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CAUCHY COMPLETENESS FOR DG-CATEGORIES

BRANKO NIKOLIĆ, ROSS STREET AND GIACOMO TENDAS

Abstract. We go back to the roots of enriched category theory and study categories
enriched in chain complexes; that is, we deal with differential graded categories (DG-
categories for short). In particular, we recall weighted colimits and provide examples.
We solve the 50 year old question of how to characterize Cauchy complete DG-categories
in terms of existence of some specific finite absolute colimits. As well as the interac-
tions between absolute weighted colimits, we also examine the total complex of a chain
complex in a DG-category as a non-absolute weighted colimit.
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1. Introduction

The idea of enriching categories so that their homs lie in some category V other than Set
goes back to the early days of category theory. After all, additive categories amount to
the case where V is the category Ab of abelian groups.

The idea of a more general V appeared in the literature [23, 10, 11, 7, 12] in the
early 1960s. The detailed treatment [5] by Eilenberg-Kelly gave many examples of V
including the category of categories and the one that initiated their collaboration, namely,
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the category DGAb of chain complexes. Categories enriched in DGAb are called DG-
categories; their theory (limits and colimits in particular) was developed somewhat in [17]
including seeing the concepts of suspension and mapping cones as colimits.

Since 1969 or earlier, Lawvere was interested in the case where V is the reverse-
ordered set of non-negative extended real numbers. Enriched categories are generalized
metric spaces. He was able (see [9]) to characterize Cauchy completeness for metric
spaces in such a way that the concept applied to categories enriched in very general V .
For ordinary categories, it means that idempotents split. For additive categories, it means
that idempotents split and finite direct sums exist.

What Cauchy completeness means for DG-categories was therefore an obvious ques-
tion. Various weighted (co)limits which exist in Cauchy complete DG-categories were
distinguished in [22], particularly “mapping cones”. These were key to the construction
for generating the interlocking diagrams which provided complete invariants for finite
diagrams of chain complexes. At the end of Section 1 of [22], a parenthetic statement
(not used elsewhere in the paper) made a false claim, without proof, about the Cauchy
completion of a DG-category.

In the present paper we characterize Cauchy complete DG-categories in terms of exis-
tence of some specific finite absolute colimits. The case of graded categories (G-categories)
is easier and fairly much as expected; we deal with that first. We introduce a slightly new
kind of absolute DG-colimit, namely, cokernels of protosplit chain maps.

We conclude with a construction of a new DG-category DGA for each DG-category
A which restricts to the DG-category of chain complexes when A is a mere additive (=
Ab-enriched) category. Some properties are discussed.

2. Chain complexes

A good early reference for this section is Chapter IV, Section 6 of Eilenberg-Kelly [5].
Let A be any additive category (for us this means an Ab-category). Let DGA denote

the additive category of chain complexes in A . An object A, called a chain complex in
A , is a diagram

. . .
dn�2
ÝÝÝÑ An�1

dn�1
ÝÝÝÑ An

dnÝÑ An�1
dn�1
ÝÝÝÑ . . . (2.1)

in A satisfying dn � dn�1 � 0. We sometimes write d for dn and dA for d when there
is chance of ambiguity; these are called the differentials of A. A morphism f : A Ñ B,
called a chain map, is a morphism of diagrams; that is, a family

f � pfn : An Ñ BnqnPZ

of morphisms in A satisfying dB � fn�1 � fn � d
A for all n P Z.

Let GA denote the additive category of Z-graded objects in A ; we regard it as the full
additive subcategory of DGA consisting of chain complexes with all differentials equal to
zero.



942 BRANKO NIKOLIĆ, ROSS STREET AND GIACOMO TENDAS

The suspension1 SA of a chain complex A in A is defined by pSAqn � An�1 with
dSA � �dA. On the chain map f : A Ñ B it is defined by pSfqn � fn�1. It is sometimes
convenient to regard the differentials as components of a chain map dA : A Ñ SA.
Suspension restricts to GA .

A chain complex in the opposite category A op, called a cochain complex in A , is
traditionally denoted by a diagram

. . .
dn�2

ÐÝÝÝ An�1 dn�1

ÐÝÝÝ An
dn
ÐÝ An�1 dn�1

ÐÝÝÝ . . . (2.2)

in A using superscripts rather than subscripts. The virtue of indexing chain complexes
by Z rather than N is that the cochain complex A � A� is traditionally identified with
the chain complex A � A� defined by

An � A�n and pAn
dnÝÑ An�1q � pA�n d�n�1

ÝÝÝÝÑ A�n�1q . (2.3)

In fact this defines an additive isomorphism DGA � DGpA opqop.
When A � Ab, we have the additive category DGAb. The monoidal structure on

DGAb of interest has tensor product denoted AbB and is defined in terms of the usual
tensor product of abelian groups as

pAbBqn �
°
p�q�nApbBq

dpabbq � dabb� p�1qpabdb, a P Ap . (2.4)

We identify abelian groups with chain complexes A in which An � 0 for all n � 0; using
that convention, the unit for chain complex tensor product is Z. Indeed, the monoidal
category DGAb is closed with internal hom rB,Cs defined by

rB,Csn �
±

r�q�n AbpBq, Crq

pdfqqb � dpfqbq � p�1qnfq�1db, f P rB,Csn, b P Bq . (2.5)

As mentioned in [5], there is a unique symmetry σ � σA,B : AbB Ñ BbA defined by

σpabbq � p�1qpqbba, a P Ap, b P Bq . (2.6)

We can regard the category GAb of graded abelian groups as the full subcategory of
DGAb consisting of the chain complexes A with all d � 0. The inclusion functor has right
adjoint

Z: DGAb Ñ GAb (2.7)

defined by pZAqn � ZnA � ta P An : da � 0u, the group of n-cycles of A. Moreover,
the inclusion has left adjoint Z1 : DGAb Ñ GAb defined by pZ1Aqn � Z1nA � An{imd

A.

