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COSHEAVES

ANDREI V. PRASOLOV

Abstract. The categories pCS (X,Pro (k)) of precosheaves and CS (X,Pro (k)) of
cosheaves on a small Grothendieck site X, with values in the category Pro (k) of pro-
k-modules, are constructed. It is proved that pCS (X,Pro (k)) satisfies the AB4 and
AB5* axioms, while CS (X,Pro (k)) satisfies AB3 and AB5*. Homology theories for
cosheaves and precosheaves, based on quasi-projective resolutions, are constructed and
investigated.
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1. Introduction

A presheaf (precosheaf ) on a topological space X with values in a category K is just
a contravariant (covariant) functor from the category of open subsets of X to K, while
a sheaf (cosheaf ) is such a functor satisfying some extra conditions. The category of
(pre)cosheaves with values in K is dual to the category of (pre)sheaves with values in the
dual category Kop.

While the theory of sheaves is well developed, and is covered by plenty of publications,
the theory of cosheaves is more poorly represented. The main reason for this is that
cofiltered limits are not exact in the “usual” categories like sets, abelian groups, rings, or
modules. On the contrary, filtered colimits are exact in the above categories, which allows
to construct rather rich theories of sheaves with values in “usual” categories. To sum up,
the “usual” categories K are badly suited for cosheaf theory. Dually, the categories Kop

are badly suited for sheaf theory.
The first step in building a suitable theory of cosheaves would be constructing a cosheaf

A# associated with a precosheaf A (simply: cosheafification of A), as a right adjoint

()# : Precosheaves −→ Cosheaves

to the inclusion
ι : Cosheaves ↪→ Precosheaves.

As is shown in [Prasolov, 2016, Theorem 3.1], it is possible in many situations, namely for
precosheaves with values in an arbitrary locally presentable [Adámek and Rosický, 1994,
Chapter 1] category (or a dual to such a category). See also Theorem 2.2.6 in this paper.

However, our purpose is to prepare a foundation for homology theory of cosheaves (see
Theorems 3.2.1, 3.4.1, and Conjecture 1.0.3). In future papers, we plan to develop also
the nonabelian homology theory (in other words, the homotopy theory) of (pre)cosheaves
(see Conjectures 1.0.4, 1.0.5, and 1.0.7 below).

Therefore, we need a more or less explicit construction. Moreover, we need a con-
struction satisfying good exactness properties. As is shown in [Prasolov, 2016], the most
suitable categories for these purposes are the categories of (pre)cosheaves with values
in the pro-category Pro (K) (Definition 2.1.4), where K is a cocomplete (Remark 2.0.2
(1)) category. In [Prasolov, 2016, Theorem 3.11], connections with shape theory have
been established: it was shown that the cosheafification G# of the constant precosheaf
Gconst, G ∈ K, is isomorphic to G ⊗Set pro-π0, where pro-π0 is the pro-homotopy from
Definition B.3.4 (for the pairing ⊗Set see Definition A.1.1(4)). If K = Mod (k) is the
category of pro-modules over a commutative ring k, the cosheafification G# becomes the
pro-homology (Definition B.3.5):

G# ≃ (U 7−→ pro-H0 (U,G)) .
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1.0.1. Remark. An interesting attempt is made in [Schneiders, 1987] where the author
sketches a cosheaf theory on topological spaces with values in a category L, dual to an
“elementary” category Lop. He proposes a candidate for such a category. Let α < β
be two inaccessible cardinals. Then L is the category Proβ (Abα) of abelian pro-groups
(Gj)j∈J such that card (Gj) < α and card (Mor (J)) < β. However, our pro-category
Pro (K) cannot be used in the cosheaf theory from [Schneiders, 1987] because the category
(Pro (K))op is not elementary.

The main results of this paper are establishing the most important properties of pre-
cosheaves (Theorem 3.1.1) and cosheaves (Theorem 3.3.1), as well as constructing homol-
ogy theory for precosheaves (Theorem 3.2.1) and cosheaves (Theorem 3.4.1). We construct
the abelian homology theory of (pre)cosheaves with values in the category

Pro (k) = Pro (Mod (k))

(Notation 2.0.4), where k is a quasi-noetherian (Definition A.2.4) commutative ring. Due
to Proposition A.2.5, the class of such rings is sufficiently large, and our construction
includes, e.g., (pre)cosheaves with values in

Pro (Ab) ≃ Pro (Mod (Z)) = Pro (Z) .

1.0.2. Remark. A cosheaf theory with values in the category Pro (k) on topological
spaces was sketched in [Sugiki, 2001]. Definition 2.2.7 of a cosheaf on a topological
space X in [Sugiki, 2001] is dual to our definition of a cosheaf on the corresponding
site OPEN (X), see Example B.1.9 and Remark B.1.10. Theorem 2.2.8 in [Sugiki, 2001]
states that the cosheafification exists. However, no proof of that theorem is given, and no
explicit construction of such cosheafification is provided.

Moreover, in [Sugiki, 2001, Definition 4.1.3] the author introduces the notion of c-
injective cosheaves which seem to be dual to our quasi-projective cosheaves, and claims
in [Sugiki, 2001, Theorem 4.1.7] that c-injective cosheaves form a cogenerating subcategory
in the category of all cosheaves. That statement seems to be dual to our Theorem 3.4.1(1).
However, the proof is only sketched, and is based on several statements given without
proofs. Moreover, [Sugiki, 2001] sketches a construction of cosheaf homology only for
topological spaces (for the site OPEN (X), see Example B.1.9 and Remark B.1.10). In
this paper, on the contrary, we construct the cosheaf homology theory for arbitrary small
sites.

1.0.3. Conjecture.

1. On the standard site OPEN (X) (Example B.1.9), the left satellites of H0 are nat-
urally isomorphic to the pro-homology (Definition B.3.5):

Hn (X, pro-H0 (•, A)) = Hn (X,A#) :=LnH0 (X,A#) ≃ pro-Hn (X,A) ,

provided X is Hausdorff paracompact.
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2. The above isomorphisms exist for all topological spaces if we use the site NORM (X)
(Example B.1.12) instead of OPEN (X).

Example 4.0.1 illustrates the conjecture.

1.0.4. Conjecture.

1. On the standard site OPEN (X), the nonabelian left satellites of H0 are naturally
isomorphic to the pro-homotopy (Definition B.3.4):

Hn (X,S#) = Hn (X,S × pro-π0) :=LnH0 (X,S#) ≃ S × pro-πn (X) ,

Hn

(
X, (pt)#

)
= Hn (X, pro-π0) :=LnH0

(
X, (pt)#

)
≃ pro-πn (X) ,

provided X is Hausdorff paracompact.

2. The above isomorphisms exist for all topological spaces if we use the site NORM (X)
instead of OPEN (X).

For general topological spaces, however, one could not expect that cosheaf homology
Hn (X,G#) coincides with shape pro-homology pro-Hn (X,G) (unless n = 0, see Theorem
2.2.6 and [Prasolov, 2016, Theorem 3.11]). The thing is that general spaces may lack
“good” polyhedral expansions (Definition B.3.1). See Remark 1.0.6 and Conjecture 1.0.5.

1.0.5. Conjecture. Let X be a (pointed) finite (or even locally finite) topological space.
Then:

1. The left satellites of H0 are naturally isomorphic to the singular homology:

Hn (X,G#) :=LnH0 (X,G#) ≃ Hsing
n (X,G) .

2. The nonabelian left satellites of H0 are naturally isomorphic to the homotopy
groups:

Hn (X,S#) = Hn (X,S × π0) :=LnH0 (X,S#) ≃ S × πn (X) ,

Hn

(
X, (pt)#

)
= Hn (X, π0) :=LnH0

(
X, (pt)#

)
≃ πn (X) .

Example 4.0.2 illustrates the conjecture.
On the contrary, the pro-homology and pro-homotopy of such spaces are rather trivial:
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1.0.6. Remark. If X is a locally finite (pointed) topological space, then:

pro-Hn (X,G) ≃ Hn

(
(π0 (X))δ , G

)
,

pro-πn (X) ≃ πn

(
(π0 (X))δ

)
,

where (π0 (X))δ is the set of connected components of X, supplied with the discrete topol-
ogy. Indeed, it is easy to check that the natural continuous projection

X −→ (π0 (X))δ

is a polyhedral expansion (Definition B.3.1).

Other possible applications could be in étale homotopy theory [Artin and Mazur, 1986]
as is summarized in the following

1.0.7. Conjecture. Let Xet be the site from Example B.1.13.

1. The left satellites of H0 are naturally isomorphic to the étale pro-homology:

Hn

(
Xet, A#

)
:=LnH0

(
Xet, A#

)
≃ Het

n (X,A) .

2. The nonabelian left satellites of H0 are naturally isomorphic to the étale pro-homotopy:

Hn

(
Xet, (pt)#

)
≃ Hn

(
Xet, πet

0

)
:=LnH0

(
Xet, (pt)#

)
≃ πet

n (X) .

2. Preliminaries

We fix a commutative ring k. From now on, k is assumed to be quasi-noetherian
(Definition A.2.4), e.g. noetherian (see Proposition A.2.5).

2.0.1. Notation.

1. We shall denote limits (inverse/projective limits) by lim←−, and colimits (direct/ind-

uctive limits) by lim−→.

2. If U is an object of a category K, we shall usually write U ∈ K instead of U ∈
Ob (K).

2.0.2. Remark.

1. Remind that a category C is complete if it admits small limits lim←−, and cocomplete
if it admits small colimits lim−→.

2. A complete category has a terminal object (a limit of an empty diagram). A co-
complete category has an initial object (a colimit of an empty diagram).

3. A functor f : C → D is called left (right) exact if it preserves finite limits
(colimits). f is called exact if it is both left and right exact.



COSHEAVES 1085

2.0.3. Definition.A subcategory C ⊆ D is called reflective (respectively coreflective)
iff the inclusion C ↪→ D is a right (respectively left) adjoint. The left (respectively right)
adjoint D→ C is called a reflection (respectively coreflection).

2.0.4. Notation. Pro (k) = Pro (Mod (k)) is the category of pro-objects (Definition
2.1.4) in the category Mod (k) of k-modules.

2.0.5. Remark. Since any noetherian ring (e.g. Z) is quasi-noetherian, our considera-
tions cover a large family of pro-categories like

Pro (Ab) ≃ Pro (Z) ,

Pro (k) where k is a field, Pro (R) where R is a finitely generated commutative algebra
over a noetherian ring, etc.

2.0.6. Definition. Given two categories I and K with I small, let KI be the category of
I-diagrams in K.

2.0.7. Remark. We will also consider functors C→ D where C is not small. However,
such functors do not form a category DC, because the morphisms DC (F,G) form a class,
but not in general a set. Such object cannot be even called a large category. Probably,
“a huge category” would be an appropriate name.

2.0.8. Definition. Given U ∈ K, let

hU : Kop −→ Set, hU : K −→ Set,

be the following functors:

hU (V ) :=HomC (V, U) , hU (V ) :=HomC (U, V ) ,

hU (α) := [(γ ∈ hU (V ) = HomC (V, U)) 7−→ (γ ◦ α ∈ HomC (V ′, U) = hU (V ′))] ,

hU (β) :=
[(
γ ∈ hU (V ) = HomC (U, V )

)
7−→

(
β ◦ γ ∈ HomC (U, V ′) = hU (V ′)

)]
,

where

(α : V ′ −→ V ) ∈ HomC (V ′, V ) = HomCop (V, V ′) ,

(β : V −→ V ′) ∈ HomC (V, V ′) .

2.0.9. Remark.

1. The functors
h• : K −→ SetK

op

, h• : Kop −→ SetK,

are full embeddings, called the first and the second Yoneda embeddings.

2. We will consider also the third Yoneda embedding, which is dual to the second one:

(h•)op : K = (Kop)op −→
(
SetK

)op
.
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2.0.10. Definition. Let
φ : C −→ D

be a functor, and let d ∈ D.

1. The comma category φ ↓ d is defined as follows:

Ob (φ ↓ d) := {(φ (c)→ d) ∈ HomD (φ (c) , d)} ,
Homφ↓d ((α1 : φ (c1)→ d) , (α2 : φ (c2)→ d)) := {β : c1 → c2 | α2 ◦ φ (β) = α1} .

2. Another comma category

d ↓ φ = (φop ↓ d)op

is defined as follows:

Ob (d ↓ φ) := {(d→ φ (c)) ∈ HomD (d, φ (c))} ,
Homφ↓d ((α1 : d→ φ (c1)) , (α2 : d→ φ (c2))) := {β : c1 → c2 | φ (β) ◦ α1 = α2} .

2.0.11. Definition. Let U ∈ C. The comma category CU is defined as follows:

CU = 1C ↓ U,

i.e.

Ob (CU) := {(V → U) ∈ HomC (V, U)} ,
HomCU

((α1 : V1 → U) , (α2 : V2 → U)) := {β : V1 → V2 | α2 ◦ β = α1} .

2.0.12. Definition. Let F ∈ SetC
op

. The comma category CF is defined as follows:

Ob (CF ) := {(V, α) | V ∈ C, α ∈ F (V )} ,
HomCU

((V1, α1) , (V2, α2)) := {β : V1 → V2 | F (β) (α2) = α1} .

2.0.13. Remark. The categories CU and ChU
are equivalent.

2.1. Pro-modules. The main reference is [Kashiwara and Schapira, 2006, Chapter 6]
where the Ind-objects are considered. The Pro-objects used in this paper are dual to the
Ind-objects:

Pro (C) ≃ (Ind (Cop))op .
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2.1.1. Definition. A small category I is called filtered iff:

1. It is not empty.

2. For every two objects i, j ∈ I there exists an object k and two morphisms

i −→ k,

j −→ k.

3. For every two parallel morphisms

u : i −→ j,

v : i −→ j,

there exists an object k and a morphism

w : j −→ k,

such that w◦u = w◦v. A category I is called cofiltered if Iop is filtered. A diagram
D : I→ K is called (co)filtered if I is a (co)filtered category.

See, e.g., [Mac Lane, 1998, Chapter IX.1] for filtered, and [Mardešić and Segal, 1982,
Chapter I.1.4] for cofiltered categories.

2.1.2. Remark. In [Kashiwara and Schapira, 2006], such categories and diagrams are
called (co)filtrant.

2.1.3. Example. For any poset (X,≤) one can define the category Cat (X) with

Ob (Cat (X)) = X,

where each set HomCat(X) (x, y) consists of one object (x, y) if x ≤ y, and is empty
otherwise.

The poset X is called directed iff X ̸= ∅, and

∀x, y ∈ X [∃z (x ≤ z&y ≤ z)] .

The poset X is called codirected iff X ̸= ∅, and

∀x, y ∈ X [∃z (z ≤ x&z ≤ y)] .

It is easy to see that Cat (X) is (co)filtered iff X is (co)directed.

2.1.4. Definition. Let K be a category. The pro-category Pro (K) (see [Kashiwara and
Schapira, 2006, Definition 6.1.1], [Mardešić and Segal, 1982, Remark I.1.4], or [Artin
and Mazur, 1986, Appendix]) is the full subcategory of

(
SetK

)op
consisting of functors

that are cofiltered limits of representable functors, i.e. limits of diagrams of the form

I
X−→ K

(h•)op−→
(
SetK

)op
where I is a cofiltered category, X : I → K is a diagram, and (h•)op is the third Yoneda
embedding. We will simply denote such diagrams by X = (Xi)i∈I.
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2.1.5. Remark. See [Kashiwara and Schapira, 2006, Lemma 6.1.2 and formula (2.6.4)]:

1. Let two pro-objects be defined by the diagrams X = (Xi)i∈I and Y = (Yj)j∈J. Then

HomPro(K) (X,Y) = lim←−
j∈J

lim−→
i∈I

HomK (Xi, Yj) .

2. Pro (K) is indeed a category even though
(
SetK

)op
is a “huge” category: HomPro(K)

(X,Y) is a set for any X and Y.

2.1.6. Remark. The category K is a full subcategory of Pro (K): any object X ∈ K
gives rise to the singleton

(X) ∈ Pro (K)

with a trivial index category I =({i} ,1i). A pro-objectX is called rudimentary [Mardešić
and Segal, 1982, §I.1.1] iff it is isomorphic to an object of K:

X ≃ Z ∈ K ⊆ Pro (K) .

