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2-DIMENSIONAL BIFUNCTOR THEOREMS AND DISTRIBUTIVE
LAWS

PETER F. FAUL, GRAHAM MANUELL, JOSÉ SIQUEIRA

Abstract. In this paper we consider the conditions that need to be satisfied by two
families of pseudofunctors with a common codomain for them to be collated into a bifunc-
tor. We observe similarities between these conditions and distributive laws of monads
before providing a unified framework from which both of these results may be inferred.
We do this by proving a version of the bifunctor theorem for lax functors. We then show
that these generalised distributive laws may be arranged into a 2-category Dist(B, C,D),
which is equivalent to Laxop(B,Laxop(C,D)). The collation of a distributive law into
its associated bifunctor extends to a 2-functor into Laxop(B × C,D), which corresponds
to uncurrying via the aforementioned equivalence. We also describe subcategories on
which collation itself restricts to an equivalence. Finally, we exhibit a number of natural
categorical constructions as special cases of our result.

1. Introduction

Fix categories B, C and D and consider a bifunctor P : B × C → D. By holding each of
the inputs of P constant in turn we obtain functors MB = P (B,−) and LC = P (−, C)
for each object B in B and each object C in C. It is a natural to consider when two
such families of functors may be rearranged back into a bifunctor. This is the bifunctor
theorem and it appears as the first proposition in [5].

1.1. Theorem. Let B, C and D be categories and for each object B in B and each object
C in C let LC : B → D and MB : C → D be functors such that LC(B) = MB(C). Then
there exists a bifunctor P : B×C → D with LC = P (−, C) and MB = P (B,−) if and only
if for all morphisms f : B1 → B2 in B and g : C1 → C2 in C we have LC2(f)MB1(g) =
MB2(g)LC1(f). In this case, P (B,C) = LC(B) = MB(C) and P (f, g) = MB2(g)LC1(f).

While the result is somewhat trivial, it can be remarkably useful. For instance, one
convenient use case is in defining the Ext bifunctor of abelian groups.

It is natural to ask what an analogue of this result would be in the 2-categorical setting.
For families of pseudofunctors L and M , the idea is that the equality LC2(f)MB1(g) =
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MB2(g)LC1(f) above should be replaced with an invertible 2-morphism σ. This invert-
ible 2-morphism is now required to satisfy a number of coherence conditions which were
invisible in the classical case. If we depict the M families with blue wires, the L families
with red wires and σ with a braiding of a red wire over a blue, then the following string
diagrams illustrate some of these conditions.

=

=

These diagrams may remind the reader of a distributive laws of monads or perhaps
of oplax and lax transformations. We will prove a lax bifunctor theorem which recovers
both the pseudo-bifunctor theorem and distributive laws of monads as special cases. For
this reason we call this data a distributive law of lax functors. Other consequences of the
result will be discussed at the end of the paper.

The link to (op)lax transformations is explained by a correspondence between this
data and objects of the 2-category Laxop(B,Laxop(C,D)). This suggests notions of 1-
morphism and 2-morphism of distributive laws giving a category Dist(B, C,D) which is
equivalent to Laxop(B,Laxop(C,D)). The process of ‘collating’ a distributive law into a
lax bifunctor extends to a 2-functor from Dist(B, C,D) to Laxop(B×C,D). Moreover, this
collation 2-functor can be seen to correspond to uncurrying via the equivalence between
Dist(B, C,D) and Laxop(B,Laxop(C,D)).

2. Background

String diagrams. We will make extensive use of string diagrams in this paper. For an
introduction to string diagrams see [6]. Our string diagrams will be read from bottom
to top (for vertical composition) and left to right (for horizontal composition). We will
not colour the regions of the diagrams, which should be clear from context. However,
as explained later we will colour wires when we want to indicate that a lax functor has
been applied. Our approach to representing lax functors can be compared to the string
diagram calculus for pseudofunctors described in [10].
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2-categories and lax functors. By a (strict) 2-category we mean any category
enriched over the cartesian monoidal category Cat. We may think of a 2-category as
consisting of objects, 1-morphisms and 2-morphisms. Here 1-morphisms compose like
functors, and we denote this by juxtaposition, and 2-morphisms compose like natural
transformations — that is to say, they may be composed vertically, which we denote with
◦ (or juxtaposition) or horizontally, which we denote with ∗.

There are a number of ways to generalise functors to this setting and we shall concern
ourselves with two of them: lax functors and pseudofunctors.