1In some literature, SnA is denoted by Arns.
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The image of the canonical natural transformation Z ñ Z1 is the homology functor
H: DGAb Ñ GAb. So pHAqn � HnA � ZnA{imd

A.
Notice that GAb is closed under the tensor product, unit object and internal hom of

DGAb, and so is a symmetric closed monoidal category in such a way that the inclusion
is symmetric, strong monoidal, and strong closed. It follows that Z is monoidal and Z1 is
opmonoidal. From the diagram

imdA b imdB // ZAb ZB //

φ

��

HAbHB

φ

��

// 0

ZpAbBq // HpAbBq // 0

with exact rows, we see that H has monoidal structure induced by that of Z.
The conservative functor U: DGAb Ñ GAb which forgets all the differentials d (re-

places them by 0 if you prefer) is also symmetric, strong monoidal (“tensor preserving”),
and strong closed (“internal hom preserving”). It also has both adjoints. The left adjoint
L % U is defined by pLXqn � Xn�1 `Xn with

d �
�

0 1
0 0

�
. (2.8)

The right adjoint R $ U is defined by pRXqn � Xn`Xn�1 with d given by the same 2�2
matrix. These facts have a number of pleasant consequences, the most obvious is that U
preserves and reflects all limits and colimits.

As an easy application of Beck’s monadicity theorem [13], the functor U is both
monadic and comonadic. The monad T � UL is opmonoidal. The comonad G � UR
is monoidal. To see a chain complex A as an Eilenberg-Moore T-algebra, we take the
action α : TUA Ñ UA to have components rd, 1s : An�1 ` An Ñ An. There is a U-split
coequalizer

LULU
εLU //

LUε //
LU ε // 1DGAb (2.9)

which evaluates at A to give chain maps with components

An�2 ` An�1 ` An�1 ` An
β

//
γ

//
An�1 ` An

α // An (2.10)

where α � rd 1s, β �
�

0 1 1 0
0 0 0 1

�
, γ �

�
d 1 0 0
0 0 d 1

�
.

2.1. Remark. Indeed, there is a commutative and cocommutative Hopf graded ring TZ,
which recaptures the monad T by tensoring with that ring and determines the monoidal
structure on DGAb (as the category of TZ-modules) via the graded coring structure. As
this is an aspect of a fairly general setting and since it is not required for our present
purpose, we redirect the reader to [16, 14, 15].



944 BRANKO NIKOLIĆ, ROSS STREET AND GIACOMO TENDAS

3. Constructions on chain complexes

As a category of additive functors into Ab, finite direct sums in DGAb exist and are
performed pointwise.

As mentioned, the suspension SA of a chain complex A is defined by pSAqn � An�1

with dSA � �dA. Suspension restricts to GAb and we have the obvious equality R � LS;
indeed, we have an infinite string of adjunctions

LSn % S�nU % LSn�1 . (3.11)

3.1. Proposition. For chain complexes A and B, the equality

SpAbBq � SAbB

is a natural isomorphism in DGAb. Taking A � Z yields

SB � SZbB .

Similarly, for chain complexes B and C, the equalities

SrB,Cs � rS�1B,Cs � rB, SCs

are natural isomorphisms in DGAb.

Proof. Indeed we do have a graded equality

SpAbBqn � pAbBqn�1 �
¸

p�q�n�1

Ap bBq �
¸

r�q�n

Ar�1 bBq � pSAbBqn .

The verification that the differentials agree needs a little care: for a P Ar�1 and b P Bq,
we have

dSpAbBqpab bq � �dAbBpab bq � �pdab b� p�1qr�1ab dbq ,

and

dSAbBpab bq � �dab b� p�1qrab db .

We leave the hom assertions to the reader.

Let f : A Ñ B be a chain map. The mapping cone Mcf of f is the chain complex
defined by pMcfqn � Bn ` An�1 and

d �
�
d f
0 �d

�
. (3.12)

There is a short exact sequence

0 ÝÑ B

�
1
0

�
ÝÝÑ Mcf

r0 1s
ÝÝÝÑ SA ÝÑ 0 (3.13)

of chain maps. A little calculation with 2� 2-matrices proves:
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3.2. Proposition. If f : A Ñ B is a chain map and u : USA Ñ UB is a graded map
then �

1 u
0 1

�
: Mcf ÝÝÝÑ Mcpf � dpuqq

is an invertible chain map.

3.3. Proposition. Given chain maps i : B Ñ C, p : C Ñ SA and graded maps j : USAÑ
UC, q : UC Ñ UB satisfying

p � i � 0 , q � i � 1 , p � j � 1 , i � q � j � p � 1 ,

it follows that q � dpjq : AÑ B is a chain map and

ri, js : Mcpq � dpjqq ÝÑ C

is an invertible chain map.

Proof. The equations imply that we have a short exact sequence

0 Ñ B
i
ÝÑ C

p
ÝÑ SAÑ 0

of chain maps since it is split exact in each dimension. It follows that exactness is preserved
by any additive functor. Consequently,

0 Ñ rSA,Bs
rp,1s
ÝÝÑ rC,Bs

ri,1s
ÝÝÑ rB,Bs Ñ 0

is also a short exact sequence of chain maps. The corresponding long exact homology
sequence [2] includes the connecting graded morphism

B : HrB,Bs ÝÑ HrA,Bs

which takes the homology class of the cycle 1B to the homology class of the cycle q � dpjq.
So q � dpjq : A Ñ B is a chain map. The remaining matrix calculations are left to the
reader.

3.4. Remark. From the long exact homology sequence of (3.13), we see that the mapping
cone of an identity chain map has zero homology. For any chain map f : A Ñ B, there
is a short exact sequence

0 Ñ A
i1
ÝÑ B `Mc1A

p1
ÝÑ Mcf Ñ 0

of chain maps where i1 �

�
�f
1A
0

�
, p1 �

�
1B f 0
0 0 1

�
. If we take j1 �

�
1 0
0 0
0 1

�
and q1 �

r 0 1 0 s, we see that the equations of Proposition 3.3 hold. The middle term in the
short-exact sequence has the same homology as B and i1 induces the same morphism on
homology as f . So the construction can be used to replace the homology of an arbitrary
chain map f by the homology of an inclusion i1. (It is standard to use the mapping cylinder
for that purpose.)
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3.5. Proposition. For any chain complex A, there is a natural isomorphism�
1 d
�d 1

�
: Mc1S�1A � LUA .

