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YETTER-DRINFEL'D ALGEBRAS AND COIDEALS OF WEAK
HOPF C*-ALGEBRAS

LEONID VAINERMAN AND JEAN-MICHEL VALLIN

ABSTRACT. We characterize braided commutative Yetter-Drinfel’d C*-algebras over
weak Hopf C*-algebras in categorical terms. Using this, we then study quotient type
coideal subalgebras of a given weak Hopf C*-algebra & and coideal subalgebras in-
variant with respect to the adjoint action of &. Finally, as an example, we explicitly
describe quotient type coideal subalgebras of the weak Hopf C*-algebras associated with
Tambara-Yamagami categories.

1. Introduction

This paper continues the study of coactions of weak Hopf C*-algebras on C*-algebras
and their applications which was initiated in two articles [Vainerman-Vallin,2017] and
[Vainerman-Vallin,2020]. Let us first recall our motivation.

It is known that any finite tensor category equipped with a fiber functor to the category
of finite dimensional vector spaces is equivalent to the representation category of some
Hopf algebra - see, for example, [Etingof et all.;2015], Theorem 5.3.12. But many tensor
categories do not admit a fiber functor, so they cannot be presented as representation cat-
egories of Hopf algebras. On the other hand, T. Hayashi [Hayashi,1999] showed that any
fusion category admits a tensor functor to the category of bimodules over some semisim-
ple (even commutative) algebra. Then it was proved in [Hayashi, 1999], [Szlachanyi,2001],
[Ostrik,2003] that any fusion category is equivalent to the representation category of
some algebraic structure generalizing Hopf algebras called a weak Hopf algebra [Bohm-
Nill-Szlachanyi, 1999] or a finite quantum groupoid [Nikshych-Vainerman,2002].

The main difference between weak and usual Hopf algebra is that in the former the
coproduct A is not necessarily unital. In addition, a representation category of a weak
Hopf algebra is, in general, multitensor, i.e., its unit object is not necessarily simple (see,
for example, [Etingof et all.;2015], 4.1). By this reason, in the present paper we work
mainly in the context of multitensor categories.

Apart from (multi)tensor categories, weak Hopf algebras have interesting applications
to the subfactor theory. In particular, for any finite index and finite depth II;-subfactor
N C M, there exists a weak Hopf C*-algebra & such that the corresponding Jones tower
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can be expressed in terms of crossed products of N and M with & and its dual. Moreover,
there is a Galois correspondence between intermediate subfactors in this Jones tower and
coideal C*-subalgebras of & - see [Nikshych-Vainerman 2,2000]. This motivates the study
of coideal C*-subalgebras of weak Hopf C*-algebras (in what follows - WHAs).

A unital C*-algebra A equipped with a coaction a of a WHA & = (B, A, S, ¢) is called
a &-C*-algebra. When A is a unital C*-subalgebra of B and a = A, we call it a coideal
C*-subalgebra or briefly a coideal of B.

The structure of the paper is as follows. Sections 2 to 4 contain basic definitions
and facts needed for the comprehension of the main results of the paper. In particular,
in Section 2 we describe three C*-multitensor categories associated with any weak Hopf
C*-algebra and in Section 3 we explain how to reconstruct a weak Hopf C*-algebra if
one of these categories is given. Various results of this kind are known, for example
[Szlachanyi,2001], [Hayashi,1999], [Calaque-Etingof,2008], [Pfeiffer,2009], [Ostrik,2003],
and we present them in the form convenient for our goals.

It was shown in [Vainerman-Vallin,2017] that any &-C*-algebra (A, a) corresponds to
a pair (M, M), where M is a module C*-category with a generator M over the category of
unitary corepresentations of &. Here, in section 5, we study an important special class of
B-C*-algebras - braided-commutative Yetter-Drinfel’d C*-algebras and characterize the
corresponding C*-module categories:

1.1. THEOREM. Given a WHA &, the following two categories are equivalent:

(i) Category Y Dy..(®) of unital braded-commutative Yetter-Drinfel’d &-C*-algebras
with unital &- and @—equz’vam’ant x-homomorphisms as morphisms.

(i1) Category Tens(UCorep(®)) of pairs (C,E), where C is a C*-multitensor category
whose associativities reduce to the changing of brackets and € : UCorep(®)—=C is a uni-
tary tensor functor such that C is generated by the image of £. Morphisms (C,E)—(C', &’)
of this category are equivalence classes of pairs (F,n), where F : C —=C' is a unitary
tensor functor and n : FE —=E&' is a natural unitary monoidal functor isomorphism.

Moreover, given a morphism [(F,n)]: (C,E)—=(C',&'), the corresponding homomor-
phism of YD &-C*-algebras is injective if and only if F is faithful, and it is surjective if
and only if F is full.

A similar result for compact quantum group coactions on C*-algebras was obtained
earlier in [Neshveyev-Yamashita,2014]. When it is possible, we follow the same strategy.
However, instead of tensor products over C we have to deal with tensor products over, in
general, non commutative algebras which makes many reasonings and calculations much
more complicated.

In Section 6, we study, as an application of Theorem 1.1, coideals C*-subalgebras
which belong to the category Y Dy,..(®): quotient type and invariant with respect to the
adjoint action of a WHA and the relationship between them. We prove

1.2. THEOREM. Any quotient type coideal C*-subalgebra is invariant. Conversely, for any
wvariant coideal C*-subalgebra I of & there exists a unique, up to isomorphism, quantum
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subgroupoid (i.e., a WHA $) equipped with an epimorphism © : & — §)) such that I is
isomorphic as a &-C*-algebra to the quotient type coideal C*-subalgebra 1(H\S).

In the Hopf algebraic setting, similar result was obtained in [Takeuchi, 1994]

Let us note that the coideal C*-subalgebra (B, A) is invariant (quotient type) if and
only if & is a usual Hopf algebra and that invariant (quotient type) coideal C*-subalgebras
form a sublattice of the lattice of all coideal C*-subalgebras of a WHA introduced in
[Nikshych-Vainerman 2,2000].

A concrete example illustrating the results of the paper is considered in Section 7.
Namely, we describe invariant and quotient type coideal C*-subalgebras of WHASs con-
structed using the Tambara-Yamagami categories [Tambara-Yamagami,1998] whose sim-
ple objects are elements of a finite abelian group G and one separate element m. In
particular, it is shown that a coideal C*-subalgebra is invariant if and only if it is of
quotient type and that the lattice of invariant (quotient type) coideal C*-subalgebras
is isomorphic to the lattice of subgroups of G completed by the new maximal element
GU{m}.

Notation: for any category C we denote by 2 = Irr(C) an exhaustive set of represen-
tatives of the equivalence classes of its simple objects.

Our references are: [Etingof et all.,2015] for the multitensor categories, [Neshveyev-
Tuset,2013] for C*-tensor categories, [Nikshych-Vainerman,2002] for WHAs.

2. Weak Hopt C*-algebras

2.1. WEAK HOPF C*-ALGEBRAS. A weak bialgebra ® = (B, A, ¢) is a finite dimensional
algebra B with the comultiplication A : B— B ® B and counit ¢ : B— C such that
(B, A, ¢) is a coalgebra and the following axioms hold for all b,¢,d € B :

(1) A is a (not necessarily unital) homomorphism : A(bc) = A(b)A(c).

(2) The unit and counit satisfy the identities (we use the Sweedler leg notation A(c) =
c1) @ C(2), (A X ZdB)A(C) = C(1) @ ¢(2) @ C(3) etc.):

e(bey)e(cyd) = e(bed),
(A1) R1)(1® A1) = (A®idg)A(l).

A weak Hopf algebra is a weak bialgebra equipped with an antipode S : B— B which
is an anti-algebra and anti-coalgebra homomorphism such that

m(idg ® S)A(b) = (e®idg)(A(1)(b® 1)),
m(S ®idp)Ab) = (idp®e)((1®b)A(1)),
where m denotes the multiplication.

The right hand sides of two last formulas are called target and source counital maps
g, and g, respectively. Their images are unital subalgebras of B called target and source
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counital subalgebras B; and By, respectively. They commute elementwise, we have Soeg, =
g0 S and S(B;) = Bs. We say that B is connected if By N Z(B) = C (where Z(B) is the
center of B), coconnected if B;N By = C, and biconnected if both conditions are satisfied.
Finally, if B is a C*-algebra and A(b*) = A(b)*, the collection & = (B, A, S,¢) is
called a weak Hopf C*-algebra (WHA). Then B; and B; are also C*-subalgebras.
The dual vector space B has a natural structure of a WHA, namely G = (B, A, S, £)
given by dualizing the structure operations of B:

<, b> = <o, Ab) >,
<Alp),b®c> = <, be>,
<S(),b> = <, S(b) >,
<P b> = <, S(b)* >,

for all b,c € B and ¢,y € B. The unit of B is ¢ and the counit is 1.

The antipode S is unique, invertible, and satisfies (S o *)? = idp. Since it was men-
tioned in [Nikshych,2003], Remark 3.7 that problems regarding general WHASs can be
translated to problems regarding those with the property S?|p, = id which are called
regular, we will only consider such WHAs (see also [Vallin,2003]). In this case, there
exists a canonical positive element H in the center of B; such that S? is an inner
automorphism implemented by G = HS(H)™!, ie., S?(b) = GbG™! for all b € B.
The element G is called the canonical group-like element of B, it satisfies the relation
AG)= (G G)A(1) = A1) (G qG).

An element [ € B is called a left integral (or a left invariant measure on B) if (ids ®
DA = (g, @ [)A. Similarly one gives the definition of a right integral (or a right invariant
measure on B). In any WHA there is a unique positive left and right integral h on B
such that (idg ® h)A(1) = 1, called a normalized Haar measure.

We will dehote by Hy, the GNS Hilbert space generated by B and h and by A, : B—=H),
the corresponding GNS map.

2.2. THREE CATEGORIES ASSOCIATED WITH A WHA.

. 1. Unitary representations. Let & = (B, A,S,¢) be a weak bialgebra. Objects
of the category Rep(®) of representations of & are finite rank left B-modules, simple
objects are irreducible B-modules and morphisms are B-linear maps. The tensor product
of two objects Hy, Hy € Rep(®) is the subspace A(1lp) - (H; ® Hs) of the usual tensor
product together with the action of B given by A. Tensor product of morphisms is the
restriction of the usual tensor product of B-module morphisms. Any H € Rep(®) is
automatically a B;-bimodule via z - v -t := 25(t) - v, Vz,t € B;,v € E, and the above
tensor product is in fact ®p,, moreover the By-bimodule structure on Hy ®p, Hs is given
by z-&-t=(2®S(t)) - & Vz,t € B, € H ®p, Hy. This tensor product is associative,
so the associativity isomorphisms are trivial. The unit object of U Rep(®) is B, with the
action of B given by bz := g,(bz), Vb € B,z € B;. When & is a WHA, it is natural
to consider the category URep(®) of its unitary representations formed by finite rank
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left B-modules whose underlying vector spaces are Hilbert spaces H with scalar product
< -,- > satisfying < b-v,w >=<v,b*-w >, forall v,we€ H, b€ B. Then the above
tensor product is also a Hilbert space because A(1p) is an orthogonal projection. The
scalar product on B, is defined by < z,t >= h(t*z).

For any morphism f : H; — H,, let f* : Hy — H; be the adjoint linear map:
< f(),w >=< v, f*(w) >, Yv € H,w € Hy. Clearly, f* is B-linear, f** = f, (f ®p,
9)" = [*®p, g%, and End(H) is a C*-algebra, for any object H. So URep(®) is a finite
C*-multitensor category (1 can be decomposable).

