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A NOTE ON FROBENIUS-EILENBERG-MOORE OBJECTS IN
DAGGER 2-CATEGORIES

ROWAN POKLEWSKI-KOZIELL

Abstract. We define Frobenius-Eilenberg-Moore objects for a dagger Frobenius monad
in an arbitrary dagger 2-category, and extend to the dagger context a well-known uni-
versal property of the formal theory of monads. We show that the free completion of a
2-category under Eilenberg-Moore objects extends to the dagger context, provided one is
willing to work with those dagger Frobenius monads for which the endofunctor suitably
commutes with the unit. Finally, we define dagger lax functors and dagger lax-limits of
such functors, and show that Frobenius-Eilenberg-Moore objects are examples of such
limits.

1. Preliminaries

A dagger category D is a category equipped with a involutive functor † : Dop −→ D
which is the identity on objects, called the dagger of D. A dagger functor F : D −→ C
between dagger categories D, C is a functor which commutes with the daggers on D and
C. A 2-category D is a dagger 2-category when each of the hom-categories D(A,B) are not
only (small) categories, but dagger categories. More precisely, given vertically-composable
2-cells α and β, and horizontally-composable 2-cells σ and θ in D, the equalities

(α · β)† = β† · α† (σ ∗ θ)† = σ† ∗ θ†

hold, where, here and elsewhere, · and ∗ denote the vertical and horizontal composition of
2-cells, respectively, and where, as we shall do elsewhere, we have dropped all subscripts
on daggers † to refer to particular hom-dagger-categories. The dagger 2-category DagCat
of small dagger categories, dagger functors and natural transformations is a basic example.
Given dagger 2-categories D, C, a 2-functor F : D −→ C is a dagger 2-functor when for
each pair of objects D, D′ ∈ D, the functor

FD,D′ : D(D,D′) −→ C(FD,FD′)

is a dagger functor.
We shall say that a dagger 2-category D is a full dagger sub-2-category of C if there is a

dagger 2-functor I : D −→ C such that for all objects D, D′ of D, the component dagger
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functor ID,D′ : D(D,D′) −→ C(ID, ID′) is an isomorphism of dagger categories. The
weaker case of having ID,D′ only equivalences of categories which are unitarily essentially
surjective has no additional value in our work. The reader is encouraged to consult
[Karvonen, 2019, Chapter 3] for a more detailed account of such dagger equivalences.

If (D, t) is a monad in a dagger 2-category D, it is obviously a comonad too. [HK,
2015, HK, 2016] proposes that in a dagger 2-category, the monads of interest are those
that additionally satisfy the Frobenius law.

1.1. Definition. [HK, 2016] A monad (D, t) (with multiplication 2-cell µ : t2 −→ t and
unit 2-cell η : 1 −→ t) in a dagger 2-category D is a dagger Frobenius monad when the
diagram

t2 t3

t3 t2

tµ†
//

µ†t

��

µt

��

tµ
//

(1)

commutes. Furthermore, DFMnd(D) is the dagger 2-category in which:

� 0-cells are dagger Frobenius monads in D;

� given 0-cells (A, s) and (D, t), a 1-cell (f, σ) : (A, s) −→ (D, t) consists of a 1-cell
f : A −→ D and a 2-cell σ : tf −→ fs in D, such that the diagrams:

tfs fss

ttf

tf fs

σs //

tσ
;;

µtf ##

fµs

��

σ
//

fss fs

tfs

ttf tf

fµs
//

σs
;;

tσ† ##

σ†

��

µtf
//

tf fs

f

σ //

ηtf

bb

fηs

<<

(2)

commute, where µt : t2 −→ t and µs : s2 −→ s are the multiplications of t and s,
respectively, and ηt : 1 −→ t and ηs : 1 −→ s are the units of t and s, respectively.
Composition of 1-cells is defined as (g, γ) · (f, σ) = (gf, gσ · γf) (see also [Street,
1972, Section 1]);
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� given 0-cells (A, s), (D, t) and 1-cells (f, σ), (g, γ) : (A, s) −→ (D, t) in DFMnd(D),
a 2-cell α : (f, σ) −→ (g, γ) in DFMnd(D) is a 2-cell α : f −→ g in D, such that
the following diagrams

tf tg

fs gs

tα //

σ

��

γ

��
αs

//

tg tf

gs fs

tα†
//

γ

��

σ

��

α†s
//

commute. Vertical and horizontal composition of 2-cells is induced by the corre-
sponding vertical and horizontal composition of 2-cells in D, as is the dagger on
2-cells induced by the dagger on 2-cells in D.

There is an inclusion dagger 2-functor I : D −→ DFMnd(D), defined on 0-cells by I(D) =
(D, 1), on 1-cells by I(f) = (f, 1), and on 2-cells by I(α) = α.

A dagger Frobenius monad in the dagger 2-category DagCat is of course simply a
monad (T, µ, η) on a dagger category D whose endofunctor part T is a dagger functor,
and such that

T (µD)µ
†
TD = µTDT (µ

†
D)

for each D in D.
One may easily verify that any dagger Frobenius monad is a Frobenius monad in the

sense of [Street, 2004] – however, neither that paper nor [Lauda, 2006] explore monads in
the dagger context. In particular, algebras for these monads should satisfy an additional
condition, so that they may behave quite differently from their non-dagger counterparts.

1.2. Definition. Let T = (T, µ, η) be a dagger Frobenius monad on a dagger category
D. A Frobenius-Eilenberg-Moore algebra (or FEM-algebra) for T is an Eilenberg-Moore
algebra (D, δ) for T , such that the diagram

T (D) T 2(D)

T 2(D) T (D)

T (δ†) //

µ†
D

��

µD

��

T (δ)
//

– called the Frobenius law diagram for the algebra (D, δ) – commutes. The class of
all Frobenius-Eilenberg-Moore algebras and the class of all homomorphisms of Eilenberg-
Moore algebras between FEM-algebras form a dagger category, which is denoted by FEM(D, T ).

