson G-variety is a G-
variety X equipped with a bivector πX such that

1. The action map a : G×X → X is compatible with the bivectors.

2. 1
2
[πX , πX ] = a(ϕ).

4.5. Remark. If ϕ = 0, we say G is a Poisson-Lie group. A quasi-Poisson G-variety in
this case is a Poisson G-variety.

4.6. Lemma. Suppose G is a quasi-Poisson group and (X, πX) is a quasi-Poisson G-
variety and fix t ∈ ∧2(g). Let G′ be the twist of G with respect to t. Then (X, πX − a(t))
is a quasi-Poisson G′-variety.

Quasi-Poisson groups usually appear in the following way.

4.7. Definition. A group pair is a pair of algebraic groups (D,G) where G ⊂ D is a
closed subgroup together with a nondegenerate element c ∈ Sym2(d)D such that g ⊂ d is
Lagrangian.

4.8. Definition. A quasi-triple is a group pair (D,G) together with a Lagrangian com-
plement h ⊂ d to g which we do not assume is a Lie subalgebra.

Denote by ph : d
∗ ∼= d→ g the projection determined by the complement.

4.9. Example. If G is equipped with a nondegenerate element c ∈ Sym2(g)G, we have
a group pair (G × G,G) where G ⊂ G × G is equipped diagonally and the pairing on
d = g⊕ g is the difference of c on each summand.

4.10. Remark. The complementarity condition implies that the composite h→ d→ d/g
is an isomorphism and the Lagrangian condition for g implies that g∗ → d/g induced by
c is an isomorphism.

Fix a group pair (D,G). Any two Lagrangian complements h1, h2 ⊂ d to g ⊂ d differ
by a twist t ∈ ∧2(g) as described in [Alekseev and Kosmann-Schwarzbach, 2000, Section
2.2]. The difference ph2−ph1 of the two projections d∗ → g is then given by the composite

d∗ −→ g∗
−t−→ g. (10)

4.11. Definition. A group triple is a triple of algebraic groups (D,G,G∗) such that
(D,G) and (D,G∗) are group pairs and g∗ ⊂ d and g ⊂ d are complementary.
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4.12. Example. For any group G the triple (T∗G,G, g∗) is a group triple, where

Lie(T∗G) = g⊕ g∗

has the obvious pairing between g and g∗ and g∗ ⊂ T∗G is an abelian subgroup.

4.13. Example. If G is a semisimple group with a choice of a Borel subgroup B+ ⊂ G
and a maximal torus T ⊂ B+. Consider D = G × G and equip its Lie algebra d =
g ⊕ g with the difference of the Killing forms on each summand. Then the diagonal
embedding G ⊂ D provides a group pair. Let B− ⊂ G be the opposite Borel subgroup
and denote by p± : B± → T the projections. Define the subgroup G∗ = {b+ ∈ B+, b− ∈
B− | p+(b+)p−(b−) = 1} ⊂ B+ ×B−. Then (G×G,G,G∗) is a group triple.

Given a quasi-triple (D,G, h) it is shown in [Alekseev and Kosmann-Schwarzbach,
2000, Section 3] that we obtain natural quasi-Poisson structures πh

D and πh
G on D and G

so that G ⊂ D is a quasi-Poisson map. If h ⊂ d is a Lie subalgebra, then these are in fact
Poisson-Lie structures. Moreover, changing the Lagrangian complement h to another one
differing by t ∈ ∧2(g) corresponds to twisting the quasi-Poisson structures πh

D and πh
G by

t.
So, for a group pair (D,G) we will say a G-variety X is a quasi-Poisson G-variety if

it is equipped with a family of bivectors πh
X for any complement h ⊂ d such that:

� (X, πh
X) is a quasi-Poisson (G, πh

G)-variety.

� For any two complements h1, h2 ⊂ d differing by a twist t ∈ ∧2(g) we have

πh2
X = πh1

X − a(t).

4.14. Classical moment maps. Consider the D-space D/G via the left D-action on
itself. We may also restrict it to a G-action on D/G. Let {ei} be a basis of d and {ei}
the dual basis of d∗. We denote by ã : d→ Γ(D/G,TD/G) the infinitesimal D-action.

4.15. Definition. Let (D,G) be a group pair and X a quasi-Poisson G-space. A G-
equivariant map µ : X → D/G is a moment map if for some Lagrangian complement
h ⊂ d

{µ∗f1, f2}h =
∑
i

µ∗(ã(ei).f1) · a(ph(ei)).f2

for every f1 ∈ OG and f2 ∈ OX .