The conjugate object for any H € URep(®) is the dual vector space H naturally
identified (v + ©) with the conjugate Hilbert space H with the action of B defined by
b-v = GY25(b)*G~1/2 - v, where G is the canonical group-like element of &. Then the
rigidity morphisms defined by

Ru(1p) = Si(GY? -8, ®@p, -¢;), Ru(lp) = Sile; @p, G2 &), (1)

where {e;}; is any orthogonal basis in H, satisfy all the needed properties - see [Bohm-
Nill-Szlachanyi,2000], 3.6. Also, it is known that the B-module B is irreducible if and
only if B;NZ(B) = Clg, i.e., if & is connected. So that, we have

2.3. PROPOSITION. URep(®) is a rigid finite C*-multitensor category with trivial asso-
ciativity constraints. It is C*-tensor if and only if & is connected.

2.4. REMARK. If {z4}acr is the set of minimal orthoprojectors of By N Z(B), then the

trivial representation denoted by 1 admits a decomposition 1 = & 1, with 1, irreducibles
a€cl

and according to [Etingof et all.,2015], Remark 4.3.4 we have:

URep(&) = @ Caup, (2)
a,Bel

where Cop are called the component subcategories of C. Moreover:
(1) Every irreducible of C belongs to one of Cop.
(ii) The tensor product maps Cop X Cys to Cos and equals to 0 unless = .
(ii) Every Cue is a rigid finite C*-tensor category with unit object 1.
(iv) The conjugate of any X € Cop belongs to Cg,.

. 2. Unitary comodules

2.5. DEFINITION. A right unitary &-comodule is a pair (H, a), where H is a Hilbert space
with scalar product < -,- >, a: H— H ® B is a bounded linear map between Hilbert
spaces H and H @ Hp, = H ® Ay (B), and such that:

(i) (a®idg)a = (idg @ A)a;

(iii) < v w > v? =< v, w® > S(w?)*, VYo, w € H, where we used the leg notation
a(v) = v @ oM.

A morphism of unitary &-comodules Hy and Hy is a linear map T : Hy — Hy such
that ag, o T = (T ®idg)ay, (i.e., a B-colinear map).
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Right unitary &-comodules with finite dimensional underlying Hilbert spaces and
their morphisms form a category which we denote by UComod(®).

We say that two unitary &-comodules are equivalent (resp., unitarily equivalent) if the
space of morphisms between them contains an invertible (resp., unitary) operator.

2.6. EXAMPLE. Let us equip a right coideal C*-subalgebra I C B with the scalar product
< v,w >:= h(w*v). Then the strong invariance of h gives:

< oW w>0v® = (h@idp)(w* ® 15)A(v)) =

= (h®S™H(AW")(v®1p)) =< v,w? > S(w?)*.

If (H,a) is a right unitary &-comodule, then H is naturally a unitary left ®-module
via
b-v:=0v" <bov® > VbeB, ve H. (3)

~

Due to the canonical identifications B; = ES and B, = Bt given by the maps z >
2 =¢(-2) and t = t = g(t), H is also a By-bimodule via z - v -t = vWe(20?)t), for all
z,t € Bs, v € V. The maps «, 5 : Bs—=B(H) defined by a(z)v := z-v and f(z)v :=v-z,
for all z € B,,v € H are a x-algebra homomorphism and antihomomorphism, respectively,
with commuting images. Indeed, for instance, for all v,w € H, 2z € B,, one has:

< a(z)v,w >=< vWe(20@), w >= (< vV, w > 20?) =

= e(< v, w? > 28 (w?)*) =< v, 0wV > e(S(w?)z*) =
=< v, wWe(S(z)w?) >=< v, a(z")wWVe(w?) >=< v, a(z)w > .

So that, a(z)* = a(z*), and similarly for the map /.
The correspondence (3) is bijective since one has the inverse formula: if (b;); is a basis

~

for B and (b;) is its dual basis in B, then set:

a(v) =Y (bi-v)@b; Vv e H (4)

Moreover, formulas (3) and (4) also lead to a bijection of morphisms, and we have two

functors, F; : UComod(®) — URep(®) and Gy : URep(&) — UComod(®), which

are mutually inverse to each other. Hence, these categories are isomorphic and we can
transport various additional structures from U Rep(é) to UComod(®) and vice versa.

For instance, let us define tensor product of two unitary &-comodules, (Hy, apy,) and

(Hy,ap,). As a vector space, it is

A A

Hy ®p, Hy = A(1)(Hy @ Hy) = 1(1) - Hi @ 1(3) - Hy

and can be identified with H; ® g, Ho (see [Pfeiffer 2,2009], 2.2 or [Nill,1998], Chapter 4).
The unitary comodule structure on H; ®p, H is given by

vV ®p, W @ ®p, wh @ vmw@), Yv € Hy,w € Hs.
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Thus, UComod(®) is a multitensor category with trivial associativity isomorphisms
whose unit object (B, Alp,) is simple if and only if & is coconnected. The conjugate
object for (H,a) € UComod(®) is (H,a) with

i(v) =00 @ [G71/? = (1) = &7, (5)

where b — b =< ZA), biybry >, b~ bi=< b, bay > Do) (Vb € B,l; € B) are the Sweedler
arrows and G is the canonical group-like element of &.

The rigidity morphisms are given by (1) with B, replaced by B,. For any morphism
f, [* is the conjugate linear map of the corresponding Hilbert spaces, the colinearity of
f implies that f* is colinear. So that, we have

2.7. PROPOSITION. UComod(®) is a strict rigid finite C*-multitensor category isomor-

~

phic to URep(®). It is C*-tensor if and only if & is coconnected (i.e., BN By = Clg).

. 3. Unitary corepresentations.

2.8. DEFINITION. A right unitary corepresentation U of & on a Hilbert space Hy; is
a partial isometry U € B(Hy) ® B such that:

(i) (id @ A)(U) = UpaUss.

(i) (id @ e)(U) = id.

A morphism between two right corepresentations U and V' is a bounded linear map
T € B(Hy,Hy) such that (T ® 15)U = V(T ® 1g). We denote by UCorep(®) the
category whose objects are unitary corepresentations on finite dimensional Hilbert spaces
and above mentioned morphisms.

Any Hy is a unitary right B-comodule via v — U(v® 15). Conversely, given (H,a) €
UComod(®), one can construct V € UCorep(®) as follows:

Viz® Apy) =2 @ Ay (Py)), forall z € H, y € B.

Hence, the categories UComod(®) and UCorep(®) are isomorphic. The tensor product
U ® V equals UjsVes and acts on Hy ®p, Hy, the conjugate object U is the unitary
corepresentation acting on Hy via U(Z®@A(y)) = TV @A, ((?)*y), where a(Z) is given by
(5), the unit object U. € B(Bs)® B is defined by z®b — A(1p)(1p®2b), Vz € By, b € B,
and the rigidity morphisms are given by (1) with B; replaced by B,. For any morphism
T, T* is the conjugate linear map of the corresponding Hilbert spaces. Thus, we have

2.9. PROPOSITION. UCorep((’é) 1s a strict rigid finite C*-multitensor category isomorphic
to UComod(®) and to URep(®). It is C*-tensor if and only if & is coconnected.

2.10. REMARK. 1. Using the leg notation U = UM @ U®) | we define, for any n,( € Hy,
the matrix coefficient U, :=< UNC,n>UP € B ofU. If {¢;} is an orthonormal basis
in Hy, denote U; j := Ug, ;- Then the formula

U=@@&;;mi;®U,,;, where m;; are the matriz units of B(Hy) in basis {(;},
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defines a corepresentation of & if and only if for alli,j =1,...,dim(Hy):
AUsy) = 5 MU @ Uy, e(Uig) = 615, Usy = S(Uja)" (6)

2. We also have (URV); i1 = Ui jViy foralli,j =1,.,dim(Hy), k1 =1,., dim(Hy)
and for all U,V € UCorep(®).

3. For U € UCorep(®), denote By = Span{U,;li,j = 1,...,dim(Hy)}. Then (6)
zmplzes A(BU) C A(lB)(BU & BU), BU = S(BU)*, BU = (BU)*

4. a) Ber v, = span{ By, ..., By, } for any finite direct sum of unitary corepresenta-
tions. In particular, B = @®,cqBys=.

b) Decomposition U @ V' = @,d,U? with multiplicities d, implies ByBy C &,By:-,
where z parameterizes the irreducibles of the above decomposition.

3. Reconstruction theorems.

1. Let C be arigid finite C*-multitensor category with unit object 1 and let 7 be a unitary
tensor functor (see [Neshveyev-Tuset,2013], Definition 2.1.3) from C to the C*-multitensor
category Corrg(R) of finite dimensional Hilbert R-bimodules (R-correspondences), where
R = J(1) is a finite dimensional C*-algebra. A discussion of the category Corr¢(R) can
be found in [Vainerman-Vallin,2017], pp. 86,87.

Put Hy := J(U), for all U € C, in particular, H* := J(x), for all x € Q = Irr(C).
Let Jyyv : Hy %) Hy — Hygy be the natural isomorphisms defining the tensor structure

of J and choose an orthonormal basis {vy|y € €2, := {1,...,dim(H")}} in each H*.

Let U* be the conjugate of U € C, Ry : 1—U*® U and Ry : 1 —U ® U* be the
corresponding rigidity morphisms.

Then the conjugate of Hy is Hy« with the rigidity morphisms Jg,}’U o J(Ry) and
Ju. u-0J (Ryy). The properties of the rigidity morphisms imply that the duality < v, w >:=
trro J(R3)(J- ) (v %)w), where v € H* ,w € H® and trg is the trace of the left regular

representation of R, is non degenerate. Hence, there exist isomorphisms ¥, : H =

(H*)* — H* and &, : H* —H" = (H*")".

Next is a combined C*-version of several reconstruction theorems scattered in vari-
ous papers - see [Szlachanyi,2001], [Hayashi,1999], [Calaque-Etingof,2008], [Pfeiffer,2009],
[Ostrik,2003].

3.1. THEOREM. A couple (C,J) defines on the vector spaces

B=@ H"®H and B=¢p B(H") (7)

z€e) e
two WHA structures, & and 65, respectively, dual to each other with respect to the bracket

<AwRT>=< Av,w >, where x € QA€ B(H"),v,w e H",
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such that C = UComod(®) = UCorep(®) = URep(S).

A sketch of the proof. Clearly, Bisa C*-algebra with usual matrix multiplication,
conjugation and unit. Since all of H* are Hilbert R-bimodules, there are homomorphisms
t: R— B and s : R — B defined by t(r)v =r-v and s(r)v = v - r, respectively (here
re Rve & HY).

z€eQ)
The coalgebra structure in B dual to the algebra structure in B, is:
Alwe) = P wev]). ® (v @ D), (8)
yEQ
e(w®T) =< w,v >,, where v,we€ H". (9)

~

Then, as in [Calaque-Etingof,2008], 2.3.2, define the coproduct A : B—~B® B:
Ab):=no(J -b-J) (beB,z,yeQ), (10)
where J := & J,,, n: B(H*)® B(HY)—B(H")® B(HY) is the canonical map defined
€0 R

T,y
by n(a, ® ¢,) = EI(S(@‘)% ® t(e')c,) (here a,c € B, {e;} and {¢'} are dual bases of R
R i
with respect to the duality < a,b >= trg(L(a)L(b)), where a,b € R, L(a), L(b) are the

corresponding left multiplication operators.
The multiplication in B dual to A, is as follows:

(w@7V), (g@h), = (Jp.(w % 9) ® Jp (v % h))ag. € H®®) @ H@®2), (11)

where v,w € H* g, h € H?, for all x,z € ). For any b = & b,, the component b; €
€

B(H") = B(R), so by(1z) can be viewed as an element of R. Then the triple (B, A, #)
with £(b) = trgr(L(b1(1g))) is a weak bialgebra.