An adjunction in a dagger 2-category D is simply an adjunction in the underlying
2-category.
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For dagger 2-categories A, D, there is 2-category [A,D], called the dagger 2-functor
category, consisting of dagger 2-functors, 2-natural transformations, and modifications.
There is no need to specify “dagger 2-natural transformations”: given dagger 2-functors
F,G : A −→ D in [A,D], a 2-natural transformation is a family ϕ =

(
ϕA : FA −→

GA
)
A∈A of 1-cells in D, such that the diagram

A(A,B) D(FA, FB)

D(GA,GB) D(FA,GB)

FA,B //

GA,B

��

D(FA,ϕB)

��

D(ϕA,GB)
//

commutes for all objects A, B in D, and clearly the representable functors D(FA, ϕB)
and D(ϕA, GB) of this diagram are of course dagger functors themselves. The dagger
structure on D then naturally induces a dagger structure on [A,D].

A dagger 2-functor F : D −→ DagCat is representable, when there is some D in D
and an isomorphism ϕ : D(D,−) −→ F in [D,DagCat]. The pair (D,ϕ) is called a
representation of F . What is worth remarking is that, for a dagger 2-category C and
a dagger 2-functor R : D −→ C, when, for each object C of C, the dagger 2-functor
C(C,R−) : D −→ DagCat is representable – with representation (LC, ϕC) – one has that
the unique (up to 2-natural isomorphism) 2-functor L : C −→ D such that

D(LC,D) C(C,RD)
ϕC,D //

is 2-natural in both C and D, is also a dagger 2-functor. This is easily seen from the
standard construction of L, as displayed in, say, [Kelly, 2005, Section 1.10]. Furthermore,
L is of course the left 2-adjoint of R and such 2-adjunctions correspond bijectively to
2-natural isomorphisms ϕ in the above display.

Finally, one also has a Yoneda Lemma for dagger 2-categories: there are dagger 2-
functors E, N : [Dop,DagCat]×D −→ DagCat, given, respectively, on 0-cells by E(F,D) =
F (D) and N(F,D) = [Dop,DagCat](D(−, D), F ) and, furthermore, an isomorphism y :
N −→ E.

The commutativity of diagram (1) is known as the Frobenius law and may be formu-
lated in a general (possibly non-dagger) monoidal category as a compatibility condition
between a monoid and comonoid structure on a specified object. There, the law has an
important topological significance, which is made precise by saying that the category of
2-dimensional topological quantum field theories is equivalent to the category of commu-
tative Frobenius algebras [JK, 2003]. In the dagger context, the Frobenius law can be seen
equivalently in terms of dagger closures [HV, 2019, Section 5.3][HK, 2016, Section 9].

Dagger Frobenius monads and categories of Frobenius-Eilenberg-Moore algebras for
such monads were first considered in [HK, 2015] and [HK, 2016], in which they are shown
to include the important example of quantum measurements. In this paper, we continue
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work initiated in those papers in pursuit of a formal theory of dagger Frobenius monads
in the spirit of [Street, 1972] and [LS, 2002].

2. Frobenius-Eilenberg-Moore objects

Suppose that T is a (dagger Frobenius) monad on a (dagger) category A. We will call a
family (XA, ξA)A∈A a family of (Frobenius-)Eilenberg-Moore algebras for T when (XA, ξA)
is an (Frobenius-)Eilenberg-Moore algebra for T , for each object A of A.

Let (D, t) (with multiplication and unit given, respectively, by µ and η) be a dagger
Frobenius monad in a dagger 2-categoryD. Then

(
D(A,D),D(A, t)

)
is a dagger Frobenius

monad (with multiplication and unit given, respectively, by D(A, µ) and D(A, η)) in
DagCat, for every object A of D. We may now construct the dagger category of Frobenius-
Eilenberg-Moore algebras FEM

(
D(A,D),D(A, t)

)
for the dagger Frobenius monad D(A, t)

on the dagger category D(A,D). Applying these observations to the case D = DagCat,
we arrive at the following result for a dagger category D and a dagger Frobenius monad
(T, µ, η) on D.

2.1. Proposition. Suppose F : A −→ D is a dagger functor, (T, µ, η) is a dagger
Frobenius monad on the dagger category D, and σ : TF −→ F is a natural transfor-
mation. Then, (FA, σA)A∈A is a family of Frobenius-Eilenberg-Moore algebras for T if
and only if (F, σ) is a Frobenius-Eilenberg-Moore algebra for the dagger Frobenius monad
DagCat(A, T ) on the dagger category DagCat(A,D). Furthermore, given another such
Frobenius-Eilenberg-Moore algebra (G, γ) for DagCat(A, T ), and a natural transforma-
tion α : F −→ G, αA : (FA, σA) −→ (GA, γA) is a homomorphism of Eilenberg-Moore
algebras for every A of A if and only if α : (F, σ) −→ (G, γ) is a homomorphism of
Eilenberg-Moore algebras for the monad DagCat(A, T ).

Proof. A routine calculation shows that, for every object A in A, the diagram

T 2(FA) T (FA)

T (FA) FA

FA
µFA //

T (σA)

��

σA

��

σA

//

ηFAoo

commutes if and only if the diagram

DagCat(A, T )2(F ) DagCat(A, T )(F )

DagCat(A, T )(F ) F

F
DagCat(A,µ)(F ) //

DagCat(A,T )(σ)

��

σ

��

σ
//

DagCat(A,η)(F )oo
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commutes. That is, the family (FA, σA)A∈A is a family of Eilenberg-Moore algebras for
T if and only if (F, σ) is an Eilenberg-Moore algebra for the monad DagCat(A, T ) on the
(dagger) category DagCat(A,D). Likewise, for every object A in A, the diagram

T (FA) T 2(FA)

T 2(FA) T (FA)

T (σ†
A)

//

µ†
FA

��

µFA

��

T (σA)
//

commutes if and only if the diagram

DagCat(A, T )(F ) DagCat(A, T )2(F )

DagCat(A, T )2(F ) DagCat(A, T )(F )

DagCat(A,T )(σ†) //

DagCat(A,µ)†(F )

��

DagCat(A,µ)(F )

��

DagCat(A,T )(σ)
//

commutes. The second part of the proposition is similarly proved.

2.2. Theorem. Suppose (T, µ, η) is a dagger Frobenius monad on the dagger category
D. For every dagger category A, there is an isomorphism of dagger categories

DagCat(A,FEM(D, T )) ∼= FEM(DagCat(A,D),DagCat(A, T ))

which is 2-natural in each of the arguments.

