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ON SUPERCOMPACTLY AND COMPACTLY GENERATED
TOPOSES

MORGAN ROGERS

Abstract. We present and characterize the classes of Grothendieck toposes having
enough supercompact objects or enough compact objects. In the process, we examine
the subcategories of supercompact objects and compact objects within such toposes and
classes of geometric morphism which interact well with these objects. We also present
canonical classes of sites generating such toposes.
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Introduction

Grothendieck toposes can be succinctly defined as left exact reflective subcategories of
presheaf toposes. If we already have an elementary topos F to hand, this can be stated
as the existence of a geometric inclusion F //E , where E is a presheaf topos. In practice,
one often encounters (elementary) toposes constructed by other means: F might be a
category of coalgebras for a left exact comonad on another topos G, for example, which
amounts to the existence of a geometric surjection G // F . At this level of generality,
even if G is a presheaf topos, F can fail to be a Grothendieck topos. However, there is
still much we can deduce from the existence of such a geometric morphism. For example,
F must be cocomplete, since comonadic functors create any colimits which exist in their
codomains. Imposing (or identifying) further properties of the geometric morphism can
allow us to deduce further properties of F .

In this paper we shall present and thoroughly investigate the class of supercompactly
generated toposes. By a supercompactly generated topos, we mean a topos with a sepa-
rating set of supercompact objects (see Definition 1.1.1). This class includes all regular
toposes (Example 1.2.3), as well as all presheaf toposes and some other important classes
described in Proposition 1.2.4, and so is of general interest in topos theory. Our mo-
tivation for examining this broad class of toposes is that, as we shall eventually see in
Theorem 1.8.5, any topos admitting a hyperconnected morphism from a supercompactly
generated Grothendieck topos (such as a presheaf topos) will also be such a topos. This
notably includes any topos of continuous actions of a topological monoid on sets, studied
by the present author in [Rogers, 2021]; such a topos typically will not fall into any of the
other aforementioned classes (see Example 1.2.5), whence our desire to develop a general
theory unifying these examples.

Since it is convenient to do so, we also study compactly generated toposes, which are
conceptually similar enough that we can prove analogous results about them with little
extra work. For brevity, some of the section headings refer only to the supercompact
naming conventions.

Some relevant results appear in Section 4.1 of the thesis of Bridge, [Bridge, 2012]1;
this is a theoretical excursion from the main topics of that thesis, but one yield of the
results is that the notion of Krull-Gabriel dimension for regular toposes respects inclusions
of regular subtoposes. Where there are overlaps between the basic results of that paper
and the present one, the main distinction of the present paper is the emphasis on topos-
theoretic machinery: the present author avoids reasoning directly with sheaves as far as
possible, which allows for more concise categorical proofs.

Our developments of the relevant classes of geometric morphisms for studying these
toposes draw from and generalize the definitions and results for proper and relatively
proper geometric morphisms in [Moerdijk and Vermeulen, 1997, Chapters I and V]. We

1Bridge refers to our supercompactly generated toposes as ‘locally supercompact ’; the reason for the
terminology choice of the present author is that the adverb “locally” is already overloaded in topos-theory
literature.
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show how those notions of compactness for geometric morphisms interact with the no-
tion for objects inside a topos, and ultimately show that these are the ‘right’ notion
of morphisms between (super)compactly generated toposes, since they are induced by
morphisms between the natural sites for these toposes.

For the site-theoretic material, we rely on the recent monograph [Caramello, 2019],
which contains general results about site representations of toposes; we quote some of
those results without proof here. As such, the principal and finitely generated sites of
Section 2 can be appreciated as illustrative applications of the abstract techniques from
that monograph.

In [Kondo and Yasuda, 2017], one can find ‘B-sites ’, which are a restricted class of
the principal sites found here. These sites are subsequently constrained further so as
to yield toposes of actions of ‘locally prodiscrete’ monoids2, but their developments beg
the question of which toposes are generated from less restricted sites. The present paper
provides some answers.

We assume the reader is familiar with the basics of category theory and Grothendieck
toposes; the content of the textbook [Mac Lane and Moerdijk, 1992] should be adequate.

This work was supported by INdAM and the Marie Sklodowska-Curie Actions as a
part of the INdAM Doctoral Programme in Mathematics and/or Applications Cofunded
by Marie Sklodowska-Curie Actions. The author would like to thank Olivia Caramello for
her patience and helpful suggestions.

Overview. The structure of this paper is as follows. In Section 1.1, we recall the defini-
tions of supercompact and compact objects in a topos. This leads us to formally define
supercompactly and compactly generated toposes in Section 1.2.

In Section 1.3, we turn to the full subcategories of supercompact and compact objects
in a topos, presenting the structure they inherit from their ambient toposes, with a focus
on monomorphisms, epimorphisms, and the classes of funneling and multifunneling col-
imits, which we introduce in Definitions 1.3.3 and 1.3.6. The purpose of this investigation
is to present these subcategories as canonical sites for supercompactly and compactly
generated toposes in Section 1.4, which we do in Theorem 1.4.3. In Section 1.5, we in-
vestigate some extra conditions on a supercompactly generated topos which guarantee
further properties of its category of supercompact objects.

In Section 1.6, we examine some classes of geometric morphism whose inverse image
functors preserve supercompact or compact objects, introducing the notions of pristine
and polished geometric morphisms in analogy with proper geometric morphisms (Defi-
nition 1.6.2), before focussing on relative versions of these properties (Definition 1.6.5)
which are more directly useful in our analysis. Having established these definitions, we
examine how some more familiar classes of geometric morphism interact with supercom-
pactly and compactly generated toposes: surjections and inclusions in Section 1.7, then
hyperconnected morphisms in Section 1.8. This exploration gives us several tools for
constructing such toposes, which are summarised in Theorem 1.8.6.

2We were unable to find a satisfactory definition of the property of local prodiscreteness in the litera-
ture.
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The focus of Section 2 is a broader site-theoretic investigation. In Section 2.1, we
exhibit the categorical data of principal and finitely generated sites, which are natural
classes of sites whose categories of sheaves are supercompactly and compactly generated
toposes, respectively. In Section 2.2, we examine the morphisms between the representable
sheaves on these sites, and then show in Section 2.3 how a general such site may be reduced
via a canonical congruence without changing the resulting topos. We use what we have
learned about these sites in Section 2.4 to characterize the categories of supercompact
and compact objects which were the subject of Section 1.4 as reductive and coalescent
categories, respectively (Definition 2.4.2), satisfying additional technical conditions. We
make the correspondence between such categories and the toposes they generate explicit
in Theorem 2.4.12, briefly examining the special cases of these categories which produce
localic toposes in Section 2.5. It is natural to compare reductive and coalescent categories
to the well-known classes of (locally) regular and coherent categories, which we do in
Section 2.6.

Moving onto morphisms, we recall the definition of morphisms of sites in Section
2.7, showing that, according to the class of sites under consideration, these induce the
relatively pristine, polished or proper geometric morphisms introduced in Section 1.6.
More significantly, restricting to canonical sites, we are able to extend the correspondences
of Theorem 2.4.12 to some 2-equivalences between 2-categories of sites and 2-categories
of toposes. We also to examine comorphisms of sites in Section 2.8, which provide some
results about points of various classes of topos.

Finally, to ground the discussion, we present some examples and counterexamples of
reductive and coalescent sites and supercompactly and compactly generated toposes in
Section 2.9.

1. Supercompact and compact objects

Throughout, when (C, J) is a site, we write ℓ : C // Sh(C, J) for the composite of the
Yoneda embedding and the sheafification functor, assuming the Grothendieck topology
is clear in context, and call the images ℓ(C) of the objects C ∈ C the representable
sheaves.

1.1. Supercompact objects. The following definitions can be found in [Caramello,
2017, Definition 2.1.14]:

1.1.1. Definition. An object C of a category E is supercompact (resp. compact) if
any jointly epic family of morphisms {Ai

// C | i ∈ I} contains an epimorphism (resp.
a finite jointly epic sub-family).

Clearly every supercompact object is compact. Compact objects are more widely
studied, notably in the lifting of the concept of compactness from topological spaces to
toposes reviewed in [Moerdijk and Vermeulen, 1997]. Since the two classes of objects
behave very similarly, we treat them in parallel.
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In a topos, we may re-express the definitions of supercompact and compact objects in
terms of their subobjects. As is standard, we can further convert any statement about
subobjects of an object X in a topos E into a statement about the subterminal object in
the slice topos E/X.

1.1.2. Lemma. An object C of a Grothendieck topos E is supercompact (resp. compact)
if and only if every covering of C by a family (resp. a directed family) of subobjects
Ai ↪→ C contains an isomorphism. This occurs if and only if the global sections functor
Γ : E/C // Set preserves arbitrary (resp. directed) unions of subobjects.

Proof. For the first part, suppose that we are given a family (resp. a directed fam-
ily) of subobjects covering a supercompact (resp. compact) object C. Then one of the
monomorphisms involved must be epic and hence an isomorphism (resp. this collection
contains a finite covering family, but the union of these subobjects is also a member of
the family and must be covering). In the opposite direction it suffices to consider images
of the morphisms in an arbitrary covering family (resp. finite unions of these images).

The remainder of the proof is modelled after that in [Johnstone, 2002, C1.5.5]. Given
an object f : A // C of E/C which is a union (resp. a directed union) of subobjects
Ai ↪→ A //C and given a global section x : C //A of f , we may consider the pullbacks:

Ci C

Ai A.

⌟
x

By extensivity, C is the union of the Ci, and by the above one of the Ci ↪→ C must be an
isomorphism, so that x factors through one of the Ai, which gives the result.

Conversely, given a jointly epic family (resp. directed family) of subobjects Ci ↪→ C
considered as subterminals in E/C, we may apply Γ to see that one of them must be an
isomorphism, as required.

1.2. Supercompactly generated toposes. The collections of supercompact and
compact objects in any Grothendieck topos are conveniently tractable:

1.2.1. Lemma. Let E ≃ Sh(C, J) be a Grothendieck topos of sheaves on a small site (C, J).
Then the supercompact objects are quotients of the representable sheaves ℓ(C) for C ∈ C.
In particular, they are indexed (up to isomorphism) by a set. Similarly, the compact
objects are quotients of finite coproducts of the images ℓ(C), and so (up to isomorphism)
also form a set.

Proof. Given a supercompact object Q, since the objects ℓ(C) are separating in E , the
collection of morphisms ℓ(C) //Q (is inhabited and) jointly epimorphic. It follows that
one such must be epimorphic.

Given a compact object Q, the above argument instead yields a (possibly empty) finite
jointly epimorphic family of morphisms ℓ(Ci) //Q, which corresponds to an epimorphism∐

i∈I ℓ(Ci) ↠ Q, as claimed.
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Lemma 1.2.1 ensures that we can always consider the full subcategories on the su-
percompact (resp. compact) objects, equipped with the canonical topology induced by
the topos (which shall be recalled in Definition 1.4.1 below) as an essentially small site
(Cs, JE

can|Cs) (resp. (Cc, JE
can|Cc)). By the Comparison Lemma, the induced canonical com-

parison morphism E // Sh(Cs, JE
can|Cs) is an equivalence if and only if the collection of

supercompact objects is separating, and similarly for the compact case. We shall con-
tinue to use Cs and Cc to denote these categories in the remainder; for simplicity, we shall
actually assume that we have chosen a representative set of the supercompact or compact
objects, such as the quotients of representables in Lemma 1.2.1, so that we are working
with small sites.

1.2.2. Definition. We say a topos is supercompactly generated (resp. compactly
generated) if its collection of supercompact (resp. compact) objects is separating.

1.2.3. Example. The syntactic category of a regular theory can be recovered from its
classifying topos as the full category of regular objects. In general, we say that an object
X in a topos is regular if X is supercompact and for any cospan

Y X Z
f g

with Y and Z supercompact, the pullback Y ×X Z is also supercompact. In particu-
lar, classifying toposes of regular theories are special cases of supercompactly generated
toposes. The same can be said when ‘supercompact’ is replaced by ‘compact’ and ‘regu-
lar’ is replaced by ‘coherent’. See [Caramello, 2012b] for this result and a more detailed
discussion (note that Caramello refers to regular objects as supercoherent objects). We
shall return to examination of categories of regular and coherent objects in Section 2.6.

Supercompactly generated Grothendieck toposes include several other important es-
tablished classes of Grothendieck topos.

1.2.4. Proposition.

(i) Every atomic topos is supercompactly generated.

(ii) Every supercompactly generated topos is compactly generated and locally connected.

(iii) Every presheaf topos is supercompactly generated.

Proof. For (i), recall that a Grothendieck topos is atomic if and only if it has a separating
set of atoms, and these are easily seen to be supercompact. For (ii), we can similarly
observe that any supercompact object is compact and indecomposable, then recall (by
Theorem 2.7 of [Caramello, 2012b], say) that a topos is locally connected if and only if it
has a separating set of indecomposable objects.

For (iii), note that the representable presheaves are irreducible projectives so they
are in particular supercompact (every jointly epic family over a representable presheaf
contains a split epimorphism).
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1.2.5. Example. Let (M, τ) be a monoid equipped with a topology. We may consider
the full subcategory of the topos [Mop,Set] of right actions of M on sets on those actions
which are continuous with respect to the product of τ and the discrete topology on the
underlying set; call this category Cont(M, τ). In [Rogers, 2021], the results of the present
paper are used to show that this category is a supercompactly generated Grothendieck
topos.

Given that it is a topos, however, we can show directly that it is supercompactly
generated: the supercompact objects are the continuous cyclic M-sets, which is to say
those generated by a single element. Since we can clearly cover any continuous M -set
with the cyclic sub-M -sets generated by its elements, these objects form a separating
collection in the topos.

In [Rogers, 2021, Example 3.28], we give the Schanuel topos as an example of such
a topos which is not a presheaf topos. We give a different example here, which is not a
member of any of the classes of Proposition 1.2.4. Let E be the topos of continuous actions
of the profinite completion of the natural numbers N̂. The continuous cyclic N̂-sets can
be identified with the finite cyclic N-sets, which are described in [Rogers, 2021, Example
3.14]: these are of the form Na,b = {0, 1, . . . , a + b − 1}, with a, b non-negative integers
and b ≥ 1; the N-action is by addition, such that sums greater than a+ b− 1 are reduced
modulo b into the interval [a, a+ b− 1]. These are not closed under products, so E is not
a regular topos. It is not a presheaf topos, since the topos contains no indecomposable
projectives: any such would necessarily be supercompact, but for any (a, b), there is an
epimorphism Na,2b ↠ Na,b which is not split. Finally, it is not atomic, since the atoms
are those of the form N0,b, and Na,b is not covered by such an N-set for a > 0.

1.3. Categories of supercompact objects. We now examine properties of the cat-
egories Cs and Cc in a general topos E .

1.3.1. Lemma. Let E be a Grothendieck topos and let Cs, Cc be the categories of super-
compact and compact objects of E respectively. These categories are closed in E under
quotients.

Proof. Given an epimorphism k : D ↠ C with D supercompact and a covering family
over C, pulling back this family along k we immediately conclude that one of the con-
stituent morphisms must be an epimorphism. Thus C is a member of Cs. The argument
for Cc is analogous, except that we end up with a finite family of morphisms.

Lemma 1.3.1 has as a consequence that when considering a covering family of super-
compact or compact objects over an object X of E , we may without loss of generality
assume that the morphisms in the family are monomorphisms. That is, we may restrict
attention to covering families of (super)compact subobjects when we so choose, because a
family of morphisms with common codomain in a topos is jointly epic if and only if the
union of their images is the maximal subobject.

The subcategories inherit some further structure from E .
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1.3.2. Corollary. For E, Cs, Cc as in Lemma 1.3.1, Cs and Cc are closed under image
factorizations in E, so that in particular they have image factorizations.

Proof. Given a morphism C //C ′ between supercompact (resp. compact) objects, the
image object C ′′ in the factorization C ↠ C ′′ ↪→ C ′ is also supercompact (resp. compact)
by Lemma 1.3.1, whence the factoring morphisms lie in Cs (resp. Cc) since it is a full
subcategory.

Note that the resulting orthogonal factorization systems on Cs and Cc are not between
all monomorphisms and all epimorphisms; only between those inherited from E . We spend
the rest of this section deriving an intrinsic characterisation of these morphisms.

1.3.3. Definition. We say a small indexing category D is a funnel if it has a weakly
terminal object. A funneling diagram in an arbitrary category C is a functor F : D //C
with D a funnel. We call the colimit of such a diagram, if it exists, a funneling colimit.

Given a funneling diagram F : D // C, its colimit is determined by an object C of C
equipped with an epimorphism f : F (D0) ↠ C, where D0 is a weakly terminal object of
D, since all legs of the colimit cone factor through this one.

1.3.4. Example. An example of a funnel is the following:

Ai

... D.

Aj

fi

f ′
i

fj

f ′
j

Consider the topos [Mop,Set]. We can present any right M -set X as the colimit of a
funneling diagram of the above general shape, where the weakly terminal object is sent
to a coproduct of copies of M , and all other objects are sent to copies of M :

M

...
∐

i∈I M.

M

fi

f ′
i

fj

f ′
j

Here, the set I indexes a set of generators of X and the morphisms (fi, f
′
i) identify pairs

of elements which are to be identified.

Recall that a morphism h : D //C in a category C is called a strict epimorphism if
whenever another morphism k : D //E satisfies the condition that for each parallel pair
p, q : B ⇒ D with h ◦ p = h ◦ q we have k ◦ p = k ◦ q, it follows that k factors uniquely
through h. The dual concept appears in [Caramello, 2016, Theorem 4.1].
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1.3.5. Lemma. In a small category C, a morphism h : C ′ // C is a strict epimorphism
if and only if there exists a funneling diagram F : D // C with weakly terminal object C ′

whose colimit is expressed by h.

Proof. By definition, if h is a strict epimorphism, it is a colimit for the diagram consisting
of all pairs of morphisms with domain C ′ which h coequalizes. Conversely, if h expresses
the colimit of any funneling diagram, and k coequalizes all of the same parallel pairs that
h does, then it clearly induces a cone by composition with the morphisms of the funneling
diagram, whence it has a universal factorisation through h, as required.

Notably, strict epimorphisms include isomorphisms and regular epimorphisms. Con-
tinuing with the parallel treatment of compactly generated toposes, we arrive at the
following definitions.

1.3.6. Definition. A small indexing category D is a multifunnel if it has a (possibly
empty) finite collection of objects D1, . . . , Dn to which all other objects admit morphisms3.
A colimit of a multifunneling diagram (a diagram indexed by a multifunnel) in a category
C shall be called a multifunneling colimit, and is defined by a finite jointly epic family
from the images of the objects D1, . . . , Dn. A finite jointly epic family obtained in this
way will be called a strictly epic finite family.

1.3.7. Lemma. A category has multifunneling colimits if and only if it has finite coprod-
ucts and funneling colimits.

Proof. Clearly finite coproducts and funneling colimits are special cases of multifunnel-
ing colimits. Conversely, given a multifunneling diagram F : D //C with weakly terminal
objects F (D1), . . . , F (Dn), consider the coproduct of these objects. Composing the mor-
phisms in the diagram F with the coproduct inclusions, we get a funneling diagram. The
universal property of the coproduct ensures that the colimit of this diagram coincides
with the colimit of F .