The proposition below allows us to recognize rudimentary pro-objects:

2.1.7. Proposition. Let
X = (Xi)i∈I ∈ Pro (K) ,

and Z ∈ K. Then X ≃ Z iff there exist an i0 ∈ I and a morphism τ0 : Xi0 → Z satisfying
the property: for any morphism s : i → i0, there exist a morphism σ : Z → Xi and a
morphism t : j → i satisfying

τ0 ◦X (s) ◦ σ = 1Z ,

σ ◦ τ0 ◦X (s) ◦X (t) = X (t) .

Proof. The statement is dual to [Kashiwara and Schapira, 2006, Proposition 6.2.1].

2.1.8. Corollary. Let
X = (Xi)i∈I ∈ Pro (k) .

Then X is a zero object in Pro (k) iff for any i ∈ I there exists a t : j → i with X (t) = 0.

2.1.9. Remark. Remark 2.1.5 allows the following description of morphisms in the pro-
category: any

f ∈ HomPro(K)

(
(Xi)i∈I , (Yj)j∈J

)
= lim←−

j∈J
lim−→
i∈I

HomK (Xi, Yj)

can be represented (not uniquely!) by a triple(
φ, λ, (fj)j∈J

)
,
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where

φ : Ob (J) −→ Ob (I) ,

λ =
[
α 7−→

[
φ (j1)

λ1(α)←− Λ (α)
λ0(α)−→ φ (j0)

]]
:Mor (J) −→ Ob (I)×Mor (I)×Mor (I) ,

are functions, and (
fj : Xφ(j) −→ Yj

)
j∈J

is a family of morphisms, such that the following diagram

Xφ(j1)
�
X (λ1 (α))

XΛ(α)

X (λ0 (α))- Xφ(j0)

Yj1

?
�

Y (α)
Yj0

?

commutes for any α : j0 → j1 in J (see [Mardešić and Segal, 1982, §I.1.1] and [Artin
and Mazur, 1986, §A.3]). It is known that such a morphism is equivalent to a level
morphism (Definition 2.1.10). Moreover, any finite diagram of pro-objects without
loops is equivalent to a level diagram (see Definition 2.1.10 and Proposition 2.1.11).
However, it is not in general possible to “levelize” the whole set HomPro(K) (X,Y) (or
an infinite diagram, or a diagram with loops) in Pro (K).

2.1.10. Definition.

1. A morphism

f ∈ HomPro(K)

(
X = (Xi)i∈I ,Y = (Yj)j∈J

)
is called a level morphism (compare to [Mardešić and Segal, 1982, §I.1.3]) iff
I = J, and there is a morphism

γ : (Xi)i∈I −→ (Yi)i∈I : I −→ K

of functors, generating f , i.e. such that the following diagram

X - Y

lim←−i∈I
(
hXi
)op≃

?
- lim←−i∈I

(
hYi
)op≃

?

where
lim←−i∈I

(
hXi
)op

, lim←−i∈I
(
hYi
)op ∈ (SetK)op ,
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is commutative. In the notations of Remark 2.1.9 it means that:

φ = 1Ob(I) : Ob (I) −→ Ob (I) ,

λ (α : j0 → j1) =

[
φ (j1) = j1

α←− j0
1j0−→ j0 = φ (j0)

]
,

fi = γi, i ∈ I.

2. A family (
fs : Xs = (Xsi)i∈Is −→ Ys = (Ysj)j∈Js

)
of morphisms in Pro (K) is called a level family iff for some H and for all s,

Is = Js = H,

and there is a family of functors

αs : (Xsi)i∈H −→ (Ysi)i∈H ,

such that αs generates fs for all s.

3. A diagram
D : G −→ Pro (K)

in Pro (K) is called a level diagram iff for some H and for all g ∈ Ob (G),

D (g) = (Xgi)i∈H ,

and there is a diagram
α : G×H −→ K,

such that for each
(β : g1 −→ g2) ∈ HomG (g1, g2)

the morphism
α (β) : α (g1 × •) −→ α (g2 × •) : KH −→ KH

generates the morphism
fα : D (g1) −→ D (g2) .

2.1.11. Proposition. Let
D : G −→ Pro (K)

be a diagram in Pro (K), where G is finite, and does not have loops. Then the diagram
is isomorphic to a level diagram, i.e. D ≃ D′, where

D′ : G −→ Pro (K)

is a level diagram.

Proof. See [Artin and Mazur, 1986, Proposition A.3.3] or [Kashiwara and Schapira,
2006, dual to Proposition 6.4.1].
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2.1.12. Remark. See examples of such “levelization” for one morphism [Kashiwara and
Schapira, 2006, dual to Corollary 6.1.14], and for a pair of parallel morphisms [Kashiwara
and Schapira, 2006, dual to Corollary 6.1.15].

Below are other useful properties of pro-objects.

2.1.13. Proposition. Let K be a cocomplete category. In (3-4) below assume that K
admits finite limits.

1. For any Y ∈ Pro (K) the functor HomPro(K) (•,Y) converts cofiltered limits into
filtered colimits: for a diagram (Xi)i∈I in Pro (K), where I is cofiltered,

HomPro(K)

(
lim←−
i∈I

Xi,Y

)
≃ lim−→

i∈Iop

(
HomPro(K) (Xi,Y)

)
.

2. Pro (K) is cocomplete.

3. Pro (K) is complete.

4. Cofiltered limits are exact in Pro (K): for a double diagram (Xi,j)i∈I,j∈J in Pro (K),
where I is cofiltered, and J is finite,

lim←−
i∈I

lim−→
j∈J

Xi,j ≃ lim−→
j∈J

lim←−
i∈I

Xi,j,

lim←−
i∈I

lim←−
j∈J

Xi,j ≃ lim←−
j∈J

lim←−
i∈I

Xi,j,

Proof. (1) The statement is dual to [Kashiwara and Schapira, 2006, Theorem 6.1.8].
(2) See [Kashiwara and Schapira, 2006, dual to Corollary 6.1.17].
(3) See [Kashiwara and Schapira, 2006, dual to Proposition 6.1.18].
(4) The statement is dual to [Kashiwara and Schapira, 2006, Proposition 6.1.19].

2.2. (Pre)cosheaves. Throughout this paper, we will consider (pre)cosheaves with val-
ues in Pro (K) (K is a cocomplete category), or Pro (k), and (pre)sheaves with values in
L (L is a complete category) or Mod (k). Pre(co)sheaves can be defined on small sites (in
particular) or on small categories (in general). Most of our constructions and statements
are also valid for those generalized pre(co)sheaves.

Moreover, we will constantly use the pairings

⟨•, •⟩ : Pro (k)op ×Mod (k) −→Mod (k) ,

⟨•, •⟩ : pCS (X,Pro (k))op ×Mod (k) −→ pS (X,Mod (k))

from Definition A.1.1(1, 2) where pCS denotes the category of precosheaves, while pS
denotes the category of presheaves.

Let X = (CX ,Cov (X)) be a small site (Definition B.1.3), and let K be a category.
Assume that K is cocomplete. Remind Definition 2.0.11 for CU and Definition 2.0.12 for
CR.
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2.2.1. Definition.

1. A precosheaf A on X with values in K is a functor A : CX → K.

2. For any U ∈ CX and a covering sieve (Definition B.1.3) R over U there is a natural
morphism

φ (U,R) : lim−→
(V→U)∈CR

A (V ) −→ A (U)

where CR is the comma-category (Definition 2.0.11).

(a) A precosheaf A on X is coseparated provided φ (U,R) is an epimorphism
for any U ∈ CX and for any covering sieve .

(b) A precosheaf A on X is a cosheaf provided φ (U,R) is an isomorphism for
any U ∈ CX and for any covering sieve R over U .

2.2.2. Remark. The morphism in the above definition is isomorphic to the following:

ψ (U,R) : A⊗SetCX R −→ A⊗SetCX hU .

The pairing ⊗SetCX is introduced in Definition A.1.1(5). The isomorphisms

A⊗SetCX R ≃ lim−→
(V→U)∈CR

A (V )

and
A⊗SetCX hU ≃ A (U)

follow from Proposition B.1.8, because the comma-category CU ≃ ChU
(Remark 2.0.13)

has a terminal object (U,1U).

2.2.3. Notation. Denote by CS (X,K) the category of cosheaves, and by pCS (X,K)
the category of precosheaves on X with values in K.

2.2.4. Remark. Compare to Definition B.1.14 and Notation B.1.16 for (pre)sheaves.

2.2.5. Definition.

1. Assume that K is cocomplete. Given a precosheaf A ∈ pCS (X,Pro (K)), let

A+ (U) :=
[
U 7−→ Ȟ0 (U,A)

]
(see Definition B.2.1 (2)). A+ is clearly a precosheaf, and we have natural mor-
phisms

λ+ (A) : A+ −→ A,
λ++ (A) = λ+ (A) ◦ λ+ (A+) : A++ −→ A.
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2. Assume that K is complete. Given a presheaf B ∈ pS (X,K), let

B+ (U) :=
[
U 7−→ Ȟ0 (U,A)

]
(see Definition B.2.1 (2). B+ is clearly a presheaf, and we have natural morphisms

λ+ (B) : B −→ B+,

λ++ (B) = λ+
(
B+
)
◦ λ+ (B) : B −→ B++.

It is well-known that B++ is a sheaf. Apply, e.g., [Prasolov, 2016, Theorem 3.1(3)]
to Kop.

The following theorem has been partially proved in [Prasolov, 2016]:

2.2.6. Theorem. Assume that K is cocomplete. In (3-4) below assume in addition that
K admits finite limits. Let

A ∈ pCS (X,Pro (K)) ,

B ∈ pCS (X,K) ⊆ pCS (X,Pro (K)) ,

C ∈ pCS (X,Pro (k)) .

Then:

1. B is coseparated (a cosheaf) iff it is coseparated (a cosheaf) when considered as a
precosheaf with values in Pro (K).

2. The full subcategory of cosheaves

CS (X,Pro (K)) ⊆ pCS (X,Pro (K))

is coreflective (Definition 2.0.3), and the coreflection

pCS (X,Pro (K)) −→ CS (X,Pro (K))

is given by
A 7−→ A#:=A++.

3. The functor
()+ : pCS (X,Pro (K)) −→ pCS (X,Pro (K))

is right exact (Remark 2.0.2 (3)).

4. The functor

()# = ()++ : pCS (X,Pro (K)) −→ CS (X,Pro (K))

is exact (Remark 2.0.2 (3).
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5. C is coseparated iff the presheaf ⟨C, T ⟩ (see Definition A.1.1(2) is separated (Def-
inition B.1.14) for any injective T ∈Mod (k).

6. C is a cosheaf iff the presheaf ⟨C, T ⟩ is a sheaf (Definition B.1.14) for any injective
T ∈Mod (k).

7.

⟨C+, T ⟩ ≃ ⟨C, T ⟩+ ,
⟨C#, T ⟩ ≃ ⟨C, T ⟩# ,

naturally in C and T , for any (not necessarily injective) T ∈Mod (k).

Proof. (1, 2) See [Prasolov, 2016, Theorem 3.1(4)].
(3) Let U ∈ CX , and let R ⊆ hU be a sieve. Then the functorA 7−→ H0 (R,A) = lim−→

(V→U)∈CR

A (V )

 : pCS (CX ,Pro (K)) −→ Pro (K)

preserves arbitrary colimits (not necessarily finite!) because colimits commute with col-
imits. Therefore, the above functor is right exact. Since cofiltered limits are exact in the
category Pro (K) (Proposition 2.1.13(4)), the functorA 7−→ A+ (U) = lim←−

R∈Cov(U)

lim−→
(V→U)∈CR

A (V )

 : pCS (CX ,Pro (K)) −→ Pro (K)

is right exact as the composition of two right exact functors. Let U ∈ CX vary. It follows
that the corresponding functor

()+ : pCS (X,Pro (K)) −→ pCS (X,Pro (K))

is right exact.
(4) Consider the composition

()++ = ι ◦ ()# : pCS (X,Pro (K)) −→ CS (X,Pro (K)) −→ pCS (X,Pro (K)) ,

which is right exact, due to (3). Since ι is fully faithful, the functor

()# : pCS (X,Pro (K)) −→ CS (X,Pro (K))

is right exact as well. However, ()#, being a right adjoint, preserves arbitrary (e.g.,
finite) limits, therefore it is left exact.

(5) If C is coseparated, then it follows from [Prasolov, 2016, Proposition 2.10(1)] that
⟨C, T ⟩ is separated for any (not necessarily injective) T ∈Mod (k).
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Assume now that ⟨C, T ⟩ is separated for any injective T ∈Mod (k). Let R ∈ Cov (U)
be a sieve. It follows that

[⟨C ⊗SetCX R, T ⟩ ←− ⟨C ⊗SetCX hU , T ⟩ ≃ ⟨C, T ⟩ (U) =: ⟨C (U) , T ⟩] ≃
≃ [HomSetCX (R, ⟨C, T ⟩)←− HomSetCX (hU , ⟨C, T ⟩)]

is a monomorphism, and, due to Proposition A.2.8(8)

C ⊗SetCX R −→ C ⊗SetCX hU ≃ A (U)

is an epimorphism.
(6) Proved analogously, using [Prasolov, 2016, Proposition 2.10(2)] and Proposition

A.2.8(8).
(7) See [Prasolov, 2016, Proposition 2.11].

2.3. Quasi-projective (pre)cosheaves.

2.3.1. Definition. Let X be a small site.

1. Assume that A is a precosheaf:

A ∈ pCS (X,Pro (k)) .

A is called quasi-projective iff for any injective T ∈Mod (k), the presheaf

⟨A, T ⟩ ∈ pS (X,Mod (k))

is injective.

2. A cosheaf
B ∈ CS (X,Pro (k))

is called quasi-projective iff for any injective T ∈Mod (k), the sheaf

⟨B, T ⟩ ∈ S (X,Mod (k))

is injective.

2.3.2. Notation. Denote by

Q (pCS (X,Pro (k))) ⊆ pCS (X,Pro (k))

the full subcategory of quasi-projective precosheaves, and by

Q (CS (X,Pro (k))) ⊆ CS (X,Pro (k))

the full subcategory of quasi-projective cosheaves.
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2.3.3. Definition.

1. A small category C is called discrete iff its only morphisms are identities (1U)U∈C.

2. A site X = (CX , Cov (X)) is called discrete iff CX is a discrete category and all
sieves are covering sieves.

2.3.4. Example. Let D be a discrete category, and assume that A (U) is a quasi-projective
pro-module (Definition A.2.1) for any U ∈ D. Then the precosheaf A is quasi-projective.
Indeed, for any injective T ∈Mod (k), the k-modules ⟨A (U) , T ⟩ are injective (remember
that k is quasi-noetherian!). Since the functor

HompS(D,Mod(k)) (•, ⟨A, T ⟩) ≃
∏
U∈D

HomMod(k) (• (U) , ⟨A (U) , T ⟩)

is exact, the presheaf ⟨A, T ⟩ is injective, and the precosheaf A is quasi-projective.

Below are necessary definitions, notations and properties of left and right Kan ex-
tensions used in Proposition 2.3.7.

2.3.5. Definition. Let I and J be small categories and let C be an arbitrary category.
For

φ : J −→ I

denote by φ∗ the following functor:

φ∗ : C
I −→ CJ (φ∗ (f) :=f ◦ φ) ,

where f : I −→ C is an arbitrary diagram. Then the following left adjoint (φ† ⊣ φ∗)

φ† : CJ −→ CI

to φ∗ (if exists!) is called the left Kan extension of φ. The following right adjoint
(φ∗ ⊣ φ‡)

φ‡ : CJ −→ CI

to φ∗ (if exists!) is called the right Kan extension of φ. See [Kashiwara and Schapira,
2006, Definition 2.3.1].

2.3.6. Proposition. Let φ : J −→ I be a functor and β ∈ CJ.

1. Assume that
lim−→

(φ(j)→i)∈φ↓i

β (j)

exists in C for any i ∈ I. Then φ†β exists, and we have

φ†β (i) = lim−→
(φ(j)→i)∈φ↓i

β (j)

for i ∈ I.
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2. Assume that
lim←−

(i→φ(j))∈i↓φ

β (j)

exists in C for any i ∈ I. Then φ‡β exists, and we have

φ‡β (i) = lim←−
(i→φ(j))∈i↓φ

β (j)

for i ∈ I.

3. Assume that C is abelian, and that φ† exists. Then φ† converts projective objects of
CJ into projective objects of CI.