Proof. Each dagger functor F : A −→ FEM(D, T ) determines a dagger functor F =
UTF : A −→ D and a family

(
FA, σA

)
A∈A of FEM-algebras, where UT : FEM(D, T ) −→

D is the forgetful (dagger) functor. Since F is a functor, the family σ =
(
σA : TFA −→

FA
)
is a natural transformation σ : TF −→ F . Therefore, by Proposition 2.1, (F, σ)

is a FEM-algebra for the dagger Frobenius monad DagCat(A, T ) on the dagger category
DagCat(A,D).

Conversely, given a dagger functor F : A −→ D and a natural transformation
σ : TF −→ F such that (F, σ) is a FEM-algebra for the dagger Frobenius monad
DagCat(A, T ), for each object A ofA,

(
FA, σA

)
is a FEM-algebra for T , again by Proposi-

tion 2.1. Since σ : TF −→ F is a natural transformation, for each morphism f : A −→ B
of A, Ff : FA −→ F (B) is a morphism

(
FA, σA

)
−→

(
FB, σB

)
of Eilenberg-Moore

algebras. This now defines a functor F : A −→ FEM(D, T ).
Next, the second part of Proposition 2.1 similarly establishes correspondences between

natural transformations F −→ G and homomorphisms (F, σ) −→ (G, γ) of Eilenberg-
Moore algebras for the monad DagCat(A, T ), which preserve daggers.

Clearly, these correspondences are inverses of each other. It is routine to show that
each is 2-natural in each of the arguments.
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The previous theorem suggests our main definition.

2.3. Definition. For a dagger 2-category D, a dagger Frobenius monad (D, t) in D is
said to have a Frobenius-Eilenberg-Moore object (or FEM-object) if the dagger 2-functor

FEM
(
D(−, D),D(−, t)

)
: Dop −→ DagCat

whose object-part is defined by A 7−→ FEM
(
D(A,D),D(A, t)

)
, is representable. A choice

of a representing object in D, denoted FEM(D, t), is called the Frobenius-Eilenberg-Moore
object for (D, t). D is further said to have Frobenius-Eilenberg-Moore objects if every
dagger Frobenius monad (D, t) in D has a Frobenius-Eilenberg-Moore object.

2.4. Proposition. Suppose (D, t) is a dagger Frobenius monad in the dagger 2-category
D. For every object A of D, there is an isomorphism of dagger categories

DFMnd(D)((A, 1), (D, t)) ∼= FEM(D(A,D),D(A, t)) (3)

2-natural in each of the arguments.

Proof. One easily shows that, to give a pair (f, σ) in which f : A −→ D is a 1-cell and
σ : tf −→ f a 2-cell in D satisfying the top-left and bottom diagrams (2) for the monads
(A, 1) and (D, t) is exactly to give an Eilenberg-Moore algebra for the monad D(A, t) on
D(A,D). (F, σ) is, moreover, a morphism of dagger Frobenius monads (A, 1) −→ (D, t),
exactly when, by the top-right diagram (2), σ† · σ = µf · tσ†, which is the statement
that σ† : (f, σ) −→ (tf, µf) = (D(A, t)(f),D(A, µ)(f)) is a homomorphism of Eilenberg-
Moore algebras for the monad D(A, t). By [HK, 2016, Lemma 6.8], this is exactly to say
that (f, σ) is a FEM-algebra for the dagger Frobenius monad D(A, t).

Finally, for a second morphism (g, γ) : (A, 1) −→ (D, t) of dagger Frobenius monads,
to give a 2-cell α : (f, σ) −→ (g, γ) in DFMnd(D) is exactly to give a homomorphism
(f, σ) −→ (g, γ) of Eilenberg-Moore algebras for the monadD(A, t), by [HK, 2016, Lemma
6.7].

2.5. Definition. [HK, 2016] A dagger 2-category D admits the construction of Frobenius-
Eilenberg-Moore algebras when the inclusion dagger 2-functor I : D −→ DFMnd(D) has
a right 2-adjoint, which is denoted FEM : DFMnd(D) −→ D.

From Proposition 2.4, the following result is immediate.

2.6. Theorem. A dagger 2-category D admits the construction of Frobenius-Eilenberg-
Moore algebras if and only if D has Frobenius-Eilenberg-Moore objects. In particular, to
give a right adjoint to I : D −→ DFMnd(D) is precisely to give a choice, for each dagger
Frobenius monad in D of a Frobenius-Eilenberg-Moore-object.

Theorems 2.2 and 2.6 now give the following known result.
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2.7. Corollary. [HK, 2016, Theorem 7.5] DagCat admits the construction of Frobenius-
Eilenberg-Moore algebras.

When a dagger Frobenius monad (D, t) in D has a FEM-object, the dagger iso-
morphism (3) uniquely determines a morphism of dagger Frobenius monads (ut, ξ) :(
FEM(D, t), 1

)
−→

(
D, t

)
, in which we think of the 1-cell ut as the “forgetful” 1-cell.

Moreover, if D further admits the construction of Frobenius-Eilenberg-Moore algebras,
then the component of the counit of the 2-adjunction evaluated at the dagger Frobenius
monad (D, t) is (ut, ξ). In particular, in the case that D = DagCat, the forgetful 1-cell
UT is of course the usual forgetful dagger functor FEM(D, T ) −→ D.

[Street, 1972] shows that much of the 1-dimensional theory of monads can be described
by several important universal properties in a 2-dimensional context. We next show that
in passing to the dagger context, there are corresponding universal properties.

2.8. Lemma. For an adjunction f ⊣ u in a dagger 2-category D, the monad generated by
the adjunction f ⊣ u is a dagger Frobenius monad.

Proof. If f ⊣ u is an adjunction in a dagger 2-category D, with counit ϵ : fu −→ 1
and unit η : 1 −→ uf , then we also have u ⊣ f , with counit η† : uf −→ 1 and unit
ϵ† : 1 −→ fu. [Lauda, 2006, Corollary 2.22] now says that the monad (D, uf) generated
by the adjunction f ⊣ u is a dagger Frobenius monad.

Following this proposition we call (D, uf) the dagger Frobenius monad generated by
the adjunction f ⊣ u.

2.9. Theorem. [HK, 2016, Theorem 7.4] Every dagger Frobenius monad in a dagger
2-category D having a Frobenius-Eilenberg-Moore object is generated by an adjunction.