1.3.8. Remark.Note that we can make the further simplification, implicit in the diagram
of Definition 1.3.3, that all of the non-identity morphisms in a funneling diagram have
the weakly terminal object as their codomains, since given t : Ai

//Aj, there exists some
morphism fj : Aj

//D, and the cocone commutativity conditions for fj ◦ t and fj ensure
that λi = λD ◦ (fj ◦ t) = λj ◦ t is automatically satisfied, so we may omit t from the
diagram.

1.3.9. Lemma. Let E be a Grothendieck topos and let Cs, Cc be the categories of super-
compact and compact objects of E respectively. Then Cs is closed in E under funneling
colimits and Cc is closed in E under multifunneling colimits.

3A reader interested in the obvious generalisations of this concept to higher cardinalities might prefer
to employ a name such as ‘finitely funneled’ to emphasise the finitary aspect.
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Proof. Let F : D //Cs be a funneling diagram with weakly terminal object F (D). In E ,
this diagram has a colimit determined by an epimorphism f : F (D) ↠ C; the colimit C
is supercompact by Lemma 1.3.1, as required. The argument for multifunneling colimits
in Cc is analogous, except that we must pull back along each member of a finite family
in the proof of Lemma 1.3.1 to obtain the finite covering subfamily of a given covering
family over the colimit.

1.3.10. Corollary. Let E be a supercompactly (resp. compactly) generated topos and
Cs, Cc the usual subcategories. Then a morphism of Cs is an epimorphism in E if and only
if it is a strict epimorphism in Cs, and a finite family of morphisms into C in Cc is jointly
epic in E if and only if it is a strictly epic finite family in Cc.

Proof. This could be deduced by checking the conditions of the dual of [Caramello, 2016,
Proposition 4.9], but rather than reproducing that result, we give a direct proof.

Suppose h : C ′ ↠ C is epic in E with C ′, C in Cs. Any epimorphism in E is regular,
so is the coequalizer of some pair p, q : D ⇒ C ′. Since D is covered by supercompact
objects, composing p and q with the monomorphisms Ci ↪→ D such that Ci is in Cs we
obtain a funneling diagram in Cs whose colimit is still C, as required. The argument for
Cc is analogous.

Conversely, the inclusion of Cs and Cc into E preserves funneling (resp. multifunnel-
ing) colimits by Lemma 1.3.9, whence the strict epimorphisms (resp. strictly epic finite
families) from these categories are still epic in E .

In fact, epimorphic families in Cc are better behaved than those in Cs in general:

1.3.11. Lemma. Let E be any Grothendieck topos. Then a family of morphisms in Cc with
common codomain is jointly epic in Cc if and only if it is so in E. In particular, when E
is compactly generated, every jointly epimorphic family (including every epimorphism) in
Cc is strict.

Proof.Observe that a family of morphisms fi : Ci
//C in a category is jointly epimorphic

if and only if the diagram:

Ci

Cj C

C C

. . .

fi

fi

fj

fj

is a colimit diagram. But the diagram (after removing the copy of C in the lower right
corner) is clearly an instance of a multifunneling colimit, so by Lemma 1.3.9 its colimit is
created by the inclusion of Cc into E , so a family is jointly epic in Cc if and only if it is so
in E , as required.
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Having extensively discussed the epimorphisms, we should also discuss monomor-
phisms in the subcategories under investigation.

1.3.12. Lemma. Monomorphisms in Cs and Cc coincide with monomorphisms in E when
E is supercompactly or compactly generated, respectively.

Proof. Certainly a monomorphism of E lying in Cs or Cc is still monic, since there are
fewer morphisms which it needs to distinguish in general.

Suppose E is supercompactly generated and let s : A ↪→ B be a monomorphism in Cs,
Q an object of E and f, g : Q ⇒ A such that sf = sg. Covering Q with supercompact
subobjects qi : Qi ↪→ Q , consider fqi, gqi : Qi ⇒ A, which are morphisms in Cs. These
are equalized by s and hence are equal for every i. The qi being jointly epic then forces
f = g. Thus s is monic in E , as claimed. The argument for Cc is analogous, replacing
supercompact subobjects with compact ones.

Once again, we can immediately strengthen this result for Cc.
1.3.13. Lemma. For any Grothendieck topos E, the monomorphisms of E lying in Cc
are regular monomorphisms there. In particular, when E is compactly generated, every
monomorphism in Cc is regular.
Proof. If e : C ′ ↪→ C is a morphism in Cs which is monic in E , consider its cokernel pair
in E :

C ′ C

C D.

e

e
⌟

s

t

⌜

Since a topos is an adhesive category, this is also a pullback square and so e is the equalizer
of s and t. Since pushouts are multifunnel colimits, D lies in Cs, so the same is true there.

Thus we can make Corollary 1.3.2 more precise.

1.3.14. Corollary. If E is supercompactly generated, then Cs has an orthogonal (strict
epi,mono)-factorisation system. More generally, if E is merely compactly generated, Cc
has an orthogonal (epi,mono)-factorisation system.

For later reference, we observe that even though the categories Cs and Cc need not have
finite products (see Example 2.9.6), we can still extend Corollaries 1.3.2 and 1.3.14 with
factorizations of spans through jointly monic spans. Corollary 1.3.14 is the case I = 1 of
the following Lemma.

1.3.15. Lemma. Let {fj : B // Aj | j ∈ I} be a collection of morphisms with common
domain in Cs or Cc. Then there exists a strict epimorphism e : B ↠ R and morphisms
{rj : R // Aj | j ∈ I} which are jointly monic, such that fj = rj ◦ e.
Proof. Let e be the strict epimorphism obtained from the funneling colimit of the collec-
tion of all parallel pairs of morphism which are coequalized by all of the fj. By definition,
all of the fj factorize through it, and by construction the factors form a jointly monic
family.



1028 MORGAN ROGERS

1.4. Canonical sites of supercompact objects. We have now done enough work
to usefully apply the proof of Giraud’s theorem and obtain a canonical site of definition
for a supercompactly or compactly generated Grothendieck topos.

1.4.1. Definition. Recall that a sieve S on an object C of a category C is effective-
epimorphic if, when S is viewed as a full subcategory of C/C, C is the colimit of the
(possibly large) diagram DS : S ↪→ C/C // C obtained by composing with the forgetful
functor. A sieve generated by a single morphism f is effective-epimorphic if and only if the
morphism is a strict epimorphism. Such a sieve S is universally effective-epimorphic
if its pullback along the functor C/D // C/C induced by a morphism f : D // C is
effective-epimorphic for any f .

The canonical Grothendieck topology JC
can on C is the topology whose covering

sieves are precisely the universally effective-epimorphic ones. If C is a Grothendieck topos,
this coincides with the Grothendieck topology whose covering sieves are those containing
small jointly epic families.

We recall the following result, which appears as [Caramello, 2019, Lemma 4.35]:

1.4.2. Lemma. Let E be a Grothendieck topos and C a small full separating subcategory
of E. Let S be a sieve in C on an object C and let DS be the diagram in C described in
Definition 1.4.1. Suppose that the colimit of DS in E lies in C. Then S is universally
effective-epimorphic in C if and only if it is the restriction to C of a sieve containing a
small jointly epic family in E.

1.4.3. Theorem. Suppose E is supercompactly generated. Let Jr be the Grothendieck
topology on Cs whose covering sieves are those containing strict epimorphisms. Then
E ≃ Sh(Cs, Jr).

Similarly, if E is compactly generated, and Jc is the Grothendieck topology on Cc whose
covering sieves are those containing strictly epic (equivalently, jointly epic) finite families.
Then E ≃ Sh(Cc, Jc).

Proof. By Giraud’s theorem, given a (small, full) separating subcategory C of objects
in a Grothendieck topos E , we have an equivalence of toposes E ≃ Sh(C, JE

can|C), where
JE
can|C is the restriction of the canonical topology on E to C, whose covering sieves are the

intersections of JE
can-sieves with C. Thus it suffices to show in each case that the restriction

of the canonical topology is the topology described in the statement.
By Lemma 1.3.9, the principal (resp. finitely generated) sieves S on Cs (resp. Cc),

whose corresponding diagrams DS are funneling (resp. multifunneling) diagrams, have
colimits contained in Cs (resp. Cc), so Lemma 1.4.2 applies. Thus these are effective
epimorphic sieves if and only if the generating morphism is a strict epimorphism in Cs
(resp. the generating morphisms form a strictly epimorphic finite family in Cc).

Now given any sieve S containing a jointly epic family on an object of Cs (resp. Cc)
in E , by the definition of supercompact (resp. compact) objects, S must contain an
epimorphism (resp. a finite covering family). In particular, every JE

can|Cs-covering sieve
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contains a JE
can|Cs-covering principal sieve. Similarly, every JE

can|Cc-covering sieve contains
a JE

can|Cc-covering finitely generated sieve.
It follows that the strict epimorphisms in Cs are precisely the morphisms generating

universally effective-epimorphic families and similarly for strict jointly epimorphic families
in Cc), as required. Alternatively, see the proof of Proposition 2.1.7 below for a direct
argument showing that the strict epimorphisms (resp. strictly epic finite families) are
stable.

1.4.4. Remark. It should be clear by now from our joint treatment of supercompact-
ness and compactness that much of our analysis can be applied to more general notions
of compactness. Indeed, Theorem 1.4.3 is an explicit special case of [Caramello, 2019,
Proposition 4.36].

Suppose P is some property of pre-sieves (families of morphisms with common co-
domain); then we may define P -compact objects in a topos E as those for which every
jointly epic covering family contains a jointly epic presieve satisfying P . If P satisfies suit-
able composition and stability criteria, which Caramello specifies, and the full subcategory
CP of E on the P -compact objects is separating and closed under certain colimits, then E
is equivalent to the category of sheaves on CP for the topology generated by the effective-
epimorphic P -presieves in CP . For supercompactness, P is the property ‘is a singleton’,
while for ordinary compactness, P is the property ‘is finite’, and our earlier results show
that these do satisfy Caramello’s criteria. More generally, any property which descends
along epimorphisms can yield an interesting class of toposes; this is the methodology of
[Caramello, 2012a].

While we shall not attempt to extend the present paper to this most general case,
we encourage the reader to explore whether any given topos of interest to them is P -
compactly generated for some suitable property P , and if so to compute the corresponding
site produced by Caramello’s result.

The advantage of the intrinsic expressions for the Grothendieck topologies in Theorem
1.4.3 is that it guarantees that the categories of (super)compact objects contain enough
information to completely reconstruct the toposes by themselves. This immediately gives
us results such as the following:

1.4.5. Corollary. Suppose E and E ′ are supercompactly generated toposes and Cs, C ′s
are their respective categories of supercompact objects. Then E ≃ E ′ if and only if Cs ≃ C ′s.

1.5. Cokernels, well-supported objects and two-valued toposes. We saw in
Lemmas 1.3.11 and 1.3.13 that when E is compactly generated, every epimorphism in Cc
is strict and every monomorphism in Cc is regular. This leads us to wonder under what
extra conditions these facts hold true in Cs, given that E is supercompactly generated.

1.5.1. Example. To properly motivate this section, we show that epimorphisms in Cs
need not coincide with those in E . Let D be the category

A B C.l r
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In the topos E of presheaves on D it is easily calculated that the supercompact objects
are precisely the representables, so D coincides with Cs (we shall see in Proposition 2.5.1
that this argument is valid for all posets). The morphisms l and r are trivially epic in D
but are not epic in E .

Our main tool in this section is the following definition.

1.5.2. Definition. Given a morphism f : A // B, its cokernel4 B // B/f is the
pushout:

A B

1 B/f.

f

!

x
⌜

Cokernels are useful for understanding epimorphisms thanks to the following result.

1.5.3. Lemma. A morphism f : A // B of a topos E is an epimorphism if and only if
the lower morphism x : 1 // B/f of its cokernel is an isomorphism (or equivalently, an
epimorphism).

Proof. If f is an epimorphism we have:

A B

1 B/f,

f

!

x
⌜

since the pushout of an epimorphism is epic. But any quotient of 1 in a topos is an
isomorphism, as required.

Conversely, if x : 1 //B/f is an isomorphism, we can consider the (epi,mono) factor-
ization f = m ◦ e:

A A′ B

1 1 B/f.

f

e

!

m

!

x

∼ ∼⌜

By the first part, the left hand square and outside rectangle are both pushouts, which
makes the right hand square a pushout. But in a topos (or any adhesive category),
a pushout square in which the upper horizontal morphism is monic is also a pullback
square. Thus m is an isomorphism, and f is epic.

4Not to be confused with the cokernel pairs mentioned in the proof of Lemma 1.3.13.
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Recall that an object A of a category with a terminal object is well-supported if
the unique morphism !A : A // 1 is an epimorphism in E . Using cokernels, we obtain a
partial dual to Lemma 1.3.12 even without requiring E to be (super)compactly generated.

1.5.4. Lemma. Let E be a topos and Cs the usual subcategory. Let A be an object of
Cs which is well-supported as an object of E. Then a morphism A // B of Cs is an
epimorphism in that category if and only if it is an epimorphism in E.

Proof. An epimorphism of E lying in Cs clearly remains epic there.
Conversely, if e : A ↠ B is epic in Cs, consider the cokernel B //B/e:

A B

1 B/e.

e

!A q

x
⌜

By assumption B/e is supercompact as q is epic in E . The unique morphism !A : A // 1
factors through e via the unique morphism !B : B // 1. Thus we have qe = x!A = x!Be,
and since these expressions are composed of morphisms lying in Cs where e is epic, it
follows that q = x!B whence x is epic and hence an isomorphism. Hence e is epic in E , by
Lemma 1.5.3.

It is worth noting that the existence of any well-supported supercompact object forces
the terminal object of E to be supercompact. Moreover, this proof concertedly fails when
the object A is not well-supported:

1.5.5. Lemma. Let E, Cs be as above. Then Cs is closed under cokernels if and only if
every supercompact object is well-supported.

Proof. Given a supercompact object A, consider its support, which is the subterminal
object U ↪→ 1 in the factorization of the morphism !A. By Lemma 1.3.1, U is supercom-
pact, so if Cs is closed under cokernels, the pushout of U ↪→ 1 along itself must be in
Cs. But the colimit morphisms 1 ⇒ 1 +U 1 are jointly epic, so one of them must be an
epimorphism and hence an isomorphism, which forces U ∼= 1. Thus A is well-supported,
as required.

Conversely, if every object A of Cs is well-supported then the cokernel (in E) of a
morphism A // B in Cs is a quotient of B and so is supercompact. Thus Cs is closed
under cokernels, as required.

We shall see a relevant sufficient condition for this to occur in Proposition 1.8.1. In
this setting we can also strengthen Lemma 1.3.12.

1.5.6. Scholium. Let E be a topos such that every object of Cs is well-supported. Then
monomorphisms in Cs inherited from E are regular. In particular, if E is also supercom-
pactly generated, then all monomorphisms in Cs are regular.
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Proof. By Proposition 1.8.1, the hypotheses guarantee that the cokernel of a morphism
in Cs also lies in that category.

As remarked in the proof of Lemma 1.5.3, the pushout square defining the cokernel of
an inclusion of supercompact objects i : A ↪→ B is also a pullback in E . It follows easily
that i is the equalizer in E of the morphisms q, x!B : B ⇒ B/i described in the proof of
Lemma 1.5.4, and is consequently also their equalizer in Cs.

If E is supercompactly (resp. compactly) generated then we may apply Lemma 1.3.12
to conclude that the above applies to all monomorphisms of Cs (resp. Cc).

On the other hand, we shall see in Example 1.8.3 that it is not in general possible to
strengthen the properties of epimorphisms in Cs beyond the consequence of the proof of
Theorem 1.4.3 that they are strict. In particular, they are not regular in general.

Finally, we explicitly record how Lemma 1.5.4 simplifies the expression for the Groth-
endieck topology Jr induced on Cs from Theorem 1.4.3.

1.5.7. Corollary. Let E be a supercompactly generated topos and Cs its full subcategory
of supercompact objects. Suppose every object of Cs is well-supported. Let Jr be the
topology on Cs whose covering sieves are precisely those containing epimorphisms. Then
E ≃ Sh(Cs, Jr).

1.6. Proper, polished and pristine morphisms. In this section we present some
classes of geometric morphism whose inverse image functors interact well with supercom-
pact and compact objects. The material in this section contains more technical topos
theoretic concepts than that in the earlier sections, so may be skipped on a first reading;
the key result is Proposition 1.6.9.

The latter part of Lemma 1.1.2, regarding compact objects, states precisely that the
geometric morphism E/C //Set is proper in the sense of [Moerdijk and Vermeulen, 1997,
Definition I.1.8] (see also [Johnstone, 2002, C3.2.12 and C1.5.5]), or equivalently that E/C
is a compact Grothendieck topos. We can generalise Moerdijk and Vermeulen’s definition
of proper morphisms to the arbitrary union case in order to capture the idea of supercom-
pactness. In order to do this, we recall some classic topos-theoretic constructions, from
[Johnstone, 1977, Chapter 2].

Recall from [Johnstone, 1977, Definition 2.11] that an internal category I in a topos
(or, more generally, a cartesian category) E consists of:

(i) An objects of objects I0 and an object of morphisms I1 in E , and

(ii) Morphisms i : I0 // I1, d, c : I1 ⇒ I0 and m : I2 // I1,

where I2 := c×I0 d is the object of composable pairs, defined as the pullback:

I2 I1

I1 I0.

π2

π1

⌟
d

c
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The morphisms define the identity morphisms, domains , codomains and composition,
respectively. These are required to satisfy the equations di = ci = idI0 , dm = dπ1, cm =
cπ2, m(id×m) = m(m × id) and m(id×i) = m(i × id) = idI1 . These are diagrammatic
translations of the axioms for ordinary categories in Set. An internal functor between
internal categories is a pair of morphisms between the respective objects of objects and
objects of morphisms commuting with the respective structure morphisms.

1.6.1. Definition. We say an internal category I in E is filtered if the usual definition
of filteredness, cf. [Mac Lane and Moerdijk, 1992, §VII.6], is satisfied internally. Since
this internalization is rarely made explicit, we explain it in full here: I is filtered if and
only if the following three conditions are satisfied,

� I is internally inhabited5, which is to say that I0 is a well-supported object.

� The morphism c×I0 c I1 × I1 I0 × I0,
d×d

is an epimorphism; the do-

main is the ‘object of pairs of morphisms with common codomain’.

� Let A ↪→ I1 × I1 × I1 be the subobject (d×I0 d× idI1) ∩ (c×I0 c×I0 d), which is the
internalization of {f, g, h ∈ I1 | d(f) = d(g) ∧ c(f) = c(g) = d(h)}. Let E be the
equalizer of the morphisms m ◦ π1,m ◦ π2 : A ⇒ I1, the subobject consisting of the
triples satisfying h ◦ f = h ◦ g. Finally, let B ↪→ I1× I1 be (c×I0 c)×I1×I1 (d×I0 d),
the ‘object of parallel pairs of morphisms’. We require that the projection π1 × π2 :
E //B be an epimorphism.

While the constructions of Definition 1.6.1 are a little technical, reasoning about fil-
tered internal categories always amounts to a categorical re-expression of the usual exter-
nal reasoning for such categories.