4. Assume that C is abelian, and that φ‡ exists. Then φ‡ converts injective objects of
CJ into injective objects of CI.

Proof. For (1) and (2) see [Kashiwara and Schapira, 2006, Theorem 2.3.3].
(3) φ∗ is clearly exact. If A ∈ CJ is projective, then the functor

HomCI

(
φ†A, •

)
≃ HomCJ (A, φ∗ (•)) : CI −→ Ab

is exact, therefore φ†A is projective.
(4) If A ∈ CJ is injective, then the functor

HomCI

(
•, φ‡A

)
≃ HomCJ (φ∗ (•) ,A) : CI −→ Ab

is exact, therefore f ‡A is injective.

2.3.7. Proposition. Let D and E be small categories, and let

f : E −→ D

be a functor. Then

f † : pCS (E,Pro (k)) −→ pCS (D,Pro (k)) ,

where f † is the left Kan extension of f (Definition 2.3.5) converts quasi-projectives into
quasi-projectives.

Proof. Let A ∈ pCS (E,Pro (k)) be quasi-projective, and T ∈Mod (k) be injective. It
follows from Proposition A.2.8(5) that〈

f †, T
〉
≃ ⟨f, T ⟩‡ .

Since ⟨f, T ⟩‡ converts injectives into injectives (Proposition 2.3.6(4)), the presheaf
〈
f †A, T

〉
is injective for any injective T , and the precosheaf f †A is quasi-projective.
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2.3.8. Definition.

1. A cosheaf A ∈ CS (X,Pro (k)) on a topological space X is called flabby iff
A (V → U) is a monomorphism for any (V → U) ∈ CX .

2. A cosheaf A ∈ CS (X,Pro (k)) on a small site X is called flasque iff

Hs (R,A) = 0

(see Definition B.2.5 (4, 5)) for any s > 0, and any covering sieve R ⊆ hU .

2.3.9. Remark.

1. A cosheaf A on a topological space is flabby iff ⟨A, T ⟩ is a flabby sheaf [Bredon,
1997, Definition II.5.1] for all injective T ∈Mod (k). Indeed, ⟨A, T ⟩ is flabby iff

⟨A, T ⟩ (V → U) ≃ ⟨A (V → U) , T ⟩
is an epimorphism for any (V → U) ∈ CX . The latter is equivalent, since T varies
through all injective modules, to the fact that A (V → U) is a monomorphism for
any (V → U) ∈ CX .

2. A cosheaf A on a general site is flasque iff ⟨A, T ⟩ is a flasque sheaf ([Tamme, 1994,
Definition 3.5.1] or [Artin, 1962, Definition 2.4.1]) for all injective T ∈ Mod (k).
Indeed, ⟨A, T ⟩ is flasque iff

0 = Hs (R, ⟨A, T ⟩) ≃ ⟨Hs (R,A) , T ⟩
for all s > 0 and all covering sieves R. The latter is equivalent, since T varies
through all injective modules, to the fact that Hs (R,A) is zero for all s > 0 and all
covering sieves R.

3. On a topological space, any flabby cosheaf is flasque, because it follows from [Bredon,
1997, Theorem II.5.5], that ⟨A, T ⟩ is a flasque sheaf whenever it is flabby.

2.3.10. Definition. Let E be a small category and V ∈ E.

1. Let A ∈ Pro (k), considered as a precosheaf on the one-object category {V }. Denote
by AV and AV the following precosheaves on E:

AV := ({V } −→ E)‡ (A) ,

AV := ({V } −→ E)† (A) ,

If A is a quasi-projective pro-module, then, due to Example 2.3.4 and Proposition
2.3.7, AV is a quasi-projective cosheaf on E.

2. Let A ∈Mod (k), considered as a presheaf on the one-object category {V }. Denote
by AV and AV the following presheaves on E:

AV := ({V } −→ E)‡ (A) ,

AV := ({V } −→ E)† (A) ,

If A is an injective module, then, AV is an injective presheaf on E (compare to
Example 2.3.4 and Proposition 2.3.7).
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2.3.11. Remark.

1. The presheaves {kV | V ∈ E} form a set of generators for the category of presheaves
pS (E,Mod (k)). Indeed,

HompS(E,Mod(k)) (kV ,A) ≃ ({V } −→ E)∗A ≃ HomPro(k) (k,A (V )) ≃ A (V )

for any A ∈ pS (E,Mod (k)). Therefore, for any proper subpresheaf B ⊆ A, there
exist a V ∈ E, and an a ∈ A (V ), a ̸∈ B (V ). The morphism kV → A, corresponding
to a, does not factor through B.

2. The sheaves
{
(kV )

# | V ∈ E
}

form a set of generators for the category of sheaves

S (X,Mod (k)). Indeed,

HomS(X,Mod(k))

(
(kV )

# ,A
)
≃ HompS(X,Mod(k)) (kV ,A) ≃ A (V )

for any A ∈ S (X,Mod (k)). Therefore, for any proper subsheaf B ⊆ A, there exist
a V ∈ E, and an a ∈ A (V ), a ̸∈ B (V ). The morphism (kV )

# → A, corresponding
to a, does not factor through B.

3. We cannot build a set of cogenerators for pCS (X,Pro (k)) or CS (X,Pro (k)).
However, it is possible to build a class G of cogenerators, see Theorem 3.1.1 (12)
and Theorem 3.3.1 (10).

3. Main results

3.1. Category of precosheaves.

3.1.1. Theorem. Let E be a small category.

1. The category pCS (E,Pro (k)) of precosheaves is abelian, complete and cocomplete,
and satisfies both the AB3 and AB3∗ axioms ([Grothendieck, 1957, 1.5], [Bucur and
Deleanu, 1968, Ch. 5.8]).

2. For any diagram
X : I −→ pCS (E,Pro (k))

and any T ∈Mod (k) (not necessarily injective!)〈
lim−→i∈IXi, T

〉
≃ lim←−i∈I ⟨Xi, T ⟩

in pS (E,Mod (k)).
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3. For any diagram
X : I −→ pCS (E,Pro (k))

and any T ∈Mod (k) 〈
lim←−i∈IXi, T

〉
≃ lim−→i∈I ⟨Xi, T ⟩

in pS (E,Mod (k)) if either X is cofiltered or T is injective.

4. For any family (Xi)i∈I in pCS (E,Pro (k)) and any T ∈Mod (k) (not necessarily
injective!) 〈∏

i∈I

Xi, T

〉
≃
⊕
i∈I

⟨Xi, T ⟩

in pS (E,Mod (k)).

5. Let D and E be small categories, let

f : E −→ D

be a functor, and let T ∈Mod (k). Then〈
f † (•) , T

〉
= (f op)‡ ⟨•, T ⟩ : pS (E,Mod (k)) −→ pS (D,Mod (k)) ,

where f † and g‡ are the left and the right Kan extensions (Definition 2.3.5).

6. Let M ∈ pCS (E,Pro (k)). Then M ≃ 0 iff ⟨M, T ⟩ ≃ 0 for any injective T ∈
Mod (k).

7. Let

E =
(
M α←− N β←− K

)
be a sequence of morphisms in pCS (E,Pro (k)) with β◦α = 0, and let T ∈Mod (k)
be injective. Then

H (E) :=ker (α)

im (β)

satisfies

⟨H (E) , T ⟩ ≃ H (⟨E , T ⟩) :=ker (⟨β, T ⟩)
im (⟨α, T ⟩)

.

8. Let
E =

(
M α←− N β←− K

)
be a sequence of morphisms in pCS (E,Pro (k)) with β ◦α = 0. Then E is exact iff
the sequence

⟨M, T ⟩ ⟨α,T ⟩−→ ⟨N , T ⟩ ⟨β,T ⟩−→ ⟨K, T ⟩
is exact in pS (E,Mod (k)) for all injective T ∈Mod (k).
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9. The category pCS (E,Pro (k)) satisfies the AB4 axiom ([Grothendieck, 1957, 1.5],
[Bucur and Deleanu, 1968, Ch. 5.8]).

10. The category pCS (E,Pro (k)) satisfies the AB4∗ axiom ([Grothendieck, 1957, 1.5],
[Bucur and Deleanu, 1968, Ch. 5.8]).

11. The category pCS (E,Pro (k)) satisfies the AB5∗ axiom ([Grothendieck, 1957, 1.5],
[Bucur and Deleanu, 1968, Ch. 5.8]): cofiltered limits are exact in pCS (E,Pro (k)).

12. The class (not a set)
{
AV | V ∈ E, A ∈ G ⊆ Pro (k)

}
where G is the class from

Proposition A.2.8(13) forms a class of cogenerators ([Grothendieck, 1957, 1.9], [Bu-
cur and Deleanu, 1968, Ch. 5.9]) of the category pCS (E,Pro (k)).

Proof.The category pCS (E,Pro (k)) inherits most properties from the categoryPro (k),
therefore we can apply Proposition A.2.8.

(1-4) Follow from Proposition A.2.8(1-4).
(5) Let A ∈ pCS (E,Pro (k)), and U ∈ E. It follows from Proposition 2.3.6 that[

f †A
]
(U) ≃ lim−→

(f(V )→U)∈f↓U

A (V ) ,[
(f op)‡ B

]
(U) ≃ lim←−

(f(V )→U)∈f↓U

B (V ) .

Therefore 〈
f †A, T

〉
(U) =

〈[
f †A

]
(U) , T

〉
=

〈
lim−→

(f(V )→U)∈f↓U

A (V ) , T

〉
≃

≃ lim←−
(f(V )→U)∈f↓U

⟨A (V ) , T ⟩ ≃
[
(f op)‡ ⟨A, T ⟩

]
(U) .

(6-8) Follow from Proposition A.2.8(6-8).
(9-11) Follow from Proposition A.2.8(10-12).
(12) Let

(φ : C ↠ D) ∈ pCS (E,Pro (k))

be a non-trivial epimorphism. It follows that

φ (U) : C (U) −→ D (U)

is an epimorphism in Pro (k) for any U ∈ E, and that there exists a V ∈ E, such that

φ (V ) : C (V ) −→ D (V )

is non-trivial epimorphism. Due to Proposition A.2.8(13), there exist an A ∈ G ⊆
Pro (k), and a morphism

(ψ : C (V ) −→ A) ∈ Pro (k) ,
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which does not factor through D (V ). The morphism

ξ : C −→ AV ,

which corresponds to ψ under the adjunction

HompCS(E,Pro(k))

(
C, AV

)
≃ HomPro(k) (C (V ) , A)

does not factor through D.

3.2. Precosheaf homology.

3.2.1. Theorem. Let X = (CX , Cov (X)) be a small site. Let also

A ∈ pCS (X,Pro (k)) .

Remind that Ȟ and RoosȞ are (isomorphic when the topology is generated by a pre-
topology!) C̆ech homologies from Definition B.2.5.

1. There exists a functorial epimorphism

π : P (A) ↠ A,

where P (A) is quasi-projective (Definition 2.3.1(1)).

2.

(a) The full subcategory

Q (pCS (X,Pro (k))) ⊆ pCS (X,Pro (k))

(Notation 2.3.2) is F -projective (Definition A.3.1) with respect to the functors

F (•) = H0 (R, •) ,

where R ⊆ hU runs through the sieves (Definition B.1.1) on X;

(b) The full subcategory

Q (pCS (X,Pro (k))) ⊆ pCS (X,Pro (k))

is F -projective with respect to the functors

F (•) = RoosȞ0 (U, •) ≃ Ȟ0 (U, •) , U ∈ CX .

3.
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(a) If the sieve R is generated by a base-changeable (Definition B.2.2) family
{Ui → U}, then the left satellites (Definition A.3.4) LnH0 (R,A) satisfy

LnH0 (R,A) ≃ Hn ({Ui → U} ,A) ,

naturally in A and R.

(b) The left satellites LnȞ0 (U,A) are naturally, in U and A, isomorphic to

Ȟn (U,A) ≃ RoosȞn (U,A) .

4. There are isomorphisms, natural in A, R, and T ,

(a)
⟨Hn (R,A) , T ⟩ ≃ Hn (R, ⟨A, T ⟩)

for any injective T ∈Mod (k).

(b) 〈
RoosȞn (U,A) , T

〉
≃
〈
Ȟn (U,A) , T

〉
≃ Ȟn (U, ⟨A, T ⟩) ≃ RoosȞn (U, ⟨A, T ⟩)

for any injective T ∈Mod (k) (see Notation 3.2.2).

Proof. (1) Let Dδ be the discrete category with the same set of objects as D:

Ob
(
Dδ
)
= Ob (D) ,

and let f : Dδ −→ D be the evident functor, identical on objects. Define the precosheaf
P (A) by the following:

P (A) :=f †G (f∗ (A)) ,

where F is the functor from Proposition A.2.8(5), and

G (U) :=F ([f∗ (A)] (U)) = F (A (U))

for U ∈ CX . It follows from Proposition 2.3.6 that

P (A) (U) =
⊕
V→U

F (A (V )) .

The morphism
G (f∗ (A)) −→ f∗ (A)

induces, by adjunction, the desired homomorphism

π : P (A) = f †G (f∗ (A)) −→ A.
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Indeed, G (f∗ (A)) is quasi-projective due to Example 2.3.4, and P (A) is quasi-projective
due to Proposition 2.3.7. For any U ∈ CX , the composition

F (A (U)) ↪→ P (A) (U) =
⊕
V→U

F (A (V ))
π(U)−→ A (U)

is the epimorphism from Proposition A.2.8(5), therefore π is an epimorphism as well.
(2) We have just proved the condition (1) of Definition A.3.1. It remains to check the

other two conditions.
Given a short exact sequence

0 −→ B′ −→ B −→ B′′ −→ 0

of precosheaves, assume that

B,B′′ ∈ Q (pCS (X,Pro (k))) .

Therefore, for any injective T ∈Mod (k), the sequence

0 −→ ⟨B′′, T ⟩ −→ ⟨B, T ⟩ −→ ⟨B′, T ⟩ −→ 0

is exact. Since ⟨B′′, T ⟩ and ⟨B, T ⟩ are injective presheaves, it follows that the sequence
above is split exact, and

⟨B, T ⟩ ≃ ⟨B′, T ⟩ × ⟨B′′, T ⟩ .
The presheaf ⟨B′, T ⟩, being a direct summand of the injective presheaf ⟨B, T ⟩, is injective
(for any injective T ), therefore B′ is quasi-projective. The condition (2) of Definition
A.3.1 is proved!

Let now R ⊆ hU be a sieve. Since both H0 (R, •) and Ȟ0 are additive functors

pS (X,Pro (k)) −→Mod (k) ,

the sequences of k-modules

0 −→ H0 (R, ⟨B′′, T ⟩) −→ H0 (R, ⟨B, T ⟩) −→ H0 (R, ⟨B′, T ⟩) −→ 0,

0 −→ Ȟ0 (U, ⟨B′′, T ⟩) −→ Ȟ0 (U, ⟨B, T ⟩) −→ Ȟ0 (U, ⟨B′, T ⟩) −→ 0,

are exact (in fact, split exact). It follows from Proposition A.2.8(8) that the corresponding
sequences of pro-modules

0 −→ H0 (R,B′) −→ H0 (R,B) −→ H0 (R,B′′) −→ 0,

0 −→ Ȟ0 (U,B′) −→ Ȟ0 (U,B) −→ Ȟ0 (U,B′′) −→ 0,

are exact, because

⟨H0 (R, E) , T ⟩ ≃ H0 (R, ⟨E , T ⟩)〈
Ȟ0 (U, E) , T

〉
≃ Ȟ0 (U, ⟨E , T ⟩)
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for any precosheaf E (see the statement (4) of our theorem).
(3) Choose a quasi-projective resolution

0←− A ←− P0 ←− P1 ←− P2 ←− ...←− Pn ←− ...

and construct a bicomplex
Xs,t = Čs ({Ui → U} ,Pt) .

Due to Theorem A.4.3, one gets two spectral sequences

verEr
s,t,

horEr
s,t =⇒ Hs+t (Tot• (X)) .

Apply ⟨•, T ⟩ where T ∈Mod (k) is an arbitrary injective module. It follows that

⟨Pt, T ⟩ ∈ pS (X,Mod (k))

are injective presheaves for all t. Due to [Artin, 1962, Corollary 1.4.2] or [Tamme, 1994,
Theorem 2.2.3], and the fact that〈

Čs ({Ui → U} ,Pt) , T
〉
≃ Čs ({Ui → U} , ⟨Pt, T ⟩)

the sequence〈
horE0

0,t, T
〉
−→

〈
horE0

1,t, T
〉
−→

〈
horE0

2,t, T
〉
−→ ... −→

〈
horE0

s,t, T
〉
−→ ...

is exact for all s > 0 (and all T !), therefore the sequence

horE0
0,t ←− horE0

1,t ←− horE0
2,t ←− ...←− horE0

s,t ←− ...

is exact for all s > 0, and
horE1

s,t = 0

if s > 0. The spectral sequence horEr degenerates from E2 on, implying

Hn (Tot• (X)) ≃ horE2
0,n ≃ LnH0 ({Ui → U} ,A) .