When a dagger Frobenius monad (D, t) in a dagger 2-category D has a FEM-object,
the isomorphism of dagger categories

D
(
A,FEM(D, t)

)
−→ DFMnd(D)

(
(A, 1), (D, t)

)
(4)

is defined by f 7−→ (utf, ξf) on 1-cells and σ 7−→ utσ on 2-cells, for the unique morphism
(ut, ξ) :

(
FEM(D, t), 1

)
−→ (D, t) of dagger Frobenius monads. The proof of Theorem 2.9

shows that, for a dagger Frobenius monad (D, t) in a dagger 2-category D, if (D, t) has
a FEM-object, there exists a unique 1-cell f t : D −→ FEM(D, t) such that t = utf t and
µ = ξf t, and a unique 2-cell ϵt : f tut −→ 1 such that utϵt = ξ. Furthermore, f t is a left
adjoint of ut and generates the dagger Frobenius monad (D, t).

2.10. Theorem. In the notation above, suppose the dagger Frobenius monad (D, t) gen-
erated by the adjunction f ⊣ u has a Frobenius-Eilenberg-Moore object. Then, there exists
a unique 1-cell n : A −→ FEM(D, t) such that utn = u and uϵ = ξn, where ϵ is the counit
of the adjunction f ⊣ u. Moreover, this n satisfies nf = f t and nϵ = ϵtn.
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Proof. One easily verifies that (u, uϵ) : (A, 1) −→ (D, t) is a morphism of monads. It
remains to verify that it is a morphism of dagger Frobenius monads. From the top-right
diagram of (2), (u, uϵ) is a morphism of dagger Frobenius monads if and only if

u(ϵ† · ϵ) = uϵ† · uϵ = uϵfu · ufuϵ† = u(ϵfu · fuϵ†)

But, a straightforward application of the interchange law gives the equalities

fuϵ · ϵ†fu = ϵ† · ϵ = ϵfu · fuϵ†

And so, (u, uϵ) is indeed a morphism of dagger Frobenius monads. The rest of the proof
proceeds identically to the similar proof in [Street, 1972]. Since (u, uϵ) : (A, 1) −→ (D, t) is
a morphism of dagger Frobenius monads, there exists a unique 1-cell n : A −→ FEM(D, t)
such that the diagram

(D, t)

(A, 1)
(
FEM(D, t), 1

)(n,1) //

(u,uϵ)

��
(ut,ξ)

��

commutes. Therefore, utn = u and uϵ = ξn, so that ut(nϵ) = uϵ = ξn = ut(ϵtn).
Therefore, by the dagger isomorphism (4), we have nϵ = ϵtn. Finally,

ut(nf) = uf = t

ξ(nf) = uϵf = µ

By the property which uniquely determines f t, we have f t = nf .

Since DagCat admits the construction of Frobenius-Eilenberg-Moore algebras, the fol-
lowing result is immediate.

2.11. Corollary. [HK, 2016, Theorem 6.9] Suppose F and U are dagger adjoints be-
tween dagger categories A and D, with T the dagger Frobenius monad generated by F ⊣ U .
Then, there exists a unique dagger functor N : A −→ FEM

(
D, T

)
such that UTN = U

and NF = F T .

2.12. Definition. The unique 1-cell n : A −→ FEM(D, t) of Theorem 2.10 is called the
right comparison 1-cell of the adjunction f ⊣ u. If this 1-cell is a dagger equivalence (that
is, there is a 1-cell m : FEM(D, t) −→ A, and 2-cell unitaries nm ∼= 1 and 1 ∼= mn), then
the adjunction f ⊣ u is said to be monadic.

Note that 2-functors between 2-categories send adjunctions to adjunctions. The for-
mulation of Frobenius-Eilenberg-Moore objects as representing objects for a representable
dagger 2-functor in the previous section now gives the following result, whose proof is
identical to that of [Street, 1972, Corollary 8.1].
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2.13. Corollary. Suppose the dagger Frobenius monad generated by an adjunction f ⊣
u in a dagger 2-category D has a Frobenius-Eilenberg-Moore object. The adjunction f ⊣ u
is monadic if and only if, for each object X of D, the adjunction D(X, f) ⊣ D(X, u) in
DagCat is monadic.

3. Free completions under FEM-objects

Given a monad (A, t) in a 2-category K, we may dually consider its Kleisli object [LS,
2002]. This is defined to be the Eilenberg-Moore object of (A, t), seen as a monad in Kop.
We define Frobenius-Kleisli objects for dagger Frobenius monads in a dagger 2-category
in a similar fashion.

3.1. Definition. A Frobenius-Kleisli object for a dagger Frobenius monad (D, t) in a
dagger 2-category D is a Frobenius-Eilenberg-Moore object for (D, t) considered as a dagger
Frobenius monad in Dop. A Frobenius-Kleisli object for (D, t), when it exists, is denoted
by FK(D, t), and in particular satisfies, for each object X in D, the following isomorphism
of dagger categories

D
(
FK(D, t), X

) ∼= FEM
(
D(D,X),D(t,X)

)
2-natural in each of the arguments. D is said to have Frobenius-Kleisli objects if every
dagger Frobenius monad in D has a Frobenius-Kleisli object.

From [HK, 2016, Lemma 6.1] we know that the Kleisli category DT for a dagger
Frobenius monad (T, µ, η) on a dagger category D carries a canonical dagger structure,
given by (

f : C −→ TD
)
7−→

(
T (f †)µ†

DηD : D −→ TC
)

(5)

which commutes with the canonical dagger functors D −→ DT and DT −→ D. We now
show that more is true: in fact, this dagger structure precisely makes DT a Frobenius-
Kleisli object for (D, T ).

3.2. Theorem. Each dagger Frobenius monad T = (T, µ, η) on a dagger category D has
a Frobenius-Kleisli object, which is the Kleisli category DT of the monad T .