Given an internal category I in E , we recall from [Johnstone, 1977, Definition 2.14]
that an (internal) diagram of shape I consists of:

1. An object a : F0
// I0 of E/I0, and

2. A morphism b : F1
// F0,

where F1 is the defined as the pullback

F1 F0

I1 I0,

π2

π1

⌟
a

d

such that ab = cπ2, b(id×i) = idF0 , and e(e× id) = e(id×m). In Set, this data captures
the encoding of a functor into Set via the Grothendieck construction.

5This is the constructive term for ‘non-emptiness’, meaning ‘has an element’.
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There is an accompanying notion of natural transformation, and hence we obtain the
diagram category [I, E ]. This is a topos over E , which is proved using the comonadicity
theorem in [Johnstone, 1977, Corollary 2.33].

For any geometric morphism f : F //E , since f ∗ preserves finite limits, we can apply
f ∗ to the data of an internal category I in E to obtain an internal category f ∗(I) in F .
There is an induced pullback square of diagram toposes: 6

[f ∗(I),F ] [I,E ]

F E ,

f I

π
⌟

π

f

(1)

Each vertical morphism labelled π has inverse image functor sending an object to the
‘constant diagram of shape I’. As well as a right adjoint π∗, this functor always has an
E-indexed left adjoint π!. The functors π∗ and π! send an internal diagram to its (internal)
limit and colimit, respectively.

1.6.2. Definition. Let E be an object of E and I an internal category (resp. inhabited
internal category I; filtered internal category I) in E/E. Let f : F // E be a geometric
morphism. Consider the special case of (1) where we take the lower geometric morphism
to be f/E:

[f ∗(I),F/f ∗(E)] [I,E/E]

F/f ∗(E) E/E.

(f/E)I

π
⌟

π

f/E

(2)

We call a geometric morphism f : F // E pristine (resp. polished; proper) if the
square above satisfies the condition π! ◦ (f/E)I∗(V ) ∼= (f/E)∗ ◦π!(V ) for every subterminal
object V of [f ∗(I),F/f ∗(E)], for every choice of E and I. This can be understood as
stating that the direct image of f preserves E-indexed (resp. E-indexed inhabited; E-
indexed directed) unions of subobjects.

We call a Grothendieck topos supercompact (resp. compact) if its unique geometric
morphism to Set is pristine (resp. proper), which by Lemma 1.1.2 occurs if and only if
the terminal object has the corresponding property. The global sections morphism of a
Grothendieck topos is polished if and only if the topos is supercompact or degenerate (that
is, the terminal object is either supercompact or initial).

Note that Moerdijk and Vermeulen denote π! by ∞∗ because, in the proper case, π!

preserves finite limits and hence is the inverse image functor of a geometric morphism in
the opposite direction. In the pristine and polished cases the left adjoint π! is in general
not left exact, so this notation no longer makes sense.

6See [Johnstone, 2002, Corollary B3.2.12] for an explanation of why this square is a pullback.
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1.6.3. Remark. A filtered preorder is ordinarily called directed; we have of course al-
ready seen this notion in Lemma 1.1.2. It is intuitive that a filtered diagram of subobjects
can be re-expressed as a directed preorder-indexed diagram by identifying parallel index-
ing morphisms. We do this informally in Definition 1.6.2, but it is formally justified: we
shall see in Corollary 1.8.4 that hyperconnected morphisms are proper, recovering the fact
([Moerdijk and Vermeulen, 1997, Corollary I.2.5]) that a geometric morphism is proper if
and only if its localic part is, and the localic part of the canonical geometric morphism
[I, E ] // E is the corresponding morphism [I′, E ] // E , where I′ is the internal preorder
reflection of I.

1.6.4. Example.The presheaf topos [Cop,Set] is supercompact if and only if C is a funnel
in the sense of Definition 1.3.3. Indeed, if C has a weakly terminal object C0 then there is
by inspection an epimorphism y(C0) ↠ 1 in [Cop,Set], and conversely if 1 is supercompact
then one of the morphisms y(C) // 1 must be an epimorphism, since these are jointly
epic, whence every object of C admits at least one morphism to the corresponding object
of C. More generally, [Cop,Set] is compact if and only if C is a multifunnel in the sense of
Definition 1.3.6.

An immediate consequence of Definition 1.6.2 is that we can relativise the concepts of
supercompactness and compactness to depend on the base topos over which we work (so
far we have been implicitly working over Set). Viewing a geometric morphism F // E
as expressing F as a topos over E , an object X of F is E-compact if the composite
geometric morphism F/X // F // E is proper, for example. Conversely, since in this
paper we will only be concerned with objects which are supercompact relative to some
fixed base topos S, it makes sense to employ the broader classes of geometric morphism
introduced in [Moerdijk and Vermeulen, 1997, Chapter V].

1.6.5. Definition. Let p : E // S and q : F // S be toposes over S. A geometric
morphism f : F // E over S is S-relatively pristine (resp. S-relatively polished;
S-relatively proper) if its direct image preserves arbitrary S-indexed unions (resp. in-
habited S-indexed unions; directed S-indexed unions) of subobjects. Explicitly, this re-
quires that the respective conditions of Definition 1.6.2 hold for diagrams I in E of the
form p∗(I′), where I′ is a diagram category of the appropriate type in S. We shall assume
S is Set in the remainder, and so we drop the ‘S-’ prefixes.

All of these definitions appear hard to work with in general for the simple reason
that internal diagram categories take a significant amount of computation to express and
work with concretely (which is to say externally) in any given case. However, the S-
relative notions conveniently coincide with their external counterparts, in a sense made
pristine in Lemma 1.6.8 below. Also, all of the notions are clearly stable under slicing
and composition, from which we can extract general consequences which are sufficient for
the purposes of this paper.

By inspection, we have the following relationships between Definitions 1.6.2 and 1.6.5.
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1.6.6. Lemma. Consider a commuting triangle of geometric morphisms:

F E

Set.

f

q p

Then:

1. If f is pristine, it is relatively pristine.

2. p and q are relatively pristine morphism if and only if they are pristine.

3. If f is relatively pristine and p is pristine, then q is pristine.

The same statements hold when ‘pristine’ is replaced by ‘polished’ or ‘proper’.

A handy consequence of this for our objects of interest is the following:

1.6.7. Corollary. Let f : F // E be a geometric morphism between Grothendieck
toposes. If f is relatively pristine (resp. relatively polished, relatively proper), then f ∗

preserves supercompact (resp. ‘supercompact or initial’, compact) objects.

Proof. Given an object E of E and a relatively pristine (resp. relatively polished, rela-
tively proper) morphism f , consider the triangle:

F/f ∗(E) E/E

Set.

f/E

If E is supercompact (resp. ‘supercompact or initial’, compact), then the global sections
morphism of E/E is also pristine (resp. polished, proper), so f ∗(E) must be supercompact
(resp. supercompact or initial, compact) by Lemma 1.6.6.3.

In order to make more explicit arguments, we now extend the characterisation of
relatively proper geometric morphisms in [Moerdijk and Vermeulen, 1997, Proposition
V.3.7(i)].

1.6.8. Lemma. A geometric morphism f : F // E over S is relatively pristine (resp.
relatively polished, relatively proper) if and only if for any S-indexed7 (resp. S-inhabited,
S-directed) jointly epimorphic family {gi : Xi ↪→ f ∗(Y )} of subobjects in F there exists a
jointly epimorphic family {hj : Yj

//Y } in E such that each f ∗(hj) factors through some
gi.

7Taking S to be Set, S-indexed just means set-indexed, or small.
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Proof. Suppose f has one of the relative properties and we are given a collection of
subobjects of the relevant type. By assumption, their union is preserved by (f/Y )∗,
whence there are subobjects hj : Yj ↪→ Y (the images under (f/Y )∗ of the subobjects)
which are also jointly epic. By construction, each of these must have image under f ∗

which factors through one or more of the Xi.
Conversely, given an S-indexed diagram (of the relevant type) of subterminal objects

{gi : Xi
// f ∗(Y )} in F/f ∗(Y ), let U ↪→ f ∗(Y ) be the union of the gi, and let Y ′ ↪→ Y

be its image under (f/Y )∗ in E/Y . Applying f ∗, we have a monomorphism f ∗(Y ′) ↪→ U ,
so we can pull back to get a jointly epimorphic family of the appropriate shape {g′i :
X ′

i
// f ∗(Y ′)} over f ∗(Y ′). This is precisely data of the required form to apply the

hypotheses, and the covering family of Y ′ thus provided ensures that the union of the
images of the gi under (f/Y )∗ is precisely Y ′.

It is an indirect consequence of Lemma 1.6.8 that the converse of Corollary 1.6.7 cannot
hold in general. Indeed, if the only compact object of E is the initial object, such as in
Example 2.9.4 below, then the preservation of compact or supercompact objects by f ∗ is
a vacuous condition, but the required properties in the characterisation of Lemma 1.6.8
are clearly non-trivial. However, E failing to have enough supercompact (resp. compact)
objects is the only obstacle.

1.6.9. Proposition. Let f : F // E be a geometric morphism, and suppose E is super-
compactly generated. Then f is relatively pristine if and only if f ∗ preserves supercompact
objects, and relatively polished if and only if f ∗ preserves ‘supercompact or initial’ objects.
If E is merely compactly generated, then f is relatively proper if and only if f ∗ preserves
compact objects.

Proof. Given an arbitrary (resp. inhabited) jointly epic collection of subobjects {gi :
Xi ↪→ f ∗(Y )} in F , consider a (possibly empty) covering of Y by supercompact subobjects
hj : Yj ↪→ Y in E . Since each f ∗(Yj) is supercompact (resp. supercompact or initial),
pulling back the inclusions gi along f

∗(hj), we conclude that one of the resulting inclusions
f ∗(Yj) (if there are any) must be an isomorphism by Lemma 1.1.2; in the inhabited case,
this is trivially true when f ∗(Yj) is initial. Hence the f ∗(hj) each factor through one of
the gi, whence the criteria of Lemma 1.6.8 are fulfilled. The compactly generated case,
with a directed family of subobjects, is analogous.

Since the initial object in any topos is strict, the distinction between relatively pristine
and relatively polished morphisms is indeed as small as this proposition makes it seem.

1.6.10. Lemma. Given a geometric morphism f : F // E, f ∗ reflects the initial object
if and only if f∗ preserves it.

Proof. If f ∗ reflects 0, then considering the counit f ∗f∗(0) // 0, we conclude that
f ∗f∗(0) is initial (by strictness of the initial object), whence f∗(0) ∼= 0 so f∗ preserves
the initial object. Conversely, if f∗ preserves 0, then given C with f ∗(C) ∼= 0 the unit
C // f∗f

∗(C) ∼= 0 is a morphism to 0, whence C is initial.
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1.6.11. Corollary. Let f : F // E be a geometric morphism, and suppose E is super-
compactly generated. Then f is relatively pristine if and only if it is relatively polished
and f ∗ reflects the initial object.

Proof. A (relatively) pristine morphism is (relatively) polished. Considering 0 as an
empty union of subobjects of any given object, it is preserved by f∗ by relative pristineness,
so f ∗ reflects 0 by Lemma 1.6.10, as required. Note that this implication holds even when
E is not supercompactly generated.

Conversely, given that f is relatively polished and f ∗ reflects 0 , we have that f ∗

preserves ‘supercompact or initial’ objects by Proposition 1.6.9, but a supercompact object
X of E is sent to an initial object if and only if it is initial, which is impossible, so f ∗(X)
is supercompact, as required.

We caution the reader this ostensibly small difference between relatively polished and
relatively pristine morphisms greatly impacts the frequency with which these classes of
morphisms occur, as witnessed in Corollary 2.8.4 and Lemma 2.8.5 below.

1.7. Inclusions and surjections. Recall that a geometric morphism f : F // E is
a surjection if f ∗ is faithful, or equivalently if f ∗ is a comonadic functor. Meanwhile, a
geometric morphism f : F // E is an inclusion (or embedding) if its direct image f∗ is
full and faithful. See [Mac Lane and Moerdijk, 1992, §VII.4] or [Johnstone, 2002, A4.2]
for general results regarding these, which we shall assume familiarity with. In this section
we examine how these two types of geometric morphism interact with supercompact and
compact objects, as well as some of the classes of geometric morphism introduced in the
last section.

Recall that a geometric inclusion f : F // E is closed if there is some subterminal
object U in E such that f∗f

∗ sends an object X to the pushout of the product projec-
tions from X × U . The following result illustrates why the pristine, polished and proper
morphisms are too restrictive for analysing supercompactly generated subtoposes.

1.7.1. Lemma. An inclusion of toposes f : F // E is proper if and only if it is closed, if
and only if it is polished. An inclusion is pristine if and only if it is an equivalence.

Proof. The first part is the conclusion of [Johnstone, 2002, Remark C3.2.9], where it is
observed that a closed inclusion has a direct image functor preserving arbitrary inhabited
(E-indexed) unions of subobjects and that closed inclusions are stable under slicing, and
conversely that any proper inclusion is closed.

Given that f is a closed inclusion, any nontrivial subobject of the corresponding sub-
terminal object U in E is sent by f ∗ to the initial object in F , so the initial object is
reflected if and only if U is initial, in which case f is an equivalence.

The relative versions of these properties are well-behaved with respect to surjections
and inclusions.
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1.7.2. Proposition. Consider a factorisation of a geometric morphism f ,

F E

G.

f

q p
(3)

1. Suppose that p is an inclusion. Then if f is relatively pristine (resp. relatively
polished, relatively proper), so is q.

2. Suppose that q is a surjection. Then if f is relatively pristine (resp. relatively
polished, relatively proper), so is p.

It follows that a geometric morphism is relatively pristine (resp. relatively polished, rela-
tively proper) if and only if both parts of its (surjection,inclusion) factorisation are.

Proof. We use the characterisation of these properties from Lemma 1.6.8.
1. Given a jointly epic family (resp. inhabited family, directed family) {gi : Xi ↪→

q∗(Z)} in E , we may express Z up to isomorphism as p∗(Y ) (taking Y = p∗(Z), say),
so this can without loss of generality be seen as a family {gi : Xi ↪→ f ∗(Y )}. Since
f is relatively pristine (resp. relatively polished, relatively proper), we have a jointly
epic family {hj : Yj

// Y } such that each f ∗(hj) factors through some gi, and hence
{p∗(hj) : p

∗(Yj) // Z} is the required family to fulfill the criterion of Lemma 1.6.8.
2. Given a jointly epic family (resp. inhabited family, directed family) {gi : Xi ↪→

p∗(Y )} in E , we have {q∗(gi) : q∗(Xi) ↪→ f ∗(Y )} in F being of the desired form to ensure
that there is a covering family {hj : Yj

//Y } such that each f ∗(hj) factors through some
q∗(gi). But then q∗ being conservative forces the p∗(hj) to factor through gi, as required.
Indeed, the intersection of gi with the image of p∗(hj) is preserved by q∗, and one of the
sides of the resulting pullback square is sent to an isomorphism, which is reflected by q∗.

1.7.3. Corollary. Any topos E with a surjective point is supercompact. Any topos with
a finite jointly surjective collection of points is compact.

Proof. The hypotheses correspond to the existence of a surjection Set // E , or a sur-
jection Set/K // E with K finite. The unique morphism Set //Set is (an equivalence,
and hence) pristine, while the morphism Set/K // Set is proper. Thus by Proposition
1.7.2.2 and Lemma 1.6.6, we conclude that E is supercompact (resp. compact) over Set.

1.7.4. Example.The first part of Corollary 1.7.3 applies to toposes of the form [Mop,Set]
forM a monoid; the latter part similarly applies to [Cop,Set] for C any small category with
a finite number of objects. Note that in both of these cases, the idempotent completions
may have many more objects than the original categories,

When the codomain of the geometric morphism is supercompactly (resp. compactly)
generated, the simpler characterisation of Proposition 1.6.9 comes to our aid.



1040 MORGAN ROGERS

1.7.5. Lemma. Suppose that E is supercompactly (resp. compactly) generated and f :
F // E is an inclusion. If f is relatively polished (resp. relatively proper), F is also
supercompactly (resp. compactly) generated.

Proof. By Proposition 1.6.9, the separating collection of supercompact (resp. compact)
objects in E is mapped by the inverse image of the relatively polished (resp. relatively
proper) inclusion f to a separating collection of objects of the same kind or initial objects)
in F .

We shall see in Corollary 2.1.8 that Lemma 1.7.5 is optimal, in the sense that a topos is
supercompactly (resp. compactly) generated if and only if it admits a relatively polished
(resp. relatively proper) inclusion into a presheaf topos.

1.7.6. Corollary. Suppose that E is supercompactly (resp. compactly) generated. Then
a geometric morphism f : F // E is relatively polished (resp. relatively proper) if and
only if both parts of its (surjection,inclusion) factorisation have inverse images preserving
supercompact or initial (resp. compact) objects.

Proof. This follows from applying Proposition 1.6.9 to the factorisation in Proposition
1.7.2, using Lemma 1.7.5 to conclude that the intermediate topos must be supercompactly
(resp. compactly) generated.

More generally, surjections interact well with supercompact and compact objects.

1.7.7. Lemma. Suppose f : F //E is a surjective geometric morphism. Then f ∗ reflects
supercompact, compact and initial objects.

Proof. Since the inverse image functor of f is comonadic, we have an equivalence between
E and the topos of coalgebras for the comonad on F induced by f . Without loss of
generality we work with coalgebras.

Given a coalgebra (X,α : X //f ∗f∗(X)) and a jointly epic family gi : (Ui, βi) //(X,α),
since f ∗ preserves arbitrary colimits, the underlying family of morphisms gi : Ui

//X in
F must be jointly epic. Thus if X = f ∗(X,α) is supercompact (resp. compact), one of
the gi must be an epimorphism (resp. there is a finite jointly epic subfamily of the gi).
Since f ∗ moreover creates colimits, we conclude (via the same colimit diagram employed
in Lemma 1.3.11) that gi is an epimorphism in E too (resp. that the finite subfamily lifts
to a jointly epic finite subfamily). Thus (X,α) is supercompact, as required.

Preservation of the initial object by f∗, which is equivalent to reflection of 0 by f ∗ by
Lemma 1.6.10, is due to strictness of the initial object forcing f ∗f∗(0) ∼= 0.

It follows from Lemma 1.7.7 and Corollary 1.6.11 that a geometric surjection is rela-
tively pristine if and only if it is relatively polished.

1.8. Hyperconnected morphisms. Recall that a geometric morphism f : F // E is
said to be hyperconnected if f ∗ is full and faithful and its image is closed in F under
subobjects and quotients (up to isomorphism). Recall also that f is localic if every object
in F is a subquotient of one of the form f ∗(X). See [Johnstone, 2002, Section A4.6] for
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some background on hyperconnected morphisms, as well as localic morphisms, including
the (hyperconnected,localic) factorization of a general geometric morphism.

When it comes to hyperconnected morphisms into Set, there are various alternative
characterisations; note that these rely on properties of Set, so are not true constructively.

1.8.1. Proposition. Let E be a Grothendieck topos. Then the following are equivalent:

1. The unique geometric morphism E // Set is hyperconnected.

2. E is two-valued: the only subterminal objects are the initial and terminal objects.

3. Every object of E is either well-supported (the unique morphism X // 1 is an epi-
morphism) or initial, but not both.

4. E is non-degenerate and has a separating set of well-supported objects.

Proof. (1 ⇔ 2) The inverse image of a hyperconnected geometric morphism is full and
faithful and closed under subobjects, so in particular the only subobjects of 1 in E is
0. Conversely, if E is two-valued, consider the (hyperconnected,localic) factorization of
the unique geometric morphism E //Set; the intermediate topos is the localic reflection
of E , equivalent to the topos of sheaves on the locale of subterminal objects of E , so is
equivalent to Set. Thus the morphism E // Set is hyperconnected.

