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A PRACTICAL TYPE THEORY FOR SYMMETRIC MONOIDAL
CATEGORIES

MICHAEL SHULMAN

Abstract. We give a natural-deduction-style type theory for symmetric monoidal
categories whose judgmental structure directly represents morphisms with tensor products
in their codomain as well as their domain. The syntax is inspired by Sweedler notation
for coalgebras, with variables associated to types in the domain and terms associated to
types in the codomain, allowing types to be treated informally like “sets with elements”
subject to global linearity-like restrictions. We illustrate the usefulness of this type
theory with various applications to duality, traces, Frobenius monoids, and (weak) Hopf
monoids.
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1. Introduction

1.1. Type theories for monoidal categories. Type theories are a powerful tool
for reasoning about categorical structures. This is best-known in the case of the internal
language of a topos, which is a higher-order intuitionistic logic. But there are also weaker
type theories that correspond to less highly-structured categories, such as regular logic for
regular categories, simply typed λ-calculus for cartesian closed categories, typed algebraic

This material is based on research sponsored by The United States Air Force Research Laboratory
under agreement number FA9550-15-1-0053. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views
and conclusions contained herein are those of the author and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of the United States Air
Force Research Laboratory, the U.S. Government, or Carnegie Mellon University.

Received by the editors 2019-12-01 and, in final form, 2021-07-09.
Transmitted by Richard Garner. Published on 2021-07-14.
2020 Mathematics Subject Classification: 18M05, 18M85, 03B47.
Key words and phrases: type theory, symmetric monoidal category, prop, coalgebra.
© Michael Shulman, 2021. Permission to copy for private use granted.

863



864 MICHAEL SHULMAN

theories for categories with finite products, and so on (a good overview can be found
in [Joh02, Part D]).

However, type theories seem to be only rarely used to reason about non-cartesian
monoidal categories. Such categories are of course highly important in both pure math-
ematics and its applications (such as quantum mechanics, network theory, etc.), but
usually they are studied using either traditional arrow-theoretic syntax or string diagram
calculus [JS91, Sel11].

Type theories corresponding to non-cartesian monoidal categories do certainly exist
— intuitionistic linear logic for closed symmetric monoidal categories, ordered logic for
non-symmetric monoidal categories, classical linear logic for ∗-autonomous categories —
but they are not widely used for reasoning about monoidal categories. I believe this
is largely because their convenience for practical category-theoretic arguments does not
approach that of cartesian type theories. The basic problem is that most nontrivial
arguments in monoidal category theory involve tensor product objects in both the domain
and the codomain of morphisms.

Existing type theories for non-cartesian monoidal categories fall into two groups, neither
of which deals satisfactorily with this issue. The first is exemplified by intuitionistic linear
logic, whose judgments have many variables as inputs but only a single term as output:

x : A, y : B, z : C ` f(x, g(y, z)) : D.

This allows the terms (such as f(x, g(y, z))) to intuitively “treat types as if they were
sets with elements” (one of the big advantages of type-theoretic syntax). But it privileges
tensor products in the domain (here the domain is semantically A ⊗ B ⊗ C) over the
codomain. The only way to talk about morphisms into tensor products is to use the tensor
product type constructor:

x : A, y : B ` (y, x) : B ⊗ A.

This is asymmetric, but more importantly its term syntax is heavy and unintuitive: in the
cartesian case we can use an element p : A×B by simply projecting out its components
π1(p) : A and π2(p) : B, but in the non-cartesian case we have to “match” it and bind
both components as new variables:

p : A⊗B ` let (x, y) := p in (y, x) : B ⊗ A.

The second group of non-cartesian type theories is exemplified by classical linear logic,
whose judgments have multiple inputs as well as multiple outputs:

A,B,C ` D,E.

This eliminates the asymmetry, but at the expense of no longer having a concise and
intuitive term syntax. Most commonly such type theories are presented as sequent calculi
without any terms at all. Term calculi do exist (e.g. [Red93, BCST96, Ong96, CPT16]) but
usually involve some kind of “covariables”, which complicate the interpretation of types as
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“sets with elements”. Moreover, in type theories of this sort the tensor product appearing
in codomains is usually a different one from the one appearing in domains (the “cotensor
product” of a ∗-autonomous category), whereas in practical applications it happens very
frequently that they are the same. The only type theories with the same tensor product
appearing in domains and codomains that I know of in the literature are [Shi99, Dun06],
which are sequent calculi without a real term syntax, and [Has97], which does have a term
syntax but still decomposes tensor products by matching. (The referee has pointed out
that [PLC17] is in a similar spirit to our work, though not directly comparable.)

The purpose of this paper is to fill this gap, by describing a type theory for symmetric
monoidal categories in which:

� Judgments have multiple inputs as well as multiple outputs.

� The tensor products appearing in domains and codomains are the same.

� There is a convenient and intuitive term syntax without the need for “covariables”.

� Tensor product types, though rarely needed, have a convenient term syntax involving
“projections”, as in the cartesian case, rather than “matches”.

This type theory seems to be very convenient in practice for reasoning about symmetric
monoidal categories. We will show this in section 7 with a number of examples; here we
sketch two of them to whet the reader’s appetite.

For the first, recall that in a compact closed category, the trace tr(f) of an endomor-
phism f : A→ A is the composite

I
η−→ A⊗ A∗ f⊗id−−→ A⊗ A∗ ∼−→ A∗ ⊗ A ε−→ I

where I is the unit object, A∗ is the dual of A, and η and ε are the unit and counit of
the duality (also called the coevaluation and evaluation, respectively). A fundamental
property of trace is cyclicity, i.e. tr(fg) = tr(gf) for any f : A→ B and g : B → A. The
proof of this is essentially incomprehensible when written with composites of morphisms:

tr(fg)=εs(fg⊗id)η=εs(f⊗id)(g⊗id)η=εs(f⊗id)(id⊗ε⊗id)(η⊗id⊗id)(g⊗id)η=

εs(id⊗ε⊗id)(f⊗id⊗id⊗id)(id⊗id⊗g⊗id)(η⊗η)=(ε⊗ε)s(id⊗id⊗g⊗id)(f⊗id⊗id⊗id)(η⊗η)=

(ε⊗ε)s(id⊗id⊗g⊗id)(id⊗id⊗η)(f⊗id)η=εs(id⊗ε⊗id)(g⊗id⊗id⊗id)(η⊗id⊗id)(f⊗id)η=

εs(g⊗id)(id⊗ε⊗id)(η⊗id⊗id)(f⊗id)η=εs(g⊗id)(f⊗id)η=εs(gf⊗id)η=tr(gf).

It becomes much more understandable when written in string diagram calculus, as in
Figure 1. But in our type theory, the proof is one line of algebra:

tr(fg)
def
= ( | λBy / fgy) = ( | λBy / fx, λAx / gy) = ( | λAx / gfx)

def
= tr(gf).

The reader is not expected to understand this proof yet, but to give some flavor we explain
that the two non-definitional equalities are “β-reductions for duality”. The binary operator
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Figure 1: Cyclicity of trace with string diagrams

/ denotes the counit ε, while a variable/abstraction pair (x, λAx) denotes the unit η. A
term of the form λAx / t, where x does not occur in t, is a β-redex for duality, and in the
resulting reduction this term is eliminated and the occurrence of x elsewhere1 is substituted
by t. (Semantically, this means applying a zigzag identity, which in string diagram notation
is “straightening a bent string”.) Thus the middle term ( | λBy / fx, λAx / gy) contains
two β-redexes, and the resulting two reductions yield the two terms on either side.

For our second example, recall that if x is an element of a monoid M , and x and x̂ are
both two-sided inverses2 of x, then x = x̂ by the following calculation:

x = xe = x(xx̂) = (xx)x̂ = ex̂ = x̂. (1.2)

This same proof can be reproduced in cartesian type theory, and therefore holds for monoid
objects in any cartesian monoidal category. It follows that if a monoid object M has an
“inversion” morphism i : M →M such that

M ×M i×1 //M ×M
m

!!
M

4
==

4 !!

! // 1 e //M

M ×M
1×i

//M ×M
m

== (1.3)

commutes (thereby making it a group object), then i is the unique such morphism.
An interesting application of this relies on the fact that the category CComon(C)

of cocommutative comonoids in any symmetric monoidal category C is in fact cartesian
monoidal, with the cartesian product being the monoidal structure of C. A monoid object

1This “elsewhere” could be anywhere at all. Thus although λAx does “bind” the variable x, it does
not delimit its scope.

2In fact, of course, it suffices for x to be a left inverse and x̂ a right inverse.
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in CComon(C) is a cocommutative bimonoid object in C: an object with both a monoid and
a cocommutative comonoid structure, such that the monoid structure maps are comonoid
morphisms (or equivalently the comonoid structure maps are monoid morphisms). For
any bimonoid object, a morphism i : M →M satisfying the analogue of (1.3):

M ⊗M i⊗1 //M ⊗M
m

!!
M

4
==

4 !!

ε // I
e //M

M ⊗M
1⊗i

//M ⊗M
m

== (1.4)

(where 4, ε are the comonoid structure) is called an antipode, and a bimonoid object
equipped with an antipode is called a Hopf monoid. Thus, the classical argument for
uniqueness of inverses, phrased in cartesian type theory, implies that a cocommutative
bimonoid object has at most one antipode. Dualizing, we can conclude that a commutative
bimonoid object also has at most one antipode.

For bimonoids that are neither commutative nor cocommutative, cartesian type theory
cannot help us. We can manually translate the classical proof (1.2) into commutative
diagrams and then replace all the ×’s by ⊗’s, but this is tedious and one feels that there
should be a better way. And indeed, in our type theory for symmetric monoidal categories,
we can write a very close analogue of (1.2) that applies to arbitrary bimonoids:

x = x e = (x(1) e |��x(2)) = x(1) x(2) x̂(3) = (e x̂(2) |��x(1)) = e x̂ = x̂. (1.5)

Again, the reader is not expected to understand this completely, but the resemblance
to (1.2) should be clear. The main differences are the subscripts on the x’s and the
insertion of the steps (x(1) e | ��x(2)) and (e x̂(2) | ��x(1)). The subscripts are used to track
applications of the comultiplication 4 : M →M ⊗M . This is necessary because (unlike in
the cartesian case) not all morphisms are comonoid morphisms (so that f(x)(1) might differ
from f(x(1))), and also because in the absence of cocommutativity the resulting “copies”
of x must be distinguished (so that (x(1), x(2)) is different from (x(2), x(1))). Similarly, the
canceled terms such as ��x(2) track applications of the counit ε : M → I, and the steps

involving these are inserted in order to match the middle composite M
ε−→ I

e−→M in (1.4).
With this as preview and motivation, we now move on to a somewhat more detailed

description of our type theory.

1.6. Generalized Sweedler notation. The idea behind our type theory is to formalize
and generalize the informal Sweedler notation that is common in coalgebra theory. A
coalgebra is a comonoid in the category of vector spaces, i.e. a vector space C with a
comultiplication 4 : C → C ⊗ C that is coassociative and counital. Since the elements of
the tensor product C ⊗ C are finite sums of generating tensors c(1) ⊗ c(2), we can write

4(c) =
∑
i

ci(1) ⊗ ci(2).
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Sweedler’s notation is to omit the index i, and sometimes also the symbol
∑

, obtaining

4(c) = c(1) ⊗ c(2).

(This is therefore a sort of “dual” to the “Einstein summation convention” for products of
tensors, which also has a type-theoretic formalization known to physicists as “abstract
index notation” [PR84].) For instance, coassociativity can then be expressed as

c(1) ⊗ c(2)(1) ⊗ c(2)(2) = c(1)(1) ⊗ c(1)(2) ⊗ c(2)

(which is then often written as c(1) ⊗ c(2) ⊗ c(3)), and counitality, for a counit ε, can be
expressed as

c(1) · ε(c(2)) = c = ε(c(1)) · c(2)
where · denotes scalar multiplication.

We generalize this notation to apply to any morphism f : A→ B ⊗C in any monoidal
category whose codomain is a tensor product. Of course we now have to notate which
morphism we are talking about, so instead of c(1) ⊗ c(2) we write f(1)(x)⊗ f(2)(x) : B ⊗ C,
where x : A is a formal variable. Note that in Sweedler’s original notation for coalgebras in
vector spaces, the element 4(c) really is a sum of generating tensors c(1)⊗ c(2), whereas now
we are in an arbitrary monoidal category so that this doesn’t even make sense. Nevertheless,
we can still use a similar formal notation governed by appropriate rules, just as in type
theory we use variables and terms assigned to objects of the category as “types” even
though the objects of an arbitrary category may not actually have “elements”.