The antipode in B is defined by S(b), := (Uye 0 4ye ) (bye)* (i} 0 ®,), where b € B,z €
Q, i, : H*— H' is a canonical antilinear isomorphism. Dually:

S(we?) ='W, (weD) =w Qv (Yv,we HY), (12)

where w* = U, (W), 7" = ®,(v). Any H® is a unitary right B-comodule via

a,(v) = ye% v, ®vE,  where v€ H,.

2. Let (C,J) be as in Theorem 3.1, let C’ be a rigid finite C*-multitensor category
and let P : (" —C be a unitary tensor functor. Then Theorem 3.1 shows the exis-
tence of two WHAs, & = (B, A,¢,5) and & = (B, A’, &', 5"), generated by the couples
(C,J) and (C',J" = J o P), respectively, such that UCorep(®) = UComod(®) = C and
UCorep(®’) = UComod(®') = C'. The following theorem reveals the structure of the
functor P.
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3.2. THEOREM. In the above conditions, there is a WHA morphism p : & —=®& such that
P viewed as a functor UComod(®') — UComod(®) is of the form (V. pi,) — (V. (id ®
p)py), where (V,pi,) € UComod(®'). P is faithful (resp., full) if and only if p is is

injective (resp., surjective).

Let us comment on the proof. For any (V,p{,) € UComod(®’) the condition J' =
J oP) implies that P(V, p|,) = (V, py) € UComod(®), where py : V—V ® B is a right
coaction. In particular, (B’, A") € UComod(®'), so P(B',A") = (B', pp') € UComod(®),
where pp : B'— B’ ® B is a right coaction. Then the composition p := (¢' ® idp) o pp' :
B'— B is a linear map. Theorem 3.5 of [Wakui,2020] proves that p is a weak bialgebra
morphism and that P(V, pi,) = (V, (id ® p)p},) for any (V, p{,) € UComod(®'). Corollary
3.6 of [Wakui,2020] shows that P is an equivalence if and only if p is an isomorphism.

In our context the comodules (B’, A’) and P(B’, A’") = (B, (idp ® p)A’) are unitary
which gives for all b, c € B":

< b(l),c > (5(2)) =< b, ca) > S/(C(g))*,

< b(l), c> p(b(g)) ==< b, ca) > p(S(C(g))*).
For b = 1p this implies S(p(c))* = p(S'(c)*), for all ¢ € B'.
Then, the conjugate object for (B, A") in UComod(®') is (EI, A"), where

A(b) =bay @ [GTV2 = (be)" — G,

and G is the canonical group-like element of the dual WHA ®’. Let us note that G and
G belong to B; By, so p just sends them respectively to the canonical group-like elements
of & and its dual. The conjugate object for P(B’,A) = (B, (idp ® p)A’) in UComod(®)
is described by a similar formula. As P respects the rigidity of the categories in question,
we have:

— A —1/2

— . .- 1/2
by @ p[G~1* = (b)) — G'?] =bp, ® [(p(G)

) = (p(b2))" = p(G) ]
which gives by the invertibility of G: b (b(2 ) = b(l) (p(bez)))*. Applying €’ to the
first leg, we get p(b)* = p(b*), then also S( (b)) = p(S'(b))(Vb e B).

For the WHA p(&’) we have UComod(p(®’)) = P(UComod(®')). The functor P
splits into the composition of the full functor UComod(®') —
P(UComod(®')) and the inclusion P(UComod(®&')—UComod(®). Respectively, p splits
into the composition of the surjective WHA homomorphism &'—p(®’) and the inclusion
p(®') — &. Then P is full if and only if UComod(p(®')) = UComod(®) or if and only
if p(&') = &.

Also, P is faithful if and only if the first functor in the above decomposition is an
equivalence which happens if and only if p : " — p(®') is an isomorphism of WHAs or
if only if the map p : & — & is injective. m
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4. Coactions.

4.1. DEFINITION. A 7ight coaction of a WHA & on a unital x-algebra A, is any *-
homomorphism a : A—= A ® B such that:

1) (a®i)a = (ida ® A)a.

2) (ida ®@€)a = idy.

3)a(ly) € A® B,.

One also says that (A, a) is a -x-algebra.

If Ais a C*-algebra, then a is automatically continuous, even an isometry.

There are x-homomorphism « : By — A and *-antihomomorphism g : B, — A
with commuting images defined by a(z)B8(y) := (ida @ €)[(14 ® x)a(14)(14 ® y)], for all
x,y € Bs. We also have a(14) = (e« ® idg)A(1p),

a(a(z)ab(y)) = (1a ® x)a(a)(1a @ y), (13)

and
(a(z) ® 1p)a(a)(B(y) @ 1p) = (14 ® S(z))a(a)(1a ® S(y)). (14)

The set A* = {a € Ala(a) = a(l4)(a ® 1)} is a unital *-subalgebra of A (it is a unital
C*-subalgebra of A when A is a C*-algebra) commuting pointwise with «(Bs). A coaction
a is called ergodic if A* = Cl4.

4.2. DEFINITION. A & — C*-algebra (A, a) is said to be indecomposable if it cannot be
presented as a direct sum of two & — C*-algebras.

It is easy to see that (A, a) is indecomposable if and only if Z(A)NA® = Cl,4. Clearly,
any ergodic & — C*-algebra is indecomposable.
For any (U, Hy) € UCorep(®), we define the spectral subspace of A corresponding to
(U7 HU) by
Ay :={a € Ala(a) € a(14)(A® By)}.

Let us recall the properties of the spectral subspaces:
(i) All Ay are closed.
(i) A = BreqAye.
(iii) Ay=Apyy C @, Ay=, where z runs over the set of all irreducible direct summands
of U* @ UY.
(IV) CL(AU) C Cl(lA)(AU X BU) and AU = (AU)*
(v) Ac is a unital C*-algebra.

4.2.1. Let us note that the usage of C*-multitensor categories allows to get without much
effort the following slight generalization of the main result of [Vainerman-Vallin,2017]:
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4.3. THEOREM. Given a WHA &, the following categories are equivalent:

(i) The category of unital &-C*-algebras with unital &-equivariant x-homomorphisms
as morphisms.

(ii) The category of pairs (M, M), where M is a left module C*-category with trivial
module associativities over UCorep(®) and M is a generator in M, with equivalence
classes of unitary module functors respecting the prescribed generators as morphisms.

In particular, given a unital -C*-algebra A, one constructs the C*-category M = Dy
of finitely generated right Hilbert A-modules which are equivariant, that is, equipped
with a compatible right coaction [Baaj-Skandalis,1989]. Any its object is automatically a
(Bs, A)-bimodule, and the bifunctor U X X := Hy ®p, X € Dy, for all U € UCorep(®)
and X € Dy, turns D, into a left module C*-category over UCorep(®) with generator A
and trivial associativities.

Vice versa, if a pair (M, M) is given, the construction of a &-C*-algebra (A, a) contains
the following steps. First, denote by R the unital C*-algebra End (M) and consider the
functor F': C—Corr(R) defined on the objects by F(U) = Homu(M,UX M) VU € C.
Here X = F(U) is a right R-module via the composition of morphisms, a left R-module
via rX = (id ® )X, the R-valued inner product is given by < XY >= X*Y the
action of F' on morphisms is defined by F(T)X = (T ® id)X. The weak tensor structure
of F' (in the sense of [Neshveyev,2014]) is given by Jxy(X ® Y) = (id ® Y)X, for all
X e FU),Y e F(V),UV € UCorep(®).

Then consider two vector spaces:

A=PAy- = PEFU") @ HY) (15)

and

A= P A= @ FU eH), (16)
Ue||[UCorep(®)]| U€e||[UCorep(®)]|

where F(U) = @F(U;) corresponds to the decomposition U = @ U; into irreducibles,

7
and |[UCorep(®)|| is an exhaustive set of representatives of the equivalence classes of

objects in UCorep(®) (these classes constitute a countable set). A is a unital associative
algebra with the product

(X @)Y @n)=(deY)X @ (E®s17), V(X ®E) € Ay, (Y ®7) € Ay,
and the unit
Note that (id®Y)X = Jxy(X®Y) € F(U®V). Then, for any U € UCorep(G), choose
isometries w; : H;— Hy defining the decomposition of U into irreducibles, and construct
the projection p4 : A— A by
pa(X ® ) = B(F(w))X ® wif), V(X ®§) € Ay, (17)

)
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which does not depend on the choice of w;. Then A is a unital x-algebra with the product
x -y = p(ay), for all z,y € A and the involution z* := p(z*), where (X ® &)* =
(id ® X*)F(Ry) @ GV/2¢, for all € € Hy, X € F(U),U € UCorep(®). Here Ry is the
rigidity morphism from (1). Finally, the map
(X ®¢&) =NX @)Uy, (18)
J
where {&;} is an orthogonal basis in H* and (U;) are the matrix elements of U® in this

basis, is a right coaction of & on A. Moreover, A admits a unique C*-completion A such
that a extends to a continuous coaction of & on it.

4.4. REMARK. We say that a UCorep(®)-module category is indecomposable if it is not
equivalent to a direct sum of two nontrivial UCorep(®)-module subcategories. Theorem
4.3 implies that a & — C*-algebra (A, a) is indecomposable if and only if the UCorep(®)-
module category M is indecomposable.

4.5. REMARK. Equivalence between M and Da maps all morphism f : Homy (U ®p,
M,V ®p, M) to a morphism f : Hy ®p, A—=Hy @5, A (U,V € UCorep(®)), f is an A-
linear map on the right intertwining g, e, a4 = Ui3(id®p,a) and 6g, 0, 4 = Vi3(id®p, ),
so it can be written as

f=2%s®p, a; € B(Hy,Hy) ®p, A

acting by f(E®p, a) = Bs;(€) @p, aa, where € € Hy,a € A, and such that Vis(id® a)f =

5. Yetter-Drinfel’d C*-algebras over WHA

5.1. BASIC DEFINITIONS AND RESULTS. Let & be a WHA, & be its dual and (4, a) be
a right unital &-C*-algebra which is also a left unital &-C*-algebra via a left coaction
b: A—B®A. The coaction b defines a right B-module algebra structure <: AQ B—A
by

a<b:= (b®ida)b(a), forall a€ A, be B.

One can check that the following relations hold:

a<dlp=a, (ac)<b= (a<aby)(c<aby)) Ya,ce A, be B,

a*<b=(a<SD)")" and 1y<b=14<¢(D). (19)

Below we will use the leg notations for coactions and write 1 instead of 15.
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5.2. LEMMA. The following two conditions are equivalent:
(i) the identity
a(a < b) = (a(l) < b(g)) (059 S(b(l))a(2)b(3), (20)

holds for alla € A, b€ B.
(i) the identity
(Zdé ® a)b(a) = W1*3(b & idB)a(a,)ng, (21)

holds for all a € A, where the operator W € L(Apgn(B ® B)) is defined by
W (Aan(b @ ) := Apan(A(c) (b ® 1)),

for all b,c € B (it is the adjoint of the reqular multiplicative partial isometrty I of B -
see [Vallin,2001]), and W3 is the usual leg notation.