On the other hand, since products are exact in Mod (k), one gets exact (for t > 0)
sequences〈

verE0
s,0, T

〉
−→

〈
verE0

s,1, T
〉
−→

〈
verE0

s,2, T
〉
−→ ... −→

〈
verE0

s,t, T
〉
−→ ...

in Mod (k), and exact (for t > 0) sequences

verE0
s,0 ←− verE0

s,1 ←− verE0
s,2 ←− ...←− verE0

s,t ←− ...

It follows that verE1
s,t = 0 for t > 0, and the sequence verEr degenerates from E2 on,

therefore

LnH0 ({Ui → U} ,A) ≃ Hn (Tot• (X)) ≃ verE2
n,0 ≃ Hn ({Ui → U} ,A) .

Apply lim←−
R∈Cov(U)

to the bicomplexes X•,• to get the bicomplex X̌•,•. The two spectral

sequences for X̌•,• degenerate from E2 on, giving the desired isomorphisms.
(4) See the proof of (3). It remains only to remind (Proposition 2.1.13 (1)) that ⟨•, T ⟩

converts cofiltered limits lim←− into filtered colimits lim−→.
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3.2.2. Notation. For a sieve R ⊆ hU , the left satellites LnH0 (R, •) are denoted by
Hn (R, •).

3.3. Category of cosheaves.

3.3.1. Theorem. Let X = (CX , Cov (X)) be a site.

1. The category CS (X,Pro (k)) is abelian, complete and cocomplete, and satisfies both
the AB3 and AB3∗ axioms ([Grothendieck, 1957, 1.5], [Bucur and Deleanu, 1968,
Ch. 5.8]).

2. For any diagram
X : I −→ CS (X,Pro (k))

and any T ∈Mod (k) (not necessarily injective!)〈
lim−→i∈IXi, T

〉
≃ lim←−i∈I ⟨Xi, T ⟩

in S (X,Mod (k)).

3. For any diagram
X : I −→ CS (X,Pro (k))

and any T ∈Mod (k) 〈
lim←−i∈IXi, T

〉
≃ lim−→i∈I ⟨Xi, T ⟩

in S (X,Mod (k)) if either X is cofiltered or T is injective.

4. For any family (Xi)i∈I in CS (X,Pro (k)) and any T ∈ Mod (k) (not necessarily
injective!) 〈∏

i∈I

Xi, T

〉
≃
⊕
i∈I

⟨Xi, T ⟩

in S (X,Mod (k)).

5. Let M ∈ CS (X,Pro (k)). Then M ≃ 0 iff ⟨M, T ⟩ = 0 for any injective T ∈
Mod (k).

6. Let
E =

(
M α←− N β←− K

)
be a sequence of morphisms in CS (X,Pro (k)) with β ◦α = 0, and let T ∈Mod (k)
be injective. Then

H (E) :=ker (α)

im (β)

satisfies

⟨H (E) , T ⟩ ≃ H (⟨E , T ⟩) :=ker (⟨β, T ⟩)
im (⟨α, T ⟩)

.
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7. Let

E =
(
M α←− N β←− K

)
be a sequence of morphisms in CS (X,Pro (k)) with β ◦ α = 0. Then E is exact iff
the sequence

⟨M, T ⟩ ⟨α,T ⟩−→ ⟨N , T ⟩ ⟨β,T ⟩−→ ⟨K, T ⟩
is exact in S (X,Mod (k)) for all injective T ∈Mod (k).

8. The category CS (X,Pro (k)) satisfies the AB4∗ axiom ([Grothendieck, 1957, 1.5],
[Bucur and Deleanu, 1968, Ch. 5.8]).

9. The category CS (X,Pro (k)) satisfies the AB5∗ axiom ([Grothendieck, 1957, 1.5],
[Bucur and Deleanu, 1968, Ch. 5.8]): cofiltered limits are exact in CS (X,Pro (k)).

10. The class (not a set)
{(
AV
)
#
| V ∈ E, A ∈ G ⊆ Pro (k)

}
where G is the class

from Proposition A.2.8(13) forms a class of cogenerators ([Grothendieck, 1957, 1.9],
[Bucur and Deleanu, 1968, Ch. 5.9]) of the category CS (X,Pro (k)).

Proof. (1)

� Kernels. Given a morphism f of cosheaves

f : A −→ B,

let
K =ker (ιf : ιA −→ ιB)

in pCS (X,Pro (k)). Then, for any C ∈ CS (X,Pro (k)),

HomCS(X,Pro(k)) (C,K#) ≃ HompCS(X,Pro(k)) (C,K) ≃
≃ ker

(
HomCS(X,Pro(k)) (C,A) −→ HomCS(X,Pro(k)) (C,B)

)
,

therefore K# is the kernel of f in CS (X,Pro (k)).

� Cokernels. The cokernel of ιf is clearly a cosheaf, therefore

coker f := coker ιf

is the desired cokernel.

� Products. Let
(Ai)i∈I

be a family of cosheaves, and let

B:=
∏
i∈I

ι (Ai)
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in pCS (X,Pro (k)). Then, for any C ∈ CS (X,Pro (k)),

HomCS(X,Pro(k)) (C,B#) ≃ HompCS(X,Pro(k)) (C,B) ≃
≃
∏
i∈I

HomCS(X,Pro(k)) (C,Ai) ,

therefore B# is the product of Ai in CS (X,Pro (k)).

� Coproducts. The coproduct ⊕
i∈I

ι (Ai)

is clearly a cosheaf, and can therefore serve as a coproduct in CS (X,Pro (k)).

� Limits lim←− are built as combinations of products and kernels. The category CS(X,

Pro(k)) is complete.

� Colimits lim−→ are built as combinations of coproducts and cokernels. The category

CS(X,Pro(k)) is cocomplete.

� Images and coimages. Let

(f : A −→ B) ∈ CS (X,Pro (k)) .

Consider the diagram of (pre)cosheaves

ker (ιf)
h - A

f - B
g- coker (ιf)

[
(ker (ιf))# =ker f

]
6

h#

-

[coker (h) = coim (ιf)]
? ≃

φ
- [ker (ιg) = im (ιf)]

6

cokerf

=

?

[
(coker (h))#≃coker

(
h#

)
= coim (f)

]
6

≃
φ#

-
[
(ker (ιg))# = ker g = im (f)

]
6

The cosheafification functor ()# is exact, due to Theorem 2.2.6 (4), therefore

(coker (h))# ≃ coker (h#) .

Since the category of precosheaves pCS (X,Pro (k)) is abelian,

φ : coim (ιf) −→ im (ιf)

is an isomorphism. It follows that

φ# : coim (f) = (coim (ιf))# −→ (im (ιf))# = im (f)

is an isomorphism as well, and the category of cosheaves CS (X,Pro (k)) is abelian.
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(2) Follows from Theorem 3.1.1(2), because the inclusion functor

ι : CS (X,Pro (k)) −→ pCS (X,Pro (k)) ,

being a left adjoint to ()#, preserves colimits, while

ι : S (X,Mod (k)) −→ pS (X,Mod (k)) ,

being a right adjoint to ()#, preserves limits.
(3) If X is cofiltered, then〈

lim←−i∈IXi, T
〉
≃
(
ι
〈
lim←−i∈IXi, T

〉)#
≃
〈(

ι ◦ lim←−i∈IXi

)
#
, T

〉
≃

≃
〈(

lim←−i∈I (ι ◦ Xi)
)
#
, T

〉
≃
〈
lim←−i∈I (ι ◦ Xi) , T

〉
≃

≃ lim−→i∈I ⟨ι ◦ Xi, T ⟩ ≃ lim−→i∈I

〈
(ι ◦ Xi)# , T

〉
≃ lim−→i∈I ⟨Xi, T ⟩ ,

since Xi are cosheaves. If T is injective, then it is enough to prove:

1. ⟨•, T ⟩ converts products into coproducts: done in (4);

2. ⟨•, T ⟩ converts kernels into cokernels: done in (6).

(4) If A ⊆ I is finite, then the isomorphism〈∏
i∈A

Xi, T

〉
≃
⊕
i∈A

⟨Xi, T ⟩

follows from the additivity of ⟨•, T ⟩. Let now J be the poset of finite subsets of I. J is
clearly filtered, and Jop is cofiltered. Due to (3),〈∏

i∈I

Xi, T

〉
≃

〈
lim←−

A∈Jop

(∏
i∈A

Xi

)
, T

〉
≃ lim−→

A∈J

〈∏
i∈A

Xi, T

〉
≃

≃ lim−→
A∈J

(⊕
i∈A

⟨Xi, T ⟩

)
≃
⊕
i∈I

⟨Xi, T ⟩ .

(5) Follows from Theorem 3.1.1(6).
(6)

H (E) = ker (α)

im (β)
= coker

(
K −→ ker (α) = (ker (ια))#

)
.
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It follows from Theorem 3.1.1 (7) that

⟨H (E) , T ⟩ ≃
〈
coker

(
ιK −→ (ker (ια))#

)
, T
〉
≃ ker

(〈
(ker (ια))# −→ ιK, T

〉)
≃

≃ ker
(〈

(ker (ια))# , T
〉
−→ ⟨ιK, T ⟩

)
≃ ker

(
⟨ker (ια) , T ⟩# −→ ⟨ιK, T ⟩

)
≃

≃ ker
(
(coker ⟨ια, T ⟩)# −→ ⟨ιK, T ⟩

)
≃ ker (coker ⟨α, T ⟩ −→ ⟨K, T ⟩) ≃ ker (⟨β, T ⟩)

im (⟨α, T ⟩)
.

(7) Follows from (6) and (5).
(8) Follows, since S (X,Mod (k)) satisfies AB4, from (4).
(9) Follows, since S (X,Mod (k)) satisfies AB5, from (3).
(10) Let

(φ : C ↠ D) ∈ CS (X,Pro (k))

be a non-trivial epimorphism. It means that

ker (φ) ̸= 0.

Since
coker (φ) ≃ coker (ιφ) ,

ιφ is an epimorphism in pCS (X,Pro (k)) as well. It is non-trivial (ker (ιφ) ̸= 0), because
if it were trivial, then

0 ̸= ker (φ) = (ker (ιφ))# = 0# = 0.

It follows from Theorem 3.1.1 (12) that there exists an A ∈ G, V ∈ CX , and a morphism

ψ : C −→AV ,

that cannot be factored through D. In other words,

HompCS(X,Pro(k))

(
D,
(
AV
)
#

)
≃ HompCS(X,Pro(k))

(
D, AV

)
−→ HompCS(X,Pro(k))

(
C, AV

)
≃ HompCS(X,Pro(k))

(
C,
(
AV
)
#

)
is not an epimorphism. It follows that the corresponding morphism

ψ# : C −→
(
AV
)
#

cannot be factored through D.
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3.4. Cosheaf homology.

3.4.1. Theorem. Let X be a small site. Let also Ȟ and RoosȞ be (isomorphic when the
topology is generated by a pre-topology!) C̆ech homologies from Definition B.2.5.

1. For an arbitrary cosheaf A ∈ CS (X,Pro (k)), there exists a functorial epimorphism

σ (A) : R (A) ↠ A,

where R (A) is quasi-projective.

2. The full subcategory

Q (CS (X,Pro (k))) ⊆ CS (X,Pro (k))

is F -projective (Definition A.3.1) with respect to the functors:

(a)
F (•) = Γ (U, •) := • (U) ;

(b)
F = ι : CS (X,Pro (k)) ↪→ pCS (X,Pro (k)) .

3. The left satellites LnΓ (U, •) satisfy

⟨LnΓ (U, •) , T ⟩ ≃ Hn (U, ⟨•, T ⟩)

for any injective T ∈Mod (k).

4. The left satellites Lnι satisfy

(a)
⟨(Lnι) •, T ⟩ ≃ Hn (⟨•, T ⟩) ,

for any injective T ∈Mod (k) (see Notation 3.4.2 for Hn),

(b)
[(Lnι)A] (U) ≃ Hn (U,A) .

5.
(HtA)+ = 0

for all t > 0.

6.

(a) For any U ∈ CX and any covering sieve R on U there exists a natural spectral
sequence

E2
s,t = Hs (R,Ht (A)) =⇒ Hs+t (U,A) ,

converging to the homology of A (see Notation 3.4.2 for Ht).
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(b) For any U ∈ CX there exists a natural spectral sequence

E2
s,t =

RoosȞs (U,Ht (A)) =⇒ Hs+t (U,A) ,

converging to the homology of A.
(c) There are natural (in U and A) isomorphisms

H0 (U,A) ≃ Ȟ0 (U,A) ,
H1 (U,A) ≃ Ȟ1 (U,A) ,

and a natural (in U and A) epimorphism

H2 (U,A) ↠ Ȟ2 (U,A) .

7. Assume that the topology on X is generated by a pretopology (Definition B.1.6).
Then:

(a) The spectral sequence from (6a) becomes

E2
s,t = Hs ({Ui → U} ,Ht (A)) =⇒ Hs+t (U,A) .

(b) The spectral sequence from (6b) becomes

E2
s,t = Ȟs (U,Ht (A)) =⇒ Hs+t (U,A) .

Proof. (1) Define the following functor

Q : CS (X,Pro (k)) −→ CS (X,Pro (k)) :

Q (A) = [P (A)]# ,

where P is from Theorem 3.2.1(1) One has the following natural epimorphism

ρ (A) : Q (A) = P (A)# −→ P (A) −→ A.

For ordinals α, define Qα using transfinite induction:

Qα (A) :=Q (Qβ (A))

if α = β + 1, and
Qα:=lim←−

β<α

Qβ (A)

if α is a limit ordinal. The sheaves
(
(kV )

#
)
V ∈Ob(CX)

form a set of generators of S(X,

Mod(k) (Remark 2.3.11). Consider the coproduct

G:=
⊕

V ∈Ob(CX)

(kV )
# =

 ⊕
V ∈Ob(CX)

kV

#
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in the category of sheaves. Let W be the set of representatives of all subsheaves of G. Let
further, for E ∈ W ,

S (E) =

 ∐
U∈Ob(CX)

E (U)

 ∈ Set,

be the coproduct in the category Set, and let β be any cardinal of cofinality larger than

sup (card (S (E)))E∈W .

We claim that the epimorphism

R (A) :=Qβ (A) −→ A

is as desired. Indeed, it is enough to prove that Qβ (A) is quasi-projective.
Let T be any injective k-module, and let

Jα:= ⟨Qα (A) , T ⟩ , α ≤ β.

We have to prove that Jβ is an injective sheaf. Since G is a generator for S (X,Mod (k)),
it is enough [Grothendieck, 1957, Lemme 1.10.1] to prove the existence of the dashed
arrow in any diagram of the form

B ⊂ - G

Jβ

?�

where B is a subsheaf of G. Since

card (S (B)) = card

 ∐
U∈Ob(CX)

E (U)

 < β,

there exists an α < β, such that B → Jβ factors through Jα.
Consider the commutative diagram

B ⊂ - G

Jα

?
- [Iα+1:= ⟨P (Qα+1) , T ⟩]

?
- Jα+1

-

-

Jβ

-

The second vertical arrow exists, because Iα+1 is an injective presheaf, and the mor-
phism B ↪→ G, being a monomorphism of sheaves, is a monomorphism of presheaves,
as well.
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(2) The first condition in Definition A.3.1 follows from (1). Let now

0 −→ P ′ −→ P −→ P ′′ −→ 0

be an exact sequence with P , P ′′ ∈ Q (CS (X,Pro (k))). For any injective T ∈Mod (k),
the sequence of sheaves

0 −→ ⟨P ′′, T ⟩ −→ ⟨P , T ⟩ −→ ⟨P ′, T ⟩ −→ 0

is exact in S (X,Mod (k)), while ⟨P ′′, T ⟩ and ⟨P , T ⟩ are injective. Therefore the above
sequence splits, and

⟨P , T ⟩ ≃ ⟨P ′′, T ⟩ ⊕ ⟨P ′, T ⟩ .
The sheaf ⟨P ′, T ⟩, being a direct summand of an injective sheaf, is injective, therefore the
cosheaf P ′ is quasi-projective,

P ′ ∈ Q (CS (X,Pro (k))) .