(2⇔ 3) If E is two-valued, the monic part of the (epi,mono) factorization of X // 1
is non-trivial iff X ∼= 0 , so X is either initial or well-supported. Conversely, any proper
subterminal object fails to be well-supported, so if 3 holds there can be no proper subter-
minals and E is two-valued.

(3 ⇔ 4) Since E is a Grothendieck topos, it has some generating set of objects; any
such set is still generating after excluding the initial object, and since 0 is distinct from
1 , any generating set contains a non-initial object, so we obtain a generating set of non-
initial objects as required. Conversely, an inhabited colimit of well-supported objects is
well-supported, so any non-initial object is well-supported if there is a separating set of
well-supported objects.

In particular, since supercompact objects are not initial, we obtain a necessary and
sufficient condition for the hypotheses in Section 1.5 to hold:

1.8.2. Corollary. If E is a two-valued (Grothendieck) topos, every supercompact object
in E is well-supported. In particular, a morphism A // B in the subcategory Cs of su-
percompact objects objects of E is an epimorphism if and only if it is epic in E, so every
epimorphism in Cs is strict. Conversely, if E is supercompactly generated, then Cs is closed
under cokernels if and only if E is two-valued.

Thus we can give the counterexample, promised earlier, to the hypothesis that epi-
morphisms in Cs are regular when E is two-valued.
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1.8.3. Example. Let M be the free monoid on two generators, viewed as a category,
and let E = [Mop,Set], where the objects are viewed as right M -sets. It is easily checked
that this topos is two-valued, and being a presheaf topos it is supercompactly generated.
The supercompact objects in this topos are precisely the cyclic right M -sets.

Given a cyclic M -set N generated by n, the relation generated by a pair of morphisms
f, g : N ⇒ M is the one identifying f(n)k with g(n)k for each k ∈ M . A case-by-case
analysis of the possible pairs of elements f(n), g(n) demonstrates that there is no pair of
which the epimorphism M ↠ 1 is a coequalizer, so this epimorphism is not regular in the
category of supercompact objects of E .

The main reason for our interest in hyperconnected morphisms, however, is that they
create the structure of supercompactly (and compactly) generated Grothendieck toposes
which we are studying in this paper.

1.8.4. Corollary. If f : F // E is a hyperconnected geometric morphism between
Grothendieck toposes, then it is pristine. Thus (being surjective) f ∗ preserves and reflects
supercompact, compact and initial objects.

Proof. We extend the proof that hyperconnected morphisms are proper, [Moerdijk and
Vermeulen, 1997, Proposition I.2.4], replacing ∞∗ with π!.

Suppose f : F // E is hyperconnected, and consider a diagram of the form

[f ∗(I),F ] [I,E ]

F E .

f I

π
⌟

π

f

(4)

Since f I is a pullback of f , it is hyperconnected too, so that any V ↪→ 1 in [f ∗(I),F ] is of
the form (f I)∗(U) for some U ↪→ 1 in [I,E ] (the restriction of a hyperconnected morphism
to the subterminal objects is an equivalence). Thus,

f∗π!(V ) = f∗π!(f
I)∗(U) = f∗f

∗π!(U) = π!(U),

where the last equality holds since f ∗ is full and faithful. But U = (f I)∗(f
I)∗(U) =

(f I)∗(V ), so f∗π!(V ) = π!(f
I)∗(V ), as required. The same argument applied in slices gives

the result.
Preservation of supercompact and compact objects by f ∗ then follows from Proposition

1.6.9 and Corollary 1.6.11 (preservation of the initial object is automatic), while reflection
follows from Lemma 1.7.7.

1.8.5. Theorem. Let f : F // E be a hyperconnected geometric morphism between
elementary toposes. If F is a Grothendieck topos, then so is E. Assuming this is so, if F :

(i) is supercompactly generated, or

(ii) is compactly generated, or
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(iii) has enough points, or

(iv) is two-valued,

then E inherits that property.

Proof. Let C be a (full subcategory on a) small separating set of objects in F . Then
every object of F is a colimit of a diagram in C. Given an object Q of E , we can express
f ∗(Q) as such a colimit; write λi : Ci

// f ∗(Q) with Ci ∈ C for the legs of the colimit
cone. By taking image factorizations of the λi we obtain an expression for f ∗(Q) as a
colimit where the legs of the colimit cone are all monomorphisms. Since the image of f ∗

is closed under subobjects, we obtain an expression for f ∗(Q) as a colimit of objects of
the form f ∗(Di) with Di in E , which moreover are quotients of objects in the separating
subcategory C of F .

Thus, since f ∗ creates all small colimits, the quotients of objects in C lying in E form
a separating set. Also, E is locally small since F is. Thus by the version of Giraud’s
Theorem that appears in [Johnstone, 2002, C2.2.8(v)], say, E is a Grothendieck topos.

The inheritance of property (i) (resp. (ii)) follows from Corollary 1.8.4, taking C in
the above to be Cs (resp. Cc) and noting that the objects f ∗(Di) in the argument above
are supercompact (resp. compact) in F by Lemma 1.3.1, whence the Di are so in E by
Corollary 1.8.4.

For (iii), if F has enough points, which is to say that there is a collection of geometric
morphisms Set //F whose inverse images are jointly faithful, then composing each point
with the hyperconnected morphism to E gives such a collection for E . Finally, for (iv),
note once again that the restriction of f to subterminal objects is an equivalence.

In spite of our reliance on Corollary 1.8.4 here, we shall see in Example 2.9.5 that we
cannot extend Theorem 1.8.5(i) or (ii) to relatively pristine or relatively proper surjections,
although parts (iii) and (iv) do apply in that situation.

We can summarise the results from the last two sections as stability results for super-
compactly and compactly generated toposes.

1.8.6. Theorem. Suppose E is a supercompactly (resp. compactly) generated Grothen-
dieck topos. If F is:

1. The domain of a closed inclusion f : F // E, or more generally, the domain of a
relatively polished (resp. relatively proper) inclusion into E,

2. The domain of a local homeomorphism g : F ≃ E/X // E, or

3. The codomain of a hyperconnected morphism h : E // F ,

then F is also a supercompactly (resp. compactly) generated Grothendieck topos.
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Proof. Let Cs and Cc be the (separating) subcategories of supercompact and compact
objects in F , respectively.

1. For any inclusion, the images of objects in Cs (resp. Cc) under f ∗ form a separating
set for E . The stated properties ensure that these objects are all supercompact or initial
(resp. compact), so that E is supercompactly (resp. compactly) generated, by Corollary
1.6.7.

2. The objects with domain in Cs (resp. Cc) in any slice F/X form a separating
set. These lifted objects inherit the property of being supercompact (resp. compact), by
Lemma 1.1.2 and the standard result (F/X)/(Y //X) ≃ F/Y .

3. This is immediate from Theorem 1.8.5.

2. Principal sites

So far, we have established properties of ‘canonical’ sites for supercompactly and com-
pactly generated toposes. In the spirit of Caramello’s work, [Caramello, 2012a], we obtain
in this section a broader class of sites whose toposes of sheaves have these properties.

As in Section 1, we write ℓ : C // Sh(C, J) for the composite of the Yoneda embed-
ding and the sheafification functor. We will occasionally make use of the following fact
regarding representable sheaves, which is easily derived from the fact that ℓ is a dense
morphism of small-generated sites, in the sense described in [Caramello, 2019]:

2.0.1. Fact. A sieve T on ℓ(C) in Sh(C, J) is jointly epimorphic if and only if the sieve
{f : D // C | ℓ(f) ∈ T} is J-covering.

2.1. Stable classes.

2.1.1. Definition. Let C be a small category. A class T of morphisms in C is called
stable if it satisfies the following three conditions:

1. T contains all identities.

2. T is closed under composition.

3. For any f : C //D in T and any morphism g in C with codomain D, there exists
a commutative square

A B

C D,

f ′

g′ g

f

(5)

in C with f ′ ∈ T .

These correspond to the necessary and sufficient conditions for T -morphisms to be single-
ton presieves generating a Grothendieck topology, as presented in [Mac Lane and Moerdijk,
1992, Exercise III.3]. We call the resulting Grothendieck topology the principal topology
generated by T .
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In [Kondo and Yasuda, 2017], a stable class of morphisms is called semi-localizing,
in reference to a related definition in [Gelfand and Manin, 2003]. The authors call a
principal topology an A-topology, presumably because the atomic topology is an example
of a principal topology; see Example 2.3.3. We have chosen a naming convention that we
believe to be more evocative in this context.

Continuing the parallel investigation of compactness, we obtain a related concept by
replacing individual morphisms by finite families of morphisms.

2.1.2. Definition. Let T ′ be a class of finite families of morphisms with specified com-
mon codomain in C. We say T ′ is stable if

1’. T ′ contains the families whose only member is the identity.

2’. T ′ is closed under multicomposition, in that if {fi : Di
// C | i = 1, . . . , n} is in T ′

and so are {gj,i : Ej
// Di | j = 1, . . . ,mi} for each i = 1, . . . , n, then {fi ◦ gj,i} is

also a member of T ′.

3’. For any {fi : Di
//C | i = 1, . . . , n} in T ′ and any morphism g : B //C in C, there

is a T ′-family {hj : Aj
//B | j = 1, . . . ,m} such that each g ◦ hj factors through one

of the fi.

These are necessary and sufficient conditions for T ′-families to generate a Grothendieck
topology, which we call the topology (finitely) generated by T ′.

Note that we do not require C to have pullbacks in the above definitions, so it is
sensible to compare them with the usual notion of stability with respect to pullbacks.

2.1.3. Lemma. Let T be a stable class of morphisms in C with the additional ‘push-
forward’ property:

4. Given any morphism f of C such that f ◦ g ∈ T for some morphism g of C, we have
f ∈ T .

This in particular is true of the class of epimorphisms, for example. Then morphisms in
T are stable under any pullbacks which exist in C.

Proof. Given a pullback of a T morphism, the comparison between any square provided
by (5) and this pullback provides a factorization of a T morphism through the pullback,
so by the assumed property the pullback is also in T , as required.

As remarked in [Kondo and Yasuda, 2017], we can extend a stable class of morphisms
T to the stable class T̂ of morphisms whose principal sieves contain a member of T
(that is, morphisms f such that f ◦ g ∈ T for some g) without changing the resulting
principal topology. Thus we can safely assume that stable classes satisfy axiom 4 of
Lemma 2.1.3 if we so choose. The advantage of enforcing this assumption is that it gives
a one-to-one correspondence between stable classes of morphisms in a category and the
principal Grothendieck topologies on that category, since we can recover the classes as
those morphisms which generate covering sieves.
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2.1.4. Remark. The class of identity morphisms in any category satisfies axioms 1,2 and
3, but in order to satisfy axiom 4 it must be extended to the class of split epimorphisms,
which is easily verified to satisfy all four axioms in any category. Thus the class of split
epimorphisms corresponds to the trivial Grothendieck topology. It is worth noting also
that every split epimorphism is regular and hence strict.

We may similarly extend a class T ′ to a maximal class T̂ ′. However, for a class of finite
families to be maximal, it must be closed under supersets as well as under the equivalent
of the push-forward property of Lemma 2.1.3, so we have two extra axioms:

4’. Given a finite family f = {fi : Di
//C} of morphisms in C such that every morphism

in some T ′-family over C factors through one of the fi, we have f ∈ T ′.

5’. Any finite family f = {fi : Di
// C} of morphisms in C containing a T ′-family f′ is

also a member of T ′.

The equivalent of the pullback stability statement of Lemma 2.1.3 is as follows.

2.1.5. Scholium. Suppose that T ′ is a stable class of finite families of morphisms in
a category C satisfying the additional axioms 4’ and 5’. Then T ′ is stable under any
pullbacks which exist in C, in that given a family {gi : Ei

// C} in T ′ and h : C ′ // C
such that the pullback of gi along h exists for each i, the family {h∗(gi) : E

′
i

// C ′} is in
T ′.

We leave the proof, and the verification that enforcing axioms 4’ and 5’ gives a one-
to-one correspondence between stable classes of finite families and finitely generated Gro-
thendieck topologies, to the reader.

2.1.6. Definition. Let C be a small category, T a stable class of its morphisms; we de-
note the corresponding principal (Grothendieck) topology by JT . We call a site (C, JT )
constructed in this way a principal site. Similarly, for a stable class of finite families
T ′ on C, we have a corresponding finitely generated (Grothendieck) topology denoted
JT ′; a site of the form (C, JT ′) shall be called a finitely generated site.

2.1.7. Proposition. Let C be a small category and J a Grothendieck topology on it.
Then the representable sheaves are all supercompact if and only if J = JT is a principal
topology for some stable class T of morphisms in C. In particular, the topos of sheaves
on a principal site (C, JT ) is supercompactly generated.

Similarly, the representable sheaves are all compact in Sh(C, J) if and only if J = JT ′

for a stable class T ′ of finite families of morphisms in C, and the topos of sheaves on a
finitely generated site (C, JT ′) is compactly generated.

Proof. By Fact 2.0.1, for J = JT , given a covering family on ℓ(C), the sieve it generates
must contain an epimorphism which is the image of a T -morphism. Since this epimor-
phism factors through some member of the covering family, that member must also be an
epimorphism. Thus ℓ(C) is supercompact, as required.
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Conversely, given that ℓ(C) is supercompact for every C, let T be the class of mor-
phisms f such that ℓ(f) is epimorphic. We first claim that T is a stable class. Indeed,
axioms 1, 2 and 4 are immediate; to see that axiom 3 holds, suppose that f : C // D
is in T and g : B //D is any C morphism. Then we may consider the pullback of ℓ(f)
against ℓ(g) in Sh(C, J):

A ℓ(B)

ℓ(C) ℓ(D).

f ′

g′
⌟

ℓ(g)

ℓ(f)

Since A is covered by objects of the form ℓ(C ′), by supercompactness of ℓ(B) there must
be an epimorphism ℓ(C ′) ↠ ℓ(B) factoring through the pullback, and in turn the sieve it
generates must contain an epimorphism in the image of ℓ, so that we ultimately recover
the square (5) required for axiom 3.

Now we show that J = JT . Given a J-covering sieve S on C (generated by a family
of morphisms, for example), the sieve generated by ℓ(S) := {ℓ(g) | g ∈ S} necessarily
covers ℓ(C), and therefore ℓ(S) contains an epimorphism by supercompactness, so that
the original sieve must have contained a member of T , which gives J ⊆ JT . Conversely,
JT -covering sieves are certainly J-covering, so JT ⊆ J . Thus J is a principal topology, as
claimed.

The argument for finitely generated sites is almost identical after replacing T -morphisms
with finite T ′-families in the first part, and defining T ′ families to be those finite families
which are mapped by ℓ to jointly epic families in the second part.

In particular, we may extend a stable class of morphisms T to a stable class of families
of morphisms T ′ by viewing the morphisms in T as one-element families. Then it is clear
that JT = JT ′ .

Intermediate between the two classes of sites discussed so far are a class which we call
quasi-principal sites: these are sites (C, J) such that for every object C ∈ C, either the
empty sieve is a covering sieve on C or every covering sieve on C contains a principal
sieve. Observe that if C ′ is the full subcategory of C on the latter class of objects (which
we can always construct over Set), then Sh(C, J) ∼= Sh(C ′, JT ), where T is the class of
morphisms generating principal covering sieves.

The following result subsumes Lemma 4.11 of [Bridge, 2012]; our work up to this point
allows us to avoid any direct manipulation with sheaves in the proof.

2.1.8. Corollary. Let (C, J) be a small site. Then the inclusion Sh(C, J) // [Cop,Set]
is relatively pristine (resp. relatively proper) if and only if J is a principal (resp. finitely
generated) topology. The inclusion is relatively polished if and only if (C, J) is a quasi-
principal site.

Proof. Since [Cop,Set] is supercompactly generated, by Proposition 1.6.9, the inclu-
sion Sh(C, J) // [Cop,Set] is relatively pristine if and only if the sheafification functor
preserves supercompact objects; this in particular requires all of the objects ℓ(C) to be
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supercompact, which occurs if and only if J is principal by Proposition 2.1.7. But any
other supercompact objects are quotients of representables, so ℓ(C) being supercompact
for every C is also sufficient. As usual, the relatively proper case is analogous.

For relative polishedness, we relax the conditions above to requiring that each rep-
resentable is sent to a supercompact or initial object, and note that the empty sieve is
covering on C if and only if ℓ(C) is initial.

2.2. Morphisms between sheaves on principal sites. In order to better under-
stand the relationship between a principal site and the topos it generates, we employ
some results from [Caramello, 2019], which enable us to describe morphisms in a Groth-
endieck topos Sh(C, J) in terms of those in a presenting site (C, J).

For a general site (C, J), the functor ℓ : C // Sh(C, J) is neither full nor faithful. To
describe the full collection of morphisms in the sheaf topos, several notions are introduced
in [Caramello, 2019, §2], of which we introduce the relevant special cases here.

For morphisms h, k : A ⇒ B, we say h and k are J-locally equal (written h ≡J k) if
there is a J-covering sieve S on A such that h◦f = k ◦f for every f ∈ S. If J is principal
(resp. finitely generated) then this is equivalent to saying that there is some T -morphism
which equalizes h and k (resp. a T ′-family whose members all equalize h and k). This
leads naturally to the following moderately technical definitions:

2.2.1. Definition. Let C be a small category and T a stable class of morphisms in C.
Then for objects A,B in C, a T -span from A to B is a span

E

A B,

f g (6)

such that f is in T . A T -arch is a T -span such that for any h, k : D ⇒ E with f◦h = f◦k
we have g ◦ h ≡JT g ◦ k.

Similarly, for T ′ a stable class of finite families of morphisms on C, a T ′-span is a
finite (possibly empty) family of spans:

Ei

A B,

fi gi (7)

such that {f1, . . . , fn} is in T ′. A T ′-multiarch is a T ′-multispan such that for any
h : D // Ei, k : D // Ei′ with fi ◦ h = fi′ ◦ k we have gi ◦ h ≡JT ′ gi′ ◦ k.

The constituent morphisms in any span or multispan will be refered to as their legs.

2.2.2. Lemma. Let (C, JT ) be a principal site. Let ArchT (A,B) be the collection of T -
arches from A to B in C. For each T -arch (t, g) ∈ ArchT (A,B), there is a (necessarily
unique) morphism ℓ(t, g) : ℓ(A) // ℓ(B) in Sh(C, JT ) such that ℓ(t, g) ◦ ℓ(t) = ℓ(g). The
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mapping ℓ so defined is a surjection from ArchT (A,B) to the set of morphisms from ℓ(A)
to ℓ(B) in Sh(C, JT ).

Similarly, letting mArchT ′(A,B) be the set of T ′-multiarches from A to B, ℓ induces
a surjection from mArchT ′(A,B) to HomSh(C,JT ′ )(A,B).

Proof. This is immediate from [Caramello, 2019, Proposition 2.5].