Proof. Let F T : D −→ FEM(D, T ) and FT : D −→ DT denote the canonical free (dag-
ger) functors. For a dagger category X and a dagger functor S ′ : F T (D) −→ X, the
pair (S ′F T , S ′µ) is a Frobenius-Eilenberg-Moore algebra for the dagger Frobenius monad
DagCat(T,X) on the dagger category DagCat(D,X). Indeed, since for each object D in
D, F T (D) =

(
T (D), µD

)
is an Eilenberg-Moore algebra for the monad T , (S ′F T , S ′µ)

is surely an Eilenberg-Moore algebra for DagCat(T,X). Furthermore, since T is a dag-
ger Frobenius monad, (S ′F T , S ′µ) is additionally a Frobenius-Eilenberg-Moore algebra.
Sending a natural transformation α : S ′ −→ S ′′ : F T (D) −→ X to the homomorphism
αF T : S ′F T −→ S ′′F T of Eilenberg-Moore algebras then determines a dagger functor

DagCat
(
F T (D),X

)
−→ FEM

(
DagCat(D,X),DagCat(T,X)

)
(6)
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On the other hand, if (S, ϕ) is a Frobenius-Eilenberg-Moore algebra for the dagger Frobe-
nius monad DagCat(T,X), the mappings

D 7−→ SD,(
f : C −→ TD

)
7−→

(
ϕDSf : SC −→ SD

)
yield a dagger functor S : DT −→ X. For, given morphisms g : B −→ TC and f : C −→
TD in D, the composite morphism f ·g in DT is given by the morphism µDT (f)g : B −→
TD in D, and so

S(f · g) = ϕDS(µD)ST (f)S(g)

= ϕDϕT (C)ST (f)S(g)

= ϕDS(f)ϕCS(g) = S(f)S(g)

where the second equality follows by definition of (S, ϕ) being an Eilenberg-Moore alge-
bra, and the third equality by the fact that ϕ : ST −→ S is a natural transformation.
Furthermore, since ηD : D −→ TD in D is the identity morphism D −→ D in DT ,

S(1D) = ϕDS(ηD) = 1SD

again by definition of (S, ϕ) being an Eilenberg-Moore algebra, and so S is indeed a func-
tor. Finally, note that since (S, ϕ) is Frobenius-Eilenberg-Moore algebra for DagCat(T,X),
one has that for each D in D,

ϕTDS(µ
†
D) = S(µD)ϕ

†
TD (7)

Therefore, for f : C −→ TD in D,

S(f †) = ϕCST (f
†)S(µ†

D)S(ηD)

= S(f †)ϕTDS(µ
†
D)S(ηD)

(7)
= S(f †)S(µD)ϕ

†
TDS(ηD)

= S(f †)S(µD)ST (ηD)ϕ
†
D

= S(f †)ϕ†
D

=
(
ϕDS(f)

)†
= S(f)†

Sending a homomorphism of Eilenberg-Moore algebras ψ : (P, ρ) −→ (S, ϕ) to its under-
lying natural transformation ψ : P −→ S now determines a dagger functor

FEM
(
DagCat(D,X),DagCat(T,X)

)
−→ DagCat

(
DT ,X

)
(8)

These two dagger functors (6) and (8) determine an isomorphism of dagger categories

DagCat
(
DT ,X

) ∼= FEM
(
DagCat(D,X),DagCat(T,X)

)
2-natural in the arguments.
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Our next contribution is to explicitly construct the free completion under Frobenius-
Eilenberg–Moore objects of a dagger 2-category D. What we mean by this free completion
will be clear from Theorem 3.5 below. Informally, however, our construction will produce a
‘dagger-enriched’ version of the closure K of a 2-category K in [Kop,Cat] under Eilenberg-
Moore objects, as detailed in [Street, 1976, Section 4]. Rather than attempting to extend
to the dagger context the sophisticated machinery of [Street, 1976], we give a more direct
construction similar to that in [LS, 2002].

Given a dagger 2-category D, each dagger Frobenius monad (F, ϕ) in [Dop,DagCat]
has a Frobenius-Kleisli object, which we denote FK(F, ϕ). Indeed, Theorem 3.2 shows
that there exists a dagger 2-functor FK : DFMnd(DagCat) −→ DagCat – which is in
fact a left 2-adjoint of the inclusion dagger 2-functor I : DagCat −→ DFMnd(DagCat)
– and so one constructs a dagger 2-functor FK(F, ϕ) : Dop −→ DagCat in the obvious
fashion of specifying 0-cells, 1-cells and 2-cells in DFMnd(DagCat) determined by the
pointwise values of (F, ϕ), and then taking their images under the dagger 2-functor FK :
DFMnd(DagCat) −→ DagCat. Finally, since we now have, for each D in D, a 2-natural
isomorphism of dagger categories

DagCat
(
FK(FD, ϕD), SD

) ∼= FEM
(
DagCat(FD, SD),DagCat(ϕD, SD)

)
we surely have a 2-natural isomorphism of dagger categories

[Dop,DagCat](FK(F, ϕ), S) ∼= FEM([Dop,DagCat](F, S), [Dop,DagCat](ϕ, S))

for each dagger 2-functor S : Dop −→ DagCat.
Now, we proceed by a familiar transfinite process of, starting with the collection of all

representable dagger 2-functors D(−, D) in [Dop,DagCat] and adding to this collection at
each step thereafter, all Frobenius-Kleisli objects of dagger Frobenius monads involving
objects of the collection at the previous step. Since the argument presented in [LS,
2002] boils down to the fact that the free functor D(X,D) −→ D(X,D)T to the Kleisli
category for a monad T on D(X,D) is bijective on objects, the same argument applies
mutis mutandis in our dagger case, so that this typically transfinite process in fact also
terminates after the first step.

In conclusion, taking the replete full dagger sub-2-category of [Dop,DagCat] of ob-
jects resulting from the single step of this process produces a dagger 2-category hav-
ing Frobenius-Kleisli objects. Furthermore, since each representable D(−, D) is itself a
Frobenius-Kleisli object for a dagger Frobenius monad on a representable (for example,
the identity monad on D(−, D)), every object of this dagger 2-category is a Frobenius-
Kleisli object for a dagger Frobenius monad on a representable. We shall denote this
dagger 2-category by FK(D).