The following statement is a version of [Alekseev and Kosmann-Schwarzbach, 2000,
Proposition 5.1.5].

4.16. Proposition. If the moment map condition in Definition 4.15 is satisfied for some
Lagrangian complement h ⊂ d, it is satisfied for any Lagrangian complement.
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Proof. The moment map condition is equivalent to the commutativity of the diagram

T∗
X,x

πh
X // TX,x

T∗
D/G,µ(x)

ã∗ //

µ∗

OO

d∗
ph // g

a

OO

for every x ∈ X.
Suppose h′ ⊂ d is another Lagrangian complement differing by a twist t ∈ ∧2(g) and

write

t =
1

2

∑
i,j

tijxi ∧ xj

where {xi} is a basis of g. Then {xi, x
i} is a basis of d where xi is the dual basis of g∗ ∼= h.

Since πh′

X = πh
X − a(t), we get

{µ∗f1, f2}h′ = {µ∗f1, f2}h −
∑
i,j

tija(xi).µ
∗f1 · a(xj).f2

=
∑
j

µ∗(ã(xj).f1) · a(xj).f2 −
∑
i,j

tija(xi).µ
∗f1 · a(xj).f2

=
∑
j

µ∗(ã(xj).f1) · a(xj).f2 −
∑
i,j

tijµ∗(ã(xi).f1) · a(xj).f2

=
∑
i,j

µ∗(ã(xj − tijxi).f1) · a(xj).f2

where we use G-equivariance of the moment map in the third line. But by (10) this is
exactly the right-hand side of the moment map equation for h′.

We will now relate Definition 4.15 to other moment maps appearing in the literature.

4.17. Definition. Let (D,G) be a group pair. A Lagrangian complement h ⊂ d is

admissible at s ∈ D/G if the map h→ d
ã−→ TD/G,s is an isomorphism.

If U ⊂ D/G is an open subset where a Lagrangian complement h ⊂ d is admissible,
we have a one-form θh ∈ Ω1(U ; g∗) defined using the isomorphism T∗

D/G,s
∼= h∗ ∼= g. The

following definition of moment maps is given in [Alekseev and Kosmann-Schwarzbach,
2000, Definition 5.1.1].

4.18. Definition. Let (D,G) be a group pair and X a quasi-Poisson G-variety. A G-
equivariant map µ : X → D/G is a moment map if for every open U ⊂ D/G and an
admissible complement h ⊂ d on U the equation

a(x) = (πh
X)

♯(µ∗⟨θh, x⟩)

holds on U for every x ∈ g.
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4.19. Remark. For the group pair (G × G,G) from Example 4.9 we have D/G ∼= G
as G-spaces where the G-action on the right is given by conjugation. In this case the
notion of a moment map µ : X → G is closely related to the notion of group-valued quasi-
symplectic moment maps introduced in [Alekseev et al., 1998] as explained in [Alekseev
et al., 2002] and [Li-Bland and Ševera, 2011].

4.20. Proposition. Let (D,G) be a group pair and X a quasi-Poisson G-variety. A
G-equivariant map µ : X → D/G is a moment map in the sense of Definition 4.15 iff if
it is a moment map in the sense of Definition 4.18.

Proof. We may check the moment map condition in Definition 4.15 on an open cover.
Consider an open set U ⊂ D/G from this cover an admissible Lagrangian complement
h ⊂ d on U . For x ∈ µ−1(U) the moment map condition Definition 4.18 is equivalent to
the commutativity of the diagram

T∗
X,x

(πh
X)♯

// TX,x

T∗
D/G,µ(x)

µ∗

OO

g
θhoo

a

OO

Since θ is an isomorphism, this diagram commutes iff the diagram

T∗
X,x

(πh
X)♯

// TX,x

T∗
D/G,µ(x)

µ∗

OO

ã∗ // d∗
ph // g

a

OO

commutes which is precisely the moment map condition in Definition 4.15.

Let us now fix a group triple (D,G,G∗). Then we get a G∗-action on D/G coming
from the inclusion G∗ ⊂ D. The following is well-known.

4.21. Lemma. The composite

f : G∗ −→ D −→ D/G

is étale.