Intuitively it seems that the collections ArchT (A,B) “should” be the morphisms of
a category. However, while [Caramello, 2019, Proposition 2.5(iv)] suggests a composition
of arches coming from covering families that generate sieves, this composition produces
a maximal family of arches presenting the composite rather than a single T -arch; there
is a similar problem for multiarches. We therefore examine what structure exists in
general, and identify some sufficient conditions under which arches and multiarches admit
a composition operation.

2.2.3. Lemma. Let (C, JT ) be a principal site. For each pair of objects A and B in C,
let SpanT (A,B) be the collection of T -spans from A to B. Then SpanT (A,B) admits a
canonical categorical structure, where a morphism x : (t : E // A, g : E // B) // (t′ :
E ′ // A, g′ : E ′ // B) is a morphism x : E // E ′ with t = t′ ◦ x and g = g′ ◦ x. This
restricts to give a category structure on ArchT (A,B) too.

Expanding upon this, if (C, JT ′) is a finitely generated site, there is a canonical cat-
egorical structure on each collection of T ′-multispans mSpanT ′(A,B), where x⃗ : (ti :
Ei

// A, gi : Ei
// B) // (t′j : E ′

j
// A, g′j : E ′

j
// B) consists of an index j for each

index i, and a morphism xi : Ei
// E ′

j with ti = t′j ◦ xi and gi = g′j ◦ xi. Note that
any permutation of the spans forming a given T ′-multispan form a T ′-multispan which
is isomorphic in this category. Once again, this structure restricts to the collections of
multiarches.

2.2.4. Proposition. Suppose that T is a stable class of morphisms in a small category
C such that axiom 3 of Definition 2.1.1 provides stability squares weakly functorially.
That is, calling an ordered pair of morphisms (h : A // D, s : B // D) with s ∈ T a
T -cospan from A to B, suppose the stability axiom defines a mapping from T -cospans
to T -spans satisfying the following conditions:

1. For any T -morphism t : B //A, the T -span coming from (idA, t) is isomorphic in
SpanT (A,B) to (t, idB).

2. If f : A // D, g : B // D and k : A′ // A such that g is a T -morphism, the
T -span obtained by applying the stability mapping along f and then k is isomorphic
in SpanT (A

′, B) to that obtained by applying it along f ◦ k.

3. If f : A //D, g : B //D and e : B′ //B such that e and g are T -morphisms, the
T -span obtained by applying the stability mapping to g and then e is isomorphic in
SpanT (A,B

′) to that obtained by applying it along g ◦ e.
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Then there is a weak composition on T -arches, in the sense that there are mappings

◦ : ArchT (B,C)×ArchT (A,B) //ArchT (A,C),

which are associative and unital up to isomorphism of T -arches. Moreover, this compo-
sition is natural in the second component up to isomorphism, in the sense that for each
fixed T -arch (u, h) in ArchT (B,C), a morphism x : (t, g) // (t′, g′) in ArchT (A,B)
induces a morphism (u, h) ◦ x : (u, h) ◦ (t, g) // (u, h) ◦ (t′, g′) in ArchT (A,C), and the
resulting mapping (u, h) ◦ − : ArchT (A,B) //ArchT (A,C) is functorial up to unit and
associativity isomorphisms.

Proof. Even without the listed conditions, stability provides a putative definition of the
composition operation: given a consecutive pair of T -arches, we simply apply the stability
axiom to the pair of morphisms with common codomain,

P

E E ′

A B B′;

T ∋t′′ g′′

t g t′ g′

that the resulting T -span (t◦ t′′, g′◦g′′) is a T -arch is easily checked. The extra conditions
are needed to make this operation weakly unital and associative. The naturality in the
second component is a direct consequence of the second condition.

For brevity, we leave the analogous statement and proof of Proposition 2.2.4 for finitely
generated sites to the reader, noting that the analogue of T -cospans will not be duals of
T ′-multispans, but the more restrictive shape of diagram relevant to the stability axiom
3’.

In the best case scenario where it is possible to construct a weak composition on
arches, we may obtain a bicategory (see [Bénabou, 1967, Definition 1.1] for a definition
of bicategory) from the principal site (C, JT ), whose 0-cells are the objects of C, whose
1-cells are T -arches and whose 2-cells are morphisms between these.

2.2.5. Remark. The fact that T -arches do not assemble into a bicategory in full gener-
ality is not merely an artefact of us having restricted ourselves to the data of the stable
classes of morphisms (resp. finite families), rather than the principal (resp. finitely gener-
ated) Grothendieck topologies they generate. If we expand our collections of morphisms
to multiarches indexed by arbitrary JT -covering families, the construction in [Caramello,
2019, Proposition 2.5(iv)] does give a canonical family representing the composite, but it
typically fails to be unital, since composing with an identity T -span gives a strictly larger
family. We can restrict to J-covering sieves to avoid this problem, but even then, with-
out pullbacks the composition may not be weakly associative, since multi-composition of
J-covering sieves is not necessarily associative in the required sense.
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One situation where the hypotheses of Proposition 2.2.4 are satisfied is when C has
pullbacks, by Lemma 2.1.3.

2.2.6. Corollary. Let (C, JT ) be a principal site where C has pullbacks, such as the
canonical sites on locally regular categories we shall see in Definition 2.6.1. Then the
objects of C, the T -spans on C and the morphisms between these assemble into a bicat-
egory. In particular, the composition operations of Proposition 2.2.4 are natural in the
first component.

As usual, the analogous result for finitely generated sites holds, but we omit the proof.

Proof. The verification of the conditions in Proposition 2.2.4 is straightforward; note
that we actually require a specified choice of pullbacks, but the mediating isomorphisms
are provided by universal properties. For the final claim, we observe that in the third
condition of Proposition 2.2.4, we no longer need to restrict ourselves to the case where
e : B′ //B is a T -morphism, since we can complete the defining rectangle with a pullback
square (T -morphisms are indicated with double-headed arrows):

A′ A B

B′ B D.

⌟

(g◦e)′

f ′′
e′ ⌟ g′

f ′ f

e

g◦e

g

The morphism e′ provides the morphism of T -spans corresponding to e to make the com-
position natural (again, up to relevant isomorphisms) in the first component, as claimed.

The commutativity of the associativity and identity coherence diagrams which are
required to formally make this a bicategory are guaranteed by the uniqueness in the
universal property of the pullbacks involved.

As usual, the analogous result for finitely generated sites holds, but we omit the proof.
Whether it satisfies all of the requirements of a bicategory or not, however, the relation-

ship between the T -arch structure and the subcategory of Sh(C, JT ) on the representables
is simply that of collapsing the 2-cells, in the following sense:

2.2.7. Lemma. Two T -arches (resp. T ′-multiarches) from A to B on a principal (resp.
finitely generated) site are identified by ℓ if and only if they are in the same component
in the category ArchT (A,B) (resp. mArchT ′(A,B)) described in Lemma 2.2.3.

Proof. In one direction, if x : (t : E // A, g : E // B) // (t′ : E ′ // A, g′ : E ′ // B),
then by definition the unique morphism ℓ(t, g) : ℓ(A) // ℓ(B) with ℓ(g) = ℓ(t, g) ◦ ℓ(t)
also satisfies ℓ(g′) = ℓ(t, g) ◦ ℓ(t′), whence ℓ(t′, g′) = ℓ(t, g). Thus ℓ identifies T -spans in
the same component.

Conversely, applying [Caramello, 2019, Proposition 2.5(iii)], two T -arches (t : E //A, g :
E // B) and (t′ : E ′ // A, g′ : E ′ // B) induce the same morphism in Sh(C, JT ) if and
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only if there is a T -morphism s : D // A and morphisms h : D // E and h′ : D′ // E ′

with t ◦ h = s = t′ ◦ h′ and g ◦ h ≡JT g′ ◦ h′. Expanding on the latter condition, this
implies the existence of some T -morphism u : E //D equalizing g ◦ h and g′ ◦ h′. But
then (t ◦ h ◦ u, g ◦ h ◦ u) = (t′ ◦ h′ ◦ u, g′ ◦ h′ ◦ u) is easily shown to be a T -arch, and it
admits morphisms h ◦ u and h′ ◦ u′ to (t, g) and (t′, g′) respectively, whence these are in
the same connected component, as required.

Returning to the general case, we observe that we do not need the composition opera-
tion to be well-defined at the level of T -arches in order to reconstruct the full subcategory
of Sh(C, JT ) on the representable sheaves.

2.2.8. Scholium. Let (C, JT ) be a principal site. Then the full subcategory of Sh(C, JT )
on the representable sheaves is equivalent to the category whose objects are the objects of
C and whose morphisms A //B are indexed by the connected components of the category
ArchT (A,B).

Similarly, if (C, JT ′) is a finitely generated site, then the full subcategory of Sh(C, JT ′)
on the representable sheaves is equivalent to the category whose objects are the objects of
C and whose morphisms A //B are indexed by the connected components of the category
mArchT ′(A,B).

Proof. Observe that in the definition of composition given in the proof of Proposition
2.2.4, any choice of stability square will produce a T -arch (resp. T ′-multiarch) lying in
the same component of ArchT (A,C) (resp. mArchT ′(A,C)), since this T -arch (resp.
T ′-multiarch) will necessarily be mapped by ℓ to the composite of the morphisms corre-
sponding to the pair of arches (resp. multiarches) being composed. Thus, even without
weak functoriality, the composition is well-defined on connected components, as required.

In the subcanonical case, where all T -morphisms are strict epimorphisms (resp. all
T ′-families are jointly strictly epimorphic), the computations from this section simplify
greatly. Indeed, ℓ is full and faithful in this case, which means that every component of
each category ArchT (A,B) (resp. mArchT ′(A,C)) contains a unique (multi)arch of the
form (idA, f). In a T -arch (t, g), g coequalizes every pair of morphisms which t coequalizes
by definition, whence the morphism ℓ(t, g) corresponds to the unique morphism A // B
factorizing g through t; the morphisms representing multiarches are recovered analogously
from the universal properties of jointly strictly epic families.

2.3. Quotients of principal sites. Rather than directly computing the category of
representable sheaves in Sh(C, JT ) via T -arches, we might hope to simplify things by first
modifying the principal site.

In Kondo and Yasuda’s definition of ‘B-site’, they assume that the underlying category
is an ‘E-category’, which is to say that every morphism is an epimorphism, [Kondo and
Yasuda, 2017, Definitions 4.1.1, 4.2.1], which seems very restrictive. However, by taking
the quotient of C by a canonical congruence, we show here that we may at least assume
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that T is contained in the class of epimorphisms of C without loss of generality, since the
corresponding topos of sheaves is equivalent to that on the original site.

2.3.1. Proposition. Let (C, JT ) be a principal site. Then there is a canonical congruence
∼ on C such that (C/∼, JT /∼) is a principal site with T /∼ a subclass of the epimorphisms
of C/∼, and with Sh(C, JT ) ≃ Sh(C/∼, JT /∼).

Similarly, if (C, JT ′) is a finitely generated site, there is a congruence ∼ on C such
that (C/∼, JT ′/∼) is a finitely generated site with T ′/∼ a subclass of the epimorphisms of
C/∼, and with Sh(C, JT ′) ≃ Sh(C/∼, JT ′/∼).

Proof. Simply let f ∼ f ′ : C // D whenever there is a morphism h : C ′ // C in T
with fh = f ′h. To verify that this is a congruence, given g ∼ g′ : D // E equalized by
k : D′ //D, stability of k along fh = f ′h gives k′ ∈ T :

C ′′ D′

C ′ C D E;

k′ k

h
f

f ′

g

g′

T is closed under composition and gfhk′ = g′f ′hk′, so gf ∼ g′f ′ as required.
By the definition of the congruence it is immediate that the morphisms in T /∼ are

epimorphisms. The canonical functor (D, JT ) // (D/∼, JT /∼) is a morphism and comor-
phism of sites8, since it is cover-preserving, cover-lifting and flat by inspection. In the
terminology of [Caramello, 2019], the quotient functor is JT -full, JT -faithful and JT /∼-
dense; indeed, being full and essentially surjective, only the JT -faithfulness needs to be
checked, and the definition of the congruence ensures that this holds. Thus this morphism
of sites induces an equivalence of sheaf toposes by [Caramello, 2019, Proposition 7.16].

The congruence for a finitely generated site has f ∼ f ′ whenever fhi = f ′hi for each
hi in a T ′-family. The remainder of the proof is analogous.

The reduced site (C/∼, JT /∼) in Proposition 2.3.1 can be obtained in various alterna-
tive ways. By construction, the functor C // C/∼ is the universal functor with domain
C sending T -morphisms to epimorphisms, so it is not surprising thanks to the proof of
Proposition 2.1.7 that ℓ canonically factors through it. Less evidently, this congruence is
that induced by the functor underlying the morphism of sites (C, JT ) // (Sh(C, JT ), Jcan).
See Section 2.7 below for more on morphisms of sites.

After making this simplification, JT -local equality (resp. JT ′-local equality) reduces
to ordinary equality, so that for example a T -arch from A to B is a T -span as in (6) such
that for any h, k : D ⇒ C with f ◦ h = f ◦ k we have g ◦ h = g ◦ k. In particular, by
considering the arches in which the T -morphism is an identity, we see that the functor
ℓ : (C/∼, JT /∼) // Sh(C, JT ) is faithful, and further that ℓ : (C, JT ) // Sh(C, JT ) is faithful
if and only if every T -morphism is an epimorphism, which is to say that the congruence
∼ is trivial.

8See Definitions 2.7.1 and 2.8.1 below.
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2.3.2. Corollary. Let (C, JT ) be a principal site and let ∼ be the congruence on C from
Proposition 2.3.1. Then the functor ℓ : (C, JT ) // Sh(C, JT ) is full if and only if every
T /∼-morphism in C/∼ is a strict epimorphism.

Similarly, if (C, JT ′) is a finitely generated site, then ℓ : (C, JT ′) // Sh(C, JT ′) is full
if and only if every T ′/∼-family in C/∼ is a strictly epimorphic family.

Proof. If the hypothesis holds, then the site (C/∼, JT /∼) is subcanonical, so the induced
functor to the topos is full and faithful, whence ℓ with domain (C, JT ) is full.

Conversely, given that ℓ is full, suppose that t : E //A is in T . Suppose that we have
g : E //B such that whenever h, k : E ′ //E with t◦h = t◦k, we have g◦h = g◦k. Then
(t, g) is a T -arch, and there is a morphism ℓ(t, g) in Sh(C, JT ) completing the triangle.
By fullness of ℓ, this is the image of a morphism A //B in C/∼, and by the definition of
∼ there is at most one such morphism, whence t/∼ is a strict epimorphism, as claimed.

The argument for finitely generated sites is analogous.

It follows from Corollary 2.3.2 that the restriction of the codomain of ℓ to the full
subcategory of Sh(C, JT ) on the objects of the form ℓ(C) is the universal functor sending
T -morphisms to strict epimorphisms.

2.3.3. Example. Recall that a category C satisfies the right Ore condition if any
cospan can be completed to a commutative square. This is exactly the condition needed
to make the class of all morphisms of C stable, and the corresponding principal topology
is more commonly called the atomic topology, Jat, while the site (C, Jat) is called an
atomic site. The above results show that we may reduce any atomic site to one in which
every morphism is epic (hence a ‘B-site’ in the terminology of Kondo and Yasuda).

2.4. Reductive and coalescent categories. Returning to our study of the sub-
categories of supercompact and compact objects from the last section, we observe that
the epimorphisms they inherit from E always meet most of the requirements for stability.

2.4.1. Lemma. For any Grothendieck topos E, let Cs, Cc the usual subcategories. Then
the class T of epimorphisms in Cs which are inherited from E satisfies axioms 1,2 and 4
for stable classes, while the class T ′ of finite jointly epimorphic families on Cc inherited
from E satisfies axioms 1’,2’,4’ and 5’.

Proof. Clearly Cs and Cc inherit identities from E , so T contains these and T ′ contains
the singleton families of the identities. Since epimorphisms are stable under composition
in E , T is closed under composition. Multicomposition of finite jointly covering families in
E is similarly direct, giving the second axiom for T ′. Axioms 4’ and 5’ are straightforward.

By Theorem 1.4.3, if E is supercompactly generated (resp. compactly generated) then
axiom 3 (resp. axiom 3’) must also be satisfied in each case. Note that the converse fails:
stability of E-epimorphisms in Cs or stability of E-epimorphic finite families in Cc are not
sufficient to guarantee that E is supercompactly or compactly generated. Indeed, if E a
non-degenerate topos where the only compact object is the initial object, such as that
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exhibited in Example 2.9.3, the stability axioms are trivially satisfied but E is neither
supercompactly nor compactly generated.

In the remainder of this section, we refine the concepts of principal and finitely gener-
ated sites in order to obtain a characterisation of the categories Cs (resp. Cc) of supercom-
pact (resp. compact) objects in supercompactly (resp. compactly) generated toposes.

2.4.2. Definition. We say a small category C is reductive if it has funneling colimits
and its class of strict epimorphisms is stable. The reductive topology Jr on a reductive
category is the principal topology generated by its class of strict epimorphisms.

We say C is coalescent if it has multifunneling colimits and its class of (strictly)
epic finite families is stable. The coalescent topology Jc on a coalescent category is the
finitely generated topology on its class of strictly epic finite families.

2.4.3. Remark. Some justification for this naming and notation is warranted.
The names of the categories are intended to evoke the presence of funneling (resp.

multifunneling) colimits, since any diagram in them of the respective shapes ‘is reduced’
(resp. ‘coalesces’) by composing with a suitable epimorphism (resp. jointly epimorphic
family). If we consider the reductive category

C := A ⇒ B ↠ C,

featuring in Example 2.9.6 below, for example, we can identify a functor F : C // Set
with a directed graph, equipped with a mapping on its set of vertices which identifies
connected elements; if F preserves funneling colimits, then the image of the epimorphism
B ↠ C must exactly be the map reducing the graph to its set of connected components.

The names were also chosen to have their first few letters in common with regular and
coherent respectively, since the regular and coherent objects in a topos are respectively
subclasses of the supercompact and compact objects. Thus, while the r and c in Jr and Jc
stand for reductive and coalescent respectively, we shall see that when a category is both
regular and reductive, the regular topology (see Definition 2.6.3 below) coincides with the
reductive topology, so the r on Jr could also mean ‘regular’; similarly for coalescent and
coherent.

While not every stable class of finite families need contain a stable class of singleton
morphisms, we record the fact that this does happen when the families involved are strictly
epimorphic families.

2.4.4. Lemma. Any coalescent category is a reductive category with finite colimits and a
strict initial object.

Proof. If C is a coalescent category, it certainly has the required colimits, so it suffices to
show stability of strict epimorphisms. Indeed, if t : D ↠ C is strict and g : B //C is any
morphism in C, then since {t} is a strictly epic family, there is some strictly epic family
{hj : Aj

// B | i = 1, . . . ,m} over B such that each g ◦ hj factors through t. Factoring
this family through the coproduct A1 + · · · + Am gives a strict epimorphism completing
the required stability square (even in the case m = 0).
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To see that the initial object is strict, observe that the empty family is a strict jointly
epic family on the initial object, so given any morphism A //0, stability forces the empty
family to be jointly epic over A, whence A is also an initial object.