Moreover, LZ b A � Mc1S�1A and rLZ, As � Mc1A. There are corresponding results for
R � LS.

3.6. Proposition. In the monoidal category DGAb, there is a duality

LZ % RZ .

3.7. Proposition. For each n P Z, the Ab-functor Un : DGAb ÝÑ Ab, obtained by
following U : DGAb ÝÑ GAb by evaluation at n, is represented by the chain complex
SnLZ.

Proof. We have isomorphisms

DGAbpSnLZ, Aq � DGAbpLZ, S�nAq
� GAbpZ,US�nAq

� pUS�nAq0 � UnA

which are natural in chain complexes A.

Let L denote the Ab-category obtained as the full image of the functor Z Ñ DGAb
taking n to SnLZ. So the objects of L are the integers and, using Proposition 3.7, the
homs are

L pm,nq � DGAbpSmLZ, SnLZq � pLZqm�n �
"

Z for n � m,m� 1
0 otherwise .

The compositions L pm,nqbL p`,mq Ñ L p`, nq are zero unless m � n or m � ` in which
cases they are the canonical isomorphisms.

3.8. Proposition. The singular Ab-functor DGAb Ñ rL op,Abs for the inclusion L ãÑ
DGAb is an equivalence. In particular, L ãÑ DGAb is a dense Ab-functor.

Proof. The second sentence follows from the first since denseness of the inclusion pre-
cisely means that the singular Ab-functor is fully faithful [8].

Consider the ordered set Z of integers as a category in the usual way and take the free
pointed-set-enriched (“pointed”) category on it. Let D be the pointed category obtained
by imposing the relation that the morphisms m Ñ n for all m ¤ n � 2 are equal to
the point 0 in Dpm,nq. Straight from its definition, DGAb is equivalent as a pointed
category to the pointed functor category rDop,Abs�. From the definition of L , we see
that it is (isomorphic to) the free Ab-category on the pointed category D so that we have
an equivalence DGAb Ñ rL op,Abs as pointed categories and also that the equivalence
underlies the singular Ab-functor of the Proposition. An Ab-functor is an equivalence if
and only if it is an equivalence as a (pointed) functor.
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3.9. Remark.

(i) Under the equivalence of Proposition 3.8, the chain complexes SnLZ correspond to
the representables in rL op,Abs. Compare Example 6.6 of [14]. Indeed, for any ad-
ditive category A , we have an equivalence DGA � rL op,A s of additive categories.
Also, the isomorphism DGA � DGpA opqop of (2.3) is induced by an isomorphism
L op � L .

(ii) The closed monoidal structure on DGAb transports across the equivalence to one
on rL op,Abs. Using the theory of Day convolution [3], we obtain a promonoidal
structure on L by looking at tensor products of representables. The equation

LZb LZ � LZ` S�1LZ

implies

SmLZb SnLZ � Sn�mLZ` Sn�m�1LZ ,

showing that tensor products of representables are finite coproducts of representables.
Therefore the induced promonoidal structure on the finite coproduct completion of
the Ab-category L is nearly monoidal; all it lacks is the monoidal unit.

3.10. Proposition. For every chain complex A, there exists a reflexive coequalizer of
chain maps of the form ¸

θPΘ

SmθLZ Ñ

¸
φPΦ

SnφLZÑ A .

Proof. Recall that every Ab-weighted colimit colimpJ,Kq, for Ab-functors J : Dop Ñ Ab
and K : D Ñ X with X cocomplete, can be constructed as a reflexive coequalizer of
the form ¸

λPΛ

KDλ Ñ

¸
γPΓ

KEγ Ñ colimpJ,Kq .

in X . One way to see this is to take the usual (see [8]) construction of the weighted
colimit as a coequalizer of reflexive pair of morphisms¸

D,EPD

pDpD,Eq b JEq bKD Ñ

¸
DPD

JD bKD ,

then present the abelian groups DpD,Eq b JE and JD as reflexive coequalizers of mor-
phisms between free abelian groups. The tensor ZΞbX of a free abelian group ZΞ with
X P X is a coproduct of Ξ copies of X. So we have a 3� 3-diagram of reflexive coequal-
izers of morphisms between coproducts of objects in the image of K. The main diagonal
is therefore a reflexive coequalizer of a pair of morphisms; see the lemma on page 1 of [6].

By Proposition 3.8, our object A P DGAb is an Ab-weighted colimit of the dense
inclusion L ãÑ DGAb whose values are the complexes SnLZ.
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A double chain complex in an additive category A is a chain complex in DGA . We will
use δ in place of d for the differentials in DGA . So, a double complex A consists of chain
complexes Am, for m P Z, with chain maps δm : Am Ñ Am�1 satisfying δm � δm�1 � 0; we
also have the differentials dAmn : Am,n Ñ Am,n�1.

Suppose A is a double chain complex in an additive category A with countable co-
products. The total complex TotA of A is the chain complex with underlying object in
GA defined by

TotA �
à
mPZ

SmAm (3.14)

and with differential defined by the commutative diagram

SmAm

�
Smδm
dS

mAm

�
//

injm
��

SmAm�1 ` Sm�1Am

injm�1,m

��

`mPZSmAm
dTotA

// `mPZSm�1Am .

In the case A � Ab, the formula for the differential becomes, for a P Am,n�m,

dTotApaq � δm,npaq � p�1qmdAmn�mpaq P Am�1,n�m ` Am,n�m�1 .

4. DG-Categories

A DG-category is a category A with homs enriched in the monoidal category DGAb of
chain complexes. This was a motivating example for [5] and was developed somewhat in
[17, 22].