2.1. Definition. A lax functor F between 2-categories C and D consists of a function
F sending objects C in C to objects F(C) in D and for each pair of objects C1 and C2

in C a functor FC1,C2 : Hom(C1, C2) → Hom(F(C1),F(C2)), for which we use the same
name. Additionally, for each pair of composable 1-morphisms (f, g) we have a 2-morphism
γg,f : F(g) ◦ F(f) → F(g ◦ f) called the compositor, and for each object A in C we have
a 2-morphism ιA : idF(A) → F(idA) called the unitor. This data satisfies the following
constraints.

1. Let α : f1 → f2 and β : g1 → g2 be horizontally composable 2-morphisms. Then the
compositors must satisfy the following naturality condition.

γg2,f2

P (g2f2)

P (α)

P (f1)

P (β)

P (g1)

= γg1,f1

P (β ∗ α)

P (g2f2)

P (f1) P (g1)

2. If f : X → Y , g : Y → Z and h : Z → W are 1-morphisms, then the following
associativity axiom must be satisfied.

γh,gf

P (hgf)

γg,f

P (g)P (f) P (h)

=

γhg,f

P (hgf)

γh,g

P (h)P (g)P (f)
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3. If f : X → Y is a 1-morphism then the unit axioms must be satisfied.

γf,idX

P (f)

ιX

P (f)

=

P (f)

P (f)

=

γidY ,f

P (f)

ιY

P (f)

When all γ and ι maps are isomorphisms, then we call F a pseudofunctor. When just
the ι maps are isomorphisms we call F a unitary lax functor.

There is a notion of an oplax transformation between two lax functors defined as
follows.

2.2. Definition. Let (F1, γ1, ι1), (F2, γ2, ι2) : X → Y be two lax functors. An oplax
transformation ρ : F1 → F2 is given by two families:

� For each object X ∈ X , a 1-morphism ρX : F1(X) → F2(X).

� For each 1-morphism g : X → Y ∈ X , a 2-morphism ρg : ρYF1(g) → F2(g)ρX .

They must satisfy a number of coherence conditions, which we express below in terms
of string diagrams. For ease of understanding we use green to represent morphisms in
the image of F1 (and associated data) and purple for morphisms in the image of F2. The
2-morphisms ρg will be represented by a crossing of a wire representing ρY and ρX over
one representing F1(g) and F2(g).

1. If g : X → Y and f : Y → Z are 1-morphisms in X , then ρ must respect composition
as shown in the following string diagram.

γf,g

F2(fg)ρX

F1(f) ρZF1(g)

= γf,g

F2(fg)ρX

F1(f) ρZF1(g)
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2. For each object X ∈ X , ρ must respect the identity idX . We express this with the
following string diagram.

F2(idX)

ιX

ρX

ρX

=

F2(idX)

ιX

ρX

ρX

3. The family of maps ρg is natural in g in the sense that for each 1-morphisms
g, g′ : X → Y and 2-morphism α : g → g′ the following equality of string diagrams
holds.

F2(g
′)

F1(α)

F1(g)

ρX

ρY

=

F2(α)

F2(g
′)

F1(g)

ρX

ρY

If each 2-morphism ρf is an isomorphism, we call ρ a pseudonatural transformation. A
lax transformation is similar to an oplax transformation, but has ρf going in the opposite
direction.

The composition of oplax transformations ρ1 : F1 → F2 and ρ2 : F2 → F3 has (ρ
2ρ1)X =

ρ2Xρ
1
X and (ρ2ρ1)f = ρ2fρ

1
X ◦ ρ2Y ρ1f . This is shown in the diagram below.

F3(g)

F1(g)

ρ2Xρ1X

ρ1Y ρ2Y
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2.3. Definition. Let ρ1, ρ2 : F1 → F2 be oplax transformations. A modification ℶ : ρ1 →
ρ2 is given by a family of 2-morphisms ℶX : ρ1X → ρ2X satisfying the following axiom.

F2(f)

F1(f)

ρ2X

ρ1Y

ℶY

=

F2(f)

F1(f)

ρ2X

ℶX

ρ1Y

Vertical and horizontal composition of modifications are defined componentwise in the
obvious way.

Let Laxop(B, C) denote the 2-category of lax functors between B and C, oplax trans-
formations and modifications.

Monads and distributive Laws. Monads in a 2-category C may be thought of as
lax functors out of the terminal 2-category into C. If F is such a lax functor, then
the underlying functor of the monad is given by the endomorphism F(id) on F(∗) with
the multiplication and unit derived from the compositor and unitor respectively. The
conditions for F to be a lax functor then yield associativity and unit axioms for the
monad.