PROOF. As A = @, cqAy=, where Aye is the spectral subspace of A corresponding to an
irreducible corepresentation U* of A, it suffices to prove the statement for a € Ay only.
The matrix units {mj,} of B(H") with respect to some orthogonal basis {e;} in H* and
the corresponding matrix coefficients U; of U* with all possible 7, 7, z form dual bases in

B and B, respectively, so that b can be restored from > by
bla) =%i; mi; @ (a<U;), forallae€ Ays. (22)

Since W' = @gedim(H*)U* implements A and A(UY;) = ZUff, @ Ui 5, the right hand
side of (21) can be written for any a € Ay= as

(U13)"(b @ idp))a(a)Uts =

= Ei,j,pg(mf’j ®R14® (U;fi)*)(b(a(l) ® a@)))(m;ﬂp ®R14® U;p) =
= Sijpans(mimims @ (aV U @ (UF)*a®Ur) =

= Yijpa(mi, ® (aM) < Ui,) ® (Uﬁi)*a(Q)U;p).
On the other hand, if (20) holds, the left hand side of (21) can be written as

(idg ® a)b(a) = i ,(mf, @ a(a<aU},)) =

= Sip(mf, ® (M < (U))@)) @ S(UF,)1)a? (UF,) @) =
Sipga(mi, ® (aV <U? ) ® S(UF,)a®Ur ) =
Zi7p7j7q(m§fp ® (a(l) 4 U;fq) ® (Ufi)*a(z)U;p).

So (20) implies (21). Conversely, writing in (21) b as above, we get (20) for any b =
Ufy (x € Q,i,j =1,...,dimH?), a € Ay= which gives the result. m
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5.3. DEFINITION. (c¢f. [Neshveyev-Yamashita,2014]) A is a right-right Yetter-Drinfel’d
(YD) &-C*-algebra if one of the above equivalent conditions is satisfied.
We say that a Yetter-Drinfel’d &-C*-algebra A is braided-commutative if

ab =0V (a<ab?), forall a,be A, (23)

In particular, if b € A%, then b ® b® = 1Wp ® 1?) and since b commutes with
1M € a(By), the right hand side of (23) can be written as b1 (a<1?). But (23) implies
that 1M (a <1®) = a, so ab = ba. Hence, A* € Z(A).

Given a WHA &, let us construct a new WHA D(®) called the Drinfel’d double of
® as follows. The C*-algebra of D(®) is B® B, where & = (B, A, S,é) is the dual of &.
The coproduct Ap on B ® B is defined by

Ap=Adl®coW ®15)(A®A),

where W € H), ® H; is the multiplicative partial isometry canonically associated with &
- see [Vallin 1,2003], and o is the flip. The antipode Sp and the counit ep on B ® B are
defined, respectively, by

Sp=AdW*(S®S) and ep=m(e®é).

5.4. LEMMA. The collection D(®) = (B ® B, Ap, Sp,ep) is a WHA.

PrROOF. It suffices to note that the WHA called there the Drinfel’d double, given in
[Nikshych-Turaev-Vainerman,2003], is dual to D(®). =

Theorem. A YD ®-C*-algebra is the same as a D(®)-C*-algebra.
The proof is similar to the one of [Nenciu,2002], Theorem 3.4.

5.5. CATEGORICAL DUALITY FOR YETTER-DRINFEL'D ALGEBRAS OVER WHAS. Let
us give the proof of Theorem 1.1. The condition that C is generated by £(C) means that
any object of C is isomorphic to a subobject of £(U) for some U € UCorep(®). Assume
without loss of generality that C is closed with respect to subobjects, but its unit object
is not necessarily simple.

Let us precise the equivalence relation on the set of pairs (F,n) in (ii). Given such a
pair, we can consider, for all U,V € UCorep(®), linear maps

CEW),EV))—C(EW),E V) s T=mF(T)ny'

We say that two pairs, (F,n) and (F', 1), are equivalent if the above maps are equal for
all U,V € UCorep(®).

The proof of Theorem 1.1 will be done in several steps.

a) From YD ®-C*-algebras to C*-multitensor categories.

Given a braided commutative YD &-C*-algebra A, let us show that the C*-category
D, is in fact a C*-multitensor category. We start with
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5.6. REMARK. Recall the following relations:

1) 0, (¢) :==¢H @ (@ :=U( ®1), where ¢ € Hy,U € UCorep(®).

2) Oty (C®p, 1) == UiaVas(C@p, n @ 1) or (C@p,m)M = (W @pnW, ((@p,n)® =
CAn@  where ¢ € Hy,m € Hy,U,V € UCorep(®).

3) Onyep, 4(C @, a) = Us(¢ @p, a(a)) or (( ®p, a)V) = (D @p alV), ((®p, a)? =
CQ)CL(Z)' Then 5HU®V®BSA(C ®B, N DB, a) = C(l) ® B, 77(1) ® B, aV @ <(2)77(2)a(2); where
(€ Hy,ne Hy U,V € UCorep(8),a € A.

4) 1t follows from the equality a(14) = (@ ® id)A(1) that (ida ® e;)a(b) = a(l4)(b® 1)
(see [Vainerman-Vallin,2017]) . One can deduce from here, using 3) and the relations
(id @ £)U = (id @ £,)U = 1 that (id ® ;)0 0,4 @4 a) = (@4 aV @ e(a?).

5.7. LEMMA. For any X € Dy, there exists a unique unital x-homomorphism mwx :
A—=LA(X) such that mx(a)(¢) = (W(a<(?) and 0x(mx(a)() = (1x ® id)a(a)dx({),
forallae A and ¢ € X.

PROOF. It suffices to consider X = H* ®p_ A because A is a generator of Dy. If {v7} is
an orthonormal basis in H*, Remark 5.6, 2) is equivalent to

Ox(vf @p, b) = vy ©p, b @ UpP), (24)
] b
here U}"; are the matrix coefficients of U”. The braided commutativity gives:

(vf @5, b)V(a< (vf @5, 0)P) = (vj ®s, ) (@< (UFb)) =

= B(v] ®p, b (a aUS;) <b?) = B(vf @p, (a<US))b.
J ’ J ’
Now it is clear how to define wx explicitly:
x(a) = Yigmi; ® (a< Ui,

where mj; are the corresponding matrix units of B(H,),a € A. This gives the first
statement of the lemma. In order to prove the second statement, take an arbitrary
X € Dy, then for any a € A and ( € X we have:

Ox(mx(a)¢) = 0x(¢M(aa ™)) = ((M(aa¢™)W @ ((P(aa (@),
The Yetter-Drinfel’d condition (20) shows that the last expression equals to
C(l)(a 4 <(3))(1) ® ¢ (a< C(3)>(2) — C(l)(a(l) 4 <(4)) ® C(2)S(C(3))a(2)g(5) -

= C(l)(a(l) 4 §(3)> ® €t(C2)a(2)((4).

If again X = H*®p, A and ( = v7 ®@p, b, Remark 5.6, 4) shows that (id®e;)0x(() = (®1
for the above ¢ € X. This gives 0x(mx(a)¢) = (M (a® (@) @ a®¢®). On the other
hand,

(rx ® id)a(a)dx(¢) = mx (@)D ® a@¢@ = (D (M q¢@) @ a®@¢®),

and we are done. -
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This lemma implies that any X € Dy is a B-equivariant (A, A)-correspondence and
any &-equivariant endomorphism of the right Hilbert A-module X is automatically an
(A, A)-bimodule map. Therefore, Dy is a full subcategory of the C*-multitensor category
of B-equivariant (A, A)-correspondences. In order to show that D4 is invariant with
respect to ® 4, take XY € Dy and prove two statements:

(i) (X ®aY) € Da;

(ii) the left A-module structure on X ®4Y induced by that of X is the same as the left
A-module structure given by Lemma 5.7 using the coaction of & and the right A-module
structure on X ®4 Y.

The statement (ii) is proved by direct computations similar to those in the proof of
Lemma 5.7. In order to prove (i), it suffices to prove

5.8. LEMMA. The map Tyy : X ®4Y — Hygy ®p, A, where X = Hy ®@p, A, ¥ =
(Hy ®p, A) defined for all ( € Hy,n € Hy,a,b € A by

Ty : (( ®p, a) ®a (1 ®p, b) = ¢ ®p, Ty (a)(n ®5, b), (25)
1s a B-equivariant unitary isomorphism of right Hilbert A-modules and
TU®V,W<TU,V Xa Zd) = TU,V®W(7;d Xa Tv7w) (V U, Vv, W € UCOT'@p(@)) (26)

PROOF. Clearly, (25) defines Ty as a right A-module isomorphism. Let us note that the
vectors of the form (¢ ®p, 14) ®a (n ®p, 14) generate X ®4 Y as a right A-module and
that Ty is isometric on these vectors. This implies that 7y is a unitary isomorphism
of right Hilbert A-modules.

Let us check the &-equivariance of Ty v, i.e., we must have the equality (Tyy ®
idp)0xe,y = OHygyep,A © Tuy. Since my(a)(n ®p, b) = nM @p, (a<an®)b, we have:

Oxay(((®p, a) @4 (n®p, b)) = (( @5, )V ®4 (n ®p, b))V

®(¢ ®p, )P (n®p, b)) = ((V @5, bV) @4 (1P ®p, aV) @ (Pa@n@p®

Applying Ty ® idg, we get (D @5, 1 @p, (a <n@)pV) @5, (Da®y@p>.
On the other hand,

6HU®V®BSA © TU,V[(C B, CL) X4 (77 B, b)] - 6HU®V®BSA(< X B, 77(1) B, (a < 77(2))b) =
— (M gp 1 @ (aan®) OB @ (@n® (g qy®)2p2)
Applying (20), we see that the last expression equals to
D @p 1 @5 (a9 @ c2n@8(H®)a@nEp?)

As n@S(nB®) = g,(n®) and n™M @¢,(n®?) = 1MynM) 21?3 the last expression also equals
to ¢V @p D @p. (aD an@)p0) @, (DaWy@p@.
Finally, the relation (26) can be justified by direct computations. [
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5.9. COROLLARY. IfV = ¥m;; ® V, ;, then for all ( € Hy,n € Hy,a,be A
2y

7&MC®&GN&MU®&b%=C®&§%%ﬁ@%Ja4Wﬂb

Let us summarize the above mentioned results.

5.10. THEOREM. Let A be a unital braided commutative YD & — C*-algebra. Then Dy is
a C*-multitensor category with tensor product @ 4 and trivial associativities equipped with
a unitary tensor functor E4 : UCorep(B)—=Dy sending U to Hy @p, A whose structural
unitary isomorphisms Tyy 1 EaA(U) @4 EA(V) —=E4(U @ V') are given by (25). Clearly,
EAlU.)=A=1p,.

b) From C*-multitensor categories to YD- &-C*-algebras.

Consider a pair (C,&) € Tens(UCorep(®)). The category C is a left UCorep(®)-
module category: UK X = E(U) ® X, VX € C, with generator E(U.) = 1c. So R =
Ende(1c) and weak tensor functor F' sends any U to Home(1e, £(U)). By Theorem 4.3
we can construct a & — C*-algebra A with right coaction a : A— A ® B. Now our goal
is to prove

5.11. THEOREM. The above & — C*-algebra A has a natural structure of a unital braided
commutative YD & — C*-algebra.

First, define a right B-module algebra structure on A given by (15). Let A be an
algebra (16) with the projection py : A—=A (17) and B = . (Hy® Hy), B =
U€||UCorep(Q5)H
@D (H, ® H,) be the algebras with the similar projection pg : B— B (see [Vainerman-
el
Vallin,2017], Example 6.7).s Then define a linear map < : A@B—=Afor all X @7 € Ay,
(®&E€ Hy ® Hy and U,V € UCorep(®):

(X @73 ®E) = (id® X ®id)F(Ry) ® (G-Y2-{ ®p, n ®p, £), (27)

where Ry comes from (1). Both sides of (27) are in Aygpgy . Identifying B with the

subspace of B, define a linear map < : A ® B — A putting a < b := p4(adb), for all
a€ Abe B.