The second condition in Definition A.3.1 is proved!
Apply the functor A 7→ A (U) to the split exact sequence above, and get the following

split exact sequences in Mod (k)

0 - ⟨P ′′, T ⟩ (U) - ⟨P , T ⟩ (U) - ⟨P ′, T ⟩ (U) - 0

0 - ⟨P ′′ (U) , T ⟩

≃

?
- ⟨P (U) , T ⟩

≃

?
- ⟨P ′ (U) , T ⟩

≃

?
- 0

It follows that the sequence

0 −→ P ′ (U) −→ P (U) −→ P ′′ (U) −→ 0

is exact in Pro (k), and the third condition for the F -projectivity is proved for the functor

F (•) = Γ (U, •) = • (U) .

Consider now the following split exact sequences of presheaves

0 - ι ⟨P ′′, T ⟩ - ι ⟨P , T ⟩ (U) - ι ⟨P ′, T ⟩ - 0

0 - ⟨ιP ′′, T ⟩

≃

?
- ⟨ιP , T ⟩

≃

?
- ⟨ιP ′, T ⟩

≃

?
- 0

It follows that the sequence

0 −→ ιP ′ −→ ιP −→ ιP ′′ −→ 0
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is exact in pCS (X,Pro (k)), and the third condition for the F -projectivity is proved for
the inclusion functor

ι : CS (X,Pro (k)) −→ pCS (X,Pro (k)) .

(3) Let
0←− A ←− P0 ←− P1 ←− P2 ←− ...←− Pn ←− ...

be a quasi-projective resolution. Apply the functor Γ (U, •) = • (U), and get a chain
complex of pro-modules:

0←− P0 (U)←− P1 (U)←− P2 (U)←− ...←− Pn (U)←− ...

Let T ∈Mod (k) be injective. Apply ⟨•, T ⟩, and get an injective resolution of ⟨A, T ⟩:

0 −→ ⟨A, T ⟩ −→ ⟨P0, T ⟩ −→ ⟨P1, T ⟩ −→ ⟨P2, T ⟩ −→ ... −→ ⟨Pn, T ⟩ −→ ...

It follows that

⟨LnΓ (U,A) , T ⟩ ≃ ⟨Hn (P• (U)) , T ⟩ ≃ Hn ⟨P• (U) , T ⟩ ≃ Hn (U, ⟨A, T ⟩) .

(4) Apply the inclusion functor ι to the quasi-projective resolution above, and get a
chain complex of precosheaves:

0←− ιP0 ←− ιP1 ←− ιP2 ←− ...←− ιPn ←− ...

The precosheaf Lnι is defined by

(Lnι)A:=Hn (ιP•)

The functor
B 7−→ B (U) : pCS (X,Pro (k)) −→ Pro (k)

is exact, therefore

[(Lnι)A] (U) ≃ Hn (ιP• (U)) ≃ Hn (P• (U)) ≃ Hn (U,A) ,

proving (b). Moreover,

⟨(Lnι)A, T ⟩ ≃ ⟨Hn (ιP•) , T ⟩ ≃ Hn ⟨ιP•, T ⟩ ≃ Hn ⟨A, T ⟩ ,

proving (a).
(5) It follows from [Prasolov, 2016, Theorem 2.12(2, 3)] that

(HtA)# −→ (HtA)+

is an epimorphism. Therefore, it is enough to prove that (HtA)# = 0 for t > 0. Apply
the exact (due to Theorem 2.2.6 (4)) functor ()# to the chain complex

0←− ιP0 ←− ιP1 ←− ιP2 ←− ...←− ιPn ←− ...



1116 ANDREI V. PRASOLOV

Since ()# ◦ ι = 1CS(X,Pro(k)), one gets an acyclic complex

(ιP•)# ≃ (P•) .

Therefore,

0 = HtP• ≃ Ht

[
(ιP•)#

]
≃ [Ht (ιP•)]# ≃ (HtA)#

for t > 0.
(6) Let X•,• be the following bicomplex in Pro (k):

(Xs,t, d, δ) :=

 ⊕
(U0→U1→...→Us→U)∈CR

Pt (U0) , d, δ

 ,

where δ is inherited from the above quasi-projective resolution, and d is as in Definition
B.2.4. Consider the two spectral sequences

verE2
s,t =⇒ Hs+t (Tot• (X)) ,

horE2
s,t =⇒ Hs+t (Tot• (X)) .

Since Pt are quasi-projective cosheaves, thus quasi-projective precosheaves, it follows that

horE1
s,t = horHs (X•,•) = Hs (R,Pt) =

{
H0 (R,Pt) ≃ Pt (U) if s = 0,

0 if s ̸= 0.

horE2
s,t =

{
Ht (U,A) if s = 0,

0 if s ̸= 0.

The spectral sequence degenerates from E2 on, implying

Hn (Tot• (X)) ≃ Hn (U,A) ,

Furthermore,

verE1
s,t = verHt (X•,•) =

⊕
(U0→U1→...→Us→U)∈CR

HtA (U0) ,

verE2
s,t = Hs (R,HtA) =⇒ Hs+t (Tot• (X)) ≃ Hs+t (U,A) ,

proving (a).
Apply lim←− over all covering sieves, to the above spectral sequence, and get the desired

spectral sequence
E2

s,t = Ȟs (U,HtA) =⇒ Hs+t (U,A) ,
proving (b).

To prove (c), notice that

H0A ≃ A,
E2

s,0 ≃ Ȟs (U,A) ,
E2

0,t = 0, t > 0.
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It follows that
Ȟ0 (U,A) ≃ E2

0,0 ≃ E∞0,0 ≃ H0 (U,A) .

Moreover, there is a short exact sequence

0 −→
[
E∞0,1 = 0

]
−→ H1 (U,A) −→

[
E∞1,0 = Ȟ1 (U,A)

]
−→ 0,

implying
H1 (U,A) ≃ Ȟ1 (U,A) .

Finally,
E∞2,0 ≃ E3

2,0 ≃ ker
(
E2

2,0 −→
[
E2

0,1 = 0
])
≃ E2

2,0 ≃ Ȟ2 (U,A) ,

and there is, since E∞0,2 = 0, a short exact sequence

0 −→ E∞1,1 −→ H2 (U,A) −→
[
E2

2,0 ≃ Ȟ2 (U,A)
]
−→ 0,

implying
H2 (U,A) ↠ Ȟ2 (U,A) .

(7) Follows from Proposition B.2.7.

3.4.2. Notation.

1. Denote by Hn the left satellites of the embedding

ι : CS (X,Pro (k)) −→ pCS (X,Pro (k)) ;

2. Denote by Hn the right satellites of the embedding

ι : S (X,Pro (k)) −→ pS (X,Pro (k)) ;

4. Examples

4.0.1. Example. Let X be the convergent sequence from [Prasolov, 2016, Example 4.8]:

X = {x0} ∪ {x1, x2, x3, ...} = {0} ∪
{
1,

1

2
,
1

3
, ...

}
⊆ R,

let G ∈ Ab, G ̸= {0}, and let A = G# be the constant cosheaf. Then

Hn (X,A) = Ȟn (X,A) = pro-Hn (X,G) =

{
B if n = 0,
0 if n ̸= 0,

where B is an abelian pro-group which is not rudimentary (Remark 2.1.6), i.e.

B ̸∈ Ab ⊆ Pro (Ab) .
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Proof. Let T ∈ Ab be injective. It is easy to check that the cosheaf A is flabby, therefore
the sheaf ⟨A, T ⟩ is flabby, thus acyclic. Due to Theorem 3.4.1(3), the cosheaf A is acyclic,
too:

Hn (X,A) =
{

0 if n > 0;
Ȟ0 (X,A) = A (X) = pro-H0 (X,G) if n = 0.

It remains to calculate pro-H0 (X,G). Since

Pro (Ab) −→
(
SetAb

)op
is a full embedding by Definition 2.1.4, it is enough to describe the functor

HomPro(Ab) (pro-H0 (X,G) , •) : Ab −→ Set.

During the proof of [Prasolov, 2016, Proof of Theorem 3.11(3)], it is established a natural
in X isomorphism

pro-H0 (X,G) ≃ G⊗Set pro-π0 (X) .

Moreover, in [Prasolov, 2016, Proposition 3.13] another natural (in X and T ∈ Ab)
isomorphism is proved:

HomPro(Ab) (G⊗Set pro-π0 (X) , T ) ≃ [HomAb (G, T )]
X ,

where [HomAb (G, T )]
X is the set of continuous mappings from X to HomAb (G, T ),

where the latter space is supplied with the discrete topology. In fact,

[HomAb (G, T )]
X ≃ Ȟ0 (X,HomAb (G, T )) ,

where Ȟ0 is the classical C̆ech cohomology for topological spaces, but we do not need
this fact. Continuous mappings to a discrete space are locally constant, and vice versa.
Consider such a mapping

f : X −→ HomAb (G, T ) .

Since it is locally constant at x = x0, there exists an n ∈ Z such that for all i > n

f (xi) = f (x0) .

Therefore,

[HomAb (G, T )]
X ≃ lim−→

(
C1

q1→2 - C2

q2→3 - ... - Cn

qn→n+1- ...

)
,

where
Cn = [HomAb (G, T )]

n+1 = [HomAb (G, T )]
{0,1,2,...,n} ,

and

qn→n+1 (φ0, φ1, ...φn−1, φn) = (φ0, φ1, ...φn−1, φn, φ0) ,

φi ∈ HomAb (G, T ) .
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One gets a sequence of natural isomorphisms:

[HomAb (G, T )]
X ≃ lim−→

(
C1

q1→2 - C2

q2→3 - ... - Cn

qn→n+1- ...

)
≃

lim−→
(
HomAb (B1, T )

HomAb (r1←2, T )- HomAb (B1, T )
HomAb (r2←3, T )- ... - HomAb (Bn, T ) - ...

)
≃ HomPro(Ab) (B, T ) ,

where

I = (1←− 2←− 3←− ...←− n←− ...) ,

B = (Bi)i∈I =

(
B1

�
r1←2

B2
�
r2←3

B3
� ... � Bn

�
rn←n+1

...

)
,

Bn = Gn+1 = G{0,1,2,...,n},

and

rn←n+1 (g0, g1, ...gn, gn+1) = (g0 + gn+1, g1, ...gn−1, gn) ,

gi ∈ G.

We have proved that

HomPro(Ab) (B, •) ≃ HomPro(Ab) (pro-H0 (X,G) , •)

in SetAb, therefore B ≃ pro-H0 (X,G) in Pro (Ab).
It remains to show that B is not a rudimentary pro-object. Assume on the con-

trary that B ≃ Z where Z ∈ Ab. I follows from Proposition 2.1.7 that there exists a
homomorphism

τ0 : Bi0 −→ Z,

satisfying the property: for any morphism s : i→ i0, there exist a morphism σ : Z → Bi

and a morphism t : j → i satisfying

τ0 ◦B (s) ◦ σ = 1Z ,

σ ◦ τ0 ◦B (s) ◦B (t) = B (t) .

Take s = (i0 ← i0 + 1). Choose a nonzero element a ∈ kerB (s), say

a = (g, 0, ..., 0,−g) , g ̸= 0.

Since B (t) is surjective, choose b ∈ Bj with [B (t)] (b) = a. Apply the second equation
from above:

[σ ◦ τ0 ◦B (s) ◦B (t)] (b) = [B (t)] (b) ,

[σ ◦ τ0 ◦B (s)] (a) = a,

0 = a ̸= 0.

Contradiction.
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4.0.2. Example. Let X be the pseudocircle, i.e. the 4-point topological space

X = {a, b, c, d}

with the topology

τ = {∅, {a, b, c, d} , {a} , {c} , {a, c} , {a, b, c} , {a, c, d}} .

This space can be also described as the non-Hausdorff suspension [McCord, 1966,
Section 8, p. 472] S (Y ), where

X ⊇ Y = {a, c} ≃ S0.

Let again A = G# be the constant cosheaf ({0} ≠ G ∈ Ab). Then

Ȟn (X,A) ≃ Hn (X,A) ≃ Hsing
n (X,G) =

{
G if n = 0, 1,
0 if n ̸= 0, 1.

where Hsing
• is the ordinary singular homology. Notice that the pro-homology pro-H1 (X,G)

is zero (Remark 1.0.6) and

0 = pro-H1 (X,G) ≇ H1 (X,A) .

The reason is that we could not apply Conjecture 1.0.3(1) because X is not Hausdorff.

Proof. Let
U = {U0,1,2,3 −→ X} = {{a} , {c} , {a, b, c} , {a, c, d}} .

Define the bicomplex
Cs,t = Čs (U ,Pt)

where P• → A is a qis (Notation A.3.2) from a quasi-projective complex to A, considered
as a complex concentrated in degree 0 (i.e. P• → A is a quasi-projective resolution of
A). Since Pro (Ab) is an abelian (Proposition A.2.6) category, we can apply Theorem
A.4.3 in order to obtain two spectral sequences converging to the total complex Tot• (C).
Notice that A|Ui1

×...×Uis
is flabby (Definition 2.3.8) for each s, therefore

Ht (Ui1 × ...× Uis ,A) = 0

if t > 0. Calculate the entries in the first spectral sequence:

verE1
s,t =

{
Ht (Ui1 × ...× Uis ,A) = 0 if t > 0
A (Ui1 × ...× Uis) if t = 0

verE2
s,t =

{
0 if t > 0

Hs (U ,A) if t = 0

It follows that
Hn (Tot• (C)) ≃ verE2

n,0 ≃ Hn (U ,A) .
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The second spectral sequence gives

horE1
s,t =

{
0 if s > 0 since Pt is quasi-projective as a (pre)cosheaf

Pt (X) if s = 0 since Pt is a cosheaf

horE2
s,t =

{
0 if s > 0

Ht (X,A) if s = 0

It follows that
Hn (Tot• (C)) ≃ horE2

0,n ≃ Hn (X,A) .

Finally
Hn (X,A) ≃ Hn (U ,A) .

The latter pro-groups (in fact, rudimentary pro-groups, i.e. just ordinary groups) can be
easily calculated. It remains to apply [McCord, 1966, Theorem 2 and the example in §5]:

Hn (U ,A) =
{
G if n = 0, 1,
0 if n ̸= 0, 1;

≃ Hsing
n

(
S1, G

)
≃ Hsing

n (X,G) .

A. Categories

A.1. Pairings.

A.1.1. Definition. Let D be a small category. Various bifunctors are defined below:

1.
⟨•, •⟩ : Pro (k)op ×Mod (k) −→Mod (k) .

If
A = (Ai)i∈I ∈ Pro (k)

is a pro-module, and G ∈Mod (k), let

⟨A, G⟩ :=HomPro(k) (A, G) = lim−→i∈IHomMod(k) (Ai, G) ∈Mod (k) .

2.
⟨•, •⟩ : pCS (D,Pro (k))op ×Mod (k) −→ pS (D,Mod (k)) .

If
A : D −→ Pro (k)

is a functor, and G ∈Mod (k), let

⟨A, G⟩ = HomPro(k) (A, G) :=
[
U 7−→ HomPro(k) (A (U) , G)

]
,

⟨A, G⟩ : Dop −→Mod (k) .
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3.
• ⊗Set • : K× Set −→ K.

If A ∈ K (say, K = Mod (k) or K = Pro (k)), and B ∈ Set, let

A⊗Set B = B ⊗Set A =
∐
B

A

be the coproduct in K of B copies of A.

4.
• ⊗Set • : K×Pro (Set) −→ Pro (K) .

Let Y = (Yi)i∈I ∈ Pro (Set), and X ∈ K. Define

X ⊗Set Y = Y ⊗Set X ∈ Pro (K)

by
X ⊗Set Y = (X ⊗Set Yi)i∈I .

5.
• ⊗SetD • : pCS (D,Pro (K))×pS (D,Set) −→ Pro (K) .

If

A : D −→ Pro (K) ,

B : Dop −→ Set,

are functors, let
A⊗SetD B ∈ Pro (K)

be the coend [Mac Lane, 1998, Chapter IX.6] of the bifunctor (U, V ) 7→ A (U)⊗Set

B (V ), i.e.

A⊗SetDB:= coker

(∐
U→V

A (U)⊗Set B (V ) ⇒
∐
U

A (U)⊗Set B (U)

)
.