To be explicit, A has objects and, for objects A and B, a chain complex A pA,Bq.
The elements u : AÑ B of A pA,Bqn are called protomorphisms of degree n. The n-cycles
of A pA,Bq are called chain maps of degree n. The “underlying category” A0 of A has
the same objects as A and has chain maps of degree 0 as morphisms. When we say “chain
map” without mention the degree, we mean these morphisms of degree 0; these are the
morphisms of the underlying ordinary category of A . Composition provides chain maps

� : A pB,CqbA pA,Bq Ñ A pA,Cq (4.15)

yielding, for protomorphisms u : A Ñ B and v : B Ñ C of degree p and q respectively, a
protomorphism v � u : AÑ C of degree p� q satisfying the equation

dpv � uq � dpvq � u� p�1qqv � dpuq . (4.16)

In particular, a composite of chain maps is a chain map. Composition is associative and
each object A has a chain map 1A : AÑ A of degree 0 which is an identity for composition.
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4.1. Example. For any additive category A , the additive category DGA becomes a DG-
category by defining its hom chain complexes DGA rB,Cs by

DGA rB,Csn �
±

r�q�n A pBq, Crq

pdfqq � dpfqq � p�1qnfq�1d for f � pfqqqPZ P DGA rB,Csn , (4.17)

abstracting (2.5).

The opposite A op of a DG-category A is a DG-category with the same objects as A ,
with hom complexes A oppA,Bq � A pB,Aq, and where the composite of protomorphisms
h P A oppA,Bqm, k P A oppB,Cqn in A op is p�1qmnh � k P A pC,Aqm�n.

The tensor product A b X of DG-categories A and X is the DG-category with
objects pairs pA,Xq of objects A P A , X P X , with hom complexes

pA bX qppA,Xq, pB, Y qq � A pA,Bq bX pX, Y q ,

and composition defined by pk, vq�ph, uq � p�1qqmpk �h, v �uq where m, q are the degrees
of h, v, respectively.

A DG-functor F : A Ñ B between DG-categories assigns an object FA of B to each
object A of A and a chain map

F � FA,B : A pA,A1q Ñ BpFA, FA1q

to each pair of objects A, B, such that composition and identities are preserved. These
are precisely the functors enriched in the monoidal category DGAb in the sense of [5, 8].

A protonatural transformation (p.n.t) θ : F ñ G of degree n between DG-functors
F,G : A Ñ B is a family of protomorphisms θA : FAÑ GA of degree n such that

θB � Ff � p�1qpnGf � θA

for all protomorphisms f : A Ñ B of degree p in A . A DG-natural transformation is a
p.n.t. θ for which each θA is a chain map of degree 0; these are precisely the natural
transformations enriched in DGAb in the sense of [5, 8].

Let DG-Cat denote the 2-category of DG-categories, DG-functors, and DG-natural
transformations. It is a symmetric monoidal 2-category with respect to the tensor product
A bB.

This gives the ingredients for an explicit description of the DGAb-enriched functor
category rA ,Bs which we will call a DG-functor DG-category. The objects are the DG-
functors F : A Ñ B. The chain complex rA ,BspF,Gq has p.n.t’s θ of degree n as
elements in degree n with differential defined by dpθqA � dpθAq. (The reader can check
that dpθq is a p.n.t of degree n�1.) As usual for categories enriched over a closed monoidal
complete and cocomplete base, we have the isomorphism of DG-categories

rA bB,C s � rA , rB,C ss . (4.18)

Categories enriched in GAb are called G-categories (or “graded categories”). By ap-
plying the strong-closed strong-monoidal functor U: DGAb Ñ GAb on hom complexes,
we obtain a strong monoidal 2-functor U� : DG-Cat Ñ G-Cat. Since the protonaturality
condition does not involve the differentials and because U is strong closed, we have:
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4.2. Proposition.

1. For DG-functors F,G : A Ñ B between DG-categories, there is an identification

U�rA ,BspF,Gq � rU�A ,U�BspU�F,U�Gq

in GAb.

2. For DG-functors F,G : A Ñ DGAb between DG-categories, there is an identifica-
tion

U�rA ,DGAbspF,Gq � rU�A ,GAbspUF,UGq

in GAb.

5. Module-weighted colimits

The theory of limits and colimits for categories enriched in a symmetric closed monoidal
category is well developed in the literature; see [8, 1]. We use the term “weighted limit”
(as suggested in [19]) rather than “indexed limit”.

For a DG-category C , a right DG-module is a DG-functor

M : C op Ñ DGAb .

For any protomorphism f : U Ñ V in C , we put y � f � pMfqy for y P MV . For f of
degree m and g of degree n, notice then that

z � pg � fq � p�1qnmpz � gq � f .

The M-weighted colimit of a DG-functor F : C Ñ A is an object C � colimpM,F q of
A equipped with chain isomorphisms

πF,A : A pC,Aq � rC op,DGAbspM,A pF�, Aqq ,

DG-natural in A. By Yoneda, the DG-natural transformation πF is determined by the
DG-natural transformation γF � πF,Cp1Cq : M Ñ A pF�, Cq. The M -weighted colimit
C � colimpM,F q is preserved by the DG-functor T : A Ñ X when the morphisms

X pTC,Xq ÝÑ rC op,DGAbspM,A pTF�, Xqq

of the DG-natural family indexed by X, corresponding to the composite

M
γFÝÑ A pF�, Cq

T
ÝÑ X pTF�, TCq ,

are invertible. An M -weighted colimit in A is absolute when it is preserved by all DG-
functors out of A .
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An important special case is where C � I is the DG-category with one object 0
and with I p0, 0q � Z. A right I -module M amounts to a chain complex C, while a
DG-functor F : I Ñ A amounts to an object A of A . Then colimpM,F q � CbA, called
the tensor of C with A, satisfying

A pCbA,Dq � DGAbpC,A pA,Dqq .

This and Proposition 3.1 motivate the definition SA � SZbA for suspension of an
object A in A . Clearly an object B is isomorphic to SA when there exists an invertible
chain map AÑ B of degree �1.