However, as a nod towards this extra formality (and also an extra step in the “types are
like sets” direction), we stop using the symbol ⊗ and write instead a pair (f(1)(x), f(2)(x)) :
(B,C) (although see subsection 1.9). We also have to incorporate an analogue of “scalar
multiplication”, which in a general monoidal category means the unit isomorphism C⊗I ∼=
C; for consistency we collect all the “scalars” in a separate tuple separated by a bar. Thus,
for instance, the counitality of a comultiplication 4 : C → C ⊗ C with counit ε : C → I
in an arbitrary monoidal category will be expressed as

(4(1)(c) | ε(4(2)(c))) = c = (4(2)(c) | ε(4(1)(c))).

And the composite of f : A⊗B → C ⊗D with g : E ⊗D → F ⊗G along the object D is

x : A, y : B ` (f(1)(x, y), f(2)(x, y)) : (C,D)
z : E,w : D ` (g(1)(z, w), g(2)(z, w) : (F,G))

x : A, y : B, z : E ` (f(1)(x, y), g(1)(z, f(2)(x, y)), g(2)(z, f(2)(x, y))) : (C,F,G)

Note that in contrast to intuitionistic linear logic, the variables in a context are not
literally treated “linearly” in our terms, since they can occur multiple times in the multiple
“components” of a map f . Instead, the “usages” of a variable are controlled by the codomain
arity of the morphisms applied to them.
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One further technical device is required to deal with morphisms having nullary domain.
Suppose we have f : I → B⊗C, written in our type theory as ` (f(1), f(2)) : (B,C), and we
compose/tensor it with itself (and apply a symmetry) to get a morphism I → B⊗B⊗C⊗C.
We would näıvely write this as ` (f(1), f(1), f(2), f(2)) : (B,B,C,C), but this is ambiguous
since we can’t tell which f(1) matches which f(2). Thus, we disambiguate the possibilities
by annotating the terms in pairs, such as () ` (f(1), f

′
(1), f(2), f

′
(2)) or () ` (f(1), f

′
(1), f

′
(2), f(2)).

The “variable-binding notation” (x, λAx) for duality that we mentioned earlier is just
syntactic sugar for a special case of this: we use variables like x as the “labels” for unit
morphisms ηA : ()→ (A,A∗) in place of primes, writing (x, λAx) instead of ((ηA)x(1), (ηA)x(2)).
Of course, this requires that the “variables” used as labels of this sort are disjoint from
those occurring in the actual context. The operator / is just an infix notation for the
counit ε : (A∗, A)→ ().

Another bit of syntactic sugar is that if each type is equipped with at most one specified
comonoid structure, then there is no ambiguity in reverting back to Sweedler’s original
notation (x(1), x(2)) instead of (4(1)(x),4(2)(x)). For instance, the axiom of a Frobenius
algebra can be written as

(x(1), x(2)y) = ((xy)(1), (xy)(2)) = (xy(1), y(2)) (1.7)

while the principal axiom of a bialgebra is

((xy)(1), (xy)(2)) = (x(1)y(1), x(2)y(2)). (1.8)

Note that if all types have such a comonoid structure and all morphisms are comonoid
morphisms, which in type-theoretic notation means f(x)(i) = f(x(i)) and ε(f(x)) = ε(x),
then the monoidal structure automatically becomes cartesian. In ordinary type theory for
cartesian monoidal categories, the diagonal (i.e. the comultiplication) is represented by
literally duplicating a variable (x, x); thus our subscripting of variables (x(1), x(2)) can be
viewed as a minimal modification of this to deal with situations where the comultiplication
is not literally a cartesian diagonal. (Indeed, the comultiplication of a coalgebra is often
viewed as a non-cartesian substitute for the diagonal, e.g. in the theory of quantum groups.)
We can similarly regard the counit ε as a “discarding” operation, in which case I like to
notate ε(x) by �x (as was done in (1.5)).

1.9. An alternative notation for coalgebraists. The particular symbols we
choose in the syntax of our type theory are, of course, immaterial. I personally find the
pair notation (f(1)(x), f(2)(x)) evocative and helpful, since I am more used to thinking of
sets than coalgebras. However, a reader who is more used to ordinary coalgebras in vector
spaces may prefer to retain ⊗ as a formal symbol in place of a comma, and use a symbol
like · for “scalar multiplication” in place of the separating bar |. For instance, in this
notation the axioms (1.7) and (1.8) become

x(1) ⊗ x(2)y = (xy)(1) ⊗ (xy)(2) = xy(1) ⊗ y(2) (xy)(1) ⊗ (xy)(2) = x(1)y(1) ⊗ x(2)y(2).
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while the calculation (1.5) becomes

x = x e = x(1) e · ε(x(2)) = x(1) x(2) x̂(3) = e x̂(2) · ε(x(1)) = e x̂ = x̂.

A reader who prefers this notation is free to use it instead. (However, one should probably
then choose a different notation for the tensor product types discussed in Remark 2.6.)

1.10. Some pluralistic remarks. Since many readers will be more familiar with other
syntaxes for monoidal categories such as intuitionistic linear logic or string diagrams, it is
worth saying a few words about their complementary relationship to our type theory, and
in particular how and why they can all coexist.

Intuitionistic linear logic was discussed briefly above; from our present point of view, it
has the disadvantages of a heavy and unintuitive “match” syntax for decomposing elements
of tensor products. However, it also has definite advantages,3 such as an asymptotically
more concise syntax: the present type theory involves much duplication of terms, since
the arguments of a function are repeated in every component of its output. This matters
little for the examples we consider here, but might become more important if it were ever
implemented at scale in a computer proof assistant. Intuitionistic linear logic also cleanly
extends to a syntax for closed monoidal categories, whereas with our current type theory
this seems difficult.

String diagrams (a.k.a. graphical calculus) are another well-known and very powerful
tool for working with structures in many kinds of monoidal categories, which also have both
strengths and weaknesses. String diagrams are at their best when dealing with structures
whose axioms “don’t change the topology”, such as dual pairs and Frobenius algebras,
since in this case many proofs are simply topological deformations. For structures whose
axioms do change the topology, such as bialgebras and Hopf algebras, string diagrams
are still useful, but in such cases only some of the proof steps can be reduced to simple
topological deformations: generally those steps involving pure naturality conditions.

By contrast, our type theory does not “see” the topological nature of dual pairs
and Frobenius algebras. However, it represents most naturality conditions as syntactic
identities, making them completely invisible; for instance, the two middle steps in Figure 1
disappear entirely in (1.5). Moreover, it leverages a different intuition, allowing us to think
of objects of an arbitrary monoidal category as “sets” with “elements” (modulo certain
“linearity” restrictions). This seems to be particularly useful for coalgebraic and Hopf-type
structures — perhaps unsurprisingly, given the origin of our syntax in Sweedler notation.

Another difference is that string diagrams incarnate categorical duality in an obvious
way — by simply rotating or reflecting a string diagram — while our type theory breaks
this duality, treating inputs and outputs differently. One might consider this an advantage
of string diagrams. But breaking duality in the syntax is part of what gives us the above
advantages (notably the view of types as sets), and it also means that duality becomes a
nontrivial and useful technique: in a situation that is not self-dual, we can choose which
orientation of the type theory is most convenient. For instance, in subsection 7.9 we will

3I am indebted to Matt Oliveri for these points.
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use our type theory to show that the antipode of a (weak) Hopf monoid is a monoid anti-
homomorphism; it then follows by duality that it is also a comonoid anti-homomorphism,
although a direct proof of the latter in our syntax would be less intuitive.

There is no reason to expect any one notation for symmetric monoidal categories to
be the best in all situations: each has applications to which it is better-suited and others
to which it is not as well suited. The new type theory presented here makes no claim to
supplant string diagrams or intuitionistic linear logic; rather it is an alternative that may
be more convenient in some applications. Only time and experience can render a final
verdict on the usefulness of a notation, as well as its generalizations and limitations —
e.g. to what extent can the type theory presented in this paper be generalized to other
kinds of monoidal categories, such as closed, ∗-autonomous, braided, ribbon, and planar
monoidal categories, indexed monoidal categories, (symmetric) monoidal bicategories, and
so on? My primary hope for this paper is to begin a conversation about type theories in
this family and their potential uses.

1.11. Acknowledgements. I would like to thank Dan Licata, Robin Cockett, Peter
LeFanu Lumsdaine, and Matt Oliveri for useful conversations.

2. Props

To simplify and clarify the semantics of our type theory, we will interpret it in a categor-
ical structure that reflects the type-theoretic distinction between judgmental and type
operations. To explain what this means, recall that ordinary cartesian type theory is often
interpreted in categories with finite products; but in this case both the judgmental comma
(in a context (x : A, y : B, z : C)) and the product type operation (in a product type
(A×B)× C) are interpreted by the same categorical operation (cartesian product types),
which can cause confusion. A more direct semantics of cartesian type theory maintains
this distinction by using a “cartesian multicategory”, allowing the judgmental comma
to be interpreted by the “categorical comma”, i.e. the concatenation that forms a list of
objects to be the domain of a morphism in a multicategory.

For type theories like classical linear logic, which allow multiple types in both domain
and codomain but use commas on the left and right of the turnstile to represent different ten-
sor products, the appropriate “multicategorical” structure is called a “polycategory” [Sza75]
(the corresponding “monoidal” version being a linearly distributive [CS97, BCST96] or
∗-autonomous [Bar79, Bar91] category). In our case, where the two tensor products are
the same, the appropriate structure is called a prop.

2.1. Definition. A prop P consists of

(i) A set ob(P) of objects, and

(ii) A symmetric strict monoidal category (that is, a symmetric monoidal category whose
associators and unitors are identities) whose underlying monoid of objects is freely
generated by ob(P).
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(The original Adams–MacLane [Mac65] definition of prop had only one object; thus
our “props” are sometimes called “colored props”.)

We write the objects of the monoidal category in (ii) as finite lists (A,B, . . . , Z)
of objects of the prop (i.e. A,B, . . . , Z ∈ ob(P)). The monoidal structure is given by
concatenation of lists; the unit object is the empty list ().

We now summarize the relationship between props and symmetric monoidal categories.

2.2. Definition. A tensor product A⊗B of objects in a prop is an object together
with an isomorphism

(A,B) ∼−→ (A⊗B)

in the monoidal category of Definition 2.1(ii). Similarly, a unit is an object I with an
isomorphism

() ∼−→ (I).

A prop is called representable if it has a unit and any pair of objects has a tensor
product.

A morphism of props ω : P → Q is a function ω0 : ob(P)→ ob(Q) together with
a strict symmetric monoidal functor whose action on objects is obtained by applying ω0

elementwise to lists.

2.3. Theorem. The category of symmetric monoidal categories and strong symmetric
monoidal functors is equivalent to the subcategory of representable props (and all morphisms
between them).

Sketch of proof. Every symmetric monoidal category C has an underlying prop UC
with the same objects, and in which a morphism (A, . . . , B)→ (C, . . . , D) is a morphism
A⊗ · · · ⊗B → C ⊗ · · · ⊗D in C. This construction U is functorial on strong symmetric
monoidal functors, and the props in its image are representable. (In fact, it is the functorial
strictification.) The functor U is faithful since the action of f : C → D on objects and
arrows is preserved in Uf , while the coherence constraints of f are recorded in the action of
Uf on the isomorphisms from Definition 2.2. Similarly, the functor U is full, since the action
of a morphism UC → UD on the isomorphisms from Definition 2.2 induces symmetric
monoidal constraints on its underlying ordinary functor. Finally, every representable prop
induces (by choosing tensor products and a unit) a symmetric monoidal structure on its
category of unary and co-unary morphisms, and it is isomorphic to the underlying prop
thereof.

We can say more: this subcategory is an injectivity-class, and the corresponding
category of algebraic injectives (objects equipped with chosen lifts against the generating
morphisms, and maps that preserve the chosen lifts) is equivalent to the category of
symmetric monoidal categories and strict symmetric monoidal functors. In particular, the
latter is monadic over the category of props.

The fundamental “initiality theorem” for semantics of our type theory, which we prove
in section 5, is that the “term model” is the prop freely generated by some input data.
Following [BCR18], we will call this input data a signature.
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2.4. Definition. A signature G is a set of objects together with a set of arrows, each
assigned a domain and codomain that are both finite lists of objects.

2.5. Theorem. The category of props is monadic over the category of signatures.

Proof. Just like the proof in [BCR18, Appendix A.2] for the one-object case.

Thus, every prop has a presentation as a coequalizer of a pair of maps between free
props. In section 6 we will extend our type theory to construct “presented props” as well,
allowing equational reasoning as in the examples from subsection 1.1.