6.
HomSetD (•, •) : pS (D,Set)op × pS (D,K) −→Mod (k)

If

A : Dop −→ K,

B : Dop −→ Set,

are functors, let
HomSetD (B,A) ∈Mod (k)

be the end [Mac Lane, 1998, Chapter IX.6] of the bifunctor (U, V ) 7→ HomSet(B(U),
A(V )), i.e.

HomSetD (B,A) := ker

(∏
U

HomSet (B (U) ,A (U)) ⇒
∏
U→V

HomSet (B (U) ,A (V ))

)
.
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A.2. Quasi-projective pro-modules.

A.2.1. Definition. A pro-module P is called quasi-projective iff the functor

HomPro(k) (P, •) : Mod (k) −→Mod (k)

is exact (see [Kashiwara and Schapira, 2006, dual to Definition 15.2.1]).

A.2.2. Proposition. A pro-module P is quasi-projective iff it is isomorphic to a pro-
module (Qi)i∈I where all modules Qi ∈Mod (k) are projective.

Proof. The statement is dual to [Kashiwara and Schapira, 2006, Proposition 15.2.3].

A.2.3. Remark. The category Pro (k) does not have enough projectives (compare with
[Kashiwara and Schapira, 2006, Corollary 15.1.3]). However, it has enough quasi-projectives
(see Proposition A.2.8(5) below).

A.2.4. Definition. A commutative ring k is called quasi-noetherian iff

⟨P, T ⟩ = HomPro(k) (P, T )

is an injective k-module for any quasi-projective pro-module P and an injective k-module
T .

A.2.5. Proposition. A noetherian ring is quasi-noetherian.

Proof. See [Prasolov, 2013, Proposition 2.28].

A.2.6. Proposition. If K is an abelian category, then Pro (K) is an abelian category
as well.

Proof. See [Kashiwara and Schapira, 2006, dual to Theorem 8.6.5(i)].

A.2.7. Notation. For a k-module M , denote by M∗ the following k-module:

M∗:=HomZ (M,Q/Z) .

A.2.8. Proposition.

1. The category Pro (k) is abelian, complete and cocomplete, and satisfies both the
AB3 and AB3∗ axioms ([Grothendieck, 1957, 1.5], [Bucur and Deleanu, 1968, Ch.
5.8]).

2. For any diagram
X : I −→ Pro (k)

and any T ∈Mod (k) (not necessarily injective!)〈
lim−→i∈IXi, T

〉
≃ lim←−i∈I ⟨Xi, T ⟩

in Mod (k).
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3. For any diagram
X : I −→ Pro (k)

and any T ∈Mod (k) 〈
lim←−i∈IXi, T

〉
≃ lim−→i∈I ⟨Xi, T ⟩

in Mod (k) if either I is cofiltered or T is injective.

4. For any family (Xi)i∈I in Pro (k) and any T ∈Mod (k) (not necessarily injective!)〈∏
i∈I

Xi, T

〉
≃
⊕
i∈I

⟨Xi, T ⟩

in Mod (k).

5. For an arbitrary pro-module M ∈ Pro (k), there exists a functorial surjection

F (M) ↠ M,

where F (M) is quasi-projective.

6. Let M ∈ Pro (k). Then M ≃ 0 iff ⟨M, T ⟩ = 0 for any injective T ∈Mod (k).

7. Let

E =
(
M

α←− N
β←− K

)
be a sequence of morphisms in Pro (k) with β ◦ α = 0, and let T ∈ Mod (k) be
injective. Then

H (E) :=ker (α)

im (β)

satisfies

⟨H (E) , T ⟩ ≃ H (⟨E , T ⟩) :=ker (⟨β, T ⟩)
im (⟨α, T ⟩)

.

8. Let
E =

(
M

α←− N
β←− K

)
be a sequence of morphisms in Pro (k) with β ◦ α = 0. Then E is exact iff the
sequence

⟨M, T ⟩ ⟨α,T ⟩−→ ⟨N, T ⟩ ⟨β,T ⟩−→ ⟨K, T ⟩

is exact in Mod (k) for all injective T ∈Mod (k).

9. Let T ∈ Mod (k) be an injective module. Then the corresponding rudimentary
(Remark 2.1.6) pro-module T is an injective object of Pro (k).
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10. The category Pro (k) satisfies the AB4 axiom ([Grothendieck, 1957, 1.5], [Bucur
and Deleanu, 1968, Ch. 5.8]).

11. The category Pro (k) satisfies the AB4∗ axiom ([Grothendieck, 1957, 1.5], [Bucur
and Deleanu, 1968, Ch. 5.8]).

12. The category Pro (k) satisfies the AB5∗ axiom ([Grothendieck, 1957, 1.5], [Bucur
and Deleanu, 1968, Ch. 5.8]): cofiltered limits are exact in the category Pro (k).

13. The class (not a set)

G = {G (S) | S ∈ Set} ⊆ Pro (k) ,

where G (S) is the rudimentary pro-module (Remark 2.1.6) corresponding to the
k-module ∏

S

k∗ =
∏
S

HomAb (k,Q/Z)

forms a class of cogenerators ([Grothendieck, 1957, 1.9], [Bucur and Deleanu, 1968,
Ch. 5.9]) of the category Pro (k).

Proof. (1) It follows from Proposition A.2.6 that Pro (k) is abelian. Due to Proposition
2.1.13 (2, 3), Pro (k) is complete and cocomplete. AB3 and AB3∗ follow immediately.

(2) Follows from the definition of a colimit.
(3) If X is cofiltered, then the statement follows from Proposition 2.1.13 (1). If not,

then notice that limits in any category can be constructed as combinations of products
and kernels. Let T ∈ Mod (k). It follows from (4) that the pairing ⟨•, T ⟩ converts
products into coproducts. If T is injective, then ⟨•, T ⟩ converts kernels into cokernels.
Finally, ⟨•, T ⟩ converts arbitrary limits into colimits.

(4) Let
Fin (I) = Cat (X (I))op

(see Example 2.1.3) where X (I) is the set of finite subsets of I, ordered by inclusion.
Then X (I) is a directed poset, and Fin (I) is a cofiltered category (see Example 2.1.3
again). It is easy to check that

∏
i∈I

Xi ≃ lim←−A∈Fin(I)

[∏
j∈A

Xj

]
.

It follows from the statement (3) of our theorem that〈∏
i∈I

Xi ≃, T

〉
≃ lim−→A∈Fin(I)op

〈∏
j∈A

Xj, T

〉
≃

≃ lim−→A∈Fin(I)op
⊕
j∈A

⟨Xj, T ⟩ ≃
⊕
j∈I

⟨Xi, T ⟩ .
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(5) The statement is dual to the rather complicated Theorem 15.2.5 from [Kashiwara
and Schapira, 2006]. However, the proof is much simpler in our case. Given M = (Mi)i∈I,
let

F (M) = (Qi)i∈I ,

where Qi = F (Mi) is the free k-module generated by the set of symbols ([m])m∈M . A
family of epimorphisms

fi : Qi −→Mi

(
fi

(∑
j

αj [mj]

)
=
∑
j

αjmj, αj ∈ k,mj ∈Mi

)
,

defines an epimorphism f : F (M)→M.

F (M) = (F (Mi))j∈I

is quasi-projective (Proposition A.2.2), and the epimorphism F (M) ↠ M is as desired.
(6) The “only if” part is trivial. Assume now that M is not isomorphic to 0. Since

Pro (k) ↪→
(
SetMod(k)

)op
is a full embedding (by definition!), there exists a N ∈Mod (k) with

⟨M, N⟩ = HomPro(k) (M, N) ̸= 0.

Choose an embedding N ↪→ T into an injective k-module. Then

⟨M, N⟩ −→ ⟨M, T ⟩

is a monomorphism. It follows that ⟨M, T ⟩ ≠ 0 as well.
(7) Due to Proposition 2.1.11, one can assume that E is a level diagram:

(Mi)i∈I
�
(αi)

(Ni)i∈I
�
(βi)

(Ki)i∈I .

Since T is injective, the sequences

⟨Ei, T ⟩ =
[
⟨Mi, T ⟩

⟨αi, T ⟩- ⟨Ni, T ⟩
⟨βi, T ⟩- ⟨Ki, T ⟩

]
satisfy

H ⟨Ei, T ⟩ ≃ ⟨H (Ei) , T ⟩ .

The category Iop is filtered, and filtered colimits are exact in the category Mod (k),
therefore

⟨H (E) , T ⟩ ≃ lim−→i∈Iop ⟨H (Ei) , T ⟩ ≃ lim−→i∈IopH ⟨Ei, T ⟩ ≃ H (⟨E , T ⟩) .
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(8) It follows from the statement (7) of our theorem that

⟨H (E) , T ⟩ ≃ H (⟨E , T ⟩) .

Applying (6) of our theorem, one gets

H (E) = 0 ⇐⇒ ∀(injective T ) [H (⟨E , T ⟩) = 0] ,

therefore E is exact iff ⟨E , T ⟩ is exact for all injective T ∈Mod (k).
(9) Follows easily from (8).
(10) Let

(fi : Ai −→ Bi)i∈I

be a family of monomorphisms, and T ∈ Mod (k) be injective. Then all the homomor-
phisms

⟨fi, T ⟩ : ⟨Bi, T ⟩ −→ ⟨Ai, T ⟩

are epimorphisms in Mod (k). Therefore, the homomorphism〈⊕
i∈I

fi, T

〉
=
∏
i∈I

⟨fi, T ⟩ :
∏
i∈I

⟨Bi, T ⟩ =

〈⊕
i∈I

Bi, T

〉
−→

〈⊕
i∈I

Ai, T

〉
=
∏
i∈I

⟨Bi, T ⟩

is an epimorphism inMod (k) for any injective T . It follows that
⊕
i∈I
fi is a monomorphism

in Pro (k).
(11) Let

(fi : Ai −→ Bi)i∈I

be a family of epimorphisms, and T ∈Mod (k) be injective. Then all the homomorphisms

⟨fi, T ⟩ : ⟨Bi, T ⟩ −→ ⟨Ai, T ⟩

are monomorphisms in Mod (k). Therefore, the homomorphism〈∏
i∈I

fi, T

〉
=
⊕
i∈I

⟨fi, T ⟩ :
⊕
i∈I

⟨Bi, T ⟩ =

〈∏
i∈I

Bi, T

〉
−→

〈∏
i∈I

Ai, T

〉
=
⊕
i∈I

⟨Bi, T ⟩

is a monomorphism inMod (k) for any injective T . It follows that
∏
i∈I
fi is an epimorphism

in Pro (k).
(12) Follows from Proposition 2.1.13 (4).
(13) Since

HomMod(k) (•, k∗) ≃ HomAb (•,Q/Z) ,

and Q/Z is a cogenerator in the category Ab, k∗ is an injective cogenerator in Mod (k).
In fact, k∗ is injective in Pro (k) as well. Indeed, it is enough to apply part (9) of our
theorem to T = k∗.
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Let now
f :M ↠ N

be a non-trivial (not an isomorphism!) epimorphism in Pro (k). Let

K = ker f ̸= 0.

We can assume that f and h : K ↣M are level morphisms:

0 - (Ki:= ker fi)i∈I
h = (hi)- (Mi)i∈I

f = (fi)- (Ni)i∈I .

Due to Corollary 2.1.8, there exists an i ∈ I, such that K (t) ̸= 0 for any t : j → i. It
follows that Ki ̸= 0. Let

S = {(t : j → i) ∈ I} ,
and let

G (S) ∈ Pro (k)

be the rudimentary pro-module corresponding to
∏
t∈S

k∗. Due to (9), G (S) is an injective

pro-module. Since k∗ is an injective cogenerator forMod (k), we can for each (t : j → i) ∈
S, choose a homomorphism

φt : Ki −→ k∗,

such that the composition
φt ◦K (t)

is nonzero. Let

φ =

(∏
t∈S

φt

)
: Ki −→

∏
t∈S

k∗.

The corresponding morphism
Φ : K −→ G (S)

is nonzero. Indeed, if it is zero, then there exists a t : j → i with

Φ ◦K (t) = 0.

However,
πt ◦ Φ ◦K (t) = φt ◦K (t) ̸= 0,

where
πt :

∏
t∈S

k∗ −→ k∗

is the t-th projection. Denote by the same letter φi the corresponding morphism

(φi : K −→ k∗) ∈ Pro (k) .

The morphism Φ can be extended, due to injectivity of G (S), to a morphism

Ψ :M −→ G (S) .

Since the composition Φ = Ψ◦h is nonzero, the morphism Ψ cannot be factored through
N .
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A.3. Derived categories. We use here the “classical” definition of an F -projective
category. The subcategories, which are called “F -projective” in [Kashiwara and Schapira,
2006, Definition 13.3.4], will be called weak F -projective in this paper.

A.3.1. Definition. Let
F : C −→ E

be a right exact additive functor of abelian categories, and let P be a full additive subcat-
egory of C. Then:

P is called weak F -projective if P satisfies the definition of an F -projective subcat-
egory in [Kashiwara and Schapira, 2006, Definition 13.3.4].

P is called F -projective if it satisfies the following conditions:

1. The category P is generating in C (i.e. for any object X ∈ C there exists an
epimorphism P ↠ X with P ∈ P);

2. For any exact sequence

0 −→ X ′ −→ X −→ X ′′ −→ 0

in C with X, X ′′ ∈ P, we have X ′ ∈ P;

3. For any exact sequence

0 −→ X ′ −→ X −→ X ′′ −→ 0

in C with X, X ′′ ∈ P, the sequence

0 −→ F (X ′) −→ F (X) −→ F (X ′′) −→ 0

is exact.

A.3.2. Notation. For an abelian category E, let:

1. C (E) denote the category of bounded below chain complexes in E;

2. a qis denote a quasi-isomorphism in C (E), i.e. a homomorphism

X• −→ Y•

inducing an isomorphism of the homologies;

3. a complex X• be qis to Y• iff there is a qis X• → Y•;

4. K (E) denote the homotopy category of C (E), i.e. morphisms

X• −→ Y•

in K (E) are classes of homotopic maps X• → Y•;

5. D (E) denote the corresponding derived category of K (E), i.e.

D (E) = K (E) /N (E)

where N (E) is the full subcategory of K (E) consisting of complexes qis to 0.
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A.3.3. Proposition. Let F : C → E be an additive functor of abelian categories, and
let P be a full additive subcategory of C. Assume P is F -projective. Then:

1. P is weak F -projective.

2. The left satellite
LF : D(C) −→ D(E)

exists, and
LF (X•) ≃ F (Y•)

for any qis
Y• −→ X•

with Y• ∈ K (P).

Proof. Follows from [Kashiwara and Schapira, 2006, dual to Proposition 13.3.5 and
Corollary 13.3.8].

Using F -projective subcategories, one can define left satellites of the functor F .

A.3.4. Definition. In the conditions of Proposition A.3.3 let X ∈ C. Considering X
as a complex concentrated in degree 0, take a qis P• −→ X, i.e. a resolution

0←− X ←− P0 ←− P1 ←− P2 ←− ...←− Pn ←− ...

with P• ∈ K (P). Define
LnF (X) :=Hn (P•) .

It is easy to check that LnF , n ≥ 0, are additive functors

LnF : C −→ E,

that LnF = 0 if n < 0, and that L0F ≃ F if F is right exact.
The functors LnF are called the left satellites of F .

A.4. Bicomplexes. In this section, K is assumed to be an abelian category. We consider
only first quadrant chain bicomplexes.

A.4.1. Definition. A bicomplex in K is a collection

X•,• = (Xs,t, ds,t, δs,t)s,t∈Z

of objects and morphisms

Xs,t ∈ K,

ds,t ∈ HomK (Xs+1,t, Xs,t) ,

δs,t ∈ HomK (Xs,t+1, Xs,t) ,
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such that for all s, t ∈ Z

Xs,t = 0 if s < 0 or t < 0,

ds−1,t ◦ ds,t = 0,

δs,t−1 ◦ δs,t = 0,

ds−1,t−1 ◦ δs,t−1 = δs−1,t−1 ◦ ds−1,t.

A.4.2. Definition. If (X•,•, d, δ) be a bicomplex, let Tot• (X) be the following chain
complex:

Totn (X) =
⊕
s+t=n

Xs,t =
⊕
s+t=n

Xs,t ≃
∏

s+t=n

Xs,t

with the differential
∂n : Totn+1 (X) −→ Totn (X) ,

given by
∂n ◦ ιs,t = ιs−1,t ◦ d+ (−1)s ιs,t−1 ◦ δ,

where
ιs,t : Xs,t ↣ Totn (X)

is the natural embedding into the coproduct.