We call the DG-category A stable when it admits tensoring with both SZ and S�1Z;
then, for all integers n, we have

SnA � SnZbA .

We call S�1A the desuspension of A.
Similarly, Proposition 3.5 motivates defining Mc1A � LZbSA which we call the map-

ping cone of the identity of A; there is a canonical chain map i1 : A Ñ Mc1A and a
protomorphism q1 : Mc1A Ñ A with q1 � i1 � 1A.

Conical limits are another important case of weighted colimits. Examples are coprod-
ucts, coequalizers and cokernels.

Binary coproducts are of course direct sums: they also provide the binary product.
The direct sum A ` B in A is an object equipped with chain maps i : A Ñ A ` B,
j : B Ñ A`B, p : A`B Ñ B, q : A`B Ñ A satisfying the equations

p � i � 0 , q � i � 1 , p � j � 1 , i � q � j � p � 1 . (5.19)

It follows that q � j � 0 showing the duality of the conditions.
Suspension, desuspension, finite direct sum, and mapping cone are all absolute colimits

since they can be expressed in terms of equations that are preserved by all DG-functors.
We now introduce another absolute colimit.

A protosplitting of a chain map f : A Ñ B is a protomorphism t : B Ñ A satisfying
f � t � f � f . Notice in this case e � 1 � f � t is an idempotent protomorphism and
e � f � 0.

If f is a chain monomorphism then the condition becomes t � f � 1A and we say A
is a protosplit subobject of B. If f is a chain epimorphism then the condition becomes
f � t � 1B and we say B is a protosplit quotient of A.

5.1. Proposition. Cokernels of protosplit chain maps are absolute.

Proof. Suppose f : AÑ B is protosplit by t.
Assume that the chain map w : B Ñ C is a cokernel for f . Since e � 1 � f � t

satisfies e � f � 0, there exists a unique protomorphism s : C Ñ B with s � w � e. Then
w � s �w � w � e � w�w � x � t � w implies w � s � 1C . So the chain map w with s form
a protosplitting of the idempotent e.

Conversely, assume e has a splitting e � s � w with w a chain map. Then w is a
cokernel for f . To see this, suppose g : B Ñ X is a protomorphism with g � f � 0. Then
g � s � w � g � e � g � g � f � t � g and, if h � w � g then h � g � s.
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Another class of absolute colimit is coequalizers of protosplit parallel pairs u, v : AÑ B
of chain maps. Such a pair requires that there should be a protomorphism t : B Ñ A such
that

u � t � 1B , v � t � u � v � t � v .

5.2. Proposition. Suppose the DG-category A admits direct sums. In A , the existence
of coequalizers of protosplit parallel pairs of chain maps is equivalent to the existence of
cokernels of protosplit chain maps.

Proof. If pu, vq is a protosplit parallel pair of chain maps then it is easy to see that u�v
is a protosplit chain map for which a cokernel is a coequalizer of the pair. Conversely,
suppose f : A Ñ B is a chain map and t : B Ñ A a protomorphism with f � t � f � f .

The chain maps u �
�
0 1

�
and v �

�
f 1

�
from A ` B to B are protosplit by t �

�
�t
1

�
.

A coequalizer for u, v is a cokernel for f .

5.3. Proposition. If a DG-category A admits coequalizers of protosplit parallel pairs of
chain maps then chain idempotents split.

Proof. For an idempotent e : A Ñ A, take u � t � 1A and v � e. This gives a
(proto)split parallel pair whose coequalizer splits e.

In Section 1 Example 4 of [22], it was shown how to obtain mapping cone as a weighted
limit. Here we shall produce it dually from weighted colimits. Motivated by Remark 3.4,
we define the mapping cone of a chain map f : A Ñ B in A to be the cokernel of the
chain map

i �
�

�f
i1

�
: A ÝÝÑ B `Mc1A , (5.20)

which is indeed a protosplit monomorphism. What Remark 3.4 implies is:

5.4. Proposition. If a DG-category A admits direct sums, suspension, cokernels of
protosplit chain monomorphisms and mapping cones of identities then it admits mapping
cones.

5.5. Example. An example of a non-absolute weighted colimit is the total complex intro-
duced in Section 3. The formula there is for the total complex of a double chain complex
A which we can think of as a DG-functor from the additive category L op, regarded as
a DG-category with homs all put in degree zero, to DGAb. Now take any DG-category
A . For any DG-functor A : L op Ñ A , we define totA � colimpJ,Aq where the weight
J : L Ñ DGAb is described as follows. It amounts to the cochain complex J in DGAb
defined by

Jm � SmLZ, with codifferentials δm � pSmLZ SmdLZ
ÝÝÝÝÑ Sm�1LZq .
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It is an exercise for the reader to check that, in the case A � DGAb, we have colimpJ,Aq �
TotA as in (3.14). We offer the following diagram and point to Proposition 3.7 as hints.

Jmp
θm //

δm

��

rAm, Bsp�n

rδm�1,1s

��

Jm�1
p θm�1

// rAm�1, Bsp�n

For a DG-category C , a left DG-module is a DG-functor N : C Ñ DGAb. Given a
right DG-module M and a left DG-module N for C , we define their tensor product over
C by

MbCN � colimpM,Nq �

» U
MUbNU �

¸
U

MUbNU{ � , (5.21)

where the congruence � is generated by

py � fqbx � ybpf � xq in p
¸
W

MWbNW qn

for x P pNUqr, f P C pU, V qs, y P pMV qt with r � s� t � n.
In terminology not exactly used in [9] but inspired by it, and used in [20] and elsewhere,

we define a right DG-module M over C to be Cauchy when there exists a left DG-module
N , a chain map

η : Z ÝÑMbCN

and a DG-natural transformation

εU,V : NUbMV ÝÑ C pV, Uq

such that diagram (5.22) commutes.