2.6. Remark. The fact that props allow multiple objects in both domains and codomains
means that we rarely need to talk about actual tensor product types A⊗B with semantics
in tensor product objects (Definition 2.2). For this reason, we will not include such types
in our formal system. However, we note that if necessary, they can be added quite easily:
because Definition 2.2 simply asserts objects, morphisms, and equations (rather than a
unique factorization property), it can essentially be ensured as a special case of a prop
presentation. Thus we need only add some generating terms and axioms to our type
theory, for any pair of objects A,B whose tensor product we need to talk about:

x : A, y : B ` 〈x, y〉 : A⊗B p : A⊗B ` (π(1)(p), π(2)(p)) : (A,B)

(x, y) = (π(1)〈x, y〉, π(2)〈x, y〉) p = 〈π(1)(p), π(2)(p)〉.

Note how similar this is to the treatment of cartesian products in cartesian type theory
with pairing and projection operations.

3. On the admissibility of structural rules

In general, type theories consist of rules for deriving judgments about terms. The most
common judgments are typing judgments (that a term belongs to a type, or in our case a
tuple of terms belong to a tuple of types) and equality judgments (that two terms — or
tuples of terms — are equal). A tree of rules ending with a judgment is called a derivation
of that judgment, and the categorical structure presented by a type theory is built out of
the derivable (or valid) judgments.

Now in proving that this categorical structure does in fact have the desired universal
property, it is very useful if we arrange the type theory so that every derivable judgment
has a unique derivation. The reason for this is that we want a morphism in our categorical
semantics to be determined by a term itself, not by a choice of derivation of that term; but
the natural way to prove the desired universal property (a.k.a. the “initiality theorem” for
that type theory) is by induction over derivations. Thus, if the same term can arise from
multiple derivations, proving this universal property requires an extra step of proving that
this choice is immaterial (i.e. that any two derivations of the same term determine the
same morphism in the semantics). This step is tricky and often omitted in the literature,
leading to incomplete proofs. It becomes even trickier when considering higher-categorical
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semantics, in which the morphisms determined by two derivations of the same term may
be only isomorphic rather than equal.

The choice that terms should have unique derivations essentially requires that nearly
all structural rules should be admissible rather than primitive. (Recall that an admissible
rule is one that is not asserted as part of the specification of the type theory, but for
which we can prove after the fact that whenever we have derivations of its premises we can
construct a derivation of its conclusion — usually by inductively traversing and modifying
the given derivations of its premises. The structural rules are, roughly speaking, those
that correspond to the operations of the categorical structure used as the semantics:
composition in a category, permutation of domain lists in a symmetric multicategory, and
permutation of both domains and codomains in a polycategory or prop.)

The reason this requirement arises is that structural rules generally have to satisfy
equations that are “tautological” in their action on terms. For instance, composing
f : A → B with g : B → C and h : C → D in the two possible ways (semantically,
h ◦ (g ◦ f) and (h ◦ g) ◦ f) produces the same term:

x : A ` f(x) : B y : B ` g(y) : C

x : A ` g(f(x)) : C z : C ` h(z) : D

x : A ` h(g(f(x))) : D

x : A ` f(x) : B

y : B ` g(y) : C z : C ` h(z) : D

y : B ` h(g(y)) : D

x : A ` h(g(f(x))) : D .

Thus, if composition were a primitive rule, this term would have two distinct derivations.
But if composition (i.e. substitution) is an admissible rule, then we can prove that the
derivations constructed by applying it in these two different ways turn out to be the same.
Similarly, if permutation were primitive, then for any f : (A,B)→ C we would have two
(in fact, infinitely many) derivations of the same term:

x : A, y : B ` f(x, y) : C

x : A, y : B ` f(x, y) : C

y : B, x : A ` f(x, y) : C

x : A, y : B ` f(x, y) : C

whereas if permutation (a.k.a. “exchange”) is admissible, then its functoriality as an
operation on derivations can be proven.

Type theorists know how to make a rule admissible: we build “just enough” of it
into the primitive rules. For instance, if we introduce generating morphisms such as
f : (A,B)→ C and g : C → D as simple axioms (i.e. rules with no premises):

x : A, y : B ` f(x, y) : C z : C ` g(z) : D
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then there would be no way to construct derivations of composites such as

x : A, y : B ` f(x, y) : C z : C ` g(z) : D

x : A, y : B ` g(f(x, y)) : D
(3.1)

except by using a primitive composition/substitution rule. Therefore, we instead introduce
each generating morphism in “Yoneda style” by allowing ourselves to postcompose any
given term(s) with it. For instance, in cartesian type theory we introduce generators with
rules such as

Γ ` a : A Γ ` b : B

Γ ` f(a, b) : C

Γ ` c : C

Γ ` g(c) : D

for arbitrary contexts Γ and terms a, b, c. Now (3.1) can be obtained without a primitive
substitution rule:

x : A, y : B ` x : A x : A, y : B ` y : B

x : A, y : B ` f(x, y) : C

x : A, y : B ` g(f(x, y)) : D (3.2)

In categorical terms, the point is that we can build the free category on a graph either
by freely adding all binary (and nullary) composites and then quotienting by the relation
of associativity, or we can avoid the need to quotient at all by defining the morphisms
as composable lists of generating arrows, where a “list” is defined inductively as either
an empty list or a list postcomposed by a generating arrow — that is, we enforce right-
associated composites k ◦ (h ◦ (g ◦ (f ◦ id))).

This technique is trickier in non-cartesian type theories, since we cannot keep the
same context all the way through the derivation. That is, in a cartesian monoidal
category we can start (3.2) with the “identity” or “axiom” rules x : A, y : B ` x : A
and x : A, y : B ` y : B, corresponding categorically to the projections A× B → A and
A×B → B; but in a non-cartesian monoidal category such projections do not exist. Thus,
we need to concatenate contexts as we go down the derivation tree. For instance, the
generator rule for f : (A,B)→ C must be something like

Γ ` a : A ∆ ` b : B

Γ,∆ ` f(a, b) : C
. (3.3)

However, now we have a new problem: the exchange rule (permutations of the domain).
In the cartesian case, we can make this admissible by “propagating it up” the entire
derivation since the context remains the same. For instance, if we permute the inputs
of (3.2) we would simply get

y : B, x : A ` x : A y : B, x : A ` y : B

y : B, x : A ` f(x, y) : C

y : B, x : A ` g(f(x, y)) : D (3.4)



876 MICHAEL SHULMAN

x1 : A1, . . . , xm : Am ` (M1, . . . ,Mn | Y1, . . . , Yp) : (B1
??, . . . , Bn

??).

x1 : A1, . . . , xm : Am ` (M1, . . . ,Mn | Y1, . . . , Yp) = (N1, . . . , Nn | Z1, . . . , Zq) : (B1, . . . , Bn).

Figure 2: Judgments

Γ ` ( ~M | ~Y ) : ~B?? Γ ` ( ~M | ~Y ) = ( ~N | ~Z) : ~B.

Figure 3: Judgments, abbreviated

But in the non-cartesian case this doesn’t work. We don’t want to assert a primitive
exchange rule as this would break the “terms have unique derivations” principle, so instead
we build exchange into the generator rule (3.3). Our first try might be something like

Γ ` a : A ∆ ` b : B σ : Γ,∆ ∼= Φ

Φ ` f(a, b) : C

where σ is an arbitrary permutation. But this too breaks the “terms have unique derivations”
principle, since a permutation of types within Γ or ∆ could be obtained either as part of σ
or by operating on the input derivations of Γ ` a : A and ∆ ` b : B. Instead we have to
build in “just enough” exchange but not too much, by requiring σ to be not an arbitrary
permutation but a shuffle: a permutation of (Γ,∆) that preserves the relative order of the
types in Γ and in ∆. We will write Shuf(Γ; ∆) for the set of such shuffles.

This may seem overly technical, but the presence of such things as shuffles need never
be seen by the user of the type theory. Indeed, maintaining the “terms have unique
derivations” principle is precisely what allows the user to work only with terms, ignoring
the details of the derivations.

4. The type theory for free props

Let G be a signature; we will define a type theory that presents the free prop on G. Our
general typing judgment will be of the form shown in Figure 2. For reasons to be explained
later, we annotate some of the types in the consequent of each judgment with a superscript
star, B?, and call them active; we write B?? to mean that B might be active.

We use vector notation ~M, ~A, etc. to indicate a list of terms or types, so the judgments
can be abbreviated as in Figure 3, although this omits the information that ~M and ~N
must have the same length as ~B (while the length of ~Y and ~Z is unrestricted). If ~Y is

empty, we write ( ~M |) as simply ( ~M). If furthermore ~M and ~B have length 1, we omit
the parentheses, writing simply M : B. When all the lists are empty, we have ` () : (),
which will be valid (it represents the identity morphism of the unit object).
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(x : A) ∈ Γ

Γ ` x term

f ∈ G(;B1, . . . , Bn) a ∈ A n ≥ 2 1 ≤ k ≤ n

Γ ` f a
(k) term

f ∈ G(;B) a ∈ A

Γ ` f a term

f ∈ G(; )

Γ ` f term

Γ `M1 term . . . Γ `Mm term
f ∈ G(A1, . . . , Am;B1, . . . , Bn) m ≥ 1 n ≥ 2 1 ≤ k ≤ n

Γ ` f(k)(M1, . . . ,Mm) term

Γ `M1 term . . . Γ `Mm term
f ∈ G(A1, . . . , Am;B1, . . . , Bn) m ≥ 1 n ≤ 1

Γ ` f(M1, . . . ,Mm) term

Figure 4: Terms

In these judgments Ai, Bj are types, xi are variables, and Mj, Nj, Yk, Z` are terms.
Here by a type we simply mean an object of our generating signature G, since there are no
type-forming operations in the theory. There is nothing new in our variables ; the reader
who prefers de Bruijn indices is free to think of them in that way, although since our
syntax has no variable binding4 the usual subtleties of capture-avoidance are irrelevant.

The terms are defined inductively by the rules shown in Figure 4. Recall that in general
our typing judgments involve a list of such terms, one for each type in the codomain,
together with a list of scalar terms. The terms defined in Figure 4 do not yet have any
types, but they are “well-scoped” by definition: they come with a context and only use
variables occurring in that context. We subscript only applications of functions with
greater than unary codomain, and as noted in section 1, we annotate each occurrence
of a morphism with nullary domain and positive-ary codomain with some element of an
infinite alphabet of symbols A (such as ′,′′ ,′′′ , . . . , or 1, 2, 3, . . . ).

We will write ~f( ~M) for the list of all subscriptings of the application of f to the

arguments ~M . For instance, if f : (A,B,C)→ (D,E) then ~f( ~M) would be

(f(1)(M1,M2,M3), f(2)(M1,M2,M3)).

4Recall that in the notation (x, λAx) for the unit of a duality, x is not actually a variable in this sense
but rather a “label”; we will introduce labels formally in a moment.
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xk[M1, . . . ,Mn/x1, . . . , xn] = Mk

y[ ~M/~x] = y (y /∈ ~x)

f a
(k)[ ~M/~x] = f a

(k)

f a[ ~M/~x] = f a

f [ ~M/~x] = f

f(k)(N, . . . , P )[ ~M/~x] = f(k)(N [ ~M/~x], . . . , P [ ~M/~x])

f(N, . . . , P )[ ~M/~x] = f(N [ ~M/~x], . . . , P [ ~M/~x])

Figure 5: Simultaneous substitution into terms

More generally, for f ∈ G(A1, . . . , Am;B1, . . . , Bn) we have

~f( ~M) =



(f a
(1), . . . , f

a
(n)) m = 0, n ≥ 2

f a m = 0, n = 1

f m = 0, n = 0

(f(1)( ~M), . . . , f(n)( ~M)) m ≥ 1, n ≥ 2

f( ~M) m ≥ 1, n ≤ 1.

In the first and second case, we also write ~f a to notate the label a. In the third case, we
allow ourselves to write ~f a to mean simply f (discarding the label). Finally, when n ≤ 1

we allow ourselves to write f(1) or f(1)( ~M) to mean f or f( ~M) respectively.

We define the “simultaneous substitution” of a list of terms ~M for a list of variables ~x
in the usual way, as shown in Figure 5.

We now move on to the rules governing our typing judgment. In section 3 we argued
that by incorporating Yoneda-style generator rules and shuffles, we can make composition
and exchange admissible and thereby ensure that any judgment has a unique derivation.
In the case of props, we also want to make the monoidal structure admissible (since it
satisfies strict associativity and interchange laws that we would otherwise have to assert as
judgmental equalities). In particular, for morphisms f : A→ B and g : C → D we would
like the judgment

x : A, y : C ` (f(x), g(y)) : (B,D)

to have a unique derivation. Symmetry suggests that this unique derivation cannot apply
f first and then g or vice versa. Thus, we replace the generator rule by a “multi-generator”
rule allowing only a one-step derivation

x : A, y : C ` (x, y) : (A,C)

x : A, y : C ` (f(x), g(y)) : (B,D)
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A first approximation to the general form of this rule is

Γ ` ( ~M, . . . , ~N, ~P | ~Z) : ( ~A, . . . , ~B, ~C) f ∈ G( ~A; ~D) · · · g ∈ G( ~B; ~E)

Γ ` (~f( ~M), . . . , ~g( ~N), ~P | ~Z) : ( ~D, . . . , ~E, ~C).