A.4.3. Theorem. Let (X•,•, d, δ) be a first quadrant bicomplex in K. All objects below
depend functorially on X•,•, and all morphisms are natural in X•,•.

1. There exist two families (r ≥ 1) of (vertical and horizontal) bigraded derived
exact couples, and two corresponding spectral sequences (ir, jr, and kr have bidegrees
indicated on the corresponding diagrams):

(a)

verDr ir

(1,−1)
- verDr

verEr
�

j
r

(0
, 0
)

�

k r
(−
r, r −

1)

where

verDr
s,t ̸= 0 only if s, s+ t ≥ 0,

verEr
s,t ̸= 0 only if s, t ≥ 0,

verEr
s,t =

(
verEr

s,t,
verdr = jr ◦ kr : verEr

s,t −→ verEr
s−r,t+r−1

)
,

verEr+1
s,t ≃ H

(
verEr

s,t,
verdr

)
.
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(b)

horDr ir

(−1, 1)
- horDr

horEr
�

j
r

(0
, 0
)

�

k r
(r −

1,−
r)

where

horDr
s,t ̸= 0 only if t, s+ t ≥ 0,

horEr
s,t ̸= 0 only if s, t ≥ 0,

horEr
s,t =

(
horEr

s,t,
hordr = jr ◦ kr : horEr

s,t −→ horEr
s+r−1,t−r

)
,

horEr+1
s,t ≃ H

(
horEr

s,t,
hordr

)
.

2. We introduce an extra entry E0:

(a)
verE0

•,•:=
(
X•,•, d

0 = δ
)
.

(b)
horE0

•,•:=
(
X•,•, d

0 = d
)
.

3.

(a)
verE1

•,t ≃
(
verHt (X•,•) , d

1 = d|verH(X•,•)

)
.

(b)
horE1

s,• ≃
(
horHs (X•,•) , d

1 = δ|horH(X•,•)

)
.

4.

(a)
verE2

s,t ≃ horHs (
verHt (X•,•)) .

(b)
horE2

s,t ≃ verHt

(
horHs (X•,•)

)
.

5.

(a) For each pair (s, t) the sequence verDr stabilizes:

verDr
s,t −→ verDr+1

s,t =: verD∞s,t

is an isomorphism whenever r ≫ 0.
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(b) For each pair (s, t) the sequence horDr stabilizes:

horDr
s,t −→ horDr+1

s,t =: horD∞s,t

is an isomorphism whenever r ≫ 0.

6.

(a) For each pair (s, t) the sequence verEr stabilizes:

verEr
s,t −→ verEr+1

s,t =: verE∞s,t

is an isomorphism whenever r ≫ 0.

(b) For each pair (s, t) the sequence horEr stabilizes:

horEr
s,t −→ horEr+1

s,t =: horE∞s,t

is an isomorphism whenever r ≫ 0.

7. The two spectral sequences converge to H• (Tot• (X)) in the following sense:

(a) For each n ≥ 0, the sequence below consists of monomorphisms[
0 = verD∞−1,n+1

]
↣ verD∞0,n ↣ verD∞1,n−1 ↣ ...↣ verD∞n,0 ≃ Hn (Tot• (X)) ,

and for each s, t

coker
(
verD∞s−1,t+1 ↣

verD∞s,t
)
≃ verE∞s,t.

(b) For each n ≥ 0, the sequence below consists of monomorphisms[
0 = horD∞n+1,−1

]
↣ horD∞n,0 ↣

horD∞n−1,1 ↣ ...↣ horD∞0,n ≃ Hn (Tot• (X)) ,

and for each s, t

coker
(
horD∞s+1,t−1 ↣

horD∞s,t
)
≃ horE∞s,t.

8. Let f•,• : X•,• → Y•,• be a morphism of bicomplexes, and let r ≥ 1.

(a) If for some r
verEr

s,t (f) :
verEr

s,t (X) −→ verEr
s,t (Y )

is an isomorphism for all s, t, then

Hn (Tot• (f)) : Hn (Tot• (X)) −→ Hn (Tot• (Y ))

is an isomorphism for all n.
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(b) If for some r
horEr

s,t (f) :
horEr

s,t (X) −→ horEr
s,t (Y )

is an isomorphism for all s, t, then

Hn (Tot• (f)) : Hn (Tot• (X)) −→ Hn (Tot• (Y ))

is an isomorphism for all n.

9.

(a) For all r, 1 ≤ r ≤ ∞, and all n,

verDr
0,n ≃ verEr

0,n.

The composition

verHn (X0,•) =
verE1

0,n ↠ verE∞0,n ≃ verD∞0,n ↣ Hn (Tot• (X))

is induced (up to sign) by the embedding of complexes X0,• ↪→ Tot• (X).

Let φn be the composition

Hn (Tot• (X)) ≃ verD∞n,0 ↠
verE∞n,0 ↣

verE2
n,0.

Then the following diagram commutes (up to sign):

Totn+1 (X)
∂

- Totn (X) - coker ∂ � ⊃ Hn (Tot• (X))

Xn+1,0

?
Xn,0

?

[
cokerδn+1,0 =

verE1
n+1,0

]? d|E1
n+1,0-

[
coker δn,0 =

verE1
n,0

]?
- cokerd|E1

n+1,0

?
� ⊃ verE2

n,0

φn

?

(b) For all r, 1 ≤ r ≤ ∞, and all n,

horDr
n,0 ≃ horEr

n,0.

The composition

horHn (X•,0) =
horE1

n,0 ↠
horE∞n,0 ≃ horD∞n,0 ↣ Hn (Tot• (X))

is induced (up to sign) by the inclusion of complexes X•,0 ↪→ Tot• (X).

Let ψn be the composition

Hn (Tot• (X)) ≃ horD∞0,n ↠ horE∞0,n ↣ horE2
0,n.
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Then the following diagram commutes (up to sign):

Totn+1 (X)
∂

- Totn (X) - coker ∂ � ⊃ Hn (Tot• (X))

X0,n+1

?
X0,n

?

[
coker d0,n+1 =

horE1
0,n+1

]? δ|E1
0,n+1-

[
cokerd0,n = horE1

0,n

]?
- cokerd|E1

0,n+1

?
� ⊃ horE2

0,n

ψn

?

Proof. The proof of various forms of this theorem is scattered around several papers
and books. See [Eckmann and Hilton, 1966], [Weibel, 1994, Chapter 5], [Gelfand and
Manin, 2003, §III.7], and [Kashiwara and Schapira, 2006, Theorem 12.5.4 and Corollary
12.5.5(3)].

B. Topologies

B.1. Grothendieck topologies.

B.1.1. Definition. Let C be a category. A sieve R over U ∈ C is a subfunctor R ⊆ hU
of

hU = HomC (•, U) : Cop −→ Set.

B.1.2. Remark. Compare with [Kashiwara and Schapira, 2006, Definition 16.1.1].

B.1.3. Definition. A Grothendieck site (or simply a site) X is a pair (CX , Cov (X))
where CX is a category, and

Cov (X) =
⋃

U∈CX

Cov (U) ,

where Cov (U) are the sets of covering sieves over U , satisfying the axioms GT1-GT4
from [Kashiwara and Schapira, 2006, Definition 16.1.2], or, equivalently, the axioms T1-
T3 from [Artin et al., 1972a, Definition II.1.1]:

1. hU ∈ Cov (U).

2. If R1 ⊆ R2 ⊆ hU and R1 ∈ Cov (U), then R2 ∈ Cov (U).

3. If α : U → V is a morphism in CX and R ∈ Cov (V ), then

(hα)
−1 (R) ∈ Cov (U) .

4. Let R and R′ ∈ Cov (U) be sieves over U . Assume that

(hα)
−1 (R) ∈ Cov (V )
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for any
(α : V −→ U) ∈ R′ (V ) .

Then R ∈ Cov (U).

The site is called small iff CX is a small category.

B.1.4. Remark. The class (or a set, if X is small) Cov (X) is called the topology on
X.

B.1.5. Notation. Given U ∈ CX , and R ∈ Cov (X), denote simply

CU := (CX)U , CR:= (CX)R ,

where (CX)U and (CX)R are the comma-categories defined earlier in Definition 2.0.11
and Definition 2.0.12.

B.1.6. Definition.We say that the topology on a small site X is induced by a pretopol-
ogy if each object U ∈ CX is supplied with base-changeable (Definition B.2.2) covers
{Ui → U}i∈I , satisfying [Artin et al., 1972a, Definition II.1.3] (compare to [Kashiwara
and Schapira, 2006, Definition 16.1.5]), and the covering sieves R ∈ Cov (X) are gen-
erated by covers:

R = R{Ui→U} ⊆ hU ,

where R{Ui→U} (V ) consists of morphisms (V → U) ∈ hU (V ) admitting a decomposition

(V → U) = (V → Ui → U) .

B.1.7. Remark. We use the word covers for general sites, and reserve the word cov-
erings for open coverings of topological spaces.

B.1.8. Proposition. Let G ∈ Mod (k), let A ∈ pCS (X,Pro (k)), and let R ⊆ hU be
a sieve. Then:

1.

HomPro(k) (A⊗SetCX R,G) ≃ Hom
Set(CX)op (R,HomK (A, G)) ≃

≃ lim←−
(V→U)∈CR

HomK (A (V ) , G) ≃ HomK

 lim−→
(V→U)∈CR

A (V ) , G


naturally in G, A and R. The presheaf of k-modules HomPro(k) (A, G) is intro-
duced in Definition A.1.1(2).

2.
A⊗SetCX R ≃ lim−→

(V→U)∈CR

A (V ) .

Proof. See [Prasolov, 2016, Proposition 2.3]
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B.1.9. Example. Let X be a topological space. We will call the site OPEN (X) below
the standard site for X:

OPEN (X) =
(
COPEN(X), Cov (OPEN (X))

)
.

COPEN(X) has open subsets of X as objects and inclusions U ⊆ V as morphisms. The
pretopology on OPEN (X) consists of open coverings

{Ui ⊆ U}i∈I ∈ COPEN(X).

The corresponding topology consists of sieves R{Ui⊆U} ⊆ hU where

(V ⊆ U) ∈ R{Ui⊆U} (U) ⇐⇒ ∃i ∈ I (V ⊆ Ui) .

B.1.10. Remark. We will always denote the standard site OPEN (X) simply by X.

B.1.11. Definition. An open covering is called normal [Mardešić and Segal, 1982,
§I.6.2], iff there is a partition of unity subordinated to it.

B.1.12. Example. Let again X be a topological space. Consider the site

NORM (X) =
(
CNORM(X), Cov (NORM (X))

)
where CNORM(X) = CX , while the pretopology on NORM (X) consists of normal (Def-
inition B.1.11) coverings {Ui ⊆ U}.

See Conjecture 1.0.3.

B.1.13. Example. Let X be a noetherian scheme, and define the site Xet by: CXet is
the category of schemes Y/X étale, finite type, while the pretopology on Xet consists of
finite surjective families of maps. See [Artin, 1962, Example 1.1.6], or [Tamme, 1994,
II.1.2].

Let X = (CX ,Cov (X)) be a small site (Definition B.1.3), and let K be a complete
(Remark 2.0.2 (1)) category.

B.1.14. Definition.

1. A presheaf A on X with values in K is a functor A : (CX)
op → K.

2. A presheaf A on X is separated provided

A (U) ≃ HomSetCX (hU ,A) −→ HomSetCX (R,A) ≃ lim←−
(V→U)∈CR

A (V )

is a monomorphism for any U ∈ CX and for any covering sieve (Definition B.1.1
and B.1.3) R over U . The pairing HomSetCX (•, •) is introduced in Definition
A.1.1(6).

3. A presheaf A on X is a sheaf provided

A (U) ≃ HomSetCX (hU ,A) −→ HomSetCX (R,A) ≃ lim←−
(V→U)∈CR

A (V )

is an isomorphism for any U ∈ CX and for any covering sieve R over U .
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B.1.15. Remark. The isomorphisms

HomSetCX (R,A) ≃ lim←−
(V→U)∈CR

A (V )

and
A (U) ≃ HomSetCX (hU ,A)

follow from [Prasolov, 2016, Proposition B.6], because the comma-category CU ≃ ChU

(Definition 2.0.11 and Remark 2.0.13) has a terminal object (U,1U).

B.1.16. Notation. Denote by S (X,K) the category of sheaves, and by pS (X,K) the
category of presheaves on X with values in K.

B.1.17. Remark. Compare to Definition 2.2.1 and Notation 2.2.3.

B.2. C̆ech (co)homology. In this section, we give different definitions of C̆ech (co)homology
in two cases:

1. General Grothendieck topology.

2. A topology generated by a pretopology.

However, those definitions are equivalent, due to Proposition B.2.7.
Let us summarize this in the following

B.2.1. Definition. Let X be a small site, let V ∈ CX and let R be a covering sieve on
U . Let also

A ∈ pCS (CX ,K) (respectively B ∈ pS (CX ,K) )

1. In general,

Hn (R,A) :=Hn

(
RoosCn (R,A)

)
,

Hn (R,A) :=Hn
(
RoosCn (R,A)

)
as in Definition B.2.5 (2). If R is generated by a cover {Vi → V }, then

Hn (R,A) :=Hn ({Vi → V } ,A) :=HnČ• ({Vi → V } ,A) ,
Hn (R,B) :=Hn ({Vi → V } ,B) :=HnČ• ({Vi → V } ,B)

as in Definition B.2.5 (3).

2. In general,

Ȟn (V,A) := RoosȞn (V,A) := lim←−
R∈Cov(V )

Hn (R,A) ,

Ȟn (V,A) := RoosȞn (V,B) := lim−→
R∈Cov(V )

Hn (R,B)
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as in Definition B.2.5 (4). If the topology on X is generated by a pretopology, then

Ȟn (V,A) := lim←−
{Vi→V }∈Cov(V )

Hn ({Vi → V } ,A) ,

Ȟn (V,B) := lim−→
{Vi→V }∈Cov(V )

Hn ({Vi → V } ,B) .

as in Definition B.2.5 (5)

B.2.2. Definition. A morphism V → U in a category D is called base-changeable
(“quarrable” in ([Artin et al., 1972a, Def. II.1.3]), iff for every other morphism U ′ → U
the fiber product V ×

U
U ′ exists.

B.2.3. Definition. Let D and K be categories. Assume that D is small and K is abelian.
Let {Ui → U} be a family of base-changeable morphisms in D. For a pre(co)sheaf

A ∈ pCS (D,K) (respectively B ∈ pS (D,K) )

on D with values in K, define the following C̆ech chain complex Č• and the C̆ech
cochain complex Č•. Assume that K is complete in the case of a presheaf, and cocom-
plete in the case of a precosheaf:

Č• ({Ui → U} , B) :=
(
Čn ({Ui → U} , B) , dn

)
n≥0 ,

Č• ({Ui → U} , A) :=
(
Čn ({Ui → U} , A) , dn

)
n≥0 ,

where

Čn ({Ui → U} , B) =
∏

i0,i1,...,in∈I

B
(
Ui0 ×

U
Ui1 ×

U
...×

U
Uin

)
,

Čn ({Ui → U} , A) =
⊕

i0,i1,...,in∈I

A
(
Ui0 ×

U
Ui1 ×

U
...×

U
Uin

)
,

dn =
n+1∑
k=0

(−1)k dn(k),

dn =
n+1∑
k=0

(−1)k d(k)n ,

dn(k) : Č
n → Čn+1 are defined by the compositions

[
πi0,i1,...,in,in+1

]
◦ dn(k):=

[ ∏
i0,i1,...,in∈I

B
(
Ui0 ×

U
Ui1 ×

U
...×

U
Uin

)
πi0,...,îk,...,in- B

(
Ui0 ×

U
...×

U
Ûik ×

U
...×

U
Uin ×

U
Uin+1

)
B
(
σk,i0,i1,...,in,in+1

)
- B

(
Ui0 ×

U
Ui1 ×

U
...×

U
Uin ×

U
Uin+1

)]
,
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and

πi0,i1,...,in,in+1 :

 ∏
i0,i1,...,in+1∈I

B
(
Ui0 ×

U
Ui1 ×

U
...×

U
Uin+1

) −→ B(Ui0 ×
U
Ui1 ×

U
...×

U
Uin+1

)
,

πi0,...,îk,...,in :

[ ∏
i0,i1,...,in∈I

B
(
Ui0 ×

U
Ui1 ×

U
...×

U
Uin

)]
−→ B

(
Ui0 ×

U
...×

U
Ûik ×

U
...×

U
Uin+1

)
,

σk,i0,i1,...,in,in+1 : Ui0 ×
U
Ui1 ×

U
...×

U
Uin ×

U
Uin+1 −→ Ui0 ×

U
...×

U
Ûik ×

U
...×

U
Uin+1 ,

are the natural projections.
d
(k)
n : Čn+1 → Čn are defined dually to dn(k), by the compositions

d(k)n ◦
[
ρi0,i1,...,in+1

]
:=

[
A
(
Ui0 ×

U
Ui1 ×

U
...×

U
Uin ×

U
Uin+1

)
A
(
σk,i0,i1,...,in,in+1

)
- A

(
Ui0 ×

U
...×

U
Ûik ×

U
...×

U
Uin+1

)
ρi0,...,îk,...,in+1-

⊕
i0,i1,...,in∈I

A
(
Ui0 ×

U
Ui1 ×

U
...×

U
Uin

)]
,

where

ρi0,i1,...,in,in+1 : A
(
Ui0 ×

U
Ui1 ×

U
...×

U
Uin+1

)
−→

 ⊕
i0,i1,...,in+1∈I

A
(
Ui0 ×

U
Ui1 ×

U
...×

U
Uin+1

) ,
ρi0,...,îk,...,in : A

(
Ui0 ×

U
...×

U
Ûik ×

U
...×

U
Uin+1

)
−→

[ ⊕
i0,i1,...,in∈I

A
(
Ui0 ×

U
Ui1 ×

U
...×

U
Uin

)]
,

are the natural embeddings.