MV
1MV //

�

��

MV

�
��

ZbMV

ηb1MV
((

³U
MUbC pV, Uq

³U
MUbNUbMV

³U 1MUbεU,V

55
(5.22)

Equivalently (see Section 5.5 of [8] for example), M is Cauchy when it is “small projective”
in rC op,DGAbs; that is, when the DG-functor

rC op,DGAbspM,�q : rC op,DGAbs ÝÑ DGAb
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represented by M preserves weighted colimits.
A right DG-module M over C is called representable or convergent when there is an

object K of C and a DG-natural isomorphism C p�, Kq � M . Convergent modules are
Cauchy. In agreement with terminology of [9], we call a DG-category C Cauchy complete
when every Cauchy right DG-module over it is convergent. The Cauchy completion QC
of a DG-category C is the full sub-DG-category of rC op,DGAbs consisting of the Cauchy
right C -modules; compare [20].

The Morita Theorem in the enriched context here gives:

5.6. Theorem. For any DG-categories C and D , there is an equivalence

rC op,DGAbs � rDop,DGAbs

if and only if there is an equivalence

QC � QD ,

and this, if and only if there is an equivalence

rC ,DGAbs � rD ,DGAbs .

Moreover, QQC � QC , so

rQC ,DGAbs � rC ,DGAbs .

A weighted colimit in a DG-category A is called absolute when it is preserved by all
DG-functors out of A .

5.7. Theorem. [21] A right C -module M is Cauchy if and only if all M-weighted colimits
are absolute.

From [21], we obtain:

5.8. Proposition. Every Cauchy complete DG-category admits cokernels of protosplit
chain maps.

5.9. Corollary. The right DG-modules providing the weights for direct sums, suspen-
sion, desuspension, mapping cones of identities, and cokernels of protosplit chain maps
are all Cauchy.

Proof. All these colimits are determined by equations preserved by DG-functors; so they
are absolute.
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6. Cauchy G-modules

The inclusion GAb ãÑ DGAb of graded abelian groups in chain complexes (by taking
d � 0) is symmetric strong monoidal and strong closed. So every G-category X (that is,
category enriched in GAb) can be regarded as a DG-category. The distinction between
chain maps and protomorphism disappears since every protomorphism of a given degree is
automatically a chain map of that degree; we simply call them morphisms of that degree.
The underlying category X0 of X has morphisms those of degree 0.

Cocompleteness for a G-category (in the GAb-enriched sense) differs from cocom-
pleteness as a DG-category (in the DGAb-enriched sense). Even the base GAb is not
DG-complete. It does not admit mapping cones of identities, for example. That is to be
expected since the weight LZ is not in GAb.

A right G-module over a G-category X is a G-functor M : X op Ñ GAb. Tensoring
with graded abelian groups, suspension, desuspension, direct sum, coequalizers and cok-
ernels are all examples of colimits weighted by right G-modules. In particular, we may
speak of stable G-categories.

A right G-module is Cauchy when the N in the definition of Cauchy DG-module lands
in GAb. However, this is the same as being Cauchy as a DG-module. For, forgetting the
differentials in the values of any N will provide an N satisfying (5.22) for the G-module.

6.1. Proposition. A right G-module M over a G-category X is Cauchy if and only if
there exist objects E1, . . . , En P X and integers m1, . . . ,mn such that M is a retract ofÀn

i�1 SmiX p�, Eiq in rX op,GAbs.

Proof. To prove “if” simply observe that all the colimits used to obtain M from the
representables X p�, Eiq are absolute.

Conversely, let M be a Cauchy right G-module over X . There is a left G-module
N over X , a graded morphism η : Z ÝÑ MbX N and a G-natural transformation
εU,V : NUbMV ÝÑ X pV, Uq such that diagram (5.22) commutes. Now ηp1q is repre-
sented by an element of degree 0 in the coproduct

°
XPX MXbNX of graded abelian

groups; that is, there are objects E1, . . . , En of X and elements xi P pMEiqmi , yi P
pNEiq�mi , i � 1, . . . , n, with

ηp1q �

�
ņ

i�1

xibyi

�
.

Condition (5.22) becomes

ņ

i�1

xi � εEi,Xpyibuq � u (6.23)

for all X P X , u P pMXqr, r P Z. Define τi : M ùñ SmiX p�, Eiq to be the G-natural
transformation with components

pMXqr
yib1
ÝÝÝÑ pNEiq�mibpMXqr

εEi,XÝÝÝÑ X pX,Eiqr�mi .
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Let pxi : SmiX p�, Eiq ùñ M denote the G-natural transformation corresponding under
Yoneda to xi P pMEqmi ; explicitly,

pxipX f
ÝÑ Eiq � xi � f .

Condition (6.23) amounts to commutativity of the triangle

M

1M   

τ //
Àn

i�1 SmiX p�, Eiq

px
ww

M

where τ �

�
τ1
...
τn

�
and px � r xx1 . . . xxn s. So M is a retract as required.

6.2. Proposition. If a G-category X is stable and admits finite direct sums then every
Cauchy right G-module over X is a retract of a convergent right G-module. A G-category
X is Cauchy complete if and only if it is stable, and admits idempotent splittings and
finite direct sums.

Proof. To see “only if” in the second sentence, we note that splitting of idempotents,
finite direct sums, suspension and desuspension are absolute colimits, so any Cauchy
complete G-category must admit them.

Conversely, and for the first sentence, suppose the stable G-category X admits finite
direct sums. Let M be a Cauchy right G-module over X ; apply Proposition 6.1 and use
that notation. Now there is a G-natural isomorphism

nà
i�1

SmiX p�, Eiq � X p�,
nà
i�1

SmiEiq .

Using Yoneda, we see that the idempotent of Proposition 6.1 on the left hand side trans-
ports to an idempotent X p�, eq on the right hand side of the last isomorphism. This
proves the first sentence of the Proposition. When it exists, let K be a splitting of the
idempotent e on

Àn
i�1 SmiEi. By Yoneda again, M � X p�, Kq. So M converges, proving

“if” in the second sentence.