We now show that a simplification is possible which allows us to give an explicit
description of FK(D).
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3.3. Proposition. Each 1-cell FK
(
D(−, D),D(−, t)

)
−→ FK

(
D(−, C),D(−, s)

)
in FK(D)

is a pair (f, σ) in which f : D −→ C is a 1-cell in D and σ : ft −→ sf a 2-cell in D
which make the following diagrams

sft ssf

ftt

ft sf

sσ //

σt
;;

fµt ##

µsf

��

σ
//

ssf sf

sft

ftt ft

µsf //

sσ
;;

σ†t ##

σ†

��

fµt
//

ft sf

f

σ //

fηt

bb

ηsf

<<

(9)

commute. Furthermore, each 2-cell in FK(D) between such 1-cells (f, σ), (g, γ) is a 2-cell
α : f −→ sg in D such that the diagram

sf ssgft

sgt ssg sg

sα //σ //

αt

��

sγ
//

µsg

��
µsg

//

(10)

commutes.

Proof.We proceed by an argument similar to the one found in [LS, 2002]. For the objects
FK

(
D(−, D),D(−, t)

)
and FK

(
D(−, C),D(−, s)

)
in FK(D), determined, respectively, by

the dagger Frobenius monads (D, t) and (C, s) in D, a 1-cell

FK
(
D(−, D),D(−, t)

)
−→ FK

(
D(−, C),D(−, s)

)
(11)

is a FEM-algebra for the dagger Frobenius monad

FK
(
D
)(

D(−, t),FK
(
D(−, C),D(−, s)

))
(12)

on the dagger category

FK
(
D
)(

D(−, D),FK
(
D(−, C),D(−, s)

))
(13)
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by the definition of Frobenius-Kleisli objects. By the Yoneda lemma for dagger 2-
categories, (13) is 2-naturally isomorphic to FK

(
D(D,C),D(D, s)

)
, while the dagger

Frobenius monad corresponding to (12) is denoted FK
(
D(t, C),D(t, s)

)
. By a similar

argument, a 2-cell between 1-cells (11) is simply a morphism of Eilenberg-Moore algebras
between the corresponding FEM-algebras. That is, there is an isomorphism of dagger cate-

gories between the dagger category FK(D)
(
FK

(
D(−, D),D(−, t)

)
,FK

(
D(−, C),D(−, s)

))
and the dagger category FEM

(
FK

(
D(D,C),D(D, s)

)
,FK

(
D(t, C),D(t, s)

))
which is 2-

natural in the arguments.
Now, the dagger category FK

(
D(D,C),D(D, s)

)
has as objects 1-cells f : D −→ C in

D, and as morphisms 2-cells σ : f −→ sg in D. Composition is given by the usual Kleisli
composition. Turning to the dagger Frobenius monad FK

(
D(t, C),D(t, s)

)
, its (dagger)

endofunctor part acts on objects by f 7−→ ft and on morphisms (σ : f −→ sg) 7−→ (σt :
ft −→ sgt). The component at some g : D −→ C of the multiplication part of this dagger
Frobenius monad is given by ηsgt · gµt. Likewise, the component at g : D −→ C of the
unit part is given by ηsgt · gηt.

Therefore, a 1-cell (11) is a pair (f, σ) in which f : D −→ C is a 1-cell in D, and
σ : ft −→ sf a 2-cell in D satisfying the associative, unit and Frobenius laws for a FEM-
algebra for the dagger Frobenius monad FK

(
D(t, C),D(t, s)

)
– the first two laws of which

give the top-left and bottom diagrams of (9).
It remains only to calculate the Frobenius law diagram for (f, σ). By [HK, 2016,

Lemma 6.8], this is exactly the commutativity of the diagram

ft

sf

sftt

sft

τ //

ρ
//

σ

��

µsft·sσt

��

in which τ = sfµt† · sηs†ft ·µs†ft · ηsft and ρ = µsft · ssσ† · sµs†f · sηsf . The top path is

µsft · sσt · τ = µsft · sσt · sfµt† · sηs†ft · µs†ft · ηsft

= µsft · sσt · sfµt† · ηsft

= µsft · s(σt · fµt†) · ηsft

= µsft · ηssft · σt · fµt†

= σt · fµt†

while, using the Frobenius law for the dagger Frobenius monad (C, s), for the bottom
path we have
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ρ · σ = µsft · ssσ† · sµs†f · sηsf · σ
= sσ† · µssf · sµs†f · sηsf · σ
= sσ† · sµsf · µs†sf · sηsf · σ
= sσ† · sµsf · ssηsf · µs†f · σ
= sσ† · µs†f · σ

That is, the commutativity of the Frobenius law diagram for (f, σ) is the equality

σ† · µsf · sσ = fµt · σ†t

which is exactly the top-right diagram (9).
Finally, as in the (possibly) non-dagger case presented in [LS, 2002], to give a 2-cell α :

(f, σ) −→ (g, γ) seen as FEM-algebras for the dagger Frobenius monad FK
(
D(t, C),D(t, s)

)
is to give a 2-cell α : f −→ sg in D satisfying (10). The dagger α†, considered as a 2-cell
in FK(D), is calculated from the canonical dagger (5) as the 2-cell sα† ·µs†g ·ηsg : g −→ sf
in D.

We may now take the 0-cells of FK(D) to be dagger Frobenius monads in D, and 1- and
2-cells in FK(D) to be as described in the above proposition. Furthermore, the Yoneda
embedding dagger 2-functor induces a (2-)fully faithful dagger 2-functor I : D −→ FK(D)
whose action on 0-cells is given by D 7−→ (D, 1), the identity dagger Frobenius monad on
D.

Furthermore, we now define FEM(D) = KL(Dop)op. A 0-cell in FEM(D) is once again a
dagger Frobenius monad in D, while 1-cells are the same as 1-cells in DFMnd(D). A 2-cell
(f, σ) −→ (g, γ) : (D, t) −→ (C, s) is a 2-cell α : f −→ gt in D such that the diagram

ft gttsf

sgt gtt gt

αt //σ //

sα

��

γt
//

gµt

��

gµt
//

(14)

commutes. Again, the restricted Yoneda embedding dagger 2-functor induces a dagger
2-functor I : D −→ FEM(D) whose action on 0-cells is given by D 7−→ (D, 1).