5.12. LEMMA. The map < defines a right B-module algebra structure on A such that
pa(adb) = pa(a) < pp(b), for alla € A,b € B.

PROOF. Put a = X ®7 € F(U)® Hy, b= ( ®p, ¢ € Hy ®p, Hy and choose isometries
u; : Hy, — Hy and v; : H,, — Hy defining the decompositions of U and V' into
irreducibles. Then:

pala) <pp(b) = pa(S(F ()X ® ujn)(vi¢ @, ;€)=

— pa(S(id ® F(u)X @ id)F(Ry, ) ® (G172 - 03¢ ©p, w1y @, U36)).

%)
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On the other hand,

paladb) = pa((id @ X ® id)F(Ry) ® (G2 -C ®p, n®Qp, £)) =

=pa( S (F(T) ® F(u})X ® F(0}))F(Ry) ® (0;G 12 @p, ujn ©p, 1;€)),

irjik
where the morphism v; : Hsz = szj — Hy = Hy; is defined by @Z = ’U]_C Since
vi(GTYE ) = G (v1€), V), Ry = S(U; ® v;) Ry, and the partial isometries v; have
j
mutually orthogonal images, the two expressions are equal.
In order to show that < defines a right B-module algebra on A, take a, b as above and
c=pu®p, Ve Hy g, Hy, where W € UCorep(®). Then:

(adb)3c = (id ® X ®id)F(Ry) ® (G=1/2 - @p, n®p, £)3A(n ®p, 7) =
(id®id ® X ®id ®1id)(id ® F(Ry) ® id)F(Ry)®
®R(G12 - ®p, G712 @p, n®p, £ ®p, V).

The result belongs to AW@(V@U@V)@W' On the other hand,

ad(be) = (X @7)A(C ®p, 4 ®@p, £ Op, V) =

= (id ® X @ id)F(Rvew) ® G=/2 - (( &5, 1) ®p, 1 @5, (§ Op, V).

This result belongs to AW®U®V®W and is different from the previous one because W ®
V #V ®@W. But themap o : Hy®p, Hy—Hy ®p, Hy defined by o (fi®p,() = ( @3, 1
gives the equivalence of these corepresentations, so Rygw = (0 ® id ® id)(id ® Ry ®
id) Ry . Then, applying pa to the above elements, we have an exact equality p4((a<b)<c) =
pa(ad(be)). .

In order to check the relation (ad) <b = (a <1bn))(d<bw)), take a = X @7 € Ay, d =
Yue Ay, b= ® B, Ej, where {(; ®p, Ej}i,j is an orthonormal basis in Hy ®p, Hyy
and U, V,W € UCorep(®). Since pp((; ®p, §;) = Wi; and A(W;;) = %(Wlk ®@ Wy;), we

have to show that
pa((ad)(¢; @B, E])) = %pA((a%(Q X B, Ek))(da(g X B, Eg)))

The formula for the product in A and (27) give:

pa((ad)A(G ®s, &;)) =

= pa((id© X @Y @id)F(Rw) © G-V/? - {, @, 1 @p, j1 @B, &)

On the other hand, B B
3(ad(G @p, Ee))(d(G @, &;))) =
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= 3((id® X @ id)F(Rw) @ G712 § ®p, 1 O, &)

((id®Y ®id)F(Ry) ® G-Y2 . ®p, 1 ®p, &) = Nid® X ®id®id®Y ©id)

F(Rw © Rw) @ (G™V2 -G ®@p, n®p, & @p, G712 ®p, 1 @3, &)
Since Ry (1) = %(fk ®p, G2 .C,), and Ry is, up to a scalar factor, an isometric

embedding of 1 to W ® W, by applying p4 to this element, we get

(id® X ® F(Ry) ® Y ® id)F(Rw ® Rw) ® (G=Y2-{, ®p, 1 @p, @p.pt @p, &)

Since (Ry, ® id)(id ® Ry ) = idw, this is equal to pa((ad)3((; ®p, §;)). n
Let us check now the compatibility of < with the involution.

5.13. LEMMA. We have a*<b= (a<S(b)*)* for alla € A,b € B.

PROOF. Recall that if a = X @7 € Ay, then a® = (id ® X*)F(Ry) ® G2 - € Ay,
Ifb=(®p € Hy ®p, Hy, put b* = { ®p, (. Since pp(b*) = pp({ ®p, () = Ve =
(S(Vee))* = (S(pp(b))*, we have to prove that p4(a*3ab) = pa((ab®)*). Let us compute:

(X ®7)*A¢ ®p, §) =

= (id®id ® X* ®id)(id ® F(Ry) @ id)F(Ry) @ (G~/2 . C ®p, GV/? - ®p, €).
On the other hand,

(a3(¢ @p, ©)°)* = ((id® X @ id)F(Ry) @ (G-V2-E@p, 1 ©®p, ()" =

= (id ® (id ® X ® id)F(Ry))*F(Rygpey) ® (€ @p, G2 -n @5, G2 ().

Comparing these expressions and using the fact that G=/2.€ = G1/2 . £, we see that they
are not equal only by the reason that the corepresentations V@ U ®V and Vo U ® V.

are not equal. But they are equivalent via the map o(¢ ®p, n ®p, £) = £ ®p, 1 @5, ¢
which gives the relation

Ryeuey = (0 ®id ®id @ id)(id ® Ry ® id ® id)(id ® Ry ® id)Ry)
Since (R}, ® id)(id @ Ry) = idy, we have
(ld® (id® X ® id)F(RV))*F(RV@)U@V) =

= o(id®id® X* ® id)(id ® F(Ry) ® id)F(Ry).

Hence, the images of these expressions after applying p4 are equal [
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Now let us check the Yetter-Drinfel’d relation (20).

5.14. LEMMA. For alla € A and b € B we have
a(a N b) = (a(l) < b[g)) ® S(b[l))a(2)b(3)

PROOF. Let U,V € UCorep'(®) and {n;} € Hy, {(;} € Hy be two orthonormal bases.
For the simplicity, consider (; as eigenvectors of the strictly positive operator ¢ G ¢ in
Hy : G -¢; = Aj(V)(;. Then one has the following relations between the matrix coefficients
of V with respect to {¢;} and of V with respect to {(;}: )\]-_1/2(V))\/,i/Q(V)Vj,,c =V =
S(Vi.;)-

Now take a = X ® 17, € Ay and b=V;, j,, then we have, using (18):

0,J07

(@ <bz)) @ S(bay)a® b = ”Z.k[PA(X ®@7,) A Vijl @ S(Vig.i) Uro kVioj =

= S pal(id® X @ id)F(Ry) © (G @5, @5, ) © N (V)S (Vi) Uik Vi

On the other hand,

a(a<b) = a(pa((id ® X @ id)F(Ry) @ (C;) @, Tk, @5, o)) =

10

_ Al/Q(V)“E-k[PA((id ® X ®id)F(Ry) ® (¢; @5, tk ®5, () @ ViigUs ko Vi jo-

As )\Z-_l/Q(V))\VQ(V)Vi,Z-O = S(Viy.i), the two expressions are equal. =

20
Finally, let us check the braided commutativity relation (23)
5.15. LEMMA. For all a,b € A we have ab = bV (a <1 b?).
PROOF. Let a = ps(X ®7),b = pa(Y ®(;), where X € F(U),Y € F(V),n € Hy, also
U,V are in UCorep(®) and bases {n;} € Hy and {(;} € Hy as above. Then we compute:

b (a <) = Zpa((Y @ () (X @0)3V;)) =

= §pA((Y ® ;) ((id® X @ id)F(Ry) @ \/*((; ®p, 1 @5, G)) =

= Spa((id ® (id ® X @ id)F(Ry))Y @ \/*((; ® ¢ @5, T @5, ;) =

J
=pa((id®id ® X ®id)(id © F(Ry))Y @ (Rv(15) ®p, 1 @B, ()

Since Ry is, up to a scalar factor, an isometric embedding of 1 into V ® V, the last
expression equals

pa(F(Ry) ® X ®@id)(id © F(Ry))Y ® (n®p, G) = pa((id® Y)X @ (1 ©3, G)).

which is exactly ab. m
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Passing to the C*-completion of A, we finish the proof of Theorem 5.11.

c) Functoriality. Given a morphism Ag—=A4; in Y Dy,(®), the map X — X ®7, A
defines a unitary functor Dz —= Dy, (see [Vainerman-Vallin,2017], Theorem 4.12). By
Theorem 5.10, both Dz, and Dy, are C*-multitensor categories, and similarly to the proof
of Lemma 5.8 one shows that the isomorphisms

(X @z, A1) @7, (V @7, A1) = (X @7, Y) @1, A

defined by (z @z, a) ®7, (y ®7, b) — © @7, yV @7, (@< (y?)b, for all x € X € Dy,
and y € Y € Dy, define a tensor structure on this functor. This functor together
with obvious isomorphisms 7y : (Hy ®p, Ag) ®7, A, — Hy ®p, A; define a morphism
(Da,: €,) — (D3, E4,)- Thus, we have a functor 7 : Y Dy,.(®) —= Tens(UCorep(®)).

Let now [(F,n)] : (Co, &) —=(C1,&1) be a morphism in Tens(UCorep(®)), and let Ay
and A; be the corresponding braided-commutative YD & — C*-algebras - see Theorem
5.11. Tt follows from the construction of the x-algebras Ay and A; that the maps (£ (U*)®
H)— (&(U*) @ H") given by (X ® £) = (F(X) ® ) define a unital *-homomorphism
Ag— A; that respects their B-comodule and B-module structures. It then extends to a
homomorphism of unital braided-commutative YD & — C*-algebras f : Ay —= A; which
depends only on the equivalence class of (F,n)]. Thus, we have constructed a functor
S : Tens(UCorep(®)) —=Y Dy,..(®).

The homomorphism f : Ag— A, is injective (resp., surjective) if and only if the maps
Home,(1,E(U*))—=Home,(1,&,(U")) are injective (resp., surjective), for all z € 2. But
thanks to the equalities of the type Home(1,V®@U) = Home(U, V), this holds if and only
if, for all U,V € UCorep(®), the maps Home,(Ey(U),E(V)) —= Home, (E1(U), E1(V))
are injective (resp., surjective). Since C; is generated by &;(UCorep(®)) for i € {0,1}, it
follows that f is injective (resp., surjective) if and only if the functor F is faithful (resp.,
full).

d) Equivalence of categories. In order to show that the above functors 7 and S
are inverse to each other up to an isomorphism, let us start with a pair (C,€&) as above,
the corresponding braided-commutative YD & — C*-algebra A and describe explicitly
the image of any morphism 7' € Homc(E(U),E(V)), where U,V € UCorep(®), under
the unitary equivalence F : C — Dy as left UCorep(®)-module C*-categories given by
Theorem 4.3.

In particular, F maps a morphism 7" € Home¢(1e,E(V)) = F(V) to the morphism
F(T): H*®p, A.— Hy ®p, Ay sending 15 to %3[(] ®p, pa(T ®(;)], where {(;} € Hy is
an orthonormal basis (see the proof of [Vainerman-Vallin,2017], Theorem 6.3). Now write
any T € Home(E(U),E(V)) as T = (£(Ry;) ® id)(id ® S), where S = (id @ T)E(Ry) €
Home(1e, E(U®V)). Choose an orthonormal basis {&;} in Hys (as in the proof of Lemma
5.14, it is convenient to choose {&} such that G - & = M\(U)&; for all 7). Then the image
of the morphism S is:

1 %[Ez ®p, ( ®p, pa(S ® (& @5, ()]
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It follows that T = (£(R},) ® id)(id ® S) is mapped into

SIERY)(- @5, &) @, palS @ (€ @3, ¢))].