6.3. Corollary. The Cauchy completion QX of a G-category X is the closure of
the representables in rX op,GAbs under suspension and desuspension, direct sums, and
splitting of idempotents.

7. Cauchy DG-modules

The goal of this section is to prove our main result which is the converse of Corollary 5.9.
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7.1. Proposition. Suppose C is a stable DG-category which admits tensoring by LZ.
Every right DG-module M over C is a cokernel¸

iPI

C p�, Aiq
φ
ÝÑ
¸
jPJ

C p�, Bjq
γ
ÝÑM Ñ 0 (7.24)

of a chain map between coproducts of representables in rC op,DGAbs.

Proof. From [8] for example, we know that M P rC op,DGAbs is a coequalizer of a
reflexive pair of chain maps¸

D,EPC

ME b C pD,Eq b C p�, Dq Ñ

¸
DPC

MD b C p�, Dq ÑM

We now use Proposition 3.10 to present the chain complexes ME b C pD,Eq and MD
as reflexive coequalizers of coproducts of objects of the form SnLZ. So we have a 3 � 3-
diagram of reflexive coequalizers of morphisms between coproducts of objects of the form
SnLZ b C p�, Dq and such objects are isomorphic to representables C p�, SnLZ b Dq
because C is stable and admits tensoring by LZ. Making these replacements in the 3� 3-
diagram, we take the main diagonal to obtain a reflexive pair whose coequalizer is M [6].
Then the required φ is the difference of the chain maps in that reflexive pair.

7.2. Theorem. If a stable DG-category C admits finite direct sums and tensoring by
LZ then every Cauchy right DG-module over C is a protosplit quotient of a representable
DG-module. The DG-category C is Cauchy complete if and only if, furthermore, it admits
cokernels of protosplit chain maps.

Proof. Let C be a stable DG-category with finite direct sums and tensoring by LZ.
Assume M P rC op,DGAbs �: PC is Cauchy. By Proposition 7.1, there is a cokernel

diagram (7.24) in the additive category of chain maps in PC .
For each i P I, there exists a finite subset Ji of J such that

φAip1Aiq � ΣjPJixij . (7.25)

Since φAi is a chain map and 1Ai is a 0-cycle in C pAi, Aiq, it follows that
°
jPJi

xij PÀ
jPJi

C pAi, Bjq is a 0-cycle. So each xij : Ai Ñ Bj is a chain map in C . For convenience,
put xij � 0 for j R Ji. By Yoneda,

φXpX
u
ÝÑ Aiq � ΣjPJxiju . (7.26)

We also have a 0-cycle mj � γBjp1Bjq PMBj for each j P J . By Yoneda,

γXpX
v
ÝÑ Bjq � pMvqmj . (7.27)

Since M is Cauchy, PC pM,�q preserves coproducts and cokernels, so we have a
regular epimorphism ¸

jPJ

PC pM,C p�, Bjqq� PC pM,Mq (7.28)
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in DGAb0 induced by PC pM,γq. In particular, the identity endomorphism of M is in the
image of (7.28). So there exists a finite subset J 1 of J and protonatural transformations

σj : M ÝÑ C p�, Bjq , j P J
1 , (7.29)

such that each m PMX can be written as

m � ΣjPJ 1MpσjXpmqqmj . (7.30)

Put B �
°
jPJ 1 Bj P C and define σ and γ1 by the commutative diagram

M
σ //

rσjs
((

C p�, Bq
γ1

//

�

��

M

ΣjPJ 1C p�, Bjq incl.
// ΣjPJC p�, Bjq .

γ

OO

(7.31)

Equation (7.30) is equivalent to

γ1 � σ � 1M , (7.32)

which yields the first sentence of the theorem.
Put e � σBγ

1
Bp1Bq P C pB,Bq. By Yoneda,

σ � γ1 � C p�, eq : C p�, Bq ÝÑ C p�, Bq . (7.33)

By (7.32), e is idempotent and

γ1Bpeq � γ1BσBγ
1
Bp1Bq � γ1Bp1Bq . (7.34)

It follows that

ΣjPJ 1prjp1B � eq P kerγB � imφB .

So there exists a finite subset I 1 of I and protomorphisms ti : B Ñ Ai for i P I 1 such that

φBpΣiPI 1tiq � ΣiPI 1ΣjPJxijti � ΣjPJ 1prjp1� eq . (7.35)

Put A �
°
iPI 1 Ai in C so that the ti define a protomorphism t : B Ñ A. Then the xij

determine a chain map x : A Ñ B. The equation γφ � 0 restricts to γ1 � C p�, xq � 0;
from (7.33) and Yoneda we deduce ex � 0. Also (7.35) becomes xt � 1� e. This tells us
that x is protosplit by t.
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7.3. Remark. Cokernels of protosplit chain maps do not follow from stability, finite
direct sums, tensoring by LZ, and splitting of (chain) idempotents. To see this, let C be
the smallest full sub-DG-category of DGAb containing LZ, and closed under finite direct
sums, suspensions, desuspensions and retracts. Using the Remark 3.9 (ii) and the fact
that the only retracts of LZ are 0 and itself, we see that the objects of C are those of the
form

nà
i�1

SniLZ .

Yet the chain map S�1LZ f
ÝÑ LZ with f�1 � 1Z is protosplit by LZ t

ÝÑ S�1LZ with t�1 � 1Z,
whereas the cokernel of f is Z R C .

Here is the DG-analogue of Proposition 6.1.

7.4. Proposition. A right DG-module M over a DG-category C is Cauchy if and only
if there exist objects Ci, C

1
j P C and integers mi, nj for 1 ¤ i ¤ r, 1 ¤ j ¤ s such that M

is a protosplit quotient of the DG-module

rà
i�1

SmiC p�, Ciq `
sà
j�1

SnjLUC p�, C 1
jq .

Proof. A protosplit quotient M of the displayed right C -module is an absolute colimit
of Cauchy modules and so Cauchy.