B.2.4. Definition. Let D and K be categories. Assume that D is small and K is
abelian. Let R ⊆ hU be a sieve on D. For a pre(co)sheaf

A ∈ pCS (D,K) (respectively B ∈ pS (D,K) )

on D with values in K, define the following Roos chain complex RoosC• and the Roos
cochain complex RoosC• (see [Roos, 1961] and [Noebeling, 1962]). Assume that K is
complete in the case of a presheaf, and cocomplete in the case of a precosheaf:

RoosC• (R, B) :=
(
RoosCn (R, B) , dn

)
n≥0 ,

RoosC• (R, A) :=
(
RoosCn (R, A) , dn

)
n≥0 ,

where
⟨i0, i1, ..., in⟩ :=

[
U0

i0−→ U1
i1−→ ...

in−1−→ Un
in−→ U

]
∈ CR,
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RoosCn (R, B) =
∏

⟨i0,i1,...,in⟩∈CR

B (U0) ,

RoosCn (R, A) =
⊕

⟨i0,i1,...,in⟩∈CR

A (U0) ,

dn =
n+1∑
k=0

(−1)k dn(k),

dn =
n+1∑
k=0

(−1)k d(k)n ,

dn(k) :
RoosCn → RoosCn+1 are defined by the compositions[

π⟨i0,i1,...,in+1⟩
]
◦ dn(k):= ∏

⟨i0,i1,...,in⟩

B (U0)

 π⟨i0,...,ik◦ik−1,...,in+1⟩- B (U0)

 ,
if k ̸= 0, [

π⟨i0,i1,...,in+1⟩
]
◦ dn(0):= ∏

⟨i0,i1,...,in⟩

B (U0)

 π⟨i1,i2,...,in+1⟩- B (U1)
B (i0)- B (U0)

 ,
if k = 0, and

π⟨i0,i1,...,in+1⟩ :

 ∏
⟨i0,i1,...,in+1⟩

B (U0)

 −→ B (U0) ,

π⟨i0,i1,...,in⟩ :

 ∏
⟨i0,i1,...,in⟩

B (U0)

 −→ B (U0) ,

are the natural projections.
d
(k)
n : RoosCn+1 → RoosCn are defined dually to dn(k), by the compositions

d(k)n ◦
[
ρ⟨i0,i1,...,in+1⟩

]
:=A (U0)

ρ⟨i0,...,ik+1◦ik,...,in+1⟩-

 ⊕
⟨i0,i1,...,in⟩

A (U0)

 ,
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if k ̸= 0,

d(k)n ◦
[
ρ⟨i0,i1,...,in+1⟩

]
:=A (U0)

A (i0)- A (U1)
ρ⟨i1,i2,...,in+1⟩-

 ⊕
⟨i0,i1,...,in⟩

A (U0)

 ,
if k = 0, where

ρ⟨i0,i1,...,in+1⟩ : A (U0) −→

 ⊕
⟨i0,i1,...,in+1⟩

A (U0)

 ,
ρ⟨i0,i1,...,in⟩ : A (U0) −→

 ⊕
⟨i0,i1,...,in⟩

A (U0)

 ,
are the natural embeddings.

B.2.5. Definition. Let X = (CX ,Cov (X)) be a small site, A a precosheaf, and B a
presheaf on X:

A ∈ pCS (X,Pro (k)) ,

B ∈ pS (X,Mod (k)) .

Let also R be a sieve on X, and {Vi → V } be a family of base-changeable morphisms in
CX .

1.

H0 (R,A) :=A⊗SetCX R ≃ lim−→
(V→U)∈CR

A (V ) ,

H0 (R,B) :=HomSetCX (R,B) ≃ lim←−
(V→U)∈CR

B (V ) ,

see Definition A.1.1(5,6), Notation B.1.5, Proposition B.1.8(2) and Remark B.1.15;

2.

Hn (R,A) :=Hn

(
RoosC• (R,A)

)
,

Hn (R,B) :=Hn
(
RoosC• (R,B)

)
;

3.

Hn ({Vi → V } ,A) :=HnČ• ({Vi → V } ,A) ,
Hn ({Vi → V } ,B) :=HnČ• ({Vi → V } ,B) ;
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4.

RoosȞn (U,A) := lim←−
R∈Cov(U)

Hn (R,A) ,

RoosȞn (U,B) := lim−→
R∈Cov(U)

Hn (R,B) ,

see Notation 3.2.2.

5. Assume that the topology on X is generated by a pretopology (Definition B.1.6).
Then define:

Ȟn (U,A) := lim←−
{Ui→U}∈Cov(U)

Hn ({Ui → U} ,A) ,

Ȟn (U,B) := lim−→
{Ui→U}∈Cov(U)

Hn ({Ui → U} ,B) .

6. Let A+ and A# be the following precosheaves:

A+:=
(
U 7−→ Ȟ0 (U,A)

)
,

A#:=A++,

and let B+ and B# be the following presheaves:

B+:=
(
U 7−→ Ȟ0 (U,B)

)
,

B#:=B++.

There are natural morphisms of functors:

λ+ : (•)+ −→ 1pCS(X,Pro(k)) : λ+ (A) : A+ −→ A,
λ+ : 1pS(X,Mod(k)) −→ (•)+ : λ+ (B) : B −→ B+,

λ++ : (•)# = (•)++ −→ 1pCS(X,Pro(k)) : λ++ (A) = λ+ (A) ◦ λ+ (A+) : A++ −→ A,
λ++ : 1pS(X,Mod(k)) −→ (•)++ = (•)# : λ++ (B) = λ+

(
B+
)
◦ λ+ (B) : B −→ B++.

B.2.6. Remark. Compare to Definition 2.2.5.

B.2.7. Proposition. Assume that the topology on X is generated by a pretopology.

1. If a sieve R is generated by a cover {Ui → U}, then the groups Hn (R,A), Hn (R,B)
from Definition B.2.5(2) are naturally isomorphic to the groups Hn ({Ui → U} ,A),
Hn ({Ui → U} ,B) from Definition B.2.5(3).

2. The groups RoosȞn (U,A) and RoosȞn (U,B) from Definition B.2.5(4) are naturally
isomorphic to the groups Ȟn (U,A) and Ȟn (U,B) from Definition B.2.5(5).
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Proof. The reasoning below is similar to [Artin et al., 1972b, Proposition V.2.3.4 and
Exercise V.2.3.6]. Let us prove the statement for the precosheaf A. The proof for the
presheaf B is similar. Assume that the sieve R is generated by a family {Ui → U}. We
construct first natural isomorphisms

Hn (R,A) ≃ Hn ({Ui → U} ,A) .

Applying lim←− will give us the desired natural isomorphisms

RoosȞn (U,A) = lim←−
R∈Cov(U)

Hn (R,A) ≃ lim←−
{Ui→U}∈Cov(U)

Hn ({Ui → U} ,A) = Ȟn (U,A) .

Let X•,• be the following bicomplex:

(Xs,t, d, δ) :=

 ⊕
U0→U1→...→Us→Ui0

×
U
Ui1
×
U
...×

U
Uit

A (U0) , d, δ


where the horizontal differentials d•,• are like in Definition B.2.4, while the vertical dif-
ferentials δ•,• are like in Definition B.2.3. Consider the two spectral sequences converging
to the total homology:

verE2
s,t = horHs

verHt (X•,•) =⇒ Hs+t (Tot• (X)) ,
horE2

s,t = verHt
horHs (X•,•) =⇒ Hs+t (Tot• (X)) .

Since the comma category

CX ↓
(
Ui0 ×

U
Ui1 ×

U
...×

U
Uit

)
has a terminal object

Ui0 ×
U
Ui1 ×

U
...×

U
Uit

1Ui0
×...×Uit- Ui0 ×

U
Ui1 ×

U
...×

U
Uit ,

it follows that

horE1
s,t =

horHs (X•,t) = lim←−
s

CX ↓
(
Ui0
×
U
Ui1
×
U
...×

U
Uit

)A =

 A
(
Ui0 ×

U
Ui1 ×

U
...×

U
Uit

)
if s = 0,

0 if s > 0,

Therefore

horE2
s,t =

verHt
horHs (X•,•) =

{
Hn ({Ui → U} ,A) if s = 0,

0 if s > 0,
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the spectral sequence degenerates from E2 on, and

Hn (Tot• (X)) ≃ Hn ({Ui → U} ,A) .

The vertical spectral sequence is as follows:

verE1
s,t =

verHt (Xs,•) ,

where Xs,• allows the following description:

Xs,t =
⊕

U0→U1→...→Us→U

φ∈T
(
Us→U,Ui0

×
U
Ui1
×
U
...×

U
Uit

)
A (U0) ,

where

T

(
Us → U,Ui0 ×

U
Ui1 ×

U
...×

U
Uit

)
:=

∐
i0,i1,...,it

HomU

(
Us → U,Ui0 ×

U
Ui1 ×

U
...×

U
Uit

)
,

and the coproduct (disjoint union) is taken in the category of sets. Denote temporarily

T

(
Us → U,Ui0 ×

U
Ui1 ×

U
...×

U
Uit

)
by S. It follows that

verHt (Xs•) = Ht

[⊕
X

D ←−
⊕
X×X

D ←− ...←−
⊕
Xn

D ←− ...

]
=


D if t = 0 & S ̸=∅
0 if t ̸= 0 & S ̸= ∅
0 if S = ∅

,

where
D =

⊕
U0→U1→...→Us→U

A (U0) .

The set S is non-empty iff (Us → U) ∈ CR. Finally,

verE1
s,t = verHt (Xs•) =

{ ⊕
(U0→U1→...→Us→U)∈CR

A (U0) if t = 0

0 if t ̸= 0
,

verE2
s,t = horHs

verHt (Xs•) =

{
Hs (R,A) if t = 0

0 if t ̸= 0
,

the spectral sequence degenerates from E2 on, and

Hn ({Ui → U} ,A) ≃ verE2
0,n ≃ Totn (X) ≃ horE2

n,0 ≃ Hn (R,A) .
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B.3. Pro-homotopy and pro-homology. Let Top be the category of topological
spaces and continuous mappings. The following categories are closely related to Top: the
categoryH (Top) of homotopy types, the category Pro (H (Top)) of pro-homotopy types,
and the category H (Pro (Top)) of homotopy types of pro-spaces. The latter category is
used in strong shape theory. It is finer than the former which is used in shape theory. The
pointed versions Pro (H (Top∗)) and H (Pro (Top∗)) are defined similarly.

One of the most important tools in strong shape theory is a strong expansion (see
[Mardešić, 2000], conditions (S1) and (S2) on p. 129). In this paper, it is sufficient to use
a weaker notion: an H (Top)-expansion ([Mardešić and Segal, 1982, §I.4.1], conditions
(E1) and (E2)). Those two conditions are equivalent to the following

B.3.1. Definition. Let X be a topological space. A morphism X → (Yj)j∈I in Pro (H (Top))
is called an H (Top)-expansion (or simply expansion) if for any polyhedron P the fol-
lowing mapping

lim−→j [Yj, P ] = lim−→jHomH(Top) (Yj, P ) −→ HomH(Top) (X,P ) = [X,P ]

is bijective where [Z, P ] is the set of homotopy classes of continuous mappings from Z to
P .

An expansion is called polyhedral (or an H (Pol)-expansion) if all Yj are polyhedra.

B.3.2. Remark.

1. The pointed version of this notion (an H (Pol∗)-expansion) is defined similarly.

2. For any (pointed) topological space X there exists an H (Pol)-expansion (an H (Pol∗)-
expansion), see [Mardešić and Segal, 1982, Theorem I.4.7 and I.4.10].

3. Any two H (Pol)-expansions (H (Pol∗)-expansions) of a (pointed) topological space
X are isomorphic in the category Pro (H (Pol)) (Pro (H (Pol∗))), see [Mardešić
and Segal, 1982, Theorem I.2.6].

B.3.3. Remark. Theorem 8 from [Mardešić and Segal, 1982, App.1, §3.2], shows that
an H (Pol)- or an H (Pol∗)-expansion for X can be constructed using nerves of normal
(see Definition B.1.11) open coverings of X.

Pro-homotopy is defined in [Mardešić and Segal, 1982, p. 121]:

B.3.4. Definition. For a (pointed) topological space X, define its pro-homotopy pro-sets

pro-πn (X) := (πn (Yj))j∈J

where X → (Yj)j∈J is an H (Pol)-expansion if n = 0, and an H (Pol∗)-expansion if
n ≥ 1.

Similar to the “usual” algebraic topology, pro-π0 is a pro-set (an object of Pro (Set)),
pro-π1 is a pro-group (an object of Pro (Gr)), and pro-πn are abelian pro-groups (objects
of Pro (Ab)) for n ≥ 2.

Pro-homology groups are defined in [Mardešić and Segal, 1982, §II.3.2], as follows:



COSHEAVES 1147

B.3.5. Definition. For a topological space X, and an abelian group G, define its pro-
homology groups as

pro-Hn (X,G) := (Hn (Yj, G))j∈J

where X → (Yj)j∈J is a polyhedral expansion.
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Roos, J.-E. (1961). Sur les foncteurs dérivés de lim←−. Applications. C. R. Acad. Sci. Paris,
252:3702–3704.

Schneiders, J.-P. (1987). Cosheaves homology. Bull. Soc. Math. Belg. Sér. B, 39(1):1–31.

Sugiki, Y. (2001). The category of cosheaves and Laplace transforms, volume 2001-33 of
UTMS Preprint Series. University of Tokyo, Tokyo.

Tamme, G. (1994). Introduction to étale cohomology. Universitext. Springer-Verlag,
Berlin. Translated from the German by Manfred Kolster.

Weibel, C. A. (1994). An introduction to homological algebra, volume 38 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge.

Institute of Mathematics and Statistics
The University of Tromsø - The Arctic University of Norway
N-9037 Tromsø, Norway
Email: andrei.prasolov@uit.no

This article may be accessed at http://www.tac.mta.ca/tac/



THEORY AND APPLICATIONS OF CATEGORIES will disseminate articles that significantly advance
the study of categorical algebra or methods, or that make significant new contributions to mathematical
science using categorical methods. The scope of the journal includes: all areas of pure category theory,
including higher dimensional categories; applications of category theory to algebra, geometry and topology
and other areas of mathematics; applications of category theory to computer science, physics and other
mathematical sciences; contributions to scientific knowledge that make use of categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.

Subscription information Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. Full
text of the journal is freely available at http://www.tac.mta.ca/tac/.

Information for authors LATEX2e is required. Articles may be submitted in PDF by email
directly to a Transmitting Editor following the author instructions at
http://www.tac.mta.ca/tac/authinfo.html.

Managing editor. Geoff Cruttwell, Mount Allison University: gcruttwell@mta.ca

TEXnical editor. Michael Barr, McGill University: michael.barr@mcgill.ca

Assistant TEX editor. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin seal@fastmail.fm

Transmitting editors.
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Pieter Hofstra, Université d’ Ottawa: phofstra (at) uottawa.ca

Anders Kock, University of Aarhus: kock@math.au.dk
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