It would be easy to mistakenly conclude based on the results presented thus far that
the subcategory of supercompact objects in the category of sheaves on a reductive category
C should be equivalent to C. The flaw in this reasoning lies in the fact that, while the
functor ℓ : C // Sh(C, Jr) is full and faithful (since (C, Jr) is a subcanonical site) and
this functor preserves strict epimorphisms, it does not preserve all funneling colimits; a
similar argument applies for coalescent categories.

2.4.5. Example. Consider the following categories, C and C ′ on the left and right re-
spectively. It is easily checked that they are reductive, with strict epimorphisms identified
with two heads.

R1 R2

A

·

B

R1 R2

A

C D

B

The coequalization is that suggested by the positioning, so that in the first diagram,
the coequalizer of the pair coming from R1 is the terminal object B, but in the second
diagram, C is the coequalizer of the pair coming from R2.

One can calculate directly that the category of supercompact objects in Sh(C, Jr) ≃
Sh(C ′, Jr) is equivalent to C ′. Indeed, the functor ℓ : C // Sh(C, Jr) does not preserve the
coequalizer diagram R1 ⇒ A ↠ B.

We shall see a further example of a failure of ℓ to preserve coequalizers (and hence
funneling colimits) in Example 2.9.13. In order to understand which colimits are preserved
by ℓ, we apply criteria derived in [Caramello, 2019, Corollary 2.25], which we recall here;
we refer the reader to that monograph for the proof.

2.4.6. Lemma. Let (C, J) be a site, F : D // C a diagram and λ⃗ = {λD : F (D) // C0 |
D ∈ D} a cocone under F with vertex C0. Then λ⃗ is sent by the canonical functor
ℓ : C // Sh(C, J) to a colimit cone if and only if:

(i) For any object C and morphism g : C // C0 in C, there is a J-covering family
{fi : Ci

// C | i ∈ I} and for each i ∈ I, an object Di of D and an arrow
hi : Ci

// F (Di) such that λDi
◦ hi = g ◦ fi.

(ii) For any object C in C and morphisms g1 : C // F (X), g2 : C // F (Y ) such that
λX ◦ g1 = λY ◦ g2, there is a J-covering family {fi : Ci

// C | i ∈ I} such that for
each i ∈ I, g1 ◦ fi and g2 ◦ fi lie in the same connected component of (Ci ↓ F ).

Observe that the first condition can be simplified.
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2.4.7. Lemma. Condition (i) of Lemma 2.4.6 is equivalent to the requirement that {λD :
F (D) // C0 | D ∈ D} is a J-covering family.

Proof. Consider the case where g is the identity on C0. There must be some J-covering
family {fi : Ci

// C | i ∈ I} and for each i ∈ I, an object Di of D and an arrow
hi : Ci

// F (Di) such that λDi
◦ hi = g ◦ fi. Since every morphism in this covering

family factors through a leg of the colimit cone, the legs of the cone must form a J-
covering family. Conversely, given any morphism g : C // C0, since J-covering families
are required to be stable, pulling back λ⃗ gives the required J-covering family over C to
fulfill condition (i).

Applying this in the particular case of funneling or multifunneling colimits in a prin-
cipal or finitely generated site (C, J), we get the following:

2.4.8. Proposition. Let (C, JT ) be a principal site and F : D //C a funneling diagram

with weakly terminal object F (D0) and λ⃗ = {λD : F (D) // C0 | D ∈ D} a cocone under

F with vertex C0. Then λ⃗ is sent by the canonical functor ℓ : C // Sh(C, JT ) to a colimit
cone if and only if:

(i) λD0 ∈ T .

(ii) For any object C in C and morphisms g1, g2 : C ⇒ F (D0), such that λD0 ◦ g1 =
λD0 ◦ g2, there is a T -morphism t : C ′ //C such that g1 ◦ t and g2 ◦ t lie in the same
connected component of (C ′ ↓ F ).

Similarly, if (C, JT ′) is a finitely generated site and F : D // C a multifunneling

diagram with weakly terminal objects F (D1), . . . , F (Dn) and λ⃗ := {λD : F (D) // C0 |
D ∈ D} a cocone under F with vertex C0, then λ⃗ is sent by ℓ : C // Sh(C, JT ′) to a
colimit cone if and only if:

(i) {λD1 , . . . , λDn} ∈ T ′.

(ii) For any object C in C and morphisms g1 : C // F (Dk) and g2 : C // F (Dl) with
1 ≤ k, l ≤ n, such that λDk

◦ g1 = λDl
◦ g2, there is a T ′-family {ti : Ci

// C | 1 ≤
i ≤ N} such that g1 ◦ ti and g2 ◦ ti lie in the same connected component of (Ci ↓ F ).

Proof. For (i) in each case, we apply Lemma 2.4.7 and then the fact that every morphism
in the cone factors through λD0 (resp. one of the λDk

) to deduce, thanks to stability axiom
4 (resp. axioms 4’ and 5’) that condition (i) of Lemma 2.4.6 is equivalent to the given
statement.

Condition (ii) in each case is a consequence of condition (ii) in Lemma 2.4.6, having
simply taken the special case X = Y = D0 (resp. X = Dk and Y = Dl). Conversely,
for arbitrary g1 : C // F (X) and g2 : C // F (Y ) such that λX ◦ g1 = λY ◦ g2, we may
extend this via any of the morphisms p1 : X // D0 and p2 : Y // D0 in the diagram
(resp. p1 : X // Dk and p2 : Y // Dl) so that λD0 ◦ Fp1 ◦ g1 = λD0 ◦ Fp2 ◦ g2 (resp.
λDk
◦ Fp1 ◦ g1 = λDk

◦ Fp2 ◦ g2). Given a T -morphism t : C ′ // C such that Fp1 ◦ g1 ◦ t
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and Fp2 ◦ g2 ◦ t are in the same connected component of (C ′ ↓ F ) (resp. a T ′-family
{ti : Ci

//C} such that Fp1 ◦g1 ◦ ti and Fp2 ◦g2 ◦ ti are in the same connected component
of (Ci ↓ F )), it is clear that g1 ◦ t and g2 ◦ t (resp. g1 ◦ ti and g2 ◦ ti for each i) also lie in
this same component, as required.

As an illustration of the second half of Proposition 2.4.8, we deduce the special case
of binary coproducts (cf. Lemma 1.3.7).

2.4.9. Corollary. For (C, JT ′) a finitely generated site, a cospan λ1 : X1 → Y ← X2 :
λ2 is mapped by ℓ : C // Sh(C, JT ′) to a coproduct cocone if and only if:

(i) {λ1, λ2} ∈ T ′,

(ii) Whenever f1 : C //X1 and f2 : C //X2 have λ1 ◦ f1 = λ2 ◦ f2, the empty family
is T ′ covering on C, and

(iii) Whenever f, f ′ : C ⇒ X1 are coequalized by λ1, there is a T ′-covering family on C
consisting of morphisms equalizing f and f ′ (and similarly for pairs of morphisms
into X2).

If T ′-covering families are jointly epic, we can replace the last condition by the condition
that λ1 and λ2 must be monic.

Proof. This is a direct application of Proposition 2.4.8 for multifunneling colimits in
the case of a finite discrete diagram, where two morphisms are in the same connected
component of (C ↓ F ) if and only if they are equal (which is impossible if they have
distinct codomains).

Imposing these conditions on funneling and multifunneling colimit cones in reductive
and coalescent categories, we arrive at the following definitions.

2.4.10. Definition. We say a reductive or coalescent category C is effectual if the
respective conditions of Proposition 2.4.8 hold for every funneling (resp. multifunneling)
colimit diagram.

Explicitly, a reductive category is effectual if for every funneling diagram F : D // C
with colimit expressed by λ : F (D0) ↠ C0, given morphisms g1, g2 : C ⇒ F (D0) in C such
that λ ◦ g1 = λ ◦ g2, there is a strict epimorphism t : C ′ ↠ C such that g1 ◦ t and g2 ◦ t lie
in the same connected component of (C ′ ↓ F ).

Similarly, a coalescent category is effectual if for every multifunneling diagram F :
D // C with colimit expressed by {λi : F (Di) //C0}, given morphisms g1 : C // F (Dk)
and g2 : C // F (Dl) such that λk ◦ g1 = λl ◦ g2, there is a jointly strictly epimorphism
family {tj : C ′

j ↠ C : 1 ≤ j ≤ m} such that g1 ◦ tj and g2 ◦ tj lie in the same connected
component of (C ′

j ↓ F ) for each index j.

Recall that a category C with finite coproducts is said to be positive if and only if
coproduct inclusions are monomorphisms and finite coproducts are disjoint, in the sense
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that for all objects A and B of C, the following square is a pullback:

0 B

A A+B.

Applying Corollary 2.4.9, we deduce:

2.4.11. Corollary. An effectual coalescent category is positive.

With these definitions to hand, we can finally express a definitive correspondence
result between supercompactly or compactly generated toposes and their canonical sites
from Theorem 1.4.3.

2.4.12. Theorem. Up to equivalence, there is a one-to-one correspondence between su-
percompactly generated Grothendieck toposes and essentially small effectual, reductive cat-
egories. The correspondence sends a topos to its essentially small category of supercompact
objects and a reductive category to the topos of sheaves for the reductive topology on that
category.

Similarly, there is an up-to-equivalence correspondence between compactly generated
Grothendieck toposes and effectual coalescent categories.

Proof. Passing from a topos to its subcategory of supercompact (resp. compact) objects
and back again gives an equivalent topos by Theorem 1.4.3; the small category must
be an effectual reductive (resp. effectual coalescent) category, since the subcategory of
supercompact (resp. compact) objects is closed under funneling (resp. multifunneling)
colimits, so the inclusion must preserve them.

In the other direction, since the strict (resp. strict finite family) Grothendieck topol-
ogy is subcanonical, a reductive (resp. coalescent) category is included faithfully as a full
subcategory of the corresponding sheaf topos, and all of the representable sheaves are
supercompact (resp. compact). The supercompact (resp. compact) objects are funneling
(resp. multifunneling) colimits of the representable sheaves in this topos, but these col-
imits are preserved by ℓ by construction when the category is effectual, so the category
of representable sheaves coincides with the category of supercompact (resp. compact)
objects, as required.

We shall extend this correspondence to an equivalence of 2-categories in Section 2.7.
Since geometric morphisms shall come into play at that point, we add here the following
extra definition:

2.4.13. Definition.A reductive category C is augmented if it has an initial object. The
augmented reductive topology Jr+ on such a category has covering sieves generated
by singleton or empty strictly jointly epic families. The resulting augmented reductive
site (C, Jr+) is quasi-principal.
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Before moving on, a word of warning. In spite of Lemma 2.4.4, an effectual coalescent
category may fail to be an effectual reductive category, because the condition for a fun-
neling colimit in a coalescent category to be preserved upon passing to the corresponding
topos is weaker than the condition on reductive categories; we shall see a counterexample
in Example 2.9.15. Even when a coalescent category is ‘reductive-effectual’, the corre-
sponding toposes from Theorem 2.4.12 are always distinct, since we have seen that the
initial object of a topos is never supercompact but always compact.

2.5. Localic supercompactly generated toposes. Recall that a Grothendieck
topos is localic if it is of the form Sh(L), the category of (set-valued) sheaves on some
locale L; this is equivalent to the global sections geometric morphism being localic in the
sense described in Section 1.8. These toposes can equivalently be characterised by the
fact that their set of subterminal objects is separating, and these subterminals form a
frame isomorphic to the frame of opens of the locale.

The conditions for Sh(L) to be supercompactly or compactly generated reduce to con-
ditions on the frame of subterminal objects. It is worth mentioning that the cases where
Sh(L) has enough coherent objects produces the notion of coherent frame, while having
enough regular objects gives a supercoherent frame. These are respectively discussed by
Banaschewski and a coauthor in [Banaschewski 1981] and [Banaschewski and Niefield
1991], where they employ the subobject characterizations in the form of ‘way below’ and
‘totally below’ relations, respectively.

2.5.1. Proposition. A localic topos is supercompactly generated if and only if it is equiv-
alent to [Cop,Set] for some poset C. Moreover, any poset is an instance of an effectual
reductive category.

Proof.The ‘if’ direction is a consequence of Proposition 1.2.4 and the fact such a presheaf
topos is necessarily localic.

Conversely, if E is supercompactly generated, each subterminal must be covered by its
supercompact subobjects, so the supercompact subterminal objects generate the topos.
A subterminal object is supercompact if and only if it has no proper cover by strictly
smaller subterminals. This forces the canonical topology on the supercompact objects
to be trivial, whence E ≃ [Cops ,Set]. By considering the expression of E as a category
of sheaves on a locale, we see that the supercompact objects must all be quotients of
subterminals, and hence themselves subterminals, so Cs is a poset.

To characterize localic compactly genearated toposes, we need to present a more ob-
scure definition.

2.5.2. Definition. A join semilattice is a poset having all finite joins, including the
bottom element. We say a join semilattice is distributive if for any triple of objects
(a, b, c) with a ≤ b ∨ c, there are elements b′ ≤ b and c′ ≤ c such that a = b′ ∨ c′; see
[Grätzer, 2002, §II.5]. This in particular holds in any distributive lattice.

Distributivity, which inductively extends to arbitrary finite joins, is precisely the con-
dition ensuring that the collection of finite join covers is a stable class of finite families.
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Note that finite join covers are coproduct injections, so that any distributive join semilat-
tice is a coalescent category. Considering the join of any element with itself, we see that
any non-degenerate distributive lattice is an example of a coalescent category which fails
to be positive (and hence fails to be effectual).

2.5.3. Proposition.A localic topos is compactly generated if and only if it is the category
of sheaves on a distributive join semilattice with respect to the topology that makes finite
joins covering.

Proof. Unlike in the supercompact case, the compact subterminal objects no longer
populate all of Cc, but a similar argument applies: if C is the subcategory of E on the
compact subterminal objects, then C is a distributive join semilattice since a finite union
of compact subterminal objects is compact, and so E = Sh(C, J) where J is the topology
on C whose covering families are finite joins.

By applying Theorem 1.8.6, we can immediately conclude that the above characterisa-
tions apply to the localic reflections of supercompactly and compactly generated toposes.

2.5.4. Corollary. The localic reflection of any supercompactly generated topos is a
(localic) presheaf topos. The localic reflection of a compactly generated topos is a topos of
sheaves on a distributive join semilattice.

2.6. Locally regular and coherent categories. As we observed earlier, super-
compactness and compactness have been studied in the context of regular and coherent
toposes, which are toposes of sheaves on regular and coherent categories respectively,
equipped with suitable Grothendieck topologies. Here we recall the definitions of these
classes of categories, as well as some more general classes, for comparison with reductive
and coalescent categories.

2.6.1. Definition. Recall that an epimorphism e in a category C is extremal if when-
ever e = m ◦ g with m a monomorphism, then m is an isomorphism.

A category is locally regular if it is closed under connected finite limits, it has an
orthogonal (extremal epi, mono) factorisation system, and every span factors through a
jointly monic pair via an extremal epimorphism. Such a category is regular if it also
has finite products (equivalently, a terminal object). Clearly, a slice (also called an ‘over-
category’) of a locally regular category is regular.

We say a category is locally coherent if it is locally regular and finite unions of
subobjects (including the minimal subobject) exist and are stable under pullback. Such a
category is coherent if it also has finite products.

2.6.2. Lemma. Every extremal epimorphism in a locally regular category is regular.

Proof. We adapt the proof, [Johnstone, 2002, Proposition A1.3.4], that in a regular
category, covers are regular epimorphisms; we omit the composition symbol for conciseness
in this proof.

Let f : A ↠ B be an extremal epimorphism in a locally regular category and let
a, b : R ⇒ A be its kernel pair. We show that f coequalizes a and b.
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Suppose c : A // C has ca = cb, and factorize the span (f, c) as an extremal epimor-
phism followed by a jointly monic pair:

B

A D

C.

f

c

d

g

h

If we can show that g is monic, then extremality of f will force it to be an isomorphism,
so that c = hg−1f factors through f .

Given k, l : E ⇒ D with gk = gl, consider the following diagram composed of pullback
squares:

P · A

· E D

A D

m

n

p
d

k

l

d

The morphism labelled p is a composite of extremal epimorphisms (by stability) and hence
is itself an extremal epimorphism. From this diagram and the preceding assumptions, we
have fm = gdm = gkp = glp = gdn = fn, whence (m,n) factors through (a, b) via some
morphism q : P //R, and we have:

hkp = hdm = cm = caq = cbq = cn = hdn = hlp,

whence hk = hl by epicness of p, but since (g, h) was jointly monic, we have k = l, which
completes the proof.

2.6.3. Definition. The regular topology on a regular or locally regular category is
simply the principal topology generated by the extremal epimorphisms, and similarly the
coherent topology on a coherent or locally coherent category is the finitely generated
topology generated by the finite jointly extremal epic families.

By Lemma 2.6.2, we may replace ‘extremal’ with ‘regular’ in the descriptions of the
stable classes in this definition, whence we see that these sites are subcanonical. Ac-
cordingly we obtain a regular (resp. locally regular, coherent, locally coherent) topos of
sheaves on such a site, where here the adjective merely indicates that the topos can be
generated by such a site; any topos is automatically a coherent (and hence regular, locally
regular and locally coherent) category9.

9The reason for the somewhat unfortunate naming convention which we are extending here is explained
in [Johnstone, 2002, D3.3].
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By the previous results in this section, any locally regular topos is supercompactly
generated, and any locally coherent topos is compactly generated. We are therefore led
to wonder when the classes of categories coincide.

2.6.4. Theorem. A small category is locally regular with funneling colimits if and only
if it is a reductive category with pullbacks.

A small category is locally coherent with multifunneling colimits if and only if it is a
coalescent category with pullbacks.

In each case, we can remove the “locally” adjective in exchange for adding a terminal
object.

Proof. In one direction, by Lemma 2.6.2 we have that in a locally regular category,
the classes of extremal, strict and regular epimorphisms all coincide, since any strict
epimorphism is extremal, and they form a stable class by assumption, whence a locally
regular category with funneling colimits is a reductive category with pullbacks.

Conversely, given a reductive category C with pullbacks, we must show that C has
equalizers, since a category has connected finite limits if and only if it has both pullbacks
and equalizers; the remaining conditions follow from Corollary 1.3.14 and Lemma 1.3.15,
thanks to Lemma 2.1.3. Given a pair of morphisms h, k : A ⇒ B in C, consider their
coequalizer c : B ↠ C. Then C/C is regular, since it has pullbacks and a terminal object
(so all finite limits), and it inherits the required factorization system, including that for
spans, from C. Therefore there exists an equalizer of h and k as morphisms over C, and
it is clear that this will also be their equalizer in C.

For the locally coherent case, by considering the strictly epic finite families of subob-
jects, we see that the fact that unions are stable under pullback ensures that strictly epic
finite families form a stable class, as required.

Conversely, given a coalescent category C with pullbacks, the argument above, Corol-
lary 1.3.14 and Lemma 1.3.15 give that C is locally regular. For finite unions of subobjects,
observe that it suffices to consider nullary and binary unions. The former are guaranteed
by the strict initial object of a coalescent category, seen in Lemma 2.4.4. For the latter,
observe that the union can be expressed as the pushout (a multifunneling colimit) along
the intersection of the two subobjects (the pullback of the monomorphisms defining the
subobjects), since any subobject containing the given pair of subobjects forms a cone
under this diagram. The fact that strictly epic families are stable under pullback ensures
that these unions are too, again thanks to Lemma 2.1.3.