Conversely, assume M is Cauchy and let J : C Ñ C 1 be the inclusion of C into its free
cocompletion C 1 under finite sums, suspensions, desuspensions, and tensoring by LZ. The
extension M 1 : C 1op Ñ DGAb of M : C op Ñ DGAb is the left Kan extension of M along J ;
see [8]. It follows that rC 1op,DGAbspM 1,�q � rC op,DGAbspM,�Jqs preserves colimits.
So M 1 is Cauchy with C 1 satisfying the assumptions of the first sentence of Theorem 7.2;
so M 1 is a protosplit quotient of a representable C 1p�, Dq. Therefore M � M 1 � Jop is a
protosplit quotient of C 1pJ�, Dq. Using Remark 3.9, objects of C 1 are of the form

D �
rà
i�1

SmiCi `
sà
j�1

LZb SnjC 1
j .

Since J is fully faithful and LZb� � LU, the result follows.

8. Complexes in DG-categories

Let A be a DG-category. The underlying additive category Z0�A of A is obtained by
keeping the same objects as A and applying the 0-cycle functor Z0 (see (2.7)) on the hom
chain complexes. A complex in A is a chain complex in Z0�A as per (2.1); that is, it
consists of a family A � pAmqmPZ of objects of A together with chain maps

δm : Am ÝÑ Am�1 for all m P Z (8.36)

of degree of 0 subject to the equation δm � δm�1 � 0.
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8.1. Example.

(i) If A is a mere additive category then a complex in A is a chain complex in A .

(ii) For an additive category A , a complex in DGA is a double chain complex in A as
defined in Section 3.

(iii) If B P DGAb, we can define a complex B̄ in DGAb to be the family of chain
complexes S�mB, m P Z, equipped with the graded morphisms δm : S�mB Ñ S�m�1B
having n-th component dB : Bn�m Ñ Bn�m�1.

For each DG-category A , we define a DG-category DGA whose objects are the com-
plexes in A . The hom chain complex DGA pA,Bq as a graded abelian group is defined
to be equal to ¹

q

à
p

Sp�qA pAq, Bpq ,

so its elements of degree n consist of those families f � pfp,q : Aq Ñ Bpq of protomorphisms
of degree n� p� q such that, for each q P Z, fpq � 0 for all but a finite number of p; the
differential is defined by

dpfqp,q � p�1qpdpfp,qq � pδp � fp�1,q � p�1qnfp,q�1 � δqq . (8.37)

Composition
� : DGA pB,CqubDGA pA,Bqv ÝÑ DGA pA,Bqu�v

is defined by the formula

pg � fqpq �
¸
rPZ

gpr � frq . (8.38)

The identity 1A P DGA pA,Aq0 is given by the Kronecker delta

p1Aqpq �

#
1Ap if p � q

0 otherwise .

8.2. Example. If A is a mere additive category then DGA is the DG-category DGA
of chain complexes in A .

8.3. Proposition. For each DG-category A with a zero object 0, the inclusion i : A Ñ
DGA , where iA is 0 for all degrees except degree 0 for which it is A, is dense. That is,
the singular DG-functor ri : DGA ÝÑ rA op,DGAbs ,

taking B P DGA to TotA p�, Bq : A op Ñ DGAb, is fully faithful.
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Proof. We only provide an outline. Before anything else, we should see that the singular
DG-functor is as claimed. For A P A , the definition of DGA gives DGA piA,Bqn �À

q A pA,Bqqn�q. So

DGA piA,Bq �
à
q

SqA pA,Bqq � TotA pA,Bq .

Now we address the full faithfulness. Take a protonatural family θA : TotA pA,Bq Ñ
TotA pA,Cq of degree n which composes with the q-injection to give graded morphisms

θqA : SqA pA,Bqq Ñ
à
p

SpA pA,Cpq

of degree n. Using the Yoneda Lemma for DG-categories, we have that these amount to
elements tq P

À
p A pBq, Cpqq�p�n, determining a unique t P DGA pB,Cqn withriptq � θ.

8.4. Proposition. For any DG-category A with zero object, the value at a complex A
in A of a left adjoint to the DG-functor i : A Ñ DGA is given by totA � colimpJ,Aq as
defined in Example 5.5. In case A � DGC for an additive category C with zero object,
the DG-functor i has a left adjoint if and only if C has countable coproducts.

Proof. We have the graded isomorphisms

DGA pA, iXq �
¹
m

à
n

Sn�mA pAm, iXnq

�
¹
m

S�mA pAm, Xq

� limpJ,A pA,Xqq

� A pcolimpJ,Aq, Xq

under which the differentials correspond. This proves the first sentence. The second
sentence uses the construction (3.14) of totA to prove “if”. For “only if”, take a countable
family pXnqnPN of objects of C and look at the complex A in DGC defined by Am,n � Xn

when 0 ¤ n � �m and Am,n � 0 otherwise, with all differentials zero morphisms; then
ptotAq0 �

À
nPNXn.

There are some obvious questions worthy of later consideration.

8.5. Question.

(a) If A is a Cauchy complete DG-category, is DGA also Cauchy complete?

(b) Is there a simple description of the completion of a DG-category A with respect to
J-weighted colimits?

Here is an easy case of (a):
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8.6. Proposition. If A is a Cauchy complete additive category then DGA is a Cauchy
complete DG-category.

Proof. The construction of suspension and desuspension require nothing. Also finite
direct sums and mapping cones of chain maps in DGA are straightforward as in DGAb;
they just use finite direct sums in A . Suppose we have a chain map x : AÑ B protosplit
by t : B Ñ A. We have the idempotent protomorphism e � 1� xt : B Ñ B with ex � 0.
Since idempotents split in A and thus in GA , the chain map x has a cokernel w : B Ñ C
in GA . Then wdBe � wedA � 0, so there exists a unique protomorphism dC : C Ñ C of
degree �1 such that wdB � dCw. Also dCdCw � dCwdB � wdBdB � 0. So dCdC � 0.
Therefore C becomes an object of DGA and w a chain map of degree 0. So w is the
cokernel of x in DGA . By Theorem 7.2, DGA is Cauchy complete.
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