Given two monads (S, γS, ιS) and (T, γT , ιT ) on an object X, it is natural to ask if TS
has a natural monad structure. The answer in general is ‘no’, but the question has an
affirmative answer in the presence of a distributive law σ : ST → TS.

2.4. Definition. Let (S, γS, ι) and (T, γT , ιT ) be monads. A distributive law between
them is a 2-morphism σ : ST → TS satisfying the following string diagrams. Here σ is
represented by a braiding of the red wire S over the blue wire T .

γT

TS

T ST

=
γT

TS

T ST
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γS

S T

ST S

=
γS

S T

ST S

T

ιT

S

S

=

T

ιT

S

S

S

ιS

T

T

=

S

ιS

T

T

Given a distributive law σ : ST → TS, we have that (TS, (γT ∗ γS)(TσS), ιT ∗ ιS) is a
monad.

3. The lax bifunctor theorem

In order to generalise the classical bifunctor theorem to the setting of lax functors, the
equality LC2(f)MB1(g) = MB2(g)LC1(f) in Section 1.1 should be replaced by some suit-
able 2-morphism σf,g : LC2(f)MB1(g) → MB2(g)LC1(f). While it often makes sense to
replace equalities with isomorphisms, in the lax setting it is more natural not to ask for
the morphism to be invertible. The construction will only succeed when each σ satisfies
certain coherence conditions, which we describe below. Our terminology is chosen by
analogy to the distributive laws of monads, which have similar axioms.
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3.1. Definition. Given a family of lax functors LC : B → D indexed by objects of C and
a family of lax functors MB : C → D indexed by objects of B such that LC(B) = MB(C),
we say a family of 2-morphisms σf,g : LC2(f)MB1(g) → MB2(g)LC1(f) indexed by two
1-morphisms f : B1 → B2 in B and g : C1 → C2 in C is called a distributive law of lax
functors if it satisfies the following conditions represented in string diagrams below, where
morphisms to which an ‘L’ lax functor has been applied are written in red, morphisms to
which an ‘M ’ lax functor has been applied are written in blue and σ is denoted by a red
line on the right crossing over a blue line on the left.

γB2
g2,g1

MB2(g2g1)LC1(f1)

MB1(g2) LC3(f1)MB1(g1)

=
γB1
g2,g1

MB2(g2g1)LC1(f1)

MB1(g2) LC3(f1)MB1(g1)

(D1)

γC1
f2,f1

LC1(f2f1) MB3(g1)

LC2(f1)MB1(g1) LC2(f2)

=
γC2
f2,f1

LC1(f2f1) MB3(g1)

LC2(f1)MB1(g1) LC2(f2)

(D2)

MB2(idC)

ιB1
C

LC(f)

LC(f)

=

MB2(idC)

ιB2
C

LC(f)

LC(f)

(D3)
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LC1(idB)

ιC2
B

MB(g)

MB(g)

=

LC1(idB)

ιC1
B

MB(g)

MB(g)

(D4)

MB2(g
′)

MB1(β)

MB1(g)

LC1(f)

LC2(f)

=

MB2(β)

MB2(g
′)

MB1(g)

LC1(f)

LC2(f)

(D5)

LC1(f
′)

LC2(α)

LC2(f)

MB2(g)

MB1(g)

=

LC1(α)

LC1(f
′)

LC2(f)

MB2(g)

MB1(g)

(D6)

These conditions all amount to asking for the ‘crossings’ to pass through the structure
of the lax functors.

The collection of all distributive laws between all such families of lax functors with
domains B and C and codomain D will be denoted by Dist(B, C,D).

3.2. Theorem. [Lax bifunctor theorem] Let σ ∈ Dist(B, C,D) be a distributive law
between families of lax functors (LC , γ

C , ιC) and (MB, γ
B, ιB).

We may construct a lax bifunctor P : B × C → D with P (B,C) = LC(B) = MB(C)
on objects, P (f, g) = MB2(g)LC1(f) on 1-morphisms f : B1 → B2 and g : C1 → C2,
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and P (α, β) = MB2(β) ∗ LC1(α) on 2-morphisms, and with the unitor ιB,C : idS(B,C) →
P (idB, idC) given by ιBC ∗ ιCB, and the compositor γ(f ′,g′),(f,g) : P (f ′, g′)P (f, g) → P (f ′f, g′g)
for f ′ : B2 → B3 and g′ : C2 → C3 given by the following string diagram.

MB3(g
′g)

MB3(g
′)MB2(g)

LC1(f
′f)

LC2(f
′)LC1(f)

Furthermore, P is related to the L and M families by canonical oplax transformations
κB : MB → P (B,−) and κC : LC → P (−, C) whose 1-morphism components are identities
(that is, these are icons as in [4]) and where κB

g = MB(g)ι
C1
B and κC

f = ιB2
C LC(f) for

g : C1 → C2 and f : B1 → B2.

Proof. We start by establishing that P is ‘functorial on 2-morphisms’. From the defin-
ition of P we have P (α′α, β′β) = MB2(β

′β) ∗ LC1(α
′α). Since the lax functors MB2 and

LC1 are functorial on 2-morphisms, this is equal to MB2(β
′)MB2(β) ∗ LC1(α

′)LC1(α) and
by the interchange law this is the same as (MB2(β

′) ∗ LC1(α
′)) ◦ (MB2(β) ∗ LC1(α)) =

P (α′, β′)P (α, β). Moreover, P (idf , idg) = MB2(idg) ∗ LC1(idf ) = idMB2
(g) ∗ idLC1

(f) =
idP (f,g), which proves the claim.

Next we show that naturality condition for P . This follows from conditions D5 and
D6 and the naturality conditions of the L and M lax functors as shown in the string
diagrams below.

= =

To see that γ satisfies the associativity laws consider the following sequence of string
diagrams.
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= =

= =

Here we use condition D1 for the first equality, associativity of the compositors for the
next two equalities and D2 for the final equality.

For the condition on unitors, consider the following.

= = =

The other unit condition is symmetric. Thus, P : B × C → D is a lax bifunctor.
Note that P (B,−) coincides withMB and P (−, C) coincides with LC on objects. Thus

we have canonically defined 2-morphisms for all 1-morphisms f : B1 → B2 and g : C1 → C2

defined by ιB2
C LC(f) : LC(f) → MB2(idC)LC(f) = P (f, C) and MB(g)ι

C1
B : MB(g) →

MB(g)LC1(idB) = P (B, g).
We claim the family of identity morphisms on P (B,C) = MB(C) and the family of

2-morphisms ιB2
C LC(f) define an oplax transformation κB between MB and P (B,−).

Expanding the axiom for respecting composition we find that we require the following
equality. (Note that because the 1-morphisms of the oplax transformation are the identity,
they are omitted).

=
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But again, this is clearly true by condition D4 and the unit law for lax functors.
Expanding the unit law for respecting units gives the horizontal composition ιB ∗ ιC

in both cases and thus this condition is also satisfied. Similarly, the two sides of the 2-
dimensional naturality condition both become MB(α) ∗ ιC and so we have indeed defined
an oplax transformation. The same argument gives that κC : LC → P (−, C) is an oplax
transformation.

3.3. Definition. We refer to the process of constructing a lax bifunctor from data of a
distributive law as collation and to the result as the collated bifunctor.

As indicated above, we may recover the usual distributive laws of monads.

3.4. Proposition. Given monads S and T in a 2-category D, we obtain a monad struc-
ture on TS from a distributive law σ : ST → TS.

Proof. Simply apply Section 3.2 with L : 1 → D being the lax functor corresponding to
S and M : 1 → D the lax functor corresponding to T . (Note the conditions D5 and D6
hold automatically, since the 2-category 1 has no nontrivial 2-morphisms.)

Of course, we also obtain distributive laws for comonads working with lax functors
into Dco.

Unlike in the 1-dimensional setting, it is not in general possible to recover the data
of the distributive law from the collated bifunctor. This is already clear in the monad
case, since any composite monad TS could also be obtained from the trivial distributive
law between TS and the identity monad. Later in Section 5 we will discuss conditions
under which it is possible to go backwards. In particular, this is the case for invertible
distributive laws between pseudofunctors. In order to make sense of this reverse process
we will need to understand when two distributive laws are ‘the same’. This motivates an
exploration of their (2-)categorical structure.

4. Uncurrying and the 2-category of distributive laws

Even in the 1-dimensional case it is clear that there ought to be a version of the bifunctor
theorem that applies to morphisms. Let B, C and D be categories and let the functors
L1
C and M1

B form one ‘distributive law’ and functors L2
C and M2

B form another. Suppose
we have natural transformations θC : L1

C → L2
C and θB : M1

B → M2
B satisfying that θBC =

θCB . Then we may ‘collate’ these families of natural transformations to give a natural
transformation θ : P 1 → P 2 defined by θB,C = θBC , where P

1 and P 2 denote the collations
of the respective families of functors. We expect an analogue of this result in the lax
functor setting, as well as a corresponding result for 2-morphisms. These families of
natural transformations may be taken as morphisms of distributive laws. