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VARIATION ON A COMPREHENSIVE THEME

Dedicated to the memory of R.F.C. (Bob) Walters.

ROSS STREET

Abstract. The main result concerns a bicategorical factorization system on the bi-

category Cat of categories and functors. Each functor A
f
ÝÑ B factors up to isomorphism

as A
j
ÝÑ E

p
ÝÑ B where j is what we call an ultimate functor and p is what we call a

groupoid fibration. Every right adjoint functor is ultimate. Functors whose ultimate
factor is a right adjoint are shown to have bearing on the theory of polynomial functors.
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Introduction

As an undergraduate I came across Russell [14] and was quite disturbed by the state of
foundations for mathematics. The comprehension schema seemed central as a connection
between mathematics and language. Then I was happy with the breakthrough I saw in
the papers [10, 11, 12] of Lawvere.

The factorization described here is an old idea I have been meaning to check thoroughly
and write up but only now have found a reason to do so. The reason relates to Cat as
an example of a polynomic bicategory in the sense of my recent paper [18]. We want to
define a property of a functor in terms of one of its factors being special in some way.

The idea for the present paper is a variant of the comprehensive factorization of a

functor A
f
ÝÑ B as a composite A

j
ÝÑ E

p
ÝÑ B where j is a final functor (in the sense
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of [13] and used by Walters and the author in [20] but sometimes called cofinal) and p
is a discrete fibration. The name for the factorization system was chosen because of its
relationship to the comprehension scheme for sets. This is an orthogonal factorization
system in the usual sense on Cat as an ordinary category and in the enriched sense on
Cat as a (strict) 2-category. Here “discrete” means, of course, that the fibres of p are sets.

Now we wish to think of Cat as a bicategory and consider whether we obtain a factor-
ization system in a bicategorical sense when we behave totally bicategorically and close
our fibrations up under composition with equivalences and ask that the pseudofibres be
groupoids.

This works. Our proof models the proof of the usual comprehensive factorization as
described by Verity and the author in [19]. The final functors are replaced by what we
call ultimate functors and the discrete fibrations by what we call groupoid fibrations. In
our application, we are concerned with functors whose ultimate factor is a right adjoint.

I am grateful to Alexander Campbell for pointing to the significantly related work
of Joyal where n-final, n-fibration and homotopy factorization system are defined in the
context of quasicategories; see page 170 of [8] and Sections A.6-8 of [9].

1. Groupoid fibrations

The following concept is called “strongly cartesian” by Grothendieck. These morphisms
are always closed under composition (unlike those he called “cartesian”).

1.1. Definition. Let p : E Ñ B be a functor. A morphism χ : e1 Ñ e in E is called
cartesian for p when the square (1.1) is a pullback for all k P E.

Epk, e1q
Epk,χq

//

p

��

Epk, eq

p

��

Bppk, pe1q
Bppk,pχq

// Bppk, peq

(1.1)

Since any commutative square with a pair of opposite sides invertible is a pullback,
we see that all invertible morphisms in E are cartesian, and, if p is fully faithful, then all
morphisms of E are cartesian.

1.2. Definition. The functor p : E Ñ B is a groupoid fibration when

(i) for all e P E and β : bÑ pe in B, there exist χ : e1 Ñ e in E and invertible b � pe1

such that β � pb � pe1
pχ
ÝÑ peq, and

(ii) every morphism of E is cartesian for p.

Our groupoid fibrations include all equivalences of categories and so are not necessarily
fibrations in the sense of Grothendieck.
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From the pullback (1.1) it follows that groupoid fibrations are conservative (that is,
reflect invertibility). So their pseudofibres Eb are groupoids.

For functors A
f
ÝÑ C

g
ÐÝ B, we write f{g for the comma category (or slice) of f and g;

it is the top left vertex of a universal square

f{g

s

��

t // B

g

��

λ +3

A
f

// C

(1.2)

in the bicategory Cat. In particular, the arrow category of E is E2 � 1E{1E � E{E. For

a functor E
p
ÝÑ B and writing B{p � 1B{p, there is a canonical functor E2 r

ÝÑ B{p defined
as follows.

E2

ps

��

t

''

r

!!

B{p

u

��

h // E

p

��

λ +3

B
1B

// B

�

E2

ps

��

t // B

p

��

pλ +3

B
1B

// B

We write f{psg for the full subcategory of the comma category f{g of (1.2) consisting
of those objects at which the component of λ is invertible. It is called the pseudopullback

or isocomma category of the cospan A
f
ÝÑ C

g
ÐÝ B; it is the top left vertex of a universal

square

f{psg

s1

��

t1 // B

g

��

λ1

�
+3

A
f

// C

(1.3)

in the bicategory Cat.

For functors E
p
ÝÑ B and X

b
ÝÑ B, we sometimes (non-symmetrically) write Eb for the

pseudopullback p{psb and call it the pseudofibre of p over b.

Here are four fairly easy observations; indeed (d) is Proposition 5.1 of [18].

1.3. Proposition.

(a) A functor E
p
ÝÑ B is a groupoid fibration if and only if the canonical E2 r

ÝÑ B{p is
an equivalence.

(b) Suppose E
p
ÝÑ B is a groupoid fibration. A functor F

q
ÝÑ E is a groupoid fibration if

and only if the composite F
q
ÝÑ E

p
ÝÑ B is. In particular, in the case E is a groupoid,

F
q
ÝÑ E is a groupoid fibration if if and only if F is a groupoid.
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(c) The pseudopullback of a groupoid fibration along any functor is a groupoid fibration.
That is, if in (1.3) the functor g is a groupoid fibration, so too is s1.

(d) A functor E
p
ÝÑ B is a groupoid fibration if and only if the square

E2 cod //

p2

��

E

p

��

B2 cod // B

is a pseudopullback.

There is a 2-category GFibB of groupoid fibrations over B defined as follows: The
objects are groupoid fibrations E

p
ÝÑ B over B. The hom categories are given by the

pseudopullbacks:

GFibBpp, qq

��

// rE,F s

rE,qs
��

ks �

1
rps

// rE,Bs

So the morphisms are triangles with a natural isomorphism therein.

E

p
  

f
// F

q
��

φ

�
+3

B

(1.4)

We call the morphism strict when φ is an identity.
We also consider Cat{B with the same convention on its morphisms.

2. Some fully faithful right adjoint functors

Ord
incl

""

Set � // EqR

incl
;;

incl
""

Cat nerve // r∆op, Sets

Gpd

incl

<< (2.5)

All the categories in the diagram (2.5) are cartesian closed. All the functors are “closed
under exponentiation”. The left adjoints all preserve finite products (by Day Reflection

Theorem). Our focus here is on the inclusion Gpd
incl
ÝÝÑ Cat with left 2-adjoint π1 and right

adjoint Inv. The subcategory InvA of the category A contains all and only the invertible
morphisms of A. Note that Inv preserves cotensoring with the free living isomorphism
category I but cotensoring with the free living morphism category 2.
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2.1. Lemma. A functor E
p
ÝÑ B is an equivalence if and only if both InvE

Invp
ÝÝÑ InvB and

InvpE2q
Invpp2q
ÝÝÝÝÑ InvpB2q are equivalences.

Proof. Only if is clear since Inv is a 2-functor when restricted to invertible natural
isomorphisms. For the converse first note that surjectivity on objects up to isomorphism
for p is the same as for Invp.

So it remains to deduce from the groupoid equivalences that p is fully faithful. Take

e, e1 P E and pe
β
ÝÑ pe1 in B. Since Invpp2q is essentially surjective, there exists e1

ξ
ÝÑ e11 in

E and a commutative square

pe1
σ

�
//

pξ
��

pe

β
��

pe11 σ1
� // pe1 .

Since Invp is full, there exist invertible e1
χ
ÝÑ e and e11

χ1
ÝÑ e1 in E such that pχ � σ and

pχ1 � σ1. Consequently, β � ppχ1ξχ�1q proving that p is full.
Since Invp is faithful, the only automorphisms in E taken to identities by p are iden-

tities. We will use this special case in our proof now that p is faithful. Take ξ, ξ1 : eÑ e1

in E with pξ � pξ1. Think of these two morphisms as objects of E2 which are taken to
two equal objects pξ, pξ1 : pe Ñ pe1 of B2. Since Invpp2q is full, the two objects ξ and ξ1

are isomorphic by an isomorphism in E2 made up of automorphisms of e and e1 which
are taken to identities by p. Since those automorphisms must be identities, we deduce
that ξ � ξ1, as required.

2.2. Lemma. If E
p
ÝÑ B is a groupoid fibration and InvE

Invp
ÝÝÑ InvB is an equivalence

then E
p
ÝÑ B is an equivalence.

Proof. Since Inv is a right adjoint, it preserves the pseudopullback of Proposition 1.3
(d), so that both Invp and Invpp2q are equivalences. The result follows by Lemma 2.1.

2.3. Proposition. The usual “Grothendieck construction” 2-functor

o : HompBop,Gpdq ÝÑ GFibB

is a biequivalence. If opT q � pE
p
ÝÑ Bq then Tb is equivalent to the pseudofibre Eb of p

over b P B.

Proof. The 2-functor o takes pseudofunctors H to actual Grothendieck fibrations with
groupoidal fibres. Every groupoid fibration is the composite of an equivalence and a
Grothendieck fibration. So o is surjective on objects up to equivalence. The 2-functor
o takes pseudonatural transformations Φ : H Ñ K to strict morphisms over B. Each
morphism of GFibB with codomain a Grothendieck fibration is isomorphic (using path
lifting) to a strict morphism. It follows that o is locally essentially surjective. It is
straightforward to see that 2-cells oΦ ñ oΨ in GFibB between commutative-triangle
morphisms in the image of o are in the image of o for a unique 2-cell in HompBop,Gpdq.
So o is locally fully faithful.
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The result of applying HompBop,�q to the 2-adjunction

Cat
π1 // Gpd
incl

oo

transports to a biadjunction

FibB
π1B // GFibB
incl

oo

via the biequivalences

HompBop,Gpdq
�
ÝÑ GFibB and HompBop,Catq

�
ÝÑ FibB .

2.4. Remark. The inclusion 2-functor GFibB ãÑ Cat{B is fully faithful with a left

biadjoint whose value at the object A
f
ÝÑ B is the groupoid fibration π1BpB{f

dom
ÝÝÑ Bq

which corresponds to the pseudofunctor Bop Ñ Gpd taking b P B to π1pb{fq.

The construction of π1A by generators and relations is awkward to work with; instead
we use the following universal property of the coinverter construction. Write rA,Xs� for
the full subcategory of rA,Xs consisting of those functors f : AÑ X which invert all the
morphisms of A. The adjunction unit AÑ π1A induces an isomorphism

rπ1A,Xs � rA,Xs�

for all categories X (not just groupoids).

3. Ultimate functors

3.1. Definition. A functor j : A Ñ B is called ultimate when, for all objects b P B,
the fundamental groupoid π1pb{jq of the comma category b{j is equivalent to the terminal
groupoid:

π1pb{jq � 1 .

3.2. Proposition. Every right adjoint functor is ultimate.

Proof. If k % j : A Ñ B then b{j � kb{A Ñ 1 has a left adjoint owing to the initial
object 1kb of kb{A. Applying the 2-functor π1 to the adjunction yields an adjunction
between groupoids.

3.3. Proposition. Ultimate functors are taken by π1 to equivalences.

Proof. Let j : A Ñ B be ultimate. We must prove π1A
π1jÝÝÑ π1B is an equivalence.

What we prove is that, for any category X, if each diagonal functor X
δbÝÑ rb{j,Xs� is an

equivalence then rB,Xs�
rj,1s�
ÝÝÝÑ rA,Xs� is an equivalence. Since δb is 2-natural in b P B,

any choice γb of adjoint equivalence is pseudonatural: choose also counit εb : γbδb
�
ùñ 1X
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and unit ηb : 1A
�
ùñ δbγb. We will show that we have an inverse equivalence θ for rj, 1s�

defined by

θpfqb

θpfqβ

��

� γbpb{j
cod
ÝÝÑ A

f
ÝÑ Xq

γβ,fcod
��

θpfqb1 � γbpb
1{j

β{j
ÝÝÑ b{j

cod
ÝÝÑ A

f
ÝÑ Xq .

For g P rB,Xs�, we have isomorphisms

pθrj, 1s�gqb � γbpb{j
cod
ÝÝÑ A

j
ÝÑ B

g
ÝÑ Xq

� γbpb{j
!
ÝÑ 1

b
ÝÑ B

g
ÝÑ Xq

� γbδbpgbq
εb �
ùùùñ gb

naturally in g and b, while, for f P rA,Xs�, we have isomorphisms

prj, 1s�θqpfqa � θpfqja

� γjapja{j
cod
ÝÝÑ A

f
ÝÑ Xq

η�1 �
ùùùùñ pfcodqpja

1ja
ÝÝÑ ja, aq

� fa

naturally in f and a.

3.4. Proposition. A functor is ultimate if and only if its pseudopullback along any
(groupoid) opfibration is taken by π1 to an equivalence.

Proof. The pseudopullback P
j̄
ÝÑ X of A

j
ÝÑ B along an opfibration F

q
ÝÑ B has x{j̄ �

qx{j; so j̄ is ultimate if j is. So π1 takes j̄ to an equivalence by Proposition 3.3. For the
rest, in the pseudopullback

b{j //

cod
��

b{B

cod
��

A
j

// B ,

note that b{B has an initial object and cod is a groupoid opfibration.

3.5. Proposition. Every coinverter (localization) is ultimate.

Proof. Pullback along an opfibration has a right adjoint so coinverters are taken to
coinverters. Also, π1 takes coinverters to isomorphisms since it is a left adjoint and all
2-cells in Gpd are already invertible. Proposition 3.4 applies.
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3.6. Proposition. Suppose A
j
ÝÑ B is ultimate. A functor B

k
ÝÑ C is ultimate if and

only if the composite A
j
ÝÑ B

k
ÝÑ C is ultimate.

Proof. Look at the pasting

Q
j1
//

q2

��

P
k1 //

q1

��

F

q

��

A
j
// B

k
// C

of two pullbacks with q a groupoid fibration. Since j is ultimate, j1 is equivalenced by π1.
So k1j1 is equivalenced by π1 if and only if k1 is.

3.7. Lemma. If E
p
ÝÑ B is a groupoid fibration and X

b
ÝÑ B is a functor from a groupoid

X then the composite Eb Ñ b{pÑ π1pb{pq is an equivalence.

Proof. By Proposition 1.3 (b), (c), the pseudofibre Eb is a groupoid and so is invariant
under π1. Also, Eb Ñ b{p is a left adjoint and so taken to an equivalence by π1.

3.8. Proposition. Ultimate groupoid fibrations E
p
ÝÑ B are equivalences.

Proof. Let InvB
b
ÝÑ B be the inclusion. Since p is ultimate, the pullback b{p

g
ÝÑ b{B of

p along b{B
cod
ÝÝÑ B is taken to an equivalence by π1. By Lemma 3.7, π1pgq is equivalent

to Invppq. By Lemma 2.2, since p is a groupoid fibration with Invppq an equivalence, p is
an equivalence.

4. Bicategorical factorization systems

The concept of factorization system in a bicategory is not new; for example, see [2, 3].
Before giving the definition, we revise the bicategorical variant of pullback.

4.1. Definition. A square

W

p
��

q
// B

g
��

σ

�
+3

A
f

// C

(4.6)

in a bicategory K is called a bipullback of the cospan A
f
ÝÑ C

g
ÐÝ B when, for all objects

K P K , the functor

K pK,W q
pp,σ,qq
ÝÝÝÝÑ K pK, fq{psK pK, gq ,

obtained from the universal property of the pseudopullback, is an equivalence.



972 ROSS STREET

4.2. Remark. In the square (4.6), if g and p are groupoid fibrations, then the square is
a bipullback if and only if

InvpK pK,W qq
Invpp,σ,qq
ÝÝÝÝÝÑ InvpK pK, fq{psK pK, gqq

is an equivalence of groupoids. This is because Proposition 1.3 (b) and (c) imply pp, σ, qq
is a groupoid fibration so that Lemma 2.2 applies.

A factorization system on a bicategory K consists of a pair pE ,M q of sets E and M
of morphisms of K satisfying:

FS0. if f � mw with m P M and w an equivalence then f P M , while if f � we with
e P E and w an equivalence then f P E ;

FS1. for all X
e
ÝÑ Y P E and A

m
ÝÑ B P M , the diagram

K pY,Aq

K pY,mq
��

K pe,Aq
//K pX,Aq

K pX,mq
��

�

K pY,Bq
K pe,Bq

//K pX,Bq

(4.7)

(in which the isomorphism has components of the associativity constraints for K )
is a bipullback;

FS2. every morphism f factorizes f � m � e with e P E and m P M .

It follows that E and M are closed under composition and their intersection consists
of precisely the equivalences. Moreover, in the square (4.7), the morphism m is in M if
the square is a bipullback for all e P E , and dually. Also note that, if all morphisms in M
are groupoid fibrations then Remark 4.2 applies to simplify the bipullback verification for
FS1.

5. Main theorem

5.1. Theorem. Ultimate functors and groupoid fibrations form a bicategorical factor-
ization system on Cat. So every functor f : A Ñ B factors pseudofunctorially as

f � pA
j
ÝÑ E

p
ÝÑ Bq with j ultimate and p a groupoid fibration.

Proof. FS0 is obvious. For FS2 construct the diagram

A
i //

f

��

B{f n //

dom
��

E

p

��

B
1 // B

1 // B
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where pE
p
ÝÑ Bq � π1BpB{f

dom
ÝÝÑ Bq, the squares commute up to isomorphism, i has a

left adjoint cod, and n is a coinverter.
It remains to prove FS1. By Remark 4.2, we must prove that, for any groupoid

fibration E
p
ÝÑ C and any ultimate functor A

j
ÝÑ B, the functor

prj, Es, rB, psq : rB,Es ÝÑ rA, ps{psrj, Cs

is taken to an equivalence of groupoids by Inv. By Remark 2.4, the value of the left

biadjoint to GFibB ãÑ Cat{B at the ultimate functor A
j
ÝÑ B is equivalent to B

1BÝÑ B.

So every morphism j
pf,φq
ÝÝÝÑ q over B with q a groupoid fibration factors up to isomorphism

as

j

pf,φq
��

pj,1jq
// 1B

pw,ψq
��

σ

�
+3

q

(5.8)

uniquely up to a unique isomorphism. In this, we have f
σ
ùñ wj and 1B

ψ
ùñ qw such that

ψj � pj
φ
ùñ qf

qσ
ùñ qwjq. Take any object pu, γ, vq of rA, ps{psrj, Cs; it consists of functors

A
u
ÝÑ E,B

v
ÝÑ C and an invertible natural transformation pu

γ
ùñ vj. By the universal

property of the pseudopullback p{psv, the isomorphism γ is equal to the pasted composite

A

u

��

j

''

u1

!!

p{psv

s1

��

t1 // B

v

��

λ1

�
+3

E p
// C .

By Proposition 1.3, p{psv
t1
ÝÑ B is a groupoid fibration. We can apply (5.8) with f � u1,

q � t1 and φ the identity of j � t1u1 to obtain u1
σ
ùñ wj and 1B

ψ
ùñ t1w such that

ψj � pj � t1u1
t1σ
ùùñ t1wjq uniquely up to a unique isomorphism of pw,ψ, σq. This gives

us w1 � s1w P rB,Es and an isomorphism pu, γ, vq � pw1j, 1pw1j, pw
1q � prj, Es, rB, psqw1

determined by the isomorphisms

u � s1u1
s1σ
ùùñ s1wj � w1j and v

vψ
ùùñ vt1w � vt1w

pλ1wq�1

ùùùùùñ ps1w � pw1 .

This proves that the functor Invprj, Es, rB, psq is essentially surjective (that is, surjective
on objects up to isomorphism). Now suppose we also have h P rB,Es and an isomorphism

pξ, ζq : prj, Es, rB, psqh � pw1j, 1pw1j, pw
1q
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which means we have invertible hj
ξ
ùñ s1wj and ph

ζ
ùñ ps1w such that pξ � ζj. By the

universal property of the pseudopullback, there exists a unique k : B Ñ p{psv such that

s1k � h, t1k � 1B and λ1k � pph
ζ
ùñ ps1w

λ1w
ùùñ vt1w

vψ�1

ùùùñ vq, and there also exists a unique

invertible τ : kj ñ wj such that ξ � phj � s1kj
s1τ
ùùñ s1wjq and ψj � pt1kj

t1τ
ùùñ t1wjq. So

we have

j

pu1,1jq ��

pj,1jq
// 1B

pk,11B q
��

τ�1σ

�
+3

t1

which allows us to use the uniqueness of pw,ψ, σq to obtain a unique isomorphism κ : k ñ
w such that κj � τ and t1κ � ψ. Then κ1 � s1κ : hñ w1 is such that κ1j � s1κj � s1τ � ξ
and pκ1 � ps1κ � pλ1wq�1pvψqpλ1kq � ζ. Hence Invprj, Es, rB, psq is full and it remains
to prove it faithful. So suppose we have an invertible δ1 : h ñ w1 such that δ1j � ξ
and pδ1 � ζ � pλ1wq�1pvψqpλ1kq. The universal property of pseudopullback implies there
exists δ : k ñ w such that s1δ � δ1 and t1δ � ψ, and implies we can deduce that δj � τ
from the equations s1δj � ξ and t1δj � ψj � t1τ . By the uniqueness of κ, we have δ � κ
and hence δ1 � κ1, as required.

6. Other possible variants

It is possible that the factorization carries through for p8, 1q-categories (also called qua-
sicategories or weak Kan complexes); see [8, 9]. For the case of the tricategory p2, 1q-Cat
whose objects are bicategories with all 2-cells invertible, a basic ingredient would be the
triadjunction

p2, 1q-Cat
π1 //

K p2, 0q-Cat
incl

oo

where p2, 0q-Cat is the subtricategory of p2, 1q-Cat with all morphisms equivalences. There
is an obvious core providing a right triadjoint too. This requires the bumping up to
factorization systems on tricategories. And, after all, as yet my application only needs
the Cat case.

There is presumably also a version of the (ultimate, groupoid fibration) for categories
internal to a category E as done in [19] for the usual comprehensive factorization.

Another direction concerns the laxer hierarchy of comprehension schema proposed by
John Gray; see [6, 7]. What kinds of factorization do they provide?

7. Application to polynomials

In this section, we use our factorization to understand the implications of the paper [18]
for polynomials in Cat as a bicategory.
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A morphism p : E Ñ B in a bicategory is called a groupoid fibration when, for all
objects A P M , the functor M pA, pq : M pA,Eq Ñ M pA,Bq is a groupoid fibration as
per Definition 1.2.

A morphism n : Y Ñ Z is called a right lifter when, for all u : K Ñ Z, there exists a
right lifting of of u through n (in the sense of [21]).

Recall from [18] that a bicategory M with bipullbacks is always calibrated by the
groupoid fibrations as the neat morphisms; that is, such a bicategory is polynomic. This
allows for the construction of a bicategory of “polynomials” in M . Indeed, Definition 8.2
of [18] means for this situation that a polynomial pm,S, pq from X to Y in M is a span

X
m
ÐÝ S

p
ÝÑ Y

in M with m a right lifter and p a groupoid fibration. To have a more explicit description
we need to identify the right lifters in the given M .

7.1. Proposition. A functor is a right lifter in Cat if and only if it is a left adjoint.

Proof. Left adjoints in any bicategory are right lifters since the lifting is given by com-
posing with the right adjoint. Conversely, suppose the functor Y

n
ÝÑ Z is a right lifter.

A right lift 1
n!pzq
ÝÝÝÑ Y for each object 1

z
ÝÑ Z of Z gives the components nn!pzq

εzÝÑ z of
the counit of an adjunction n % n!; as in any book introducing adjoint functors, we know
that the universal property of right lifter allows us to define n! on morphisms and so on.

In order to distinguish polynomials in the polynomic bicategory Cat from polynomials
in Cat, in the sense of Weber [23], as a category with pullbacks, I use the term abstract
polynomial for the former; that is, it is a span

A
j�ÐÝ E

p
ÝÑ B

of functors, where p is a groupoid fibration and j� % j. Recall from Proposition 3.2 that
right adjoints are ultimate.

A functor f : AÑ B is an abstract polynomial functor when, in its factorization

f � pA
j
ÝÑ E

p
ÝÑ Bq

as per Theorem 5.1, the ultimate functor j is a right adjoint.
The next result follows from the work in [18]; for convenience, we will include a direct

proof.

7.2. Proposition. Abstract polynomial functors compose.

Proof. Take A
j
ÝÑ E

p
ÝÑ B

k
ÝÑ F

q
ÝÑ C with j� % j, k� % k and with p, q groupoid

fibrations. Form the pseudopullback

P

k1
�

��

p1
// F

k�
��

ks θ
�

E p
// B

(7.9)
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to obtain the required “distributive law”. One easily verifies there exists k1� % k1, p1 is a
groupoid fibration and the Chevalley-Beck condition (as recalled on page 150 of [15])

p1 � k1 � k � p

holds. So q � k � p � j � q � p1 � k1 � j where q � p1 is a groupoid fibration and k1 � j is a
right adjoint.

Write Catapf for the subcategory of Cat obtained by restricting the morphisms to
abstract polynomial functors.

The next result is essentially Proposition 8.6 of [18].

7.3. Proposition. If the bicategory M is calibrated then, for each K P M , there is a
pseudofunctor HK : PolyM ÝÑ Catapf taking the polynomial X

m
ÐÝ S

p
ÝÑ Y to the abstract

polynomial functor which is the composite

M pK,Xq
rifpm,�q
ÝÝÝÝÝÑ M pK,Sq

M pK,pq
ÝÝÝÝÑ M pK,Y q

in Cat.

7.4. Corollary. The pseudofunctor H1 : PolyCat ÝÑ Catapf , taking each abstract

polynomial A
j�ÐÝ E

p
ÝÑ B its associated abstract polynomial functor A

j
ÝÑ E

p
ÝÑ B with

j� % j, is a biequivalence.

7.5. Remark. After my talk on this topic in the Workshop on Polynomial Functors
https://topos.site/p-func-2021-workshop/, Paul Taylor kindly pointed out his 1988
preprint [22] in which he distinguished parametric (or local) right adjoint functors with
motivation from proof theory and consequently calling them stable functors. His trace
factorization for such a functor is a right adjoint functor followed by a groupoid fibration.
I am grateful to Clemens Berger for observing that the groupoid fibrations so arising
are a resticted class: their pseudofibres are coproducts of codiscrete (chaotic) categories.
However, it does show that every parametric right adjoint functor provides an example
of an abstract polynomial functor. We shall conclude by explaining this.

There are two notions closely related to abstract polynomial functors (apf).

apf Parametric right adjoints in the sense of [17] are functors A
f
ÝÑ B whose compre-

hensive factorization pA
f
ÝÑ Bq � pA

j
ÝÑ E

p
ÝÑ Bq, where j is final and p is a discrete

fibration, is such that E has a terminal object and j is a right adjoint.

lra Local right adjoints are functors A
f
ÝÑ B such that, for each a P A, the functor

A{a
faÝÑ B{fa, taking data over a to their value under f , is a right adjoint.

The following lemma is easy.

7.6. Lemma. Groupoid fibrations are local equivalences and so local right adjoints. Right
adjoints are local right adjoints.

https://topos.site/p-func-2021-workshop/
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7.7. Proposition. Every parametric right adjoint is an abstract polynomial functor.
Every abstract polynomial functor is a local right adjoint. For functors whose domain
category admits a terminal object, the three properties coincide.

Proof. If we have A
j
ÝÑ E

p
ÝÑ B with j a right adjoint and p a discrete fibration then

this is also the (ultimate, groupoid fibration)-factorization. This proves the first sentence.
The second sentence follows from Lemma 7.6 and the obvious fact that local right adjoints

compose. If A
f
ÝÑ B is a local right adjoint and A has a terminal object 1 then A{1

f1ÝÑ

B{f1 is a right adjoint, so f � pA � A{1
f1ÝÑ B{f1

dom
ÝÝÑ Bq is a parametric right adjoint.
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