However, if there are generators with nullary codomain, we need to collect them into the
scalar terms ~Z. Thus a second approximation is

Γ ` ( ~M, . . . , ~N, ~P , . . . , ~Q, ~R | ~Z) : ( ~A, . . . , ~B, ~C, . . . , ~D, ~E)

f ∈ G( ~A; ~F≥1) · · · g ∈ G( ~B; ~G≥1)

h ∈ G(~C; ) · · · k ∈ G( ~D; )

Γ `
(
~f( ~M), . . . , ~g( ~N), ~R

∣∣∣ h(~P ), . . . , k( ~Q), ~Z
)

: (~F , . . . , ~G, ~E).

(Here ~F≥1 means that ~F contains at least one type.) Eventually we will also incorporate
shuffles, but we postpone that for now. Let us consider instead how to prevent duplication
of derivations. In addition to our desired term

x : A, y : C ` (f(x), g(y)) : (B,D) (4.1)

we must also be able to write both of the following:

x : A, y : C ` (f(x), y) : (B,C) (4.2)

x : A, y : C ` (x, g(y)) : (A,D). (4.3)

So how do we prevent ourselves from being able to apply the generator rule again to the
latter two, obtaining two more derivations of the same morphism as (4.1)?

There are different possible choices that one could make here, potentially leading to
different type theories and different “normal forms” for the morphisms in a free prop.
The choice we will make is to force ourselves to “apply all functions as soon as possible”.
Thus, for instance, we forbid ourselves from applying g to y in (4.2) because we could have
already applied it to produce (4.1). On the other hand, we will still allow ourselves to
apply h : (B,C)→ E in (4.2) to get

x : A, y : C ` (h(f(x), y)) : E

because h has f as an input, hence could not have been applied at the same time as f .
Making this precise is the purpose of designating some of the types in the consequent

as active; recall that we denote the active types by A?. If ~A is a list of types, we write
~A?≥1 to mean that at least one of the types in ~A is active, ~A? to mean that they are all
active, and ~A?=0 to mean that none of them are active. As noted previously, we write ~A??

to avoid specifying whether or not any of the types are active.
The identity rule will make all types active, while the generator rule makes only the

outputs of the generators active. We then restrict the generator rule to require that at



880 MICHAEL SHULMAN

least one of the inputs of each generator being applied must be active in the premise; this
means that none of them could have been applied any sooner, since at least one of their
arguments was just introduced by the previous rule. Thus, our desired derivation

x : A, y : C ` (x, y) : (A?, C?)

x : A, y : C ` (f(x), g(x)) : (B?, D?)

is allowed, while the undesired one

¿

x : A, y : C ` (x, y) : (A?, C?)

x : A, y : C ` (f(x), y) : (B?, C)

x : A, y : C ` (f(x), g(y)) : (B,D) ?

is not allowed, since in the attempted application of g the input type C is not active. Thus
our generator rule now becomes

Γ ` ( ~M, . . . , ~N, ~P , . . . , ~Q, ~R | ~Z) : ( ~A?≥1, . . . , ~B?≥1, ~C?≥1, . . . , ~D?≥1, ~E??)

f ∈ G( ~A; ~F≥1) · · · g ∈ G( ~B; ~G≥1)

h ∈ G(~C; ) · · · k ∈ G( ~D; )

Γ `
(
~f( ~M), . . . , ~g( ~N), ~R

∣∣∣ ~h(~P ), . . . , ~k( ~Q), ~Z
)

: (~F ?, . . . , ~G?, ~E?=0).

Of course, this rule can now never apply to generators with nullary domain. Since these
can always be applied at the very beginning, we incorporate them into the identity rule.
Thus the identity rule is now

f ∈ G(; ~B≥1) · · · g ∈ G(; ~C≥1)
h ∈ G(; ) · · · k ∈ G(; )

a, . . . , b ∈ A and pairwise distinct

~x : ~A `
(
~x, ~f a, . . . , ~gb

∣∣∣h, . . . , k) : ( ~A?, ~B?, . . . , ~C?).

Note the labels on the terms with nullary domain and positive-ary codomain, as promised.
Finally, if we want to make the exchange rule admissible, we have to build permutations

into the rules as well. Each rule should add exactly the part of a permutation that can’t
be “pushed into the premises”. Because we’ve formulated the generator rule so that the
premise and conclusion have the same context, any desired permutation in the domain
can be pushed all the way up to the identity rule. Thus, for the generator rule it remains
to deal with permutation in the codomain.

The freedom we have in the premises of the generator rule is to (inductively) permute

the types within each list ~A, ~B, ~C, ~D, ~E, and also to block-permute the lists ~A, . . . , ~B
and separately the lists ~C, . . . , ~D (with a corresponding permutation of the generators
f, . . . , g and h, . . . , k). (If we permuted the main premise any more than this, it would
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Γ ` ( ~M, . . . , ~N, ~P , . . . , ~Q, ~R | ~Z) : ( ~A?≥1, . . . , ~B?≥1, ~C?≥1, . . . , ~D?≥1, ~E??)

f ∈ G( ~A; ~F≥1) · · · g ∈ G( ~B; ~G≥1)

h ∈ G(~C; ) · · · k ∈ G( ~D; )

σ : (~F ?, . . . , ~G?, ~E?=0) ∼−→ ∆ preserving activeness

σ preserves the relative order of types in ~E

σ preserves the relative order of F1, . . . , G1 τ ∈ Shuf(h, . . . , k; ~Z)

Γ `
(
σ
(
~f( ~M), . . . , ~g( ~N), ~R

) ∣∣∣ τ (h(~P ), . . . , k( ~Q), ~Z
))

: ∆

f ∈ G(; ~B≥1) · · · g ∈ G(; ~C≥1)
h ∈ G(; ) · · · k ∈ G(; )

a, . . . , b ∈ A and pairwise distinct

σ : ( ~A?, ~B?, . . . , ~C?) ∼−→ ∆ preserving activeness
σ preserves the relative order of B1, . . . , C1

~x : ~A `
(
σ
(
~x, ~f a, . . . , ~gb

) ∣∣∣h, . . . , k) : ∆

Figure 6: Rules of the typing judgment

no longer have the requisite shape to apply the rule to.) Permutations of ~C, . . . , ~D don’t
do us any good in terms of permuting the codomain of the conclusion, but we can push
permutations of ~E directly into the premise, and also a block-permutation of ~F , . . . , ~G
into a block-permutation of ~A, . . . , ~B.

What remains that we have to build into the rule can be described precisely by a
permutation of ~F , . . . , ~G, ~E that (1) preserves the relative order of the types in ~E, and

(2) preserves the relative order of the first types F1, . . . , G1 in the lists ~F , . . . , ~G. That is,

any permutation of ~F , . . . , ~G, ~E can be factored uniquely as one with these two properties
followed by a block sum of a block-permutation of ~F , . . . , ~G with a permutation of ~E.
(The choice of the first types is arbitrary; we could just as well use the last types, etc.)

There is no real need to allow ourselves to permute the scalar terms, since semantically
their order doesn’t matter anyway. But it is convenient to allow ourselves to write the
scalar terms in any order, so we incorporate permutations there too. The freedom in the
premises allows us to permute the term in ~Z arbitrarily, and also to permute the terms
h, . . . , k among themselves; thus what remains is precisely a shuffle. The final generator
rule is therefore the first rule shown in Figure 6.

In the identity rule, the only useful freedom in the premises is to block-permute the
~B, . . . , ~C. Thus what remains is a permutation that preserves the relative order of the first
types B1, . . . , C1. Any permutation in the scalar terms can be pushed into the premises,
so we have the final rule shown second in Figure 6. Note that this also allows us to
incorporate an arbitrary permutation in the domain.
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Having introduced the auxiliary notion of “active types” to ensure that typing judgments
have unique derivations, we now proceed to eliminate it. We start with the following
observation. The notion of subterm is defined as usual; we write M ≡ N to mean that M
and N are syntactically the same term.

4.4. Lemma. If Γ ` ( ~M | ~Z) : ∆ is derivable, and some Mi is a subterm of some Mj,
then i = j (hence Mi ≡Mj).

Proof. By induction on the derivation. In an application of the identity rule, the non-
scalar terms have no proper subterms, so the assumption means that Mi ≡Mj . And since
these terms are also uniquely identified by their label and subscript, we have i = j.

For an application of the generator rule, all the non-scalar terms either occur verbatim
in the main premise, or are of the form f(k)( ~M) (including f( ~M) when k = 1) where each

Mi is a non-scalar term in the main premise and | ~M | ≥ 1. These two possibilities are
mutually exclusive, and hence partition the terms into two classes that we call old and
new respectively.

The inductive hypothesis takes care of the case when both terms are old. If a new
term f(k)( ~M) is a subterm of an old term N , then each Mi is a proper subterm of N ,
contradicting the inductive hypothesis. This includes the case when an old term equals a
new term; while if an old term N is a proper subterm of a new term f(k)( ~M), then it must
be a subterm of some Mi, also contradicting the inductive hypothesis.

If one new term f(k)( ~M) is a proper subterm of another g(`)( ~N), then it must be a
subterm of some Nj. Hence each Mi must be a proper subterm of Nj, contradicting the
inductive hypothesis.

Finally, suppose two new terms are syntactically equal, f(k)( ~M) ≡ g(`)( ~N). Then we

must have f = g, k = `, and ~M ≡ ~N . Note that f = g means that f and g are the
same function symbol (morphism in G), but not a priori that they arise from the same
generator application in the rule (a given instance of the generator rule could apply the

same generator more than once). However, ~M ≡ ~N and the inductive hypothesis ensure
that they do arise from the same generator application. Together with k = `, this implies
that they have the same place in the given judgment as well.

We are primarily interested in applying Lemma 4.4 in the case of an “improper subterm”
Mi ≡Mj, but the stronger hypothesis makes the induction go through more easily.

4.5. Remark. Semantically, it is not really necessary to label the morphisms in G(;B) with
a symbol a ∈ A, since tensor products of such morphisms are invariant under permutation
(because the swap on the unit object is the identity morphism). However, it would be
significantly trickier to omit such labels syntactically. In practice, we can leave them off
informally and trust the reader to put them back if needed.

4.6. Theorem. If there is some assignment of activeness to the types in ∆ such that
Γ ` ( ~M | ~Z) : ∆ is derivable, then that assignment is unique, as is the derivation.
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Proof. By the height of an occurrence of a variable or function symbol in a term, we
mean its maximum distance to a leaf node in the abstract syntax tree representing the
term. Thus the height of a variable is 0, and the height of an occurrence of a function
symbol is the least natural number strictly greater than the heights of the head symbols
of all its arguments. Note that a nullary function symbol always has height 0, while a
function symbol applied to a positive number of variables alone has height 1.

We claim that in any derivable typing judgment, the terms associated to active types
are precisely those non-scalar ones whose head symbol has maximum height. The proof is
by induction on derivations. In the identity rule, all terms have height 0 and all types are
active. Now consider the generator rule, and suppose inductively that the claim is true
for the main premise, with maximal height n, say. Then since each of the new function
symbols introduced by the rule is applied to at least one term from an active type, which
therefore has the maximal height n, it must have height n + 1. It follows that the new
maximum height is n+ 1, and that these new symbols are precisely those of maximum
height; but they are also precisely those associated to active types. This proves the claim.

It follows immediately that the terms uniquely determine the activeness of the types,
since height is a syntactic invariant of the terms. Moreover, we can tell from the terms
which rule must have been applied last (if the maximum height is 0, it must come from
the identity rule; otherwise it must come from the generator rule) and which function
symbols that rule must have introduced (those of maximum height).

In the case of the generator rule, we can also conclude that the new terms must be
precisely those whose head generator symbol has maximum height. We divide these new
terms into subsets that have the same generator symbol and arguments, so that each
subset consists of terms f(i)( ~M) for fixed f and ~M but varying i. By Lemma 4.4, there

can be no more than one occurrence of a particular term f(i)( ~M), so the subset of new

terms determined by f and ~M must consist of exactly the m terms f(i)( ~M) for 1 ≤ i ≤ m,
where f has m outputs.

Now the ordering of these function symbol applications as f, . . . , g and h, . . . , k must
be the order in which the corresponding f(1), . . . , g(1) and h, . . . , k appear in the term list,
since the permutations σ and τ preserve those orders. Then σ−1 is uniquely determined
by the fact that it must place all the outputs of f first, and so on until all the outputs
of g, then all the terms of non-maximum height in the same order that they were given
in the conclusion. Similarly, τ−1 is uniquely determined by the fact that it has to place
h, . . . , k first and the scalar terms of non-maximum height last, preserving internal order
in each group. Finally, this determines the main premise uniquely as well.

The argument for the identity rule is similar, with no τ and with σ−1 placing all the
variables first in the order of the context. Inductively, therefore, the entire derivation is
uniquely determined.

Note that we can regard this proof as an algorithm for “type-checking” a judgment
without activeness annotations: first we use the recursive height function on terms to
calculate the activeness, then we proceed as usual to recursively match against the generator
or identity rules. Because of this theorem, in the future we will omit the activeness labels.
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Figure 7: String diagrams for a morphism in a free prop

Theorem 4.6 can be seen as giving a “normal form” for morphisms in a free prop.
Intuitively, a composite of generating morphisms and permutations is in normal form if
each generator or permutation is applied “as soon as possible”; the inductive definition of
judgments with activeness makes precise exactly what that means.

Another perspective on this involves string diagrams. From the latter perspective, a
morphism in the free prop generated by G can be represented by an acyclic directed graph
whose vertices are labeled by generators and whose edges are labeled by objects. We allow
“free edges” one or both of whose ends do not connect to any vertex, corresponding to the
input and output objects of the morphism. For instance, such a graph based on generators
f ∈ G(;G,C), g ∈ G(;D), h ∈ G(C,A;F,E), k ∈ G(B; ), ` ∈ G(E,D;H), and m(G; ) is
shown in Figure 7a. The corresponding term in our type theory is

x : A, y : B ` (h(1)(f(2), x), `(h(2)(f(2), x), g) | m(f(1)), k(y)) : (F,H)

Applying the algorithm of Theorem 4.6, we first calculate the heights of each generator:

f : 0 g : 0 h : 1 k : 1 ` : 2 m : 1

Therefore, H is the only active type, and the final rule application must have been a
generator rule applying only `:

x : A, y : B ` (h(2)(f(2), x), g, h(1)(f(2), x) | m(f(1)), k(y)) : (E?, D, F ?)
` ∈ G(E,D;H)

x : A, y : B ` (h(1)(f(2), x), `(h(2)(f(2), x), g) | m(f(1)), k(y)) : (F,H?)
. (4.7)

In the premise of this rule, E and F are the active types since h has height 1. But k and
m also have height 1, so they must also be applied by the generator rule leading to this
judgment:

x : A, y : B ` (f(2), x, f(1), y, g) : (C?, A?, G?, B?, D?)
h ∈ G(C,A;F,E)

m ∈ G(G; ) k ∈ G(B; )

x : A, y : B ` (h(2)(f(2), x), g, h(1)(f(2), x) | m(f(1)), k(y)) : (E?, D, F ?)
. (4.8)
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Now in the premise all the types are active and all terms have height 0, so it must have
arisen from the identity rule:

f ∈ G(;G,C) g ∈ G(;D)

x : A, y : B ` (f(2), x, f(1), y, g) : (C?, A?, G?, B?, D?)
. (4.9)

Thus we have a complete typing derivation:

f ∈ G(;G,C) g ∈ G(;D)

x : A, y : B ` (f(2), x, f(1), y, g) : (C
?
, A

?
, G

?
, B

?
, D

?
) h ∈ G(C,A;F,E) m ∈ G(G; ) k ∈ G(B; )

x : A, y : B ` (h(2)(f(2), x), g, h(1)(f(2), x) | m(f(1)), k(y)) : (E
?
, D, F

?
) ` ∈ G(E,D;H)

x : A, y : B ` (h(1)(f(2), x), `(h(2)(f(2), x), g) | m(f(1)), k(y)) : (F,H
?
) .

This derivation corresponds to the redrawing of the string diagram shown in Figure 7b, in
which the vertices appear in horizontal layers, with the edges always pointing down the
page, and each vertex placed in the highest layer possible. The topmost layer with f and g
corresponds to the identity rule application (4.9), the next layer with h,m, k corresponds
to the generator rule application (4.8), and the final layer with ` corresponds to (4.7).

The referee has pointed out that this is essentially the “longest path layering” [EL89] of
an acyclic directed graph (modulo a suitable correction to deal with vertexless half-edges).
The proof of Theorem 4.6 can thus equivalently be interpreted as computing a normal
form for a morphism in a free prop by expressing it as an acyclic directed graph and
rearranging it according to its longest path layering, and also making certain canonical
choices regarding the ordering of vertices along each layer. It is natural to expect that
other canonical ways of drawing a directed graph might correspond to other normal forms
and hence other type theories for free props, but we will not investigate this here.

It remains to consider the equality judgment. We don’t have a traditional form of
α-conversion since we have no bound variables as such, but as remarked in section 1
the labels a ∈ A can sometimes be regarded as playing a similar role, and in particular
the choice of concrete labels must not matter. We also need to impose invariance under
permutation of the scalar terms. It may seem silly to have incorporated permutations in
the scalar terms earlier and yet quotient out by that freedom now, but such an equality
rule would be necessary even if we hadn’t incorporated any permutations to start with.
The paradigmatic case is when we have two nullary scalar generators f : () → () and
g : ()→ (), leading unavoidably to two distinct valid terms

` ( | f, g) : () ` ( | g, f) : ()

that must be equal in a monoidal category (since the monoid of endomorphisms of the
unit object is commutative). It is probably no coincidence that this is also the case where
interesting things happen upon categorification.

Combining these two permutation rules, we obtain the rule shown in Figure 8. When
we consider presented props in section 6, with equational theories, we will need the usual
reflexivity, symmetry, transitivity, and congruence rules for equality, but with only this
rule we can omit them since permutations are already a group. And since we have no type
forming operations, there are no β or η rules.

This completes our type theory for the free prop generated by G.



886 MICHAEL SHULMAN

Γ ` ( ~M | Z1, . . . , Zn) : ∆ ρ ∈ Sn σ : A ∼= A

Γ ` ( ~M | Z1, . . . , Zn) = ( ~Mσ | Zσ
ρ1, . . . , Z

σ
ρn) : ∆

Figure 8: Rule of the axiom-free equality judgment

5. Constructing free props from type theory

We now proceed to show that our type theory has the structure of a prop, beginning with
the admissibility of exchange on the right.

5.1. Proposition. If Γ ` ( ~M | ~Z) : ∆ is derivable and ρ is a permutation of ∆, then

Γ ` (ρ ~M | ~Z) : ρ∆ is also derivable. Moreover, this action is functorial.

Proof. This essentially follows from how we built the rules. If the derivation ends with
the identity rule, then we can compose ρ with the specified permutation σ from that rule,
and reorder the generators f, . . . , g in the rule according to the order that ρσ puts them in.
If the derivation ends with the generator rule, then we similarly compose ρ with σ, reorder
the generators f, . . . , g, and inductively push the remaining part of the permutation (that
acting on the non-active terms) into the main premise. Functoriality follows immediately.

For admissibility of composition/substitution, it seems helpful to first prove the ad-
missibility of a single-generator rule. Note that we formulate it with the domain of the
generator at the end of the given codomain context.

5.2. Proposition. If Γ ` ( ~M, ~N | ~Z) : ∆, ~A is derivable and f ∈ G( ~A; ~B), then

Γ ` ( ~M, ~f( ~N) | ~Z) : ∆, ~B is derivable. Moreover, if none of the types in ~A are active in
the given derivation, then all of the types in ∆ that are active in the given derivation are
still active in the result.

Proof. If any of the types in ~A are active, we can simply apply the generator rule with f
as the only generator. Otherwise, none of them were introduced by the final rule in the
given derivation. If that final rule was the identity rule, then ~A must be empty (since all
types in the conclusion of the identity rule are active), so f has nullary domain and we
can just add it to that application of the identity rule.

If the final rule in the given derivation was the generator rule, then ~A must also appear
at the end of its main premise. If none of the types in ~A are active therein, then we can
inductively apply f to that premise; by the second clause of the inductive hypothesis, this
does not alter the activeness of the other types in the premise, so we can re-apply the
generator rule. Finally, if at least one of the types in ~A is active in the main premise, then
we can add f to the generator rule, applying it alongside all the other generators, since it
satisfies the condition that at least one of its arguments be active. (Technically, this may

require us to first permute the consequent of the main premise so that ~A appears before
all the other non-inputs to the generator rule. This is not a problem for the induction
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since in this case we are not actually using the inductive hypothesis at all.) In all cases,
the second claim of the lemma is obvious.

Now by combining Proposition 5.1 and Proposition 5.2, we can postcompose with a
generator f ∈ G( ~A; ~B) whose domain types ~A appear anywhere in the consequent of a

judgment Γ ` ( ~M | ~Z) : ∆, in any order.

5.3. Proposition. Substitution is admissible: if Γ ` ( ~M | ~Y ) : ∆ and ∆ ` ( ~N | ~Z) : Φ

are derivable, then so is Γ ` ( ~N [ ~M/∆] | ~Z[ ~M/∆], ~Y ) : Φ.

Proof. We induct on the derivation of ∆ ` ( ~N | ~Z) : Φ. If it comes from the identity

rule, then we just have to compose Γ ` ( ~M | ~Y ) : ∆ with some number of nullary-domain
generators and permute its codomain; we do this one by one using Proposition 5.2 and then
Proposition 5.1. Similarly, if it comes from the generator rule, we inductively compose with
its main premise, then apply all of the new generators one by one using Proposition 5.2.

As an example, suppose we want to compose the following terms:

x : A, y : B ` (f(1)(y), k(g, f(3)(y)), f(2)(y) | h(x)) : (C,D,E) (5.4)

u : C, v : D,w : E ` (m(u, `(2)(w)), s, `(1)(w) | n(v)) : (F,G,H) (5.5)

Here the generators are

f : B → (C,E, P ) g : ()→ Q h : A→ () k : (Q,P )→ D ` : E → (H,R)

m : (C,R)→ F n : D → () s : ()→ G

The heights are

f = 1 g = 0 h = 1 k = 2 ` = 1 m = 2 n = 1 s = 0

Thus, the final rule of the second derivation must apply m only, so our inductive job is to
compose (5.4) with

u : C, v : D,w : E ` (u, `(2)(w), s, `(1)(w) | n(v)) : (C,R,G,H) (5.6)

Now the final rule of the second derivation must apply ` and n together, so our inductive
job is to compose (5.4) with

u : C, v : D,w : E ` (w, v, u, s | ) : (E,D,C,G) (5.7)

The latter is obtained from the identity rule, so our task is now to apply Proposition 5.2
to the former and the single generator s : () → G. Peeling down the derivation of the
former, we obtain

x : A, y : B ` (g, f(3)(y), f(1)(y), f(2)(y) | h(x)) : (Q,P,C,E)
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and then
x : A, y : B ` (y, x, g | ) : (B,A,Q)

which is also obtained from the identity rule. The identity rule can therefore also give us

x : A, y : B ` (y, x, g, s | ) : (B,A,Q,G).

Re-applying f, h and then k, we obtain

x : A, y : B ` (g, f(3)(y), f(1)(y), f(2)(y), s | h(x)) : (Q,P,C,E,G)

and then

x : A, y : B ` (f(1)(y), k(g, f(3)(y)), f(2)(y), s | h(x)) : (C,D,E,G).

Permuting this, we obtain

x : A, y : B ` (f(2)(y), f(1)(y), k(g, f(3)(y)), s | h(x)) : (E,C,D,G).

as the result of composing (5.4) and (5.7).
Backing out the induction one more step, we must apply ` and n to this using

Proposition 5.2. We cannot apply ` directly since its domain E is not active (its term
f(2)(y) has height 1 while the maximum height is 2). Thus, we back up to the main premise

x : A, y : B ` (g, f(3)(y), f(1)(y), f(2)(y), s | h(x)) : (Q,P,C,E,G)

in which E is active. Thus, we can apply ` in the same generator rule as k, obtaining

x : A, y : B ` (`(1)(f(2)(y)), `(2)(f(2)(y)), f(1)(y), k(g, f(3)(y)), s | h(x)) : (H,R,C,D,G).
(5.8)

Now the domain D of the generator n is active, so we can directly apply it with another
generator rule, obtaining (after permutation)

x : A, y : B ` (f(1)(y), `(2)(f(2)(y)), s, `(1)(f(2)(y)) | n(k(g, f(3)(y))), h(x)) : (C,R,G,H).
(5.9)

as the result of composing (5.4) and (5.6).
Finally, we must compose this with m using Proposition 5.2. Neither of the domain

types C and R is active in (5.9) (in fact, no types are active in (5.9), since the last rule
applied was a generator rule whose only generator has nullary codomain), so we have to
inductively peel back to (5.8) in which R is active (though not C). Thus, we can then
apply m in the same generator rule as n, obtaining

x : A, y : B ` (m(f(1)(y), `(2)(f(2)(y))), s, `(1)(f(2)(y)) | n(k(g, f(3)(y))), h(x)) : (F,G,H)
(5.10)

as our end result.
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Note that the terms in (5.10) are indeed the result of substituting f(1)(y) for u,
k(g, f(3)(y)) for v, and f(2)(y) for w (the terms appearing in (5.4)) in the terms of (5.5),
and appending the scalar term h(x) of (5.4) to the scalar terms of (5.5):

m(u, `(2)(w))[f(1)(y)/u, k(g(f(3)(y)))/v, f(2)(y)/w] = m(f(1)(y), `(2)(f(2)(y)))

s[f(1)(y)/u, k(g(f(3)(y)))/v, f(2)(y)/w] = s

`(1)(w)[f(1)(y)/u, k(g(f(3)(y)))/v, f(2)(y)/w] = `(1)(f(2)(y))

n(v)[f(1)(y)/u, k(g(f(3)(y)))/v, f(2)(y)/w] = n(k(g(f(3)(y)))).

The only choice involved in the proof of Proposition 5.2 is in how to order the scalar
terms in the result. We adopted the convention that those associated to the terms being
substituted into come first, followed by those associated to the terms being substituted.
The opposite convention would do as well for the following theorem:

5.11. Proposition. Composition is associative and unital.

Proof. Since derivations are determined uniquely by their terms by Theorem 4.6, this
follows from the evident associativity and unitality of substitution into terms, and the
associativity and unitality of concatenation of lists of scalar terms.

Thus we have a category whose objects are contexts and whose morphisms are derivable
judgments Γ ` ( ~M | ~Z) : ∆. However, this is not quite the underlying category of our
prop: we must quotient it by the equality rule from Figure 8:

Γ ` ( ~M | Z1, . . . , Zn) : ∆ ρ ∈ Sn σ : A ∼= A

Γ ` ( ~M | Z1, . . . , Zn) = ( ~Mσ | Zσ
ρ1, . . . , Z

σ
ρn) : ∆

(5.12)

(which also ensures that the choice of ordering in Proposition 5.3 is irrelevant). For this
we need the evident observation:

5.13. Proposition. The equality rule (5.12) is a congruence on the category of contexts
and derivable typing judgments. That is, it is an equivalence relation on the morphisms
that is preserved by composition on both sides.

Therefore, the quotient by this equality judgment is again a category whose objects
are the contexts (i.e. finite lists of types).

5.14. Theorem. The contexts and derivable term judgments in the type theory for the free
prop generated by G, modulo the equality rule (5.12), form a symmetric strict monoidal
category.

Proof. The monoidal structure on contexts is concatenation, with the empty context as
unit. To tensor morphisms, it is easiest to first tensor with identities: given Γ ` ( ~M | ~Z) : ∆,

we construct Γ, ~x : ~A ` ( ~M, ~x | ~Z) : ∆, ~A by inducting until we get down to the identity

rule and then adding the variables ~x : ~A to the context. Now we obtain the tensor
product of Γ ` ( ~M | ~Y ) : ∆ and Φ ` ( ~N | ~Z) : Ψ by first tensoring with identities to
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get Γ,Φ ` ( ~M,Γ | ~Y ) : ∆,Φ and ∆,Φ ` (∆, ~N | ~Z) : ∆,Ψ and then composing to get

Γ,Φ ` ( ~M, ~N | ~Z, ~Y ) : ∆,Ψ. If we did this in the other order, we would get ( ~M, ~N | ~Y , ~Z)
instead, which is equal by (5.12). In particular, this implies functoriality of the tensor
product; associativity and unitality follow similarly. Finally, the symmetry isomorphism is
~x : ~A, ~y : ~B ` (~y, ~x) : ~B, ~A; it is easy to verify the axioms.

Thus we have a prop, which we denote FG.

5.15. Theorem. FG is the free prop generated by G.

Proof. Let P be a prop and ω : G → P a morphism of signatures. We extend it to
a morphism of props FG → P by induction on derivations. By the coherence theorem
for symmetric monoidal categories (e.g. [ML98, Chapter XI]), there is a unique choice
at each step if we are to have a (symmetric strict monoidal) functor, and likewise both
equality rules corresponds to actual equalities that must hold in P. Then we prove that
this actually is a symmetric strict monoidal functor, using the definition of composition
and the tensor product in FG.

5.16. Remark. Since the free prop generated by a signature is unique up to isomorphism,
it follows that our FG is isomorphic to the free prop on G presented in any other way, such
as by using string diagrams whose edges and vertices are labeled by objects and morphisms
of G respectively. Unsurprisingly, this correspondence can be made more explicit: from
any derivable Γ ` ~M : ∆ we can construct a labeled string diagrams from Γ to ∆, whose
vertices are the generator applications and whose edges are the disjoint union of the
variables in Γ and the terms f(i)( ~N) appearing as subterms of ~M .

6. Presentations of props

Since the category of props is monadic over the category of signatures by Theorem 2.5,
every prop P has a presentation in terms of signatures, i.e. a coequalizer diagram

FR⇒ FG → P .

Moreover, since F and its right adjoint are the identity on the set of objects, we may
assume that R and G both have the same set of objects as P and all the morphisms are
the identity on objects. Now by the universal property of FR, the two morphisms of props
FR⇒ FG are equivalently morphisms of signatures R⇒ FG. Thus, once G is given, the
additional data of R consists of a set of pairs of parallel morphisms in FG, which is to say
a set of equality axioms of the form

Γ ` ( ~M | ~Y ) = ( ~N | ~Z) : ∆

where both Γ ` ( ~M | ~Y ) : ∆ and Γ ` ( ~N | ~Z) : ∆ are derivable in the type theory for
the free prop generated by G. We obtain the type theory for the prop presented
by (G,R) by augmenting the type theory for the free prop on G by these axioms for the
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Γ ` ( ~M | ~Z) : ∆

Γ ` ( ~M | ~Z) = ( ~M | ~Z) : ∆

Γ ` ( ~M | ~Y ) = ( ~N | ~Z) : ∆

Γ ` ( ~N | ~Z) = ( ~M | ~Y ) : ∆

Γ ` ( ~M | ~X) = ( ~N | ~Y ) : ∆ Γ ` ( ~N | ~Y ) = (~P | ~Z) : ∆

Γ ` ( ~M | ~X) = (~P | ~Z) : ∆

Γ ` ( ~M | ~X) = ( ~N | ~Y ) : ∆ ∆ ` (~P | ~Z) : Φ

Γ ` (~P [ ~M/∆] | ~Z[ ~M/∆], ~X) = (~P [ ~N/∆] | ~Z[ ~N/∆], ~Y ) : Φ

Γ ` ( ~M | ~X) : ∆ ∆ ` ( ~N | ~Y ) = (~P | ~Z) : Φ

Γ ` ( ~N [ ~M/∆] | ~Y [ ~M/∆], ~X) = (~P [ ~M/∆] | ~Z[ ~M/∆], ~X) : Φ

Γ ` ( ~M | ~X) = ( ~N | ~Y ) : ∆ Φ ` (~P | ~Z) = ( ~Q | ~W ) : Ψ

Γ,Φ ` ( ~M, ~P | ~X, ~Z) = ( ~N, ~Q | ~Y , ~W ) : ∆,Ψ

Γ ` ( ~M | Z1, . . . , Zn) : ∆ ρ ∈ Sn σ : A ∼= A

Γ ` ( ~M | Z1, . . . , Zn) = ( ~Mσ | Zσ
ρ1, . . . , Z

σ
ρn) : ∆

Figure 9: Rules of the equality judgment in the presence of axioms
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equality judgment, together with the additional rules shown in Figure 9 (which are no
longer automatic in the presence of such axioms).

The first three rules in Figure 9 are the usual reflexivity,5 symmetry, and transitivity.
The next three are congruence rules for precomposition, postcomposition, and the con-
catenation product. The final one is the label-renaming and scalar-permutation rule from
Figure 8. Note that congruence for pre- and post-composition includes congruence under
permutations of the domain and codomain.

6.1. Proposition. For any prop presentation (G,R), the equality judgment generated by
the axioms of R together with the rules of Figure 9 is a congruence on the prop FG. That
is, it is an equivalence relation on morphisms preserved by composition and tensor product.

Proof. The rules of Figure 9 essentially force this to be true.

Thus we obtain a prop F〈G|R〉 as the quotient of FG by this congruence.

6.2. Theorem. F〈G|R〉 is the prop presented by (G,R). That is, we have a coequalizer
diagram in the category of props:

FR⇒ FG → F〈G|R〉.

Proof. Since the quotient map FG → F〈G|R〉 is surjective, a prop morphism ω : FG → P
factors through F〈G|R〉 in at most one way. Moreover, it does so precisely when it identifies
all pairs of tuples of terms that are identified by the equality judgment. However, the
equality rules in Figure 9 are satisfied in any prop, so this happens precisely when ω
respects the axioms of R, i.e. when it coequalizes the two maps FR⇒ FG.

Thus, we can use our type theory to reason about structures in arbitrary props
defined by generators and axioms, and hence also in symmetric monoidal categories (by
Theorem 2.3).

7. Examples

7.1. Duals and traces. We begin by repeating the first example from the introduction
more carefully. The free prop generated by a dual pair has a generating signature G
with two objects A and A∗ and two morphisms η : ()→ (A,A∗) and ε : (A∗, A)→ (), and
a signature of relations R that imposes two axioms

x : A ` (η(1) | ε(η(2), x)) = x : A y : A∗ ` (η(2) | ε(y, η(1))) = y : A∗.

A map from this prop to a symmetric monoidal category then reduces to the usual notion
of dual.

5Actually, it is not necessary to assert reflexivity explicitly, since it is a special case of the permutation
rule.
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As suggested in the introduction, we write M /N for ε(M,N), and (u, λAu) : (A,A∗)
for (η(1), η(2)), where u is a label (i.e. an element of A) rather than a variable (appearing in
the context). In this notation, the axioms are

x : A ` (u | λAu / x) = x : A y : A∗ ` (λAu | y / u) = y : A∗.

Recall that = is a congruence for substitution on both sides. Thus the first axiom means
that if λAu /M appears in the scalars, for any term M : A not involving u, then it can be
removed by replacing u (wherever it appears, even as a subterm of some other term) with
M . This justifies regarding it as a sort of “β-reduction for duality” with u playing the role
of a “bound variable”, although as we noted in the introduction the “binder” λAu does
not delimit the “scope” of u at all. Running this rule in reverse, we see that any term
M : A (appearing even as a sub-term of some other term) can be replaced by u, for a fresh
label u, if we simultaneously add λAu / M to the scalars. The other axiom is similar; we
may regard it as an “η-reduction for duality”.

If A has a dual A∗, and f : A→ A, the trace of f is the composite

()
η−→ (A,A∗)

(f,id)−−−→ (A,A∗)
∼=−→ (A∗, A)

ε−→ ()

In our type theory this is
() ` ( | λAu / f(u)) : ().

As advertised in the introduction, we can now prove cyclicity of the trace with a β-
expansion followed by a β-reduction: for morphisms f : A→ B and g : B → A, with A
and B dualizable, we have

tr(fg)
def
= ( | λBy / f(g(y)))

= ( | λBy / f(x), λAx / g(y))

= ( | λAx / g(f(x)))
def
= tr(gf).

More generally, any f : (Y,A)→ (Z,A) has a “partial” or “twisted” trace

y : Y ` (f(1)(y, u) | λAu / f(2)(y, u)) : Z.

This satisfies a version of cyclicity [PS14, Lemma 4.4]: for any morphisms f : (Y,A)→
(Z,B) and g : (W,B)→ (X,A), with A and B dualizable, we have

y : Y,w : W ` (g(1)(w, v), f(1)(y, g(2)(w, v)) | λBv / f(2)(y, g(2)(w, v)))

= (g(1)(w, v), f(1)(y, u) | λBv / f(2)(y, u), λAu / g(2)(w, v))

= (g(1)(w, f(2)(y, u)), f(1)(y, u) | λAu / g(2)(w, f(2)(y, u)))

: (X,Z).
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This general cyclicity includes in particular the sliding axiom for traces from [JSV96].
Their other axioms become simply syntactic identities in our type theory. For instance,
tightening is the statement that if we compose f : (Y,A)→ (Z,A) with u : X → Y and
v : Z → W and then take its trace:

x : X ` u(x) : Y y : Y, a : A ` (f(1)(y, a), f(2)(y, a)) : (Z,A) z : Z ` v(z) : W

x : X, a : A ` (v(f(1)(u(x), a)), f(2)(u(x), a)) : (W,A)

x : A ` (v(f(1)(u(x), a)) | λAa / f(2)(u(x), a)) : W

we get the same result as if we first take the trace of f and then compose with u and v:

x : X ` u(x) : Y

y : Y, a : A ` (f(1)(y, a), f(2)(y, a)) : (Z,A)

y : Y ` (f(1)(y, a) | λAa / f(2)(y, a)) : Z z : Z ` v(z) : W

x : A ` (v(f(1)(u(x), a)) | λAa / f(2)(u(x), a)) : W.

Since the terms concluding both derivations are the same, they represent the same
morphism. Of course, these are not actually derivations in our type theory, since they use
the admissible rule of substitution. The uniqueness of typing derivations means that if
the substitutions are eliminated according to Proposition 5.3 we obtain the same result in
both cases, which in this case is:

x : A ` (u(x), a, λAa) : (Y,A,A∗)

x : A ` (f(1)(u(x), a), λAa, f(2)(u(x), a)) : (Z,A∗, A)

x : A ` (v(f(1)(u(x), a)) | λAa / f(2)(u(x), a)) : W.

7.2. Remark. Given any signature G, we can augment it by adding a specified dual A∗

for each object A ∈ G along with duality data as above. This yields a new signature G∗
such that FG∗ is freely generated by G together with a specified dual for each of its object.
Thus FG∗ is the free compact closed prop (i.e. prop in which every object has a dual)
generated by G. Any signature R of relations for G carries over to G∗ as well, so we can
construct presented compact closed props as well, and thereby presented compact closed
monoidal categories.

In general, a prop presentation may not have any decision procedure for equality or
normal forms for morphisms. However, the view of the zigzag equalities as “β and η
reductions” suggests that this should be the case for some classes of presented compact
closed props (whenever the equalities other than the zigzag identities can be controlled).
If true, this should include in particular the explicit description of the free compact closed
monoidal category on an ordinary category from [KL80].

Note also that by the “Int-construction” [JSV96], any traced symmetric monoidal
category embeds fully-faithfully and trace-preservingly in a compact closed one. Thus, we
can also use presented compact closed props to reason about traced symmetric monoidal
categories.
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7.3. Well-idempotent dualizable objects are self-dual. Tim Campion asked
in [Cam17] whether an idempotent dualizable object in a symmetric monoidal category must
be self-dual. A proof using string diagrams that this holds assuming “well-idempotence”
was given by the user “MTyson”; here we recast this proof in our type theory.

We assume given one type X with a dual X∗, expressed as before, and a morphism
i : ()→ X such that 1X ⊗ i : X → X ⊗X is an isomorphism (such an i is what makes X
well-idempotent). In our type theory, the latter can be expressed by a term ` i : X and
a morphism x : X, y : X ` f(x, y) : X (the inverse to 1X ⊗ i) such that f(x, i) = x and
(x, y) = (f(x, y), i). More precisely, the latter two equalities are

x : X ` f(x, i) = x : X

x : X, y : X ` (x, y) = (f(x, y), i) : (X,X)

but we tend to omit the contexts and types in equality axioms and calculations when they
are obvious.

Note that the equation f(x, i) = x means that i is a “right unit” for the “binary
operation” f . We now observe that it is also a left unit:

f(i, y) = (f(u, y) | λXu / i)
= (u | λXu / y)

= y.

Here the first line is a β-expansion and the third is a β-reduction. The second line uses
the equality (x, y) = (f(x, y), i) in the following way: first we introduce an extra variable
to get

x : X,w : X∗, y : X ` (x,w, y) = (f(x, y), w, i) : (X,X∗, X)

then we precompose with

y : X ` (u, λXu, y) : (X,X∗, X)

to get
y : X ` (u, λXu, y) = (f(u, y), λXu, i) : (X,X∗, X)

and then we post-compose with

x : X,w : X∗, y : X ` (x | w / y) : X

to get
y : X ` (u | λXu / y) = (f(u, y) | λXu / i) : X.

Note that although the type-theoretic justification is a bit complicated, at the level of
terms the operation is intuitive: we simply simultaneously substitute u for f(u, y) and y for
i, wherever the latter appear as subterms. From now on we will perform such substitutions
at term-level without further comment.
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Now we define x : X ` φ(x) : X∗ and w : X∗ ` ψ(w) : X by

φ(x)
def
= (λXv | λXu / f(v, f(x, u)))

ψ(w)
def
= (i | w / i).

Finally, we can show that φ and ψ are inverse isomorphisms (so that X is isomorphic to
its dual) with the following computations:

ψ(φ(x)) = (i | λXv / i, λXu / f(v, f(x, u)))

= (i | λXu / f(i, f(x, u))) (β-reduction for v)

= (i | λXu / f(x, u)) (i is a left unit for f)

= (u | λXu / x) ((x, u) = (f(x, u), i))

= x (β-reduction for u)

φ(ψ(w)) = (λXv | λXu / f(v, f(i, u)), w / i)

= (λXv | λXu / f(v, u), w / i) (i is a left unit for f)

= (λXv | λXu / v, w / u) ((v, u) = (f(v, u), i))

= (λXv | w / v) (β-reduction for u)

= w (η-reduction for v).

We do not reproduce MTyson’s string diagram proof here, but the reader is encouraged to
compare it to our type-theoretic version. Note that this situation is partly “topological” in
the sense of subsection 1.10 (the zigzag axioms for duality, and arguably the unit properties
f(x, i) = x and f(i, x) = x) and partly non-topological (the axiom (x, y) = (f(x, y), i)).

7.4. Comonoids and Sweedler notation. As in ordinary cartesian (or even linear)
type theory, it is easy to use our type theory to define monoid objects in a symmetric
monoidal category. The signature has one object M and two morphisms m : (M,M)→M
and e : () → M ; we usually write m(x, y) infix as x · y or just xy. The axioms are the
expected

(xy)z = x(yz) xe = x ex = x.

However, with our type theory we can also define comonoid objects, which have instead
two morphisms 4 : M → (M,M) and ε : M → (), and axioms

(4(1)(4(1)(x)),4(2)(4(1)(x)),4(2)(x)) = (4(1)(x),4(1)(4(2)(x)),4(2)(4(2)(x)))

(4(1)(x) | ε(4(2)(x))) (4(2)(x) | ε(4(1)(x))).

As suggested in the introduction, this becomes much more manageable if we adopt the
convention of traditional Sweedler notation for comonoids and comodules:

(x(1), x(2))
def
= (4(1)(x),4(2)(x)).
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Since there is no other meaning of Z(i) when Z is itself already a term, it is unambiguous to
regard it as meaning4(i)(Z) as long as no type has more than one relevant comultiplication.
(We could formalize this with a more complicated type-checking algorithm, but we will
be content to regard it as an informal abuse of notation.) We may regard this as a sort
of “dual” to the shorthand notation “xy” for multiplication in a monoid, which omits
the name or symbol for the product (M,M)→M . With this notation, the axioms of a
comonoid become

(x(1)(1), x(1)(2), x(2)) = (x(1), x(2)(1), x(2)(2))

(x(1) | ε(x(2))) = x (x(2) | ε(x(1))) = x.

Traditional Sweedler notation also goes one step further: in view of the coassocia-
tivity axiom, it is unambiguous to write (x(1), x(2), x(3)) for either (x(1)(1), x(1)(2), x(2)) or
(x(1), x(2)(1), x(2)(2)). In general, if subscripts are applied to a variable or a term that is
already subscripted, with the maximum such subscript being n, then the subscript (k)

means
k−1︷ ︸︸ ︷

(2)(2) . . . (2) (1) if k < n and
n−1︷ ︸︸ ︷

(2)(2) . . . (2) if k = n.
Intuitively, in cartesian type theory (i.e. in a cartesian monoidal category), everything

can be duplicated and discarded with impunity; whereas a comonoid in a non-cartesian
monoidal category is equipped with specified ways in which to duplicate and discard
elements. (Indeed, a cartesian monoidal category is precisely a symmetric monoidal
category in which every object is equipped with a commutative comonoid structure in
a natural way.) We thus view x(1) and x(2) as “duplicated copies” of x, the subscripts
tracking the order of duplication. Similarly, we can regard ε(x) as “discarding” the element
x, which inspires us to introduce a sort of “nullary Sweedler notation”

�x
def
= ε(x).

Thus, for instance, the counit axioms of a comonoid become (x(1) |��x(2)) = x and (x(2) |
��x(1)) = x. Note that by coassociativity, we also have equalities such as (x(1), x(2) |��x(3)) =
(x(1), x(2)) and (x(1), x(3) |��x(2)) = (x(1), x(2)) and so on.

Such shorthands need not be restricted to comonoids either. For instance, traditional
Sweedler notation is also used for comodules, which have a coaction D → (C,D) by a
coalgebra C. As an example with even greater generality, suppose M is dualizable and
has a coaction 4 : M → (A,M), satisfying no axioms at all, and that f : M →M is an
endomorphism that respects 4 in that (f(x(1)), f(x(2))) = (f(x)(1), f(x)(2)). Then we can
use this notation to verify the fixed-point property of traces from [PS14, Corollary 5.3]:

(f(f(u)(1)) | λMu / f(u)(2)) = (f(v(1)) | λMu / v(2), λ
Mv / f(u))

= (f(v(1)) | λMv / f(v(2)))

= (f(v)(1) | λMv / f(v)(2)) : A.

7.5. Frobenius monoids. A Frobenius monoid is an object that is both a monoid
and a comonoid and satisfies the additional axiom

x : M, y : M ` (x(1), x(2)y) = (xy(1), y(2)). (7.6)
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Usually this is stated as two axioms saying that both sides of the above equation equal
((xy)(1), (xy)(2)). But this follows from the above axiom by the following argument, which
I learned from [PS09]:

(x(1), x(2)y) = (x(1), x(2)y(1) |��y(2)) (by counitality)

= (x(1), x(2)(1) |����x(2)(2)y) (by (7.6))

= (x(1)(1), x(1)(2) |���x(2)y) (by coassociativity)

= ((xy(1))(1), (xy(1))(2) |��y(2)) (by (7.6))

= ((xy)(1), (xy)(2)) (by counitality).

The Frobenius axiom(s) are “topological”, so their string diagrams get a good deal of
leverage from topological intuition. Thus, Frobenius monoids are not a very good example
for the relative usefulness of type theory. However, for purposes of comparison, we include
a proof of one of the basic facts about Frobenius monoids; namely that they are self-dual,
with unit and counit:

(w / x)
def
= ( |��wx)

(u, λMu)
def
= (e(1), e(2)).

The axioms of a dual pair follow quite easily:

(u | λMu / x)
def
= (e(1) |���e(2)x) = (ex(1) |��x(2)) = ex = x

(λMu | w / u)
def
= (e(2) |���we(1)) = (w(2)e |���w(1)) = we = w.

7.7. Remark. A hypergraph category [Kis14] is a symmetric monoidal category in
which every object is equipped with a Frobenius monoid structure that is commutative
(xy = yx), cocommutative ((x(1), x(2)) = (x(2), x(1))), and special a.k.a. separable (x(1) x(2) =
x), and such that the Frobenius monoid structure on any tensor product X ⊗ Y is induced
from those on X and Y in the standard way. The definition of hypergraph prop is
a bit simpler: it is just a prop in which every object is equipped with a commutative,
cocommutative, special Frobenius monoid structure. Since tensor products in a prop
are only formal, the final condition is essentially automatic. More specifically, the final
condition on a hypergraph category C is not needed to show that it has an underlying
hypergraph prop UC, but it is precisely what is needed to show that C is equivalent, as a
hypergraph category, to the free symmetric monoidal category generated by UC. (One
might even argue that for this reason, hypergraph props are a more natural structure than
hypergraph categories.)

Now given any signature G, we can augment it by adding a commutative, cocommutative,
special Frobenius monoid structure on every object. This yields a new signature Ghy such
that FGhy is the free hypergraph prop generated by G. Any signature R of relations for G
carries over to Ghy as well, so we can construct presented hypergraph props as well.
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7.8. Hopf monoids and antipodes. A monoid object in a cartesian monoidal category
is also (like every object) a comonoid, but the monoid and comonoid structures do not
satisfy the Frobenius axiom. Instead they satisfy the bimonoid axioms:

x : M, y : M ` (x(1)y(1), x(2)y(2)) = ((xy)(1), (xy)(2)) : (M,M)

` (e(1), e(2)) = (e, e) : (M,M)

x : M, y : M ` (|��xy) = (|�x,�y) : ()

` (| �e) = () : ().

Thus, a bimonoid object in an arbitrary monoidal category can be regarded as a “non-
cartesian” version of a monoid object in a cartesian monoidal category. Indeed, if a
bimonoid is cocommutative (x(1), x(2)) = (x(2), x(1)) then it is a monoid object in the
cartesian monoidal category of cocommutative comonoids, and dually if it is commutative
(xy = yx) then it is a monoid object in the opposite of the cocartesian monoidal category
of commutative monoids. But in the non-commutative, non-cocommutative case we obtain
something truly new.

The analogue for a bimonoid of the inversion operation, making a monoid into a group,
is called an antipode: an operation x : M ` x : M such that

x : M ` x(1) x(2) = (e |�x) : M

x : M ` x(1) x(2) = (e |�x) : M.