3.4. Example.Consider FEM(D) for the case that the dagger 2-categoryD has Frobenius-
Eilenberg-Moore objects. As usual, it has 0-cells as dagger Frobenius monads in D. Given
dagger Frobenius monads (D, t) and (C, s) in D, there is a bijection between the set of
1-cells (f, σ) : (D, t) −→ (C, s) of DFMnd(D) (and hence FEM(D)) and the set of pairs
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(f, f) of 1-cells in D such that the diagram

FEM(D, t) FEM(C, s)

D C

f //

ut

��

us

��

f
//

commutes, where ut and us are the forgetful 1-cells. To see this, first fix the 1-cell
f : D −→ C. To give a 1-cell f : FEM(D, t) −→ FEM(C, s) such that the above di-
agram commutes is, by the definition of the FEM-object FEM(C, s), to give a FEM-
algebra (fut, ξ) for the dagger Frobenius monad D(FEM(D, t), s) on the dagger category
D(FEM(D, t), C). But the adjunction f t ⊣ ut in D of course induces an adjunction
D(ut, C) ⊣ D(f t, C) in DagCat, so that there is a bijection

D(FEM(D, t), C)(sfut, fut) ∼= D(D,C)(sf, ft)

So, by [HK, 2016, Lemma 6.8], to give such a FEM-algebra (fut, ξ) for the dagger Frobe-
nius monad D(FEM(D, t), S) is exactly to give a morphism (f, σ) : (D, t) −→ (C, s) of
dagger Frobenius monads.

In other words, 1-cells (D, t) −→ (C, s) in FEM(D) are pairs (f, f) of 1-cells in D
satisfying fut = usf .

As is true in the (possibly) non-dagger case in [LS, 2002], a 2-cell (f, f) −→ (g, g) in
FEM(D) from (D, t) to (C, s) is simply a 2-cell f −→ g in D.

Next, suppose that tηt = ηtt. We show that under this condition, this correspondence
of 2-cells preserves daggers. Indeed, for 1-cells (f, f), (g, g) in FEM(D), to give a 2-cell
α : f −→ g in D is exactly to give a 2-cell usαf t·fηt = α : f −→ gt in FEM(D). Therefore,
to give the 2-cell α† : g −→ f in D is exactly to give the 2-cell usα†f t · gηt : g −→ ft. But
α† is calculated as the 2-cell

(usαf t · fηt)†t · gµt† · gηt = fηt†t · usα†f tt · gµt† · gηt

in D. Therefore, it remains to show that usα†f t · gηt = fηt†t · usα†f tt · gµt† · gηt, which is
the case when tηt† = ηt†t.

3.5. Theorem. Let D be a dagger 2-category, and let C be a dagger 2-category such that,
for every dagger Frobenius monad (C, s) in C, the equality

sηs = ηss

holds. Then, if C has Frobenius-Eilenberg-Moore objects, composition with the dagger
inclusion 2-functor I induces an equivalence of categories

[FEM(D), C]FEM ≈ [D, C]

between the dagger 2-functor category [D, C] and the full subcategory of the dagger 2-
functor category [FEM(D), C]FEM of dagger 2-functors which preserve Frobenius-Eilenberg-
Moore objects.
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Proof. Since C has FEM-objects, a FEM-object-preserving dagger 2-functor F : FEM(D)
−→ C extending F : D −→ C must be defined (up to 2-natural isomorphism) on 0-cells
by

F
(
D, t

)
= FEM

(
FD,Ft

)
while its action on 1-cells and 2-cells must be defined by the action of the composite of
the dagger 2-functor FEM(C) −→ C of Example 3.4 with the dagger 2-functor FEM(F ) :
FEM(D) −→ FEM(C) induced by F .

On the other hand, these requirements can be used as a definition of such a dagger
2-functor F : FEM(D) −→ C. Therefore, the desired extension does exist and is unique
up to a 2-natural isomorphism.

3.6. Proposition. If the inclusion dagger 2-functor functor I : D −→ FEM(D) has a
right 2-adjoint, then D has Frobenius-Eilenberg-Moore objects.

Proof. We prove the dual result for Frobenius-Kleisli objects. Suppose I has a left
2-adjoint L : FK(D) −→ D. Then, for any dagger Frobenius monad (D, t) in D,

D
(
L
(
FK

(
D(−, D),D(−, t)

))
, X

) ∼= FK(D)
(
FK

(
D(−, D),D(−, t)

)
, I(X)

)
= FK(D)

(
FK

(
D(−, D),D(−, t)

)
,D(−, X)

)
∼= FEM

(
FK(D)

(
D(−, D),D(−, X)

)
,FK(D)

(
D(−, t),D(−, X)

))
∼= FEM

(
D
(
D,X

)
,D

(
t,X

))
Therefore, the object L

(
FK

(
D(−, D),D(−, t)

))
is a Frobenius-Kleisli object for (D, t).

4. Dagger lax functors and dagger lax-limits

In this section, we extend the notion of a lax functor between 2-categories to the dagger
context. This will allow us to describe the universal properties of FEM-objects in Section
2 as dagger analogues of lax-limits of lax functors.

4.1. Definition. Given dagger 2-categories D, C, a lax functor F : D −→ C – having
families

γA,B,C : cC · (FA,B × FB,C) −→ FA,C · cD

and

δA : uC −→ FA,A · uD

of ‘comparison’ natural transformations – is a dagger lax functor when, for each A, B in
D, the functors FA,B : D(A,B) −→ C(FA, FB) are dagger functors, and the families γ
and δ additionally satisfy the Frobenius axiom: For every triple of arrows

A B C D
f // g // h //
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in D, the following diagram in C

F (h) · F (g · f) F (h) · F (g) · F (f)

F (h · g · f) F (h · g) · F (f)

1Fh∗γ†
f,g //

γg,h∗1Ff

��

γg·f,h

��

γ†
f,h·g

//

(15)

commutes, where ∗ indicates the horizontal composition of 2-cells in C and, for simplicity,
we have written γf,g instead of

(
γA,B,C

)
(f,g)

.