2.6.5. Example. A distributive join semilattice has pullbacks and a top element if and
only if it is a distributive lattice, so the (bounded) distributive lattices are precisely the
coherent distributive join semilattices.

The reader may have noticed that we did not include the properties of effectiveness
for regular and coherent categories in Definition 2.6.1:
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2.6.6. Definition. A (locally) regular category is effective10 if all equivalence relations
are kernel pairs.

We chose a similar name, ‘effectual’, for the concepts appearing in Definition 2.4.10
because both effectuality and effectiveness are conditions equivalent to the relevant cat-
egories being recoverable from the associated topos. Indeed, a locally regular, effective
category C can be recovered from the topos of sheaves on C for the regular topology,
Sh(C, Jr), as the category of regular objects, which were defined in Example 1.2.3. Sim-
ilarly, if C is locally coherent, positive and effective, it can be recovered from Sh(C, Jc)
as the category of coherent objects, which are defined analogously. As a special case,
we recover the familiar correspondences between effective regular categories and regu-
lar toposes, or between effective, positive coherent categories (also known as pretoposes)
and coherent toposes. These results are comparable to Theorem 2.4.12. The concepts of
effectuality and effectiveness are directly related:

2.6.7. Proposition. Let C be a reductive category with pullbacks. Then if C is effectual
as a reductive category, it is also effective as a regular category.

Proof. First suppose that C is effectual, let a, b : R ⇒ A be an equivalence relation on
A, and let λ : A ↠ B be its coequalizer. We must show that (a, b) is the kernel pair of c.
Given g1, g2 : C ⇒ A with λ◦g1 = λ◦g2, by effectuality of C there is a strict epimorphism
t : C ′ ↠ C such that g1 ◦ t and g2 ◦ t lie in the same connected component of (C ′ ↓ F ),
where F : D // C is the diagram picking out the parallel pair (a, b).

The only form a connecting zigzag can have in (C ′ ↓ F ) is (omitting the morphisms
from C ′ and any identity morphisms):

R R · · · R

A A A A A,

x1 y1 x2 y2 x3 yn−1 xn yn

with each xi and yi equal to a or b. By reflexivity of R we may construct a zigzag consisting
of n > 0 spans. We show by downward induction that there must always be a zigzag of
exactly 1 span, which corresponds to a factorization of the span (g1 ◦ t, g2 ◦ t) through the
relation (a, b).

Clearly if x1 = y1 we may omit the first zigzag, and similarly for all of the others, so
we may assume that xi ̸= yi. By symmetry of R, if (xi, yi) = (b, a), this factorizes through
(a, b), which gives an alternative zigzag of the same length in (C ′ ↓ F ), so we may assume
xi = a and yi = b. If n ≥ 2, we may factor through the pullback of x2 along y1, and
transitivity of R means that we get a strictly shorter zigzag; iterating this, we reach a
zigzag with n = 1, as required.

Finally, taking the (regular epimorphism, relation) factorization of (g1 ◦ t, g2 ◦ t), we
conclude that the resulting relation (and hence (g1, g2)) must factor uniquely through R,
as required.

10Referred to as Barr-exactness in older texts; we follow Johnstone in our terminology.
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As we shall see in Example 2.9.14, the converse of Proposition 2.6.7 fails, which is why
we did not employ the same name for these concepts.

2.6.8. Remark. While we provided a direct proof of Proposition 2.6.7 for completeness,
we could more succinctly have reasoned as follows. When a category is both regular and
reductive, the strict and regular topologies on the category coincide. If such a category
is effectual, therefore, all of the supercompact objects in its topos of sheaves are regular,
and hence it must also be effective, since it is equivalent to the category of regular objects
in its associated topos.

More generally, one might take an interest in the regular objects in a supercompactly
generated topos, or the coherent objects in a compactly generated topos. However, this
class of objects need not be stable under pullback in general, and hence may not assemble
into a locally regular (resp. locally coherent) category. Nonetheless, by considering the
induced Grothendieck topology on this subcategory, we obtain a supercompactly gener-
ated subtopos of the original topos. Iterating this process recursively, in the countable
limit we obtain a maximal pullback-stable class of regular objects, although the resulting
subcategory still may not be a locally regular category in the sense of Definition 2.6.1,
since that definition also required the presence of equalizers. Since it is unclear to us
whether this class of objects or the corresponding subtopos have an interesting universal
property, and since we lack interesting specific examples of this construction, we terminate
our analysis here.

2.7. Morphisms of sites. Morphisms of sites are most easily defined on sites whose
underlying category has finite limits. However, there is no reason for this property to hold
in a general principal or finitely generated site. We must therefore use the more general
definition of morphism of sites, which we quote from [Caramello, 2019, Definition 3.2].

2.7.1. Definition. Let (C, J) and (D, K) be sites. Then a functor F : C // D is a
morphism of sites if it satisfies the following conditions:

1. F sends every J-covering family in C to a K-covering family in D.

2. Every object D of D admits a K-covering family {gi : Di
//D | i ∈ I} by objects

Di admitting morphisms hi : Di
// F (C ′

i) to objects in the image of F .

3. For any objects C1, C2 of C and any span (λ′
1 : D // F (C1), λ

′
2 : D // F (C2))

in D, there exists a K-covering family {gi : Di
// D | i ∈ I}, a family of spans

in C, {(λi
1 : C ′

i
// C1, λ

i
2 : C ′

i
// C2) | i ∈ I}, and a family of morphisms in D,
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{hi : Di
// F (Ci)}, such that the following diagram commutes:

Di

F (C ′
i) D

F (C1) F (C2)

hi gi

F (λi
1)

F (λi
2)

λ′
1

λ′
2

4. For any pair of arrows f1, f2 : C1 ⇒ C2 in C and any arrow λ′ : D // F (C1) of
D satisfying F (f1) ◦ λ′ = F (f2) ◦ λ′, there exist a K-covering family in D {gi :
Di

//D | i ∈ I}, and a family of morphisms of C {λi : C ′
i

//C1 | i ∈ I}, satisfying
f1 ◦ λi = f2 ◦ λi for all i ∈ I and of morphisms of D {hi : Di

// F (C ′
i) | i ∈ I},

making the following squares commutative:

Di D

F (C ′
i) F (C1)

hi

gi

g

F (λi)

2.7.2. Remark. It is not difficult to show by induction on finite diagrams that the last
three conditions are equivalent to the following more condensed condition:

Given a finite diagram A : I // C and a cone L′ over F ◦A in D with apex D, there is
a K-covering family of morphisms {gi : Di

//D | i ∈ I} and cones Li over A in C with
apex C ′

i such that L◦ gi factors through F (Li) for each i ∈ I, in the sense that there exist
morphisms hi : Di

// F (Ci) with

Di D

F (C ′
i) F (A(Xj))

hi

gi

λ′
j

F (λi
j)

for each i, where λ′
j and λi

j are the jth legs of cones L′ and Li respectively.
Moreover, when the domain site does have finite limits, these three conditions reduce

to the requirement that F preserves finite limits.

A functor is a morphism of sites precisely if ℓD ◦F : C // Sh(D, K) is a J-continuous
flat functor, so that this composite extends along ℓC to provide the inverse image functor
of a geometric morphism Sh(D, K) // Sh(C, J).
2.7.3. Corollary. Suppose (C, J) and (D, K) are principal (resp. quasi-principal, finitely
generated) sites. Then any morphism of sites F : (C, J) // (D, K) induces a relatively
pristine (resp. relatively polished, relatively proper) geometric morphism f : Sh(D, K) //

Sh(C, J).
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Proof. Since the conditions on the sites ensure that the representables are supercompact
(resp. supercompact or initial, compact), and the restriction of the inverse image functor
to these is precisely ℓD ◦ F , we conclude that f ∗ preserves these objects, whence f is
relatively pristine (resp. relatively polished, relatively proper) by Proposition 1.6.9.

2.7.4. Remark. More generally, suppose (C, J) is any small-generated site such that
Sh(C, J) is supercompactly (resp. compactly) generated and (D, K) is a principal (resp.
finitely generated) site. The geometric morphism induced by a morphism of sites F :
(C, J) // (D, K) has inverse image functor sending any funneling (resp. multifunneling)
colimit of representables to a colimit of supercompact (resp. compact) objects of the
same shape, whence by Lemma 1.3.9 it must in particular preserve supercompact (resp.
compact) objects. As such, we can replace the hypotheses of Corollary 2.7.3 with these
weaker conditions if we so choose.

Beyond morphisms, it is natural to make the extra step of forming a 2-category of
sites. Indeed, any natural transformation between functors underlying morphisms of
sites induces a natural transformation between the inverse images of the corresponding
geometric morphisms; for subcanonical sites, this mapping is full and faithful. Thus,
for example, any equivalence of sites (an equivalence of categories which respects the
Grothendieck topologies) lifts to an equivalence between the corresponding toposes.

Having formed these 2-categories of sites, we may examine 2-functors between them.
We say that a principal site (C, JT ) is epimorphic (resp. strictly epimorphic) if T is con-
tained in the class of epimorphisms (resp. strict epimorphisms). An (effectual) reductive
site is an (effectual) reductive category equipped with its reductive topology. We employ
the ad hoc notation of EffRedSite, RedSite, StrEpPSite, EpPSite and PSite for
the 2-categories of effectual reductive sites, reductive sites, strictly epimorphic principal
sites, epimorphic principal sites and all principal sites respectively, each endowed with
morphisms of sites as 1-cells and natural transformations as 2-cells. Clearly, we have
forgetful 2-functors:

EffRedSite //RedSite // StrEpPSite // EpPSite //PSite. (8)

We apply analogous terminology and notation for the comparable kinds of finitely
generated sites and coalescent sites. For example, we write EffCoalSite, PosCoalSite
and FGSite for the 2-categories of effectual coalescent sites, positive coalescent sites and
finitely generated sites, respectively. There results an analogous chain of 2-functors:

EffCoalSite PosCoalSite CoalSite StrEpFGSite EpFGSite FGSite.

(9)
Consolidating the results of Section 2.2, we find that several of these forgetful functors

have adjoints.

2.7.5. Corollary. Let (C, JT ) be a principal site, ∼ the canonical congruence of Propo-
sition 2.3.1, ℓ(C) the full subcategory of Sh(C, JT ) on the representable sheaves and Cs
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the (essentially small) category of supercompact objects in that topos. Then the canonical
functors underly morphisms of sites:

(Cs,Jr) (ℓ(C),Jcan|ℓ(C)) (C/∼,JT /∼) (C,JT )

which are the units of reflections to the forgetful functors

EffRedSite // StrEpPSite // EpPSite //PSite

found in Diagram (8).
Similarly, if (C, JT ′) is a finitely generated site, then with analogous notation, we have

morphisms of sites:

(Cc,Jc) (ℓ(C),Jcan|ℓ(C)) (C/∼,JT ′/∼) (C,JT ′)

which are units for the reflections of the forgetful functors

EffCoalSite // StrEpFGSite // EpFGSite // FGSite

appearing in Diagram (9).
All of these units induce equivalences at the level of the associated toposes.

Proof. We omit the straightforward checks that these are indeed morphisms of sites.
The universality of the middle and right hand units has been discussed in and beneath
Proposition 2.3.1 and Corollary 2.3.2; it remains only to show that the final morphism
(ℓ(C),Jcan|ℓ(C)) // (Cs,Jr) is universal.

Let C ′ be an effectual, reductive category. A morphism of sites F : (C, JT ) // (C ′, Jr)
corresponds to a geometric morphism Sh(C ′, Jr) // Sh(C, JT ) whose inverse image functor
restricts to F on the representable sheaves, and so sends these to supercompact objects in
Sh(C ′, Jr). Since a quotient of a supercompact object is supercompact and inverse image
functors preserve quotients, F extends uniquely (up to isomorphism) to a morphism of
sites (Cs, Jr) // (C ′, Jr) inducing the same geometric morphism, as required.

As usual, the proof for finitely generated sites is analogous.

The morphisms appearing in Corollary 2.7.5 allow us to give another characterisation
of reductive and coalescent categories.

2.7.6. Lemma. Let (C, JT ) be a strictly epimorphic principal site in which T is the class
of all strict epimorphisms of C. Then, assuming the axiom of choice, C is reductive if and
only if the (underlying functor of the) composed unit morphism (C, JT ) // (Cs, Jr) has a
left adjoint.

Similarly, a strictly epimorphic finitely generated site (C, JT ′) where T ′ consists of
the strict jointly epic families has C coalescent if and only if the morphism of sites
(C, JT ) // (Cc, Jc) has a left adjoint.
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Proof. If C is reductive and T is its class of strict epimorphisms, consider a supercompact
object C in Sh(C, JT ) = Sh(C, Jr). C is a quotient of some representable ℓ(C0), and
so is the colimit of some funneling diagram in ℓ(C) with weakly terminal object ℓ(C0).
Lifting this to a funneling diagram in C, call its colimit L(C). There is a universal
morphism η : C // ℓ(L(C)), since the image of the strict epimorphism ℓ(C0 ↠ L(C))
forms a cone under the original funnel in Sh(C, JT ). This η is the universal morphism
from C to a representable object, since given C // ℓ(D), we have that the composite
ℓ(C0) //C // ℓ(D) is a morphism in the image of ℓ (since ℓ is full and faithful on a strict
principal site) forming a cone under the same funnel, so there is a factoring morphism
ℓ(L(C)) // ℓ(D), as required. This universality means that ℓ(L(C)) is well-defined up to
isomorphism, and we can use choice to select a representative for each C; the universality
then ensures that L is functorial, and is a left adjoint to the inclusion C //Cs, as required.

Conversely, suppose we have a left adjoint functor L : Cs // C. Given a funnel in C,
consider its colimit in Cs; this is preserved by L, so the colimit exists in C, which is enough
to make C a reductive category.

The argument for coalescent categories is analogous, passing via a finite coproduct to
define L(C) in the first part.

In other words, any reductive category is a coreflective subcategory of an effectual
reductive category, and similarly any coalescent category is a coreflective subcategory of
an effectual coalescent category.

2.7.7. Theorem. Let SGTOPrelprec be the 2-category of supercompactly generated Gro-
thendieck toposes, relatively pristine geometric morphisms and all geometric transforma-
tions. Then the object mapping:

PSite // SCTOPrelprec

(C, JT ) 7→ Sh(C, JT ).

extends to a 2-functor between these 2-categories. This functor is faithful on 2-cells if
we restrict the domain to EpPSite. It is full and faithful on 2-cells and faithful (up
to isomorphism) on 1-cells if we restrict the domain to StrEpPSite. Finally, it is a
2-categorical equivalence if we restrict the domain to EffRedSite.

Analogously, letting CGTOPrelprop be the 2-category of compactly generated Grothen-
dieck toposes and relatively proper geometric morphisms, there is a 2-functor whose effect
on objects is:

FGSite //CGTOPrelprop

(C, JT ′) 7→ Sh(C, JT ′).

This restricts to an equivalence between the 2-category EffCoalSite and CGTOPrelprop.
Finally, there is an equivalence between the 2-category SGTOPrelpol of supercompactly

generated Grothendieck toposes, relatively polished geometric morphisms and all geometric
transformations, and the 2-category EffRed+Site of effective augmented reductive sites
of Definition 2.4.13.
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Proof. The claim of 2-functoriality is fulfilled thanks to Corollary 2.7.3.
Faithfulness when we restrict to EpPSite is by virtue of the observations after Propo-

sition 2.3.1 that ℓ is faithful (on T -arches and hence) on morphisms coming from the
site.

Fullness on 2-cells and faithfulness on 1-cells when we restrict further to StrEpPSite
is more directly derived from full faithfulness of ℓ for such subcanonical sites, and the
fact that natural transformations between inverse image functors are determined by their
components at the representables. Any such natural transformation (including a natu-
ral isomorphism) restricts along ℓ to a natural transformation between the underlying
morphisms of sites.

The equivalence when we restrict to EffRedSite is thanks to Theorem 2.4.12. Indeed,
since an effectual reductive category is equivalent to the category of supercompact ob-
jects in the corresponding topos, any relatively pristine morphism between such toposes
restricts to a morphism of sites between the underlying effective reductive sites.

As ever, the argument for finitely generated sites and quasi-principal sites is analogous.

2.8. Comorphisms of sites and points. We would be remiss not to also discuss
comorphisms of sites.

2.8.1. Definition. Given sites (C, J) and (D, K), a functor F : C // D is a comor-
phism of sites F : (C, J) // (D, K) if it has the cover-lifting property, so that for
any object C of C and K-covering sieve S on F (C), there exists a J-covering sieve R on
C with F (R) ⊆ S.

Such a comorphism of sites induces a geometric morphism f : Sh(C, J) // Sh(D, K),
whose inverse image functor maps a sheaf X to aJ(HomD(F (−), X)).

While comorphisms of sites could in principle provide a way to extend the correspon-
dence of Theorem 2.4.12 to a covariant duality, we introduce them for another purpose.
First, we make the following observation regarding toposes as canonical sites:

2.8.2. Lemma. Let f : F // E be a geometric morphism. The inverse image functor f ∗

is a comorphism of sites (E , Jcan) // (F , Jcan) if and only if the direct image f∗ has a
right adjoint.

Proof. Suppose f ∗ is a comorphism of sites. The induced geometric morphism has
inverse image functor defined by X 7→ aJcan(HomF(f

∗(−), X)), and by inspection, this
coincides with f∗. As such, f∗ is the inverse image functor of a geometric morphism, and
so has a right adjoint. Conversely, if f∗ has a right adjoint, then it is a morphism of sites
since it is left exact and preserves jointly epimorphic families, whence its left adjoint f ∗

is a comorphism of sites by [Mac Lane and Moerdijk, 1992, Lemma VII.10.3].

Indeed, comparing this definition with Lemma 1.6.8, we obtain the following:
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2.8.3. Proposition. Suppose F is a Grothendieck topos in which every small jointly epi-
morphic family {xi : Xi

//X} can be refined to a jointly epimorphic family of monomor-
phisms {x′

j : X
′
j ↪→ X}, in the sense that each x′

j factors through some xi. Then f : F //E
is relatively pristine if and only if its inverse image functor is a comorphism of sites
(E , Jcan) // (F , Jcan), if and only if f∗ has a right adjoint.

Proof. Recall that the covering sieves for the canonical topology on a topos are those
containing small jointly epimorphic families. Given a jointly epimorphic family on an
object of the form f ∗(Y ), we may by assumption refine it to a jointly epimorphic family
of monomorphisms, whence from the characterization of relative pristine morphisms in
Lemma 1.6.8, f is relatively pristine if and only if f ∗ is a comorphism of sites. The final
line follows from Lemma 2.8.2.

Any localic topos satisfies the conditions of Proposition 2.8.3, but so does the topos
of actions of the two-element monoid, for example. We apply it in the case that F is Set.

Recall that a geometric morphism is totally connected if it is locally connected and
the extra left adjoint preserves finite limits; see [Johnstone, 2002, §C3.6] for basic results
about these morphisms. A topos is said to be totally connected if its global sections
geometric morphism is.

2.8.4. Corollary. A Grothendieck topos has a relatively pristine point if and only if it
is totally connected, and such a point is unique up to isomorphism.