Proof. Since the map is locally of finite presentation, it is enough to show that it is
formally étale. Since G∗ → D/G is G∗-equivariant, it is enough to check that it is
formally étale at the unit e ∈ G∗. The map on tangent spaces at e ∈ G∗ is

g∗ −→ d −→ d/g

which is an isomorphism since g∗ ⊂ d is a complementary Lagrangian to g ⊂ d.
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4.22. Remark. Consider the quantum Manin triple (Rep(D),Rep(G),Rep(G∗)) where
every category is symmetric monoidal and the action functors T : Rep(D) → Rep(G)
and T̃ : Rep(D)→ Rep(G) are the obvious forgetful functors. Then the morphism (4) is
O(D/G)→ O(G∗).

In the case of group triples, the moment map equation Definition 4.15 may be written
as

{µ∗f1, f2} =
∑
i

µ∗(ã(xi).f1)a(xi).f2, (11)

where {xi} is a basis of g and {xi} is the dual basis of g∗.
The coadjoint action of g on g∗ gives a g-action on G∗ such that G∗ → D/G is

g-equivariant. Let θ ∈ Ω1(G∗; g∗) be the left-invariant Maurer–Cartan form. The La-
grangian complement g∗ ⊂ d is admissible for every f(g) and we have

f ∗θg
∗
= θ. (12)

The following notion of moment map was introduced in [Lu, 1991].

4.23. Definition. Let X be a Poisson G-variety. A g-equivariant map X → G∗ is a
moment map if

a(x) = π♯
X(µ

∗⟨θ, x⟩)

for every x ∈ g.

4.24. Lemma. Let (D,G,G∗) be a group triple, X a Poisson G-variety and µ : X → D/G
a G-equivariant map.

1. If µ satisfies the moment map condition of Definition 4.18, then µ−1(G∗) → G∗

satisfies the moment map condition of Definition 4.23.

2. If D/G is irreducible and µ−1(G∗) → G∗ satisfies the moment map condition of
4.23, then µ : X → D/G satisfies the moment map condition Definition 4.18.

Proof.

1. On the image of G∗ the complement g∗ ⊂ d is admissible and so the result follows
from (12).

2. By Lemma 4.21 the map G∗ → D/G is étale and hence open. Since D/G is irre-
ducible, f(G∗) ⊂ D/G is dense and so the moment map condition may be checked
by pulling back to G∗.
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4.25. Example. Consider the group triple (T ∗G,G, g∗). The Poisson-Lie structure on
G is zero, so a Poisson G-variety is a Poisson variety X equipped with a G-action which
preserves the Poisson structure. The map g∗ → D/G is an isomorphism, so the moment
map conditions Definition 4.18 and Definition 4.23 are equivalent. In this case the moment
map condition for a G-equivariant map µ : X → g∗ reduces to

a(x) = π♯
X(dµ(x)),

which is the usual moment map condition.

4.26. Classical limit. In this section we show that classical degenerations of quantum
moment maps given by Definition 3.2 produce classical moment maps in the sense of
Definition 4.15. Let A = k[ℏ]/ℏ2.

Let D be an affine algebraic group and suppose Oℏ(D) is a coquasitriangular Hopf
algebra flat over A together with an isomorphism of coquasitriangular Hopf algebras
Oℏ(D)/ℏ ∼= O(D). Let

r = (r− ϵ⊗ ϵ)/ℏ : O(D)⊗O(D)→ k

and

{a, b}D =
ab− ba

ℏ
the biderivation onO(D). Standard arguments (see [Etingof and Schiffmann, 2002, Propo-
sition 9.5] for the dual version) show the following:

� r ∈ d⊗ d.

� The symmetric part c of r is d-invariant.

� The biderivation {−,−}D is multiplicative.

� {−,−}D is the biderivation on D induced by r, i.e.

{a, b}D = r(a(2), b(2))b(1)a(1) − r(a(1), b(1))a(2)b(2)

for every a, b ∈ O(D).

In addition, consider a closed subgroup G ⊂ D and a Oℏ(D)-coquasitriangular Hopf
algebra Oℏ(G) flat over A together with an isomorphism of O(D)-coquasitriangular Hopf
algebras Oℏ(G)/ℏ ∼= O(G). Denote the Oℏ(D)-coquasitriangular Hopf structure on Oℏ(G)
by rG and let

rG = (rG − ϵ⊗ ϵ)/ℏ : O(D)⊗O(G)→ k

and

{a, b}G =
ab− ba

ℏ
the biderivation on O(G). Then analogously we get:
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� rG = r ∈ d⊗ g. In particular, g ⊂ d is coisotropic with respect to c.

� The biderivation {−,−}G is multiplicative.