Let us clarify that the composite

D C BF // G //

dagger lax functor is indeed well-defined. For, given two such dagger lax functors, the
composite family γGF is determined via the pasting operation

D(A,B)×D(B,C) D(A,C)

C
(
FA, FB

)
× C

(
FB,FC

)
C
(
FA, FC

)

B
(
GFA,GFB

)
× B

(
GFB,GFC

)
B
(
GFA,GFC

)

cD //

FA,B×FB,C

��
FA,C

��
cC //

GFA,FB×GFB,FC

��
cB //

GFA,FC

��

γF

KS

γG

KS

That is, for f : A −→ B and g : B −→ C in D, the composite γGF comparison family is
given by

γGF
f,g = G(γFf,g) · γGFf,Fg

Then with f , g as above, and h : C −→ D in D, the following diagram in C

GF (h) ·GF (g · f) GF (h) ·G
(
F (g) · F (f)

)

G
(
F (h) · F (g · f)

)
G
(
F (h) · F (g) · F (f)

)
1GFh∗G

(
γF†
f,g

)
//

γG
Fg·Ff,Fh

��
γG
F (g·f),Fh

�� G
(
1Fh∗γF†

f,g

)
//

GF (h) ·GF (g) ·GF (f)

G
(
F (h) · F (g)

)
·GF (f)

1GFh∗γG†
Ff,Fg//

γG
Fg,Fh∗1GFf

��γG†
Ff,Fh·Fg //

GF (h · g · f) G
(
F (h · g) · F (f)

)G
(
γF
g,h∗1Ff

)
��

G
(
γF
g·f,h

)
��

G
(
γF†
f,h·g

) // GF (h · g) ·GF (f)

G
(
γF
g,h

)
∗1GFf

��

γG†
Ff,F (h·g)

//

commutes. Therefore, one easily sees that γGF does indeed satisfy the Frobenius axiom
(15) of Definition 4.1.
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4.2. Example. For a dagger 2-category D, [HV, 2019, Lemma 5.4] shows that a dagger
lax functor 1 −→ D from the terminal dagger 2-category 1 to D is exactly a dagger
Frobenius monad (D, t) in D. Moreover, each dagger 2-functor F : D −→ C is of course
a dagger lax functor, in which the comparison families γF and δF are simply the identity
families of natural transformations. Since dagger lax functors compose, this provides
an immediate proof of the fact that dagger 2-functors send dagger Frobenius monads to
dagger Frobenius monads.

4.3. Definition. Consider two dagger lax functors F,G : D −→ C between dagger 2-
categories D, C. A lax-natural transformation α : F −→ G – having a family

τA,B : C(αA, 1) ·GA,B −→ C(1, αB) · FA,B

of natural transformations – is a dagger lax-natural transformation when τ satisfies the
following additional coherence axiom: For every pair of arrows

A B C
f // g //

in D, the following diagram in C

G(g) ·G(f) · αA G(g) · αB · F (f) αC · F (g) · F (f)

G(g · f) · αA αC · F (g · f)

1G(g)∗τ
†
foo

τg∗1F (f) //

γG
f,g∗1αA

��
1αC

∗γF
f,g

��

τ†g·f

oo

commutes, where, for simplicity, we have written τf instead of
(
τA,B

)
f
. Vertical composi-

tion of dagger lax-natural transformations is defined as for usual lax-natural transforma-
tions: given a dagger lax functor H : D −→ C and a dagger lax-natural transformation
β : G −→ H, the composite dagger lax-natural transformation δ = β · α : F −→ H is
defined by the family of 1-cells(

δA = βA · αA : F (A) −→ H(A)
)
A∈D

in C, and the family of 2-cells(
τ δf =

(
1βB

∗ ταf
)
·
(
τβf ∗ 1αA

)
: H(f) · δA −→ δB · F (f)

)
f∈D(A,B)

in C.

4.4. Definition. Consider two dagger lax functors F,G : D −→ C between dagger 2-
categories D, C, and two dagger lax-natural transformations α, β : F −→ G. A modifi-
cation Ξ : α ⇝ β of the underlying lax-natural transformations is a dagger modification
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when the following additional property is satisfied: for every parallel pair f, g : A −→ B
of 1-cells in D and every 2-cell ϕ : f −→ g in D, the following diagram in C

G(f) · αA G(g) · βA

αB · F (f) βB · F (g)

G(ϕ)†∗Ξ†
Aoo

τβg

��

ταf

��

Ξ†
B∗F (ϕ)†

oo

commutes. The vertical and horizontal composition of modifications is defined as for
usual modifications. Furthermore, the dagger on 2-cells in C induces a dagger on dagger
modifications.

4.5. Example. We have already seen that a dagger lax functor T : 1 −→ D is a dagger
Frobenius monad (D, t) in D. Given another dagger lax functor S : 1 −→ D, a dagger lax-
natural transformation F : T −→ S is exactly a morphism of dagger Frobenius monads
(D, t) −→ (C, s) inD. Given another such dagger lax-natural transformationG : T −→ S,
a dagger modification F ⇝ G is exactly a morphism in DFMnd(D)

(
(D, t), (C, s)

)
from the

morphism of dagger Frobenius monads corresponding to F , to the morphism of dagger
Frobenius monads corresponding to G.

4.6. Definition. For dagger 2-categories D, C, let DagLaxD,C denote the dagger 2-
category of dagger lax functors D −→ C, dagger lax-natural transformations between them,
and dagger modifications between dagger lax-natural transformations. Let ∆C : D −→ C
denote the constant dagger 2-functor on an object C in C. The dagger lax-limit of a
dagger lax functor F : D −→ C, if it exists, is a pair (L, π) where L is an object of C and
π : ∆L −→ F is a dagger lax-natural transformation such that, for each object C in C,
the dagger functor

C(C,L) −→ DagLaxD,C[∆C , F ]

of composition with π is an isomorphism of dagger categories, 2-natural in C.

4.7. Proposition. Suppose a dagger Frobenius monad (D, t) in a dagger 2-category D
has a Frobenius-Eilenberg-Moore object. The dagger lax-limit of (D, t), considered as a
dagger lax functor 1 −→ D, is the pair

(
FEM(D, t), π

)
, where π = (ut, ξ) is the pair as

defined below Theorem 2.7. For, to say that (L, π) is a dagger lax-limit of (D, t) – when
it exists – is to give a pair π = (h, σ) with h : L −→ D a 1-cell and σ : th −→ h a 2-cell
in D such that (h, σ) : (L, 1) −→ (D, t) is a morphism of dagger Frobenius monads, and
such that the following universal property is satisfied: for any C in D, 1-cell g : C −→ D
and 2-cell γ : tg −→ g in D such that (g, γ) : (C, 1) −→ (D, t) is a morphism of dagger
Frobenius monads, there exists a unique 1-cell n : C −→ L such that hn = g and σn = γ.
But, by Proposition 2.4 this is equivalent to saying that L is a Frobenius-Eilenberg-Moore
object for (D, t).
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