Z7J

Using the second of formulas (1), we conclude that the image of T is:

Sb,, @5, pal(id @ T)E(Ry) © (G2 - @n, G). (28)

where 0, ¢, € B(Hy, Hy) is defined by 0¢, ¢, (n) =< n,& > ¢ for all n € Hy.

In order to show that F is a strict tensor functor on £(UCorep(®)) and hence on
C, we have to show that F(S ® T) = F(S) ® F(T') on morphisms in E(UCorep(®)).
Since F is an equivalence of left UCorep(®)-module categories, we already know that
Fid®T) =id ® F(T), so it remains to show that F(S ® id) = F(S) ® id.

If S: E(U)—=E(V) and {nx} is an orthonormal basis in Hy, (W € UCorep(®)), then
according to (28) F(S ® idw) equals

”% leCj®Bs77k7§i®BSm ® B, pA((id ® (S ® id))g(RU@)W)@

® G2 (& @p, m) ®p, § @b, M)-
As in the proof of Lemma 5.12, Rygw coincides, modulo the equivalence U @ W = WeU,
with (id ® Ry ® id) Ry ), so the above expression equals

9<j®B37]k7§i®Bs"7l X B, pA((id ® (id ® S>5(RU) ® id)g(RW)@)

i7j7k7l

RG-V2 -7, @p, G2 - & ®p, ( ®p, M)-

The operators 6, ,, are the matrix units my,; in B(Hyw ). Recalling the definition of <, we
can rewrite the above expression as

2 B @m, it @, [pal(id © S)E(Ry) @ (G172 & 0, ;) Wi

On the other hand, F(S) : Hy ®p, A—=Hy ®p, A can be presented as F(S) = Xs; ®p, a;,
where s; € B(Hy, Hy),a; € A, with the action F(S5)(§ ®p, a) = ¥s;(§) ®p, a;a, for all

€ € Hy,a € A. Considering F(S) ®id as a morphism from Hygw ®@p, A to Hygw ®p, A,
we have for all ( € Hy,n € Hy:

(F(S) ®id)(C ®p, n @B, 17) = TV,W(%:Si(C) ®p, N DB, 4;) =
= Tv,w@sz‘(o ®p, a;) @7 (N ®p, 17) =
?si(C) R B, kzlmk,ﬂ? ®p, (a; <Wiy).

Hence, the actions of F(S ® id) and F(S) ® id on generating vectors ( ®p, 7 ®@p, 14
coincide.
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5.16. REMARK. Similar calculation and the fact that 15Uy = 0,115 give
(id @ F(S))(n @5, ¢ 5, 1) =1 ©p, T:(0) O, 0z

Conversely, consider a unital braided-commutative YD & — C*-algebra A and the
corresponding pair (C4, £7), and let A¢ be the braided-commutative YD & — C*-algebra
constructed from this pair. By Theorem 4.3, there is an isomorphism A : A; — A
intertwining the coactions of ® and defined by A(px(T ® ¢)) = (( ® id)T, for all ¢ €
Hy,T € C4(1,V) C L(B,,Hy) ® A = Hy ® A. So it only remains to show that \ is a
right B-module map.

As above, fix U,V € UCorep(®) and orthonormal bases {{;} € Hy and {(;} € Hy,
and let Uy be the matrix coefficients of U. Take T = %(Ck ®p, ax) € Hy ®p, A, then

Apa(T ®Cy,)) = ax,, and check that A(pz(T ® ) Ui jo) = e Uiy jo- By (27) we have

(T ® () QUi jo = (id @ T @ id)F(Ry) ® (G-Y2E,, @p, G, @5, &o)-

In order to compute the image of this element under A\, we need an explicit formula for
(id®T®id)F(Ry) : 1— Hggyey ®p, A. Remark 5.16 and the computation before
it ShOW that the element ZdU ® T ® ZdU . Hﬁ ®Bs HU —_— Hﬁ ®Bs HV ®Bs HU equals
1 ®BS z?ka ®BS my; ; ®Bs (ak < Uj,i)~ Then

(ld®T ®id)F(Ry) = i?}gél/z -Ej ®pB, G @p, & @B, (ap <Uj;).

Therefore, pz(T ® () < Uy j, equals

Pz(ijzkél/Q & ®p, G Op, & ®p, (4 1U;) @ (G2E, ®p, (i @, &)

Applying A, we get the required equality A(pz(T ® () = ak, <Uiyjo- As the algebra A is
spanned by elements ay, for various V' € UCorep(®), it follows that A is a right B-module
map. This completes the proof of Theorem 1.1.

6. Quotient type and invariant coideal C* subalgebras

6.1. QUOTIENT TYPE COIDEAL C*-SUBALGEBRAS. The notion of a quotient type coideal
C*-subalgebra of a WHA & is closely related to the notion of a quantum subgroupoid
which is just another WHA $) equipped with an epimorphism 7 : & —§). We start with
basic definitions and results.

6.2. DEFINITION. A morphism between two WHAs, & = (B,AB SB eB) and o =
(C, A%, 8¢ &%), is a unital morphism 7 : B—=C' of their C*-algebras such that A® omr =
(rom)AB, SCor =70S58 and e o1 = £5.
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6.3. REMARK. 1. One checks that this definition implies: moel = el om and moe

eYon, son(B;) = C; and w(B,) = C,.
2. If & and $ are usual Hopf C*-algebras, Definition 6.2 coincides with the usual
definition of a morphism of Hopf C*-algebras..

B

s —

6.4. LEMMA. If 7 : & — §) is surjective, the map & : U — (id @ m)U is a unitary
tensor functor UCorep(®) — UCorep($)). Moreover, (id ® m)U € B(H[) ® C, where
(Hp)= ={¢ € Hy|(id® mU(¢ @ 1) = 0}.

Proo¥. Considering Hy as a left B-module in the following way:
b-(=<U® b>UN¢ (Vbe B,¢e Hy),
and the x-algebra inclusion 7, : C —= B dual to 7 : B — (', one has:
<m(Uye), ¢ >=< (id@m U @ 1p),n®¢é>=< UV, n>< U r,(¢) >=

=< (&)C,n >=<(,m(&)'n> (Vn,( € Hy,ée ),

from where Hf, = 7.(C)Hy. In particular, (U, ) = 0 for all { € Hf,n € (Hf)* which
gives the result. L

6.5. COROLLARY. The functor &, transforms Hy into Hf; and intertwiners Hy —= Hy
into intertwiners Hf; —= HY, for all U,V € UCorep(®).

6.6. LEMMA. Let [ € C'. The matriz coefficient T(Us.iye) € Cs for allU € UCorep(®)
and n,( € Hy iof and only ifi s a left integral.

ProOOF. Combining the above mentioned relations, first one has:

(U riire) =< Um0 > n(UP) =

A,

=< UVUT'DC n>aU?)<U® 7,() >=
<UW¢n > (id@ )Ac(n(UP)).

Since C'is spanned by the T-images of matrix elements of all U € U Corep(®), this element
is in C; if and only if (id®()Ac = (¥ ®1)Ag, i.e., if and only if [ is a left integral. Finally,
W(Ur*([)g,n) = SC(W(Un,W*(Z)C>)* u

Consider now a surjective x-homomorphism 7 : & — § of WHAs & = (B, A, Sp,ep)
and 9 = (C,Ac, Sc,ec). Then the map a = (7 ® idg)A is a left coaction of $) on B.
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6.7. DEFINITION. The fixed point unital x-subalgebra I($H\®) of B with respect to the
coaction (T ®idg)A of $ is called a quotient type coideal C*-subalgebra (briefly, quotient
type coideal) of B. Equivalently,

I9H\&®) ={be B|(r®id)Ap(b) = (t®id)((1 @ b)Ag(1))}

Obviously, 7(I) C Cs and Bs C I, so w(I) = Cs.

Clearly, the smallest quotient type coideal of B is B;. It corresponds to ) = &, 7 = id.
Since 1($H\®) is the fixed point x-subalgebra with respect to the coaction (7 ® id)A, it is
included into B; (= a(By)").

6.8. LEMMA. B; is the greatest quotient type coideal C*-subalgebra.

PROOF. Let & be the dual of a WHA & = (B, A, S,¢). Let &,,i, = B, B, be the minimal
WHA contained in & and Tmin . Qﬁmm —~ & the corresponding inclusion of WHAs (see
[Bohm-Nill-Szlachanyi,1999], [Nikshych,2003]). Then the adjoint map i, : & —= &,

given by < imin(Bmin), B >=< Buin, Tmin(B) >, is an epimorphism of WHAs. The
corresponding quotient type coideal I,,,, is the set of such b € B that

< 2@ b, (Tmin @ id)AD) >=< 2 ® b, (Tymin @ id)(15 @ D)A(p1) >,

which is equivalent to

~ ~

<bb—2>=<Dbb(lg—32)>, forall be B, ;€ B, (29)

where, by definition, ¢ < 2 := ¢y < 2, ¢4 >, for any c € B. As Bmm =B Bt, it suffices to
consider Z = uv, where u € B, and 9 € B;. So, b € I,,4, if and only if b € B and

b (ad) = b(lp — (ad))b or (b ) — 0= b((1p — @) — 0).

By [Bohm-Nill-Szlachanyi, 1999], (2.21a), one can rewrite the last equality as (ub) — (v) =
b(u — v), where we denoted 1p < @ € B; by u. Now, by [Bohm-Nill-Szlachanyi, 1999,
(2.20b), this can be rewritten as (ub)v = b(uv), where we denoted 15 < v € By by v.
But this is true exactly for b € Bj, and we are done. [

6.9. LEMMA. Let (,n € Hy, then U, € I if and only if 1(Ucp) € Cs, for all 0 € Hy.

PRrROOF. If {6;} is an orthonormal basis is Hy and U, € I, then A(U;,) = %(Ug,gk ®

Ugm) € I ® B, so all Uy, € I and w(Ucyp,) € C; for all k. So, n(Ucp) € Cs, for all
0 € Hy.
Conversely, if 7(Uc ) € Cs, then

(7T X id)AB(Ugyg) = (ESC X Zd)(ﬂ' X id)AB(Ug,Q) =

= (7‘(‘ X Zd)(ESB X Z'd)AB<UC79) = (7'(' ® Zd)(l & UQ@)AB(l).
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The following lemma generalizes [Vainerman-Vallin,2017], Example 6.7 and describes
module categories associated with quotient type coideals.

6.10. LEMMA. If (93,7) is a quantum subgroupoid of & and A is the set of left integrals
of 9, then I = I($H\®) admits the decomposition

I(9H\6) = % T (AN)H® ® H®

and the corresponding UCorep(®)-module C*-category M is equivalent to UCorep($))
viewed as a UCorep(®)-module C*-category via the functor &;.