� {−,−}G is the biderivation on G induced by r, i.e.

{f(d), h}G = r(d(2), h(2))h(1)f(d(1))− r(d(1), h(1))f(d(2))h(2)

for every d ∈ O(D) and h ∈ O(G). Since O(D)→ O(G) is surjective, this uniquely
determines {−,−}G.

Next, consider a G-variety X and suppose Aℏ is an Oℏ(G)-comodule algebra flat over
A together with an isomorphism of G-representations Aℏ/ℏ ∼= O(X). Then

{a, b}X =
ab− ba

ℏ
is a biderivation on O(X) such that the coaction O(X) → O(X) ⊗ O(G) is compatible
with the brackets on both sides.

4.27. Example. Let Repℏ(D) = CoModOℏ(D)(ModA) and Repℏ(G) = CoModOℏ(G)(ModA).
The forgetful functor T : Repℏ(D) → Repℏ(G) is monoidal, so its right adjoint TR is lax
monoidal. Therefore, TR(1) ∈ Repℏ(D) is an algebra object. At ℏ = 0 we get O(D/G)
as an O(D)-comodule algebra. Recall also the algebra F = TTR(1) which at ℏ = 0 is
O(D/G) viewed as an O(G)-comodule algebra.

The existence of the algebra map ϵ : F = TTR(1) → 1 implies that the bracket
{−,−}D/G vanishes at the basepoint e ∈ D/G. Therefore, the coaction O(D/G)→ O(D)
on e ∈ D/G is compatible with the brackets and is injective, so {−,−}D/G is uniquely
determined by {−,−}D. See also [Alekseev and Kosmann-Schwarzbach, 2000, Section
3.5] for an explicit description of this bracket.

Suppose c ∈ Sym2(d)D is nondegenerate and G ⊂ D is Lagrangian (rather than just
coisotropic). Then (D,G) is a group pair and we may talk about moment maps. Consider
the map r2 : h = g∗ → d given by pairing with the second component of r.

4.28. Lemma. The map r2 : h → d is injective and is a Lagrangian embedding comple-
mentary to g ⊂ d. Moreover,

r ∈ g∗ ⊗ g ⊂ d⊗ g

is the canonical element.

Proof. The Lagrangian condition implies that the map

r1 : (d/g)
∗ −→ g

given by pairing with the first component of r is an isomorphism. Its dual is g∗
r2−→ d→ d/g

which is therefore also an isomorphism. So, h → d is injective and complementary to
g ⊂ d. Therefore, r2 : g

∗ → h is an isomorphism onto its image, so

r = h⊗ g ⊂ d⊗ g

is the canonical element. In particular, h ⊂ d is also Lagrangian.
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So, in our setting we obtain a quasi-triple (D,G, h). Moreover, r1 : d
∗ → g is exactly

the map ph : d
∗ → g induced by h ⊂ d.

4.29. Remark.Conversely, given a quasi-triple (D,G, h) Alekseev and Kosmann-Schwarzbach
[Alekseev and Kosmann-Schwarzbach, 2000, Section 2.3] define the canonical r-matrix on
d to be the canonical element g∗ ⊗ g ⊂ d⊗ g.

4.30. Theorem. Suppose µ : X → D/G is a G-equivariant map and µℏ : F → Aℏ is a
quantum moment map which is µ∗ modulo ℏ. Then µ is a classical moment map.

Proof. Choose identifications

Oℏ(D) ∼= O(D)⊗A, Oℏ(G) ∼= O(G)⊗A, Aℏ ∼= O(X)⊗A.

With respect to these identifications decompose the star product on Aℏ as

a ∗ b = ab+ ℏB1(a, b),

the moment map as
µℏ(a) = µ∗(a) + ℏµ1(a)

and the coquasitriangular structure as

r = ϵ⊗ ϵ+ ℏr.

Let {ei} be a basis of d. Then the quantum moment map equation for f1 ∈ O(D/G) and
f2 ∈ O(X) is

µ∗(f1)f2 + ℏB1(µ
∗(f1), f2) + ℏµ1(f1)f2 = f2µ

∗(f1) + ℏB1(f2, µ
∗(f1))

+ ℏf2µ1(f1) +
∑
i

ℏa(ph(ei)).f2µ∗(ã(ei).f1).

The only nontrivial equation is at the order ℏ and we get

{µ∗(f1), f2} =
∑
i

µ∗(ã(ei).f1)a(ph(e
i)).f2

which is the classical moment map equation given in Definition 4.15.
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