A bimonoid equipped with an antipode (a non-cartesian analogue of a group object) is
called a Hopf monoid. Note that the comonoid structure is necessary in order to even
formulate the antipode axioms: we need to duplicate x in order to invert one copy of it,
and on the other side of the equation we need to discard x in order to write simply “e”. In
a cartesian monoidal category, Hopf monoids are precisely group objects in the usual sense.
However, note also that bimonoids and Hopf monoids in a symmetric monoidal category
are self-dual: such a structure on M ∈ C is equivalent to such a structure on M ∈ Cop.

As mentioned in the introduction, cartesian type theory can internalize the basic fact
of group theory that inverses in any monoid are unique: if x and x̂ are both inverses of x
the

x = xe = x(xx̂) = (xx)x̂ = ex̂ = x̂.

Therefore, a monoid object in any cartesian monoidal category admits at most one inverse,
and hence both cocommutative Hopf monoids and commutative ones have unique antipodes.
Cartesian type theory has nothing to say about Hopf monoids that are neither commutative
nor cocommutative, but in our type theory we can reproduce essentially the same argument:
if x : M ` x : M and x : M ` x̂ : M are both antipodes, we compute

x = x e = (x(1) e |��x(2)) = x(1) x(21) x̂(22) = (e x̂(2) |��x(1)) = e x̂ = x̂.

Thus, even in a non-cartesian situation we can use a very similar set-like argument, as
long as we keep track of where elements get “duplicated and discarded”. I encourage the
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reader to write out a proof of this fact using traditional arrow notation or string diagrams
for comparison.

As another example, if H and K are bimonoids, a bimonoid homomorphism is a
morphism x : H ` f(x) : K such that

f(xy) = f(x) f(y) (f(x)(1), f(x)(2)) = (f(x(1)), f(x(2)))

f(e) = e (|���f(x)) = (|�x).

Now we can show that when H and K are Hopf monoids, any such bimonoid homomorphism
preserves antipodes.

f(x) = (f(x(1)) |��x(2))

= (f(x(1)) |����f(x(2)))

= (f(x(1)) e |����f(x(2)))

= f(x(1)) f(x(2))(1) f(x(2))(2)

= f(x(1)) f(x(2)(1)) f(x(2)(2))

= f(x(1)(1)) f(x(1)(2)) f(x(2))

= f(x(1)(1) x(1)(2)) f(x(2))

= (f(e) f(x(2)) |��x(1))

= (e f(x(2)) |��x(1))

= (f(x(2)) |��x(1))

= f(x).

There is a more general approach to results of this sort, which we will return to in the
next section.

7.9. Weak bimonoids. A weak bimonoid [PS09]6 is a monoid and comonoid that
satisfies, instead of the bimonoid axioms, the following weakened ones:

((xy)(1), (xy)(2)) = (x(1)y(1), x(2)y(2))

( |���xyz) = ( |���xy(1),���y(2)z)

= ( |���xy(2),���y(1)z)

(e(1), e(2), e(3)) = (e(1), e(2)e
′
(1), e

′
(2))

= (e(1), e
′
(1)e(2), e

′
(2)).

6In [PS09] these definitions are given in the additional generality of a braided monoidal category, but
our type theory only applies to symmetric monoidal categories. This is sufficient to include a number of
examples, however, such as the category algebra of a category with finitely many objects.
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For a weak bimonoid we define

s(x)
def
= (e(1) |���e(2)x)

t(x)
def
= (e(1) |���xe(2))

r(x)
def
= (e(2) |���e(1)x).

Many equations relating the weak bimonoid structure and the operations s, t, r are
proven in [PS09] using string diagrams. All of them can also be proven in our type theory.
For instance, here is a version of [PS09, Appendix B, eq. (1)]:

(s(x)(1), s(x)(2)) = (e(1)(1), e(1)(2) |���e(2)x)

= (e(1), e(2) |���e(3)x)

= (e(1), e(2)e
′
(1) |���e′(2)x)

= (e(1), e(2)s(x)).

Here is a version of [PS09, Appendix B, eq. (4)]:

((x s(y))(1), (x s(y))(2)) = (x(1)s(y)(1), x(2)s(y)(2))

= (x(1)e(1), x(2)e(2)s(y)) (using (1))

= ((xe)(1), (xe)(2)s(y))

= (x(1), x(2)s(y)).

And here is a version of [PS09, Appendix B, eq. (13)].

t(x) r(y) = (e(1)e
′
(2) |���xe(2),�

��e′(1)y)

= (e(2) |���xe(3),���e(1)y)

= (e(2)e
′
(1) |���xe′(2),���e(1)y)

= r(y) t(x).

As an example of a somewhat longer proof, here is a version of [PS09, Appendix B,
eq. (11)]. Unlike the previous examples, this is not a verbatim translation of their proof;
theirs builds on previous lemmas, whereas the below proof is direct.

(t(x(1)), x(2)y) = (e(1), x(2)y |����x(1)e(2))

= (e(1), (xe
′)(2)y |������

(xe′)(1)e(2))

= (e(1), x(2)e
′
(2)y |�����

x(1)e
′
(1)e(2))

= (e(1), x(2)e(3)y |����x(1)e(2))

= (e(1), x(2)e(2)(2)y |�����x(1)e(2)(1))

= (e(1), (xe(2))(2)y |�����(xe(2))(1))

= (e(1), xe(2)y)
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= (e(1), x(e(2)y)(2) |�����(e(2)y)(1))

= (e(1), xe(2)(2)y(2) |�����e(2)(1)y(1))

= (e(1), xe(3)y(2) |����e(2)y(1))

= (e(1), xe
′
(2)y(2) |�����

e(2)e
′
(1)y(1))

= (e(1), x(e′y)(2) |������
e(2)(e

′y)(1))

= (e(1), xy(2) |����e(2)y(1))

= (s(y(1)), xy(2)).

If H and K are weak bimonoids, a weak bimonoid homomorphism f : H → K
must commute with both monoid and comonoid structures as in subsection 7.8. It follows
that it also commutes with s, t, r; this is shown in [PS09, Lemma 1.2], and rendered below
for s in type theory:

f(s(x)) = (f(e(1)) |���e(2)x)

= (f(e(1)) |�����f(e(2)x))

= (f(e(1)) |������
f(e(2)) f(x))

= (f(e)(1) |������
f(e)(2) f(x))

= (e(1) |�����e(2) f(x))

= s(f(x)).

A weak bimonoid is a weak Hopf monoid if it has an antipode: a morphism
x : H ` x : H satisfying

x(1) x(2) = t(x)

x(1) x(2) = r(x)

x(1) x(2) x(3) = x.

This implies immediately that

x = x(1) x(2) x(3) = x(1) r(x(2)) x = x(1) x(2) x(3) = t(x(1)) x(2).

As for ordinary bimonoids in subsection 7.8, antipodes for weak bimonoids are unique: if
x : H ` x : H and x : H ` x̂ : H are both antipodes, we have:

x = x(1) r(x(2))

= x(1) x(2)(1) x̂(2)(2)

= x(1)(1) x(1)(2) x̂(2)

= t(x(1)) x̂(2)

= x̂.
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Similarly, we can translate the argument of [PS09, Proposition 2.2] that homomorphisms
f : H → K of weak bimonoids preserve antipodes:

f(x) = f(x(1) r(x(2)))

= f(x(1)) f(r(x(2)))

= f(x(1)) r(f(x(2)))

= f(x(1)) f(x(2))(1) f(x(2))(2)

= f(x(1)) f(x(2)(2)) f(x(2)(2))

= f(x(1)(1)) f(x(1)(2)) f(x(2))

= f(x(1)(1) x(1)(2)) f(x(2))

= f(t(x(1))) f(x(2))

= t(f(x(1))) f(x(2))

= t(f(x)(1)) f(x)(2)

= f(x).

We end by sketching another approach to these sorts of uniqueness results that is
inspired by the “types are like sets” perspective of our type theory. For monoids in the
category of sets, the uniqueness of inverses is a pointwise property: for any element x, if y
and z are two elements that are both inverses of x, then y = z. However, the uniqueness of
antipodes as we have proven it above, for both bimonoids and weak bimonoids, is instead
a statement about inversion operators that apply to all elements at once.

The pointwise statement is stronger, and this makes for simpler proofs. For instance,
we can simply show that a monoid homomorphism f : H → K preserves inverses of
elements in the sense that if y is an inverse of x then f(y) is an inverse of f(x), and
conclude directly from pointwise uniqueness of inverses in K that f of “the” inverse of x
coincides with “the” inverse of f(x).

We can also formulate a “pointwise” sort of uniqueness of inverses in the general case.
Suppose H is a weak Hopf monoid, with given antipode x : H ` x : H. Suppose also we
have a comonoid X and a comonoid morphism x : X ` g(x) : H, and also a morphism
x : X ` i(x) : H such that

i(x(1)) g(x(2)) = t(g(x))
g(x(1)) i(x(2)) = r(g(x))

i(x(1)) g(x(2)) i(x(3)) = i(x).
(7.10)

We think of g as an X-indexed family of elements of H, and i as a similarly indexed family
of “inverses”. Then we can calculate

t(g(x(1))) i(x(2)) = i(x(1)) g(x(2)) i(x(3)) = i(x)

i(x(1)) r(g(x(2))) = i(x(1)) g(x(2)) i(x(3)) = i(x)
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and hence

i(x) = i(x(1)) r(g(x(2)))

= i(x(1)) g(x(2)) g(x(3))

= t(g(x(1))) g(x(2))

= t(g(x)(1)) g(x)(2)

= g(x).

Note that in fact it suffices for X to be a co-semigroup and g to be a co-semigroup morphism.
Moreover, instead of a single co-semigroup, X could be a context of co-semigroups.

Applying this with X
def
= H and g(x)

def
= x, we obtain uniqueness of the antipode itself.

But we can also derive preservation of the antipode by a weak bimonoid homomorphism
f : H → K, by taking X

def
= H and g

def
= f with i(x)

def
= f(x). We simply check that this

satisfies the three properties (7.10):

f(x(1)) f(x(2)) = f(x(1) x(2))

= f(t(x))

= t(f(x)).

f(x(1)) f(x(2)) = f(x(1) x(2))

= f(r(x))

= r(f(x)).

f(x(1)) f(x(2)) f(x(3)) = f(x(1) x(2) x(3))

= f(x).

Then the above argument shows immediately that f(x) = f(x), as desired.
As a final example, we show that for a weak Hopf monoid H, the antipode is a weak

monoid anti-homomorphism. (Since Hopf monoids are self-dual, this implies that the
antipode is also a comonoid anti-homomorphism, which was proven by a long string
diagram calculation in [PS09, Proposition 2.3]). Consider how we prove the analogous
statement in the category of sets, that inversion in a group is a monoid anti-homomorphism.
Arguably the most natural way is to simply check that y−1x−1 is an inverse of xy:

(y−1x−1)(xy) = y−1(x−1x)y = y−1ey = y−1y = e

(xy)(y−1x−1) = x(yy−1)x−1 = xex−1 = xx−1 = e

and conclude by uniqueness of inverses that y−1x−1 = (xy)−1.
Using our notion of pointwise uniqueness, we can reproduce this inside our type theory

to apply to weak Hopf monoids. We take X
def
= (H,H), with its induced comonoid structure

x : H, y : H ` (x(1), y(1), x(2), y(2)) : (H,H,H,H). We define g(x, y)
def
= xy, which is a co-

semigroup morphism (though not a comonoid morphism) by the first axiom of a weak
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bimonoid, and i(x, y)
def
= y x, and check the three properties (7.10):

i((x, y)(1)) g((x, y)(2)) = y(1) x(1) x(2) y(2)

= y(1) t(x) y(2)

= (t(x) y)(1) (t(x) y)(2) (4)

= t(t(x) y)

= t(xy) (3)

= t(g(x, y)).

Here the line labeled (4) uses the so-numbered equation (y(1), t(x) y(2)) = ((t(x) y)(1), (t(x) y)(2))
from [PS09], and similarly the line (3) is an instance of their equation (3). The next
calculation is dual.

g((x, y)(1))i((x, y)(2)) = x(1) y(1) y(1) x(2)

= x(1) r(y)x(2)

= (x r(y))(1) (x r(y))(2)

= r(x r(y))

= r(xy)

= r(g(x, y)).

The final calculation uses the commutativity of t with r, equation (13) from [PS09] which
we also proved above.

i((x, y)(1)) g((x, y)(2)) i((x, y)(3)) = y(1) x(1) x(2) y(2) y(3) x(3)

= y(1) t(x(1)) r(y(2))x(2)

= y(1) r(y(2)) t(x(1))x(2) (13)

= y x

= i(x, y).

We leave further applications to the interested reader.
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