ProoF. It suffices to prove that I is equivariantly isomorphic to the & — C*-algebra
A corresponding to the couple (UCorep($)),1). Following the categorical duality, we
first construct an algebra A of the form (16), where F(U) = Homycorep(s)(1, Ex(Hy)) =
Homy g,y (Cs, 7.(C)(Hy)), where C, is a left C-module via é-z := ¢ — z (¢ € C, z € By).
For any such morphism f the vector f(1) is cyclic for Im(f), so in fact we have to describe
Homp,,4)(Cs, (). But [Bohm-Nill-Szlachanyi,1999], Lemma 3.3 shows that this is exactly

the set A of left integrals in C'. Thus, we can identify Homy gy (Cs, m.(C)(Hy)) with
the subspace 7.(A)Hy C Hy. ) o )
So A is a subalgebra of the algebra B = (Hy ® Hy), and the map pp : B— B
U

sending ¢ ® 7 € Hy ® Hy onto the matrix coefficient U¢, induces an &-equivariant
isomorphism of A onto the coideal C*-subalgebra I = Vec{U;,|¢ € m.(A)Hy,n € Hy,U €
UCorep(®)}. Finally, Corollary 6.6 and Lemma 6.9 show that [ = I(H\®). "

6.11. INVARIANT COIDEAL C*-SUBALGEBRAS. Consider the right adjoint action of B
on itself defined by
bax:= S(xn))br(), for all x,b € B. (30)

It follows from [Nikshych-Turaev-Vainerman,2003], Lemma 2.2 that the map P, : b —
b<1lp is a projection from B onto By, from where B< B = B;.

6.12. DEFINITION. A right coideal C*-subalgebra I is called invariant if [<B = 1.

6.13. REMARK. 1. I is invariant if and only if I C B, and I <B C I. Indeed, Definition
6.12 implies | = 1< B C B<B = B and [ <B =1 C I. Conversely, if I C B, and
I<BCI, thenl =P(l)=1<lgCI<BCI.

2. B s invariant if and only if & is a x-Hopf algebra.

3. One can check that By is the greatest invariant coideal C*-subalgebra.

It is known [Nikshych-Vainerman,2000] that all coideal C*-subalgebras of B form a
lattice {(B) with minimal element By and maximal element B under the usual operations:
[1 A\ 12 == Il N [2, Il V IQ - (Il U IQ)”.

6.14. LEMMA. Invariant coideal C*-subalgebras form its sublattice invl(B) with minimal
(resp., mazximal) element By (resp., Bj).
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PROOF. If I,I' are two invariant coideal C*-subalgebras, then for any natural number
k> 2 and all ji,..,jr, € IUI',b € B one has:

J1--Jk <0 = (Jr..-Jk—1 9b(1)) (Jr < b(2)).-

So by obvious iteration ji..jr<b € IVI’, but I, I’ are x-invariant so VI’ is spanned by sums
of type ji..jx. Moreover, the map: j — j<b is linear which gives that (IVI')<«B C (IVI').
But (I v I') C By, so by Remark 6.13, 1 IV I’ is invariant. Also, (INI")<B C (INI')
and (I N1I') C B}, so I NI is invariant and the result follows. "

6.15. LEMMA. Any invariant coideal C*-subalgebra I belongs to the category Y Dy..(®).

PRrOOF. All the relations (19) are obvious. Let us check the Yetter-Drinfel’d and the
braided commutativity relations:

A(S(bay)abey) = S(be))ambe @ S(bay)a@bay = (aq) b)) @ S(ba))a@bs),
where a € I,b € B. Finally, using the fact that I € By:

b(l)(a < b(g)) = b(l)S(b(g))ab(g) = 5t(b(1))ab(2) = a€t(b(1))b(2) = (lb, Va, bel.

Now discuss the relationship between quotient type and invariant coideals.
6.16. LEMMA. Any quotient type coideal C*-subalgebra I is invariant.

PROOF. Let us show that (I <z) € [ for all x € B. Indeed, using Proposition 2.2.1 of
[Nikshych-Vainerman,2002], we have for all b € I:

(m@id)A(S(2(1))br(2))) =
S(z@))(r @id)((1 @b)AL))(7(2(3) @ z(4)) =

= (7(S (50(2))

= (1 ®id)(S(22))1 )73y @ S(T1))bl2)T(0) =

= (id @ 7)(S(2(2))23) @ S(2(1))bS(2(4)))) =

= (r ®id)(es(z2)) @ S(x1))ba() = (7 @id) (L) ® S(z@))br2)l2).

The inverse statement - Theorem 1.2 is proved as follows:

PROOF. Lemma 6.15 shows that [ is a braided-commutative YD &-C*-algebra. Then
Theorem 5.10 shows that the corresponding UCorep(®)-module category D; is a C*-
multitensor category with tensor product ®; and trivial associativities equipped with a
unitary tensor functor

Er:UCorep(®)—D; , Uw Hy®p, .

Let us equip now the category D; with the tensor functor F to Corry(B;) sending
Hy ®p, I to Hy. Then the reconstruction theorems for WHA’s and their morphisms
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allow to construct a WHA $); such that UCorep($;) = C; together with an epimorphism
7 : & —=$;. In its turn, this allows to construct the quotient type coideal C*-subalgebra
J =1(9H;\®). Now, Lemma 6.10 shows that D; = UCorep($);), therefore, D; = D;. But
due to the categorical duality this implies a covariant isomorphism J = [.

In order to prove the uniqueness of §), we prove that J determines Ker(m). Indeed,
as J = Vec{U,;}, where U € UCorep(®)},n € Hy and ¢ € m.(L)Hy C Hy, the
last subspace is determined by J. This means that for any U € UCorep(®, the space
Homycorep(s)(1, (H{;)) is determined by J. The duality morphisms Homycorep(e)(1,U &
V) = Homucoreps)(V,U) (U, V € UCorep(®)) show that the same is true for all sub-
spaces
Homuycoreps(HY ), H;) C B(Hy, Hy). Finally, an operator from B(Hy) belongs to
Ker(m) if and only if all matrix coefficients corresponding to the commutant of the set
Endycorepis(Hfr) in B(Hy) equal to 0. n

6.17. REMARK. In [Vainerman-Vallin,2020] we introduced the notion of a weak coideal
I of B, the difference of which from a coideal C*-subalgebra is that 1; is not necessarily
equal to 1g. One can show that if I is invariant and 1; € Z(B), then (I,A) € Y Dy,.(®).
Then the same reasoning as in the proof of Theorem 1.2 shows that I is isomorphic, as a
&-C*-algebra, to a unique quotient type coideal C*-subalgebra.

7. Example: the Tambara - Yamagami case

7.1. REMARK. In this example C is not only C*-multitensor, but a rigid finite C*-tensor
category. Let F : C—Corrs(R) be a unitary tensor functor, where R is a finite dimen-
sional unital C*-algebra. Then it was shown in [Szlachanyi,2001] that the WHA recon-
structed from the pair (C, F) as in Theorem 3.1 is biconnected: B,NBs = C = B,NZ(DB).
Moreover, Hayashi [Hayashi, 1999] proved that for any given C, the class of C*-algebras R
for which such a functor F exists, contains at least R = CI® (where Q = Irr(C)). He also
constructed the corresponding particular functor H. In general, this class of C*-algebras
R contains several elements, and the corresponding WHAs are called Morita equivalent.
In particular, if this class contains R = C, the corresponding WHAs are Morita equivalent
to a usual C*-Hopf algebra.

7.2. RECONSTRUCTION FOR TAMBARA-YAMAGAMI CATEGORIES. The description of
the Hayashi’s functor for Tambara-Yamagami categories and the corresponding WHA’s
was first obtained in [Mevel,2010]. Below we follow [Vainerman-Vallin,2020], 2.3 and 4.1,
where one can find more details.

Given a finite abelian group G, a non degenerate symmetric bicharacter x on it and a
number 7 = +|G|~1/2, one can define a fusion category denoted by TY(G, x, 7) [Tambara-
Yamagami,1998]. Its set of simple objects is = G U {m} (m is a separate element),
its Grothendieck ring is isomorphic to the Zs-graded fusion ring TYVgs = ZG & Z{m}

such that g-m = m-¢g = m, m? = EGg, g* = ¢g~', m = m*. The associativities
g€
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avyw : (URV)W —U® (VeW) are
Aghk = Wg ik,  Aghm = dm,  Amgh = idp,
Agng = X(9 h)idm,  Agnm = hGeBGidh’ fmmg = heeaaidh’
Gmgm = & X(9, W)idns  amnom = (Tx(9, B) " idn) g1,

where g, h, k € G. The unit isomorphisms are trivial. TY(G, x, ) becomes a C*-tensor
category when x : G x G—T = {z € C||z| = 1}, from now on we assume that this is the
case. The dual objects are: g* = —g, for all g € G, and m* = m. The rigidity morphisms
are defined by R, : Oﬂg*@)g, R, : Oﬂg@)g*, R,, = 7|G|"/?1, and R,, = |G|"/?1, where
t:0—=m ®m is the inclusion. Then dim,(g) = 1, for all g € G, and dim,(m) = \/|G].

Using now the Hayashi’s functor H : TY(G, x, 7)—=Corr;(R), where R = CI+! (see
[Mevel,2010], [Vainerman-Vallin,2020]), one can apply Theorem 3.1 in order to construct
a biconnected regular WHA &1y = (B, A, S, ¢) with UCorep(Gry) = TY(G, x,7) as
C*-tensor categories. It happens that &1y is selfdual.

Denoting 2, = Q := G U {m} and Q,, := G UG, where g € G and G is the second
copy of G, one computes that H9 = CI¢H1 for all g € G, and H™ :22 CCl. Let us fix a
basis {v; } (y € €2,) in each H* (z € ) choosing a norm one vector in every 1-dimensional
vector subspace: vy € Hom(h, (h—g) ® g), vJ, € Hom(m, m ® g), vj* € Hom(m, g ®m),
and vi* € Hom(g,m ® m), where g € G. Now the whole WHA structure of &1y =
(B, A, S,¢) is given by formulas (7), (8), (9), (11) and (12). In particular, the C*-algebra

B = @ H"® H* has a canonical basis {fZ ; = 02 ® U5 }2eq,a,8e0, -
z€Q ’

For all z,y € Q and all v € H*, w € HY, denote v ow = J,,(v ®g w). Then for all
a, €8y, 7,6 € £y, one has:

g,,@fg,d = (v 0 Uz) ® (Ué © Ug>7
where computations made in [Mevel,2010] 2.1.5, give, for all g, h, k € G:

g h __ g+h h __ +h
vf 0 vl = B pyrvf T, 05, 0 0l = 8y v,

v 0] = 6pmX (9, k)vR', Vg OUy = 5m,g+kvfg+kv
m m m m
/Ug oV = x,mX(Qa k)”E ) Uagc oV = 517kkag7

m m __ ,k—h m mo__ -1,9
vy ovg = v, v oy, _5h’kTg§GX(g’h) vl

The coproduct and the counit are defined, respectively, by

Afsg)= D forw®fig

a/MB,te‘
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and €(f5 5) = da,3. The antipode and the involution are as follows:

S(f;z],k) = fk_fgg,hfg’ S(fiim) = fT;;thm S( gl,h) = fl:gg,m7 (31)

S(f8 ) = fude SO = fo S(FT) = 7, (32)
S( g%) = ng?ga S( gf%) = f]Tg

and:
(fi(b],k)* = f}:—gg,k—m (f;z],m)* = ffj—gyg,m7 ( i,h)* = nfb?h—g’

( 7gnm)* = r;;qnw ( ngLh)* = g%? ( gﬂfﬁ)* =T gf’h,
(fgn)" = T ;%’ ( ;’,%)* = fon-

Recall that HY is a commutative C*-algebra isomorphic to R ~ C.