Proof. By Proposition 2.8.3, a geometric morphism from Set is relatively pristine if and
only if its direct image functor has a right adjoint, which must then coincide with the
direct image of the unique global sections morphism. As such, this happens if and only
if the inverse image functor of the global sections morphism has a left adjoint preserving
finite limits, making the topos totally connected.

In light of Corollary 2.8.4, considering the points of a localic topos demonstrates how
large the (ostensibly subtle) difference between relatively polished and relatively pristine
morphisms can be.

2.8.5. Lemma. Every point of a localic topos is relatively polished.

Proof. We use Lemma 1.6.8. Since Set is atomic, given a point p : Set // E and
an object X of E , it suffices to consider the minimal inhabited covering of p∗(X) by
singletons {xi : 1 ↪→ p∗(X)} or, if p∗(X) is empty, by the identity {0 ↪→ p∗(X)}. The
characterisation of localic toposes as being generated by subterminal objects means we
have a covering of X by subterminals {yj : Xj

// X}, and since f ∗(Xj) is necessarily
subterminal for every j, these factorize through this minimal covering, as required.

Returning to relatively pristine points in the case of supercompactly generated toposes,
we find a convenient characterization of when such a point exists.

2.8.6. Proposition. Given a principal site (C, JT ), the topos Sh(C, JT ) has a relatively
pristine point (and so is totally connected) if and only if Cop is filtered.
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Proof. By Theorem 2.7.7, any relatively pristine point of Sh(C, JT ) comes from a mor-
phism of sites (Cs, Js) // (1, Jcan), where Cs is the usual subcategory in Sh(C, JT ). Com-
posing with the canonical morphism of sites (C, JT ) // (Cs, Js) from Corollary 2.7.5 ,
we conclude that such a point exists if and only if there exists a morphism of sites
(C, JT ) // (1, Jcan). Since there is exactly one functor C // 1, which automatically
preserves covers (since all JT are inhabited), the result follows after observing that the
remaining conditions of Definition 2.7.1 correspond to filteredness of Cop.

Note that since the condition on C is independent of the choice of principal topology
it is equipped with, we may deduce that any relatively pristine subtopos of Sh(C, JT ) is
totally connected when the hypotheses hold.

We immediately recover the following result, which although deducible from [John-
stone, 2002, Example C3.6.17(c)], does not seem to have been recorded explicitly anywhere
that we know of.

2.8.7. Corollary. Any regular topos is totally connected.

Proof. It suffices to observe that if C has finite limits, Cop is filtered, so Proposition 2.8.6
applies.

In particular, by [Johnstone, 2002, Theorem C3.6.16(iv)], the category of models of a
regular theory in any Grothendieck topos has a terminal object (easily described as the
model in which every sort is interpreted as the terminal object). The logic of supercom-
pactly generated toposes more generally is a subject for a future paper.

2.9. Examples of reductive categories. In this final subsection, we present ex-
amples of reductive and coalescent categories, as well as principal and finitely generated
sites and their toposes of sheaves, in order to address some hypotheses about relation-
ships between the concepts presented in this paper. We begin with localic examples, then
examples relating to categories of finite sets, then abelian categories.

2.9.1. Example. In the proof of Corollary 1.8.4, we observe that hyperconnected mor-
phisms are pristine, so that any supercompactly generated two-valued topos is supercom-
pact. Taking C to be any non-trivial poset with a maximal element and taking E to be the
category of presheaves on this poset provides an example of a supercompactly generated,
supercompact topos which is not two-valued.

2.9.2. Example. The objects of a reductive category need not be supercompact within
this category, in spite of Corollary 1.3.10. For example, consider the four-element lattice:

1

a b

0
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By Proposition 2.5.1, it forms a reductive category. However, the colimit of the span
a ← 0 → b is 1, which is to say that the arrows from a and b to 1 form a strictly epic
family containing no strict epimorphism. Even if we relax to mere epimorphisms here,
the empty family is strictly epic over 0 yet has no inhabited subfamilies.

By considering the lattice of subsets of N as a distributive join semilattice, we similarly
find that objects of coalescent categories need not be compact in those categories.

2.9.3. Example. A familiar example of a localic, locally connected topos which is not
supercompactly (or even compactly) generated is the topos of sheaves on the real numbers:
no non-trivial open sets in the reals are compact.

2.9.4. Example. As a more original non-example, here is a localic, totally connected
topos which is not compactly generated. Consider the poset P whose objects are the
natural numbers (excluding 0), and with order given by n ≤ m iff n is divisible by m, so
that 1 is terminal. Endow this poset with the Grothendieck topology J whose covering
sieves on a natural number n are those containing cofinitely many prime multiples of n.

All of these sieves are connected and effective epimorphic; that is, (P, J) is a localic,
locally connected, subcanonical site. For every n, ℓ(n) is therefore an indecomposable
subterminal object of Sh(P, J). Since P has finite limits, the topos Sh(P, J) is moreover
totally connected. To show that Sh(P, J) fails to be compactly generated it suffices to
show that none of the ℓ(n) are. But by construction each ℓ(n) has a nontrivial infinite
covering family by other representables which contains no finite subcovers. Thus this
topos has no supercompact objects, and the only compact object is the initial object.

2.9.5. Example. As promised earlier, we demonstrate that it is not possible to extend
Theorem 1.8.5(i) or (ii) to relatively pristine or relatively proper surjections.

Consider the poset P constructed as a fractal tree with countably many roots and
branches. Explicitly, it has elements non-empty finite sequences of natural numbers,∐∞

n=1 Nn, with x⃗ ≤ y⃗ if y⃗ is an initial segment of x⃗. The Alexandroff locale L corresponding
to P has opens which are downward-closed subsets in this ordering, so that for any
sequence x⃗ in an open set, all extensions of x⃗ also lie in that open.

Consider the collection of opens U such that whenever (x1, . . . , xk−1, xk) ∈ U , we have
(x1, . . . , xk−1, y) ∈ U for cofinitely many values of y. This collection is clearly closed under
finite intersections and arbitrary unions (we needed the sequences in P to be non-empty to
ensure that the empty intersection of opens was included here), which makes it a subframe
of O(L). This corresponds to some locale L′ such that there is a surjective locale map
L //L′, and hence a geometric surjection s : Sh(L) // Sh(L′). Moreover, this surjection
is relatively pristine. Indeed, if X is a sheaf on L′ and we are given a covering of s∗(X) in
Sh(L), we may without loss of generality assume that s∗(X) is covered by supercompact
opens of L, and each supercompact open contains the open of L′ consisting of the strict
extensions of sequences it contains; X is necessarily the union of these in Sh(L′).

However, Sh(L′) is not supercompactly or even compactly generated, since the opens
of the form s∗(U) are not compact, with the exception of the initial open, despite s∗

preserving supercompact objects.
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2.9.6. Example. There exist reductive categories without equalizers, products or pull-
backs (or even pullbacks of monomorphisms), so which in particular are not locally regular.
Indeed, simplifying Example 2.4.5 , consider the category of presheaves on f, g : A ⇒ B.
The subcategory of supercompact objects in this topos is simply the coequalizer diagram
A ⇒ B ↠ C, so that in particular the pair of monomorphisms f, g has neither an equal-
izer nor a pullback, and the product B × B does not exist. We obtain a similar example
from any finite category containing a parallel pair of morphisms lacking an equalizer.

2.9.7. Example. Any discrete category (a category with no non-identity morphisms)
with more than one object is a reductive and locally regular category which is not regular.

The free finite cocompletion of a discrete category C is a coalescent category, since
it is equivalent to [Cop,FinSet], where FinSet is the category of finite sets11, and this
is a coalescent category, whence [Cop,FinSet] has funneling colimits computed point-
wise. FinSet is in some sense the archetypal coalescent category, since by inspection,
Sh(FinSet, Jc) ≃ Set. Since FinSet has pullbacks, these free finite cocompletions are
coherent categories.

2.9.8. Example. We may also consider the category FinSet+ of inhabited finite sets;
since a funneling colimit of inhabited finite sets is inhabited and finite, and taking the
pullback in FinSet of an epimorphism in FinSet+ along a morphism with inhabited
domain gives another epimorphism with inhabited domain, we have that FinSet+ is
another example of a reductive category without pullbacks (since the two inclusions 1 ⇒ 2
‘should’ have empty intersection).

By reintroducing the empty set and declaring that the empty sieve is covering over
it, we obtain an augmented reductive site with underlying category FinSet having an
equivalent topos of sheaves; since the coalescent topology on FinSet is a refinement
of the augmented reductive one, we see that we have a (relatively proper) inclusion of
toposes:

Set ≃ Sh(FinSet, Jc) ↪→ Sh(FinSet+, Jr),

which is not an equivalence since the sheaves represented by the finite sets of cardinality
at least 2 are supercompact in the latter topos but merely compact in the former.

2.9.9. Example. As a dual construction, we have that Sh(FinSetop, Jc) embeds into
the classifying topos for the theory of objects, [FinSet,Set]. We mention this as a coun-
terexample to an extension of Lemma 2.8.5 to the idea that a point of any Grothendieck
topos is relatively polished: the points of [FinSet,Set] correspond to sets objects of Set,
and the correspondence sends a geometric morphism to the set which is the image of the
representable functor y(1). But y(1) is supercompact, so a point corresponding to any
set with more than one element fails to be polished.

11This expression for the free finite cocompletion applies if and only if C has finite hom-sets, since this
is necessary and sufficient for the representable presheaves to lie in [Cop,FinSet]. This is trivially the
case when C is discrete.
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2.9.10. Example. For yet another related example, consider the simplex category ∆,
whose objects are inhabited finite ordinals,

[n] = {0, . . . , n− 1}, n ≥ 1

and whose morphisms are the order-preserving maps between these. Clearly this does not
have pullbacks (since the intersection of the two inclusions [1] ⇒ [2] would be the empty
ordinal which is not an object of ∆).

∆ has funneling colimits: given any collection of morphisms into the object [n] of ∆,
their colimit is the quotient of [n] identifying f(x), f(x) + 1, · · · , g(x) (or g(x), g(x) +
1, · · · , f(x)) for each parallel pair f, g : [n′] ⇒ [n] in the diagram and each x ∈ [n′].
Moreover, each epimorphism g : [n] ↠ [m] is split (so in particular is strict) by the
monomorphism min(g−1) : [m] ⇒ [n], say.

In particular, by Remark 2.1.4 the collection of strict epimorphisms is stable, which
makes ∆ a reductive category with Sh(∆, Jr) = [∆op,Set], the topos of simplicial sets.
While this tells us little about the theory of strict linear intervals classified by [∆op,Set]
(referred to as ‘orders’ in [Mac Lane and Moerdijk, 1992][§8.VIII]), it does recover a non-
trivial fact about the topos of simplicial sets: every quotient of a representable simplicial
set is also representable, so that every simplicial set is a union of its representable subsets.

2.9.11. Example. To contrast Examples 2.9.7 and 2.9.10, we recall an example of a
supercompactly generated topos which is not equivalent to a presheaf topos; this should
be contrasted with Proposition 2.5.1, below.

Consider the Schanuel topos, Sh(FinSetopmono, Jat). We see that (FinSetopmono, Jat) is
an atomic site with pullbacks, but moreover it is a reductive and regular site, since all of
the morphisms in the category are regular epimorphisms which are stable under pullback.

We know of two ways to show that this topos is not a presheaf topos. The first
is to show that the site is effectual, which explicitly involves identifying an algorithm
which, given a cofunnel F in FinSetmono with weakly initial object F (D0) and x, y :
F (D0) ⇒ C equalized by its limit, constructs an inclusion i : C ↪→ C ′ and a connecting
zigzag between i ◦ x and i ◦ y in (F ↓ C ′). It then follows that the supercompact objects
(equivalently, atoms) in the Schanuel topos are precisely the representable sheaves coming
from FinSetopmono. However, if I is a finite set, A is any set of cardinality larger than that
of I, and we have inclusions from a further finite set B into both A and I, there can be
no monomorphism completing the triangle,

A

I B,

whence I is not injective in FinSetmono and hence is not projective in FinSetopmono. It
follows that no object of FinSetopmono is projective, whence the Schanuel topos has no
indecomposable projective objects, but is non-degenerate, and so is not a presheaf topos
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(the category of representable presheaves in a presheaf topos being recoverable up to
idempotent completion as the projective indecomposable objects, which in particular must
be supercompact).

An alternative proof, which we thank Olivia Caramello for describing to us, is to
observe that the category of representables in a presheaf topos can be identified, up to
idempotent-completion, with the full subcategory of finitely presentable objects in its
category of points. We also have that a presheaf topos is atomic if and only if the repre-
senting category is a groupoid. The Schanuel topos classifies infinite decidable objects, so
its category of points corresponds to the category of infinite sets (and monomorphisms);
since any inhabited full subcategory of this category is not a groupoid (every infinite set
has an injective endomorphism which is not invertible) and the topos is non-degenerate,
it again follows that this cannot be a presheaf topos.

2.9.12. Example. Since any abelian category is effective regular, any small abelian cate-
gory with funneling colimits is reductive. This is the case for the finitely presented (right)
modules of a (right) Noetherian ring, say, since these coincide with finitely generated
modules and so is closed under quotients in the large category of modules. For example,
the category of finitely generated abelian groups is a reductive category with finite limits
and colimits.

In order to construct a small abelian category which does not have funneling colimits,
we look for a coherent ring R whose collection of finitely generated ideals is not closed
under infinite intersections (note that if the ring is an integral domain, coherence ensures
that it will be closed under finite intersections). Let I be an infinitely generated ideal
which is obtained as such an intersection. In the large category of modules, we may
identify R/I as the colimit of the funneling diagram consisting of the inclusions of finitely
generated sub-ideals of I, along with the parallel zero maps, into the ring, viewed as a
(right) module over itself. If the colimit of this diagram existed in the category of finitely
presented R-modules, it would have to be a quotient of R by some finitely generated ideal,
but by construction there is no initial finitely presented quotient under this diagram,
whence the colimit does not exist.

Consider the ringR of eventually constant sequences valued in the field on two elements
(with point-wise operations). Observe that all finitely generated ideals in this ring are
principal. An ideal generated by a sequence g is the cokernel of the module homomorphism
R //R sending x to x · (1−g), so this is indeed a coherent ring. For each index i we have
a ‘basis element’ ei which is 1 at i and 0 elsewhere. The ideal Ii generated by (1 − ei)
consists of those sequences which are 0 at i. Consider

⋂∞
j=1 I2j: this consist of sequences

which are non-zero only at odd indices, but by the eventually constant criterion, no single
sequence can generate this ideal, whence the ideal fails to be finitely generated.

We would like to thank Jens Hemelaer for helping us to identify the sufficient structure
needed to find this counterexample and Ryan C. Schwiebert for identifying a ring realising
that structure (via math.stackexchange.com).

Note that a non-trivial abelian category cannot be coherent or coalescent since the
initial object is not strict in such a category (cf Lemma 2.4.4).
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2.9.13. Example. As an example of a regular and reductive category that fails to be
effective, let alone effectual, we adapt [Johnstone, 2002, before Example A1.3.7].

Consider the category TFfg of finitely-generated torsion-free abelian groups. By con-
sidering it as a reflective subcategory of the category of finitely generated abelian groups,
we find that it is regular and has all coequalizers. We can moreover check that it has
funneling colimits, since the full category of abelian groups is cocomplete and any quo-
tient of a finitely generated group is finitely generated (to obtain the quotient in TFfg,
the torsion parts of such a quotient are annihilated). Thus it is a reductive category with
finite limits. However, as Johnstone points out, the equivalence relation

R = {(a, b) ∈ Z× Z | a ≡ bmod 2} ∼= Z× Z

is not a kernel pair of any morphism in TFfg, so this category is not effective regular.

2.9.14. Example. For an example of a regular and reductive category that is effective
but not effectual, we modify [Johnstone, 2002, Example D3.3.9]. Let Setω be the full
subcategory of Set on the finite and countable sets. This has pullbacks and funneling
colimits which are stable under pullback, inherited from Set. Moreover, all epimorphisms
are regular, so this is a regular and reductive category (indeed, it is a coherent and
coalescent category too!). It also inherits the property of being effective from Set.

However, it is not effectual. Johnstone exhibits the following coequalizer diagram:

N N 1,
id

s
(10)

where s is the successor function. He concludes by considering the natural number
object in Sh(Setω, Jc) that this coequalizer is not preserved by the canonical functor
ℓ : Setω // Sh(Setω, Jc); we could deduce the failure of effectuality from that. Instead,
we prove it directly by considering the morphisms

N N,
id

g:=2×−

which are clearly coequalized by the epimorphism in (10). If Setω were effectual, there
would exist some epimorphism t : X ↠ N such that t and g ◦ t lie in the same connected
component of (X ↓ F ), where F is the parallel arrow diagram (id, s) whose coequalizer is
shown in (10). However, given any finite zigzag,

X X X X X X

N · · · N

N N N N,

t g◦t

x1 y1 x2 yn−1 xn yn
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where xi and yi are id or s, composing with any morphism m : 1 //X such that t◦m > n
as elements of N, we conclude that since the difference between the image of m in the
first copy of N and the last copy of N is at most n, we have a contradiction. That is, no
zigzag of finite length is sufficient to connect t and g ◦ t in (X ↓ F ).

2.9.15. Example. Finally, we provide an example of an effectual coalescent category
which is not effectual as a reductive category. Consider the following category, C:

R1 Z R2

A,

c1 c2

where the composition is such as to make Z the coproduct of R1 and R2. We make
this into a strictly epimorphic finitely generated site with the stable class T ′ consisting
of the singleton families on the identity morphisms and the pair {c1, c2}. This embeds
into the effectual coalescent category Cc of compact objects in Sh(C, JT ′). Consider the
funneling diagram consisting of the pairs R1 ⇒ A and R2 ⇒ A. By construction, the
colimit of this diagram will also coequalize all of the morphisms Z // A, since c1 and c2
are jointly epimorphic in Cc. However, there is no strict epimorphism C ′ ↠ Z verifying
the definition of effectuality for a reductive category. Indeed, in the completion of Cc to
an effectual reductive category, c1 and c2 are no longer jointly epimorphic, so that the
funneling colimit described fails to coequalize the morphisms Z // A.
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Università degli Studi dell’Insubria, Via Valleggio n. 11, 22100 Como CO
Email: mrogers@uninsubria.it

This article may be accessed at http://www.tac.mta.ca/tac/



THEORY AND APPLICATIONS OF CATEGORIES will disseminate articles that significantly advance
the study of categorical algebra or methods, or that make significant new contributions to mathematical
science using categorical methods. The scope of the journal includes: all areas of pure category theory,
including higher dimensional categories; applications of category theory to algebra, geometry and topology
and other areas of mathematics; applications of category theory to computer science, physics and other
mathematical sciences; contributions to scientific knowledge that make use of categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.

Subscription information Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. Full
text of the journal is freely available at http://www.tac.mta.ca/tac/.

Information for authors LATEX2e is required. Articles may be submitted in PDF by email
directly to a Transmitting Editor following the author instructions at
http://www.tac.mta.ca/tac/authinfo.html.

Managing editor. Geoff Cruttwell, Mount Allison University: gcruttwell@mta.ca

TEXnical editor. Michael Barr, McGill University: michael.barr@mcgill.ca

Assistant TEX editor. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin seal@fastmail.fm

Transmitting editors.
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