7.3. REMARK. Since &1y is selfdual, we also have B = & BY & B™, where B9 =

geG
Mg41(C), Vg € G, B™ = Myg(C) (see [Mevel, 2010, 2.1). Using the basis {f; .}
and the matriz units {ej .} of B with respect to the basis {vf} of H”, any irreducible
corepresentation U (x € Q) of &y can be written as

U* = Z el ® fr..

Y,2€0,

7.4. QUANTUM SUBGROUPOIDS AND QUOTIENT TYPE COIDEAL C*-SUBALGEBRAS.

7.5. REMARK. The lattice Subgrp(G) of subgroups of G with operations N = N and
V = + can be extended to Subgrp(G) = Subgrp(G) U {Q}, where Q@ = G U {m}, by
putting LNQ =QNL=Land LVQ=QVL=QNQ=QVQ=Q, for any subgroup
L of G. Any rigid tensor C*-subcategory of TY(G, x,T) is equivalent either to Vecy, -
the category of finite dimensional L-graded vector spaces (L < G) or to TY(G,x,T).
Let C* (x € Subgrp(G)) be a representative in such equivalence class of subcategories, in
particular, C* = TY(G, x, 7).

In order to construct all quotient type coideal C*-subalgebras of &7, first construct
all its quantum subgroupoids (up to isomorphism). Theorems 3.1 and 3.2 imply that any
quantum subgroupoid of &7, is isomorphic to one of the quantum subgroupoids (&*, 7%)
such that URep(®?) = C*, where x € Subgrp(G). Define (& 1) = (&1, id) and, for
any L < G, (&%, 71) as follows:
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7.6. LEMMA. If e; . (z € Q,y,z € Q) are the matriz units of B (see Remark 7.3),
l€L,g,heq, the collection (Br, AL, Sy, e1), where B, = @& B(H'),
leL

l _ I l2 l _ l1 l2
AL(GQ@’) - Z Cog—lo,g'—la ® €, AL(GQM) - Z €g—ls,m @ €g.ms

l1,l2€L l1,l2€L
13 +lg=l 19 +lg=l
l _ § I l2 l _ E Iy l2
AL(em,g’) - 6m,g’fl2 ® 6m,g’7 AL(em,m) - Cm,m ® Cm,ms
l1,l2€L l1,l2€L
l1+lg=l 11 +lo=l

SL(?f;,g’) = e;’l—l,g—l7 SL(elg,m) = e';ll,g—l?

SL<€£n,g’) = eg_/lfl,nﬂ SL(elm,m> - er_nl,m7

EL(eiLg/) = EL(ein,g’) = 6L(6i],m’) = EL(Glmym) = 5170,

defines a WHA &%, The canonical projection 7y, : B— By, defined, for allz € Q,a, 3 €
Qu, by mr(el 5) = o€l 5, where 0,1, = 1 if v € L and = 0 otherwise, gives to &L the
structure of a quantum subgroupoid of Sy .

PROOF. Straightforward computations. n

7.7. COROLLARY. A linear basis for (Br): (resp., (Br)s) is given by (e(L)*)acq (Tesp.,
(e(L)a)aca), where, for all g € G, one has: e(L)? = lgelg%g“, e(L), = Y€ and

e(L)™ =e(L),, = g:eﬁn’m.

The counital maps are given by:

el () = doe(L)",  €Pr(el,) = dioe(L),.
A linear basis for (Br)s N (Br): is given by (28)gec/rufmy, where, for all B € G/L, one

has: z5 = Y, el and z, = e(L)" = e(L)y = Y€, .. Moreover, (Br);NZ(By) = C,
leL,g,€8 leL
so BL is connected and not coconnected.

7.8. REMARK. Any &% is Morita equivalent to a commutative and cocommutative Hopf
C*-algebra generated by the group L.

7.9. PROPOSITION. Denote I* := [(B*\&). Then [ = B, and, for any subgroup L of

G, setting vy :== Y vy, where Y € G/L, one has:
yey

I"=Vec<d,Y€eG/L>@H @ o ®H.

leLt



YETTER-DRINFEL’D ALGEBRAS AND COIDEALS OF WEAK HOPF C*-ALGEBRAS 89

PrOOF. We will use Lemma 6.10. For all ¢ € &%, 3 € Q,, one has:
(o) (@ = Y < f5 (mu)a(@) > etvf = Y < 7mn(ffy), e >0 (33)
0,j€Qa i€Qa

A linear form ¢ on By is a left integral if and only if (i ® ¢)AL(€l, ) is in (By),, for all
leL,x,y € Q. Then Lemma 7.6 implies that A = Vec < \,,z € Q >.
For all a,y € Q, 8 € Q,, using (33), one has:

(7TL)*()\7)UEY = Z < WL(fffﬁ% (efm)* > ;'
i€Qa,lEL
This gives, in particular:
(L)« (Ay)vy = 5p705'y,—kzvlg+l7
leL

(m2)(Ay) v = 0 mdp o | Lo,

And also:
(mo)oAop = > < mp(efh) (€)= vh =0,
heG,leL
(r)e A = 3 <) (e,) > = 0.
heG,leL

So if one sets: v% = > 02, for all X C Q, then:
reX

(m1)«(A)HP = 8, 0(Vee < vy, 00, /Y € G/L >) + 6, ,.Co?, for all p € G,
(). (M) H™ = {0}

These calculations and Lemma 6.10 give the result. n

7.10. THE LATTICE OF INVARIANT COIDEAL C*-SUBALGEBRAS. In order to precise the
relationship between quotient type and invariant coideal C*-subalgebras and to charac-
terize the lattice of these coideals in the Tambara-Yamagami case, rewrite the definition
(30) of < using (31) and (32) as follows:

(' @ @) (" @ &) = (3 () on 00l) @ (") 0T o &,
2€Q,
where x,y € Q,n* & € H* n¥, &Y € HY. This expression allows to define the map
P*: @& HY— & HY by putting for any fixed x,y € 0, n¥ € H":

yeQ yeN
Pr(n') = () on’out,
ZEQI

and we have:
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7.11. LEMMA. A coideal C*-subalgebra I = > XY ® HY is invariant if and only if
yeN

® XY=P*( P XY) for all x € Q.
yeN yeN

A straightforward calculation of P* on the basic elements v proves

7.12. LEMMA. For all g, k,h € G, one has:

P"(vf) = 8,005, » P™(v]) = dg0sign(7)> x(p, k)o?,
peG

PMvg) = vg, o P™(vg) =7 Gy X(9,p)v,

peG

Pl = Pl =0

In the Tambara-Yamagami case any invariant coideal C*-subalgebra is not only iso-
morphic but is itself of quotient type:

7.13. PROPOSITION. For any invariant coideal C*-subalgebra I = @© XY ® HY there is a
yeN

unique quotient type coideal C*-subalgebra I* = I(B"\®) such that I = I,

PROOF. Due to [Vainerman-Vallin,2020], Lemma 3.3, b) there is a partition (I';);c;0 of 2
such that X° = Vec < op /i € I° >. Moreover, putting K := {g € G/Dim(X?) # 0},
one has by Lemmas 7.11 and 7.12: X™ = {0}, and X9 = Cv¥, for all g € K, g # 0. With
the convention m + g = m for all ¢ € G :, one has by Lemma 7.12: U1Qi+g € XY for all
i € I°. As a consequence, for all g € G there is j € J such that I'; + g = I';; this allows
only two possibilities:

1) there is a single class I'; = Q, so [ = B, + IS%{O}CU%. But for all g € K \ {0}

ge
one has P™(v4,) = 7'|G|"2 Y x(g, p)v which must be collinear to v} = > v). Hence,
peG yeN

K ={0} and I = B, = I*®

2) The partition (T;) is {m} together with a partition (I'),ep of G. Moreover, for
any p,q € P there is g € GG such that Fg +g = FqG. For any p € P denote L, = {g €
G/I‘g +g= Fg}, then L, is a subgroup of G. But since for all ¢ € P, there is h € G such
that I'y = I', + h, the group L, does not depend on p € P, denote it by L. Let us show
that T'S € G/L for any p € P.

If h e T§ —T¢, then (TS +h)NTS #0, 50 TS +h =TS, Hence, K =I'S —T¢. For all
p € P, let z be in Fg, obviously one has z+ L C Fg, let t € Fg’, thent—z € L = FS —FE
hence t € z + L, as a consequence z + L = Fg SO 1—‘]? € G/L, as we deal with a partition
of G: {I'{/p € P} = G/L. So we have: X° = Vec < (v))yeqa/r, v, >.

If now g € K, then due to Lemma 7.12 one must have Y x(g,h)v) € X° but:

heG
ST x(g, h)v) = > ST x(g, k)oY, so this element has to belong to X° and must be of the
heG peG/Lhep
form Y pup, ie., for all p € G/K and all h € p, one has p, = x(g,h), which means
peG/K
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that K C L*. Conversely, by Lemma 7.12, one must have > x(p, k)v?, € @& A* but
keK,peG keG
on the other hand:

S X k)b, => O x(k,p)on, = K[ Yo,

keKpeG peG keK peK+L

So L+ C K and in case 2) we have [ = I*. n

7.14. COROLLARY. In &1 (G, x,T), the sets of quotient type and invariant coideal C*-
subalgebras coincide and are in bijection with Subgrp(G).

ProoF. By 7.13 any invariant coideal is quotient type, conversely any quotient type
coideal is invariant by lemma 6.16, moreover the set {I*,z € Subgrp(G)} contains all
invariant coideals and is included in the set of quotient type coideals. [

Finally, we describe the lattice of invariant (or quotient type) coideal C*-subalgebras.

7.15. PROPOSITION. The map: x — I* is an anti-isomorphism of the lattices Subgr(G)
and Invl(B).

PROOF. For any subgroup K of G, since I = Vec <%, Y € G/K > @H' @& oF @ HF,
keK+

one sees that the map x +— I® is decreasing. Hence, for all L, K < G, one has I"*5 C
I* N I%. Conversely, for all z € I¥ N I, there exist some families of complex numbers
(Aw), (1tp) and non zero vectors (£2), (n9,) such that:

Z Aved @ €0 4 Zx\lv,ln@)%: Z pzv% @ €9 + Z,ukvf;@%.

YeG/L leLt ZeG/K keK+

This gives:

ZAQU2®@+ Zkzvfn®ﬂ= Z)\QUS@??S—F Z )\ka;L ®%,

geG leLt geG keKL

where g (resp., g) is the class of g in G/L (resp., in G/K). As a consequence, one has:
1)ifl € L+ and | ¢ K+, then )\, = 0.
2) for any g € G the following equality holds: A fo A, 50

Condition 2) implies that for all g € G,p € L + K, one has \, 50 = )\g+p£0 Hence,
g+p

for any Y € G/(L + K) we can define €2 such that for all g € Y one has: /\gfg = &0,
Then, using the fact that L+ N K+ = (L + K)* (see [Hewitt-Ross,1963], (23),(29)(b) on
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p.369), one has:

T S S

geG leLtnK+

- ¥ Sde§+ ¥ wied,
YeG/(L+K) geY e(L+K)+

= Z vy ® &Y + Z Aol @l
YeG/(L+K) le(L+K)+

Hence, z € I**X which proves that [X+8 = 10N K,

Obviously, I* v I* C I*"¥. Conversely, since (L N K)* = L+ + K+, for any p €
(LN K)* there exist [ € L+ and k € K* such that p = k + 1. Then v2, @ H? =
(vl @ HY)(vE @ H¥), so it belongs to IX v I, For all g € G one has:

U2+L © U2+K = U2+LﬁKa
hence, v0, /x ® HO belongs to I*V I*. All basic elements of 1“7 are in I* v I which
gives the converse inclusion X% C I* v I® and the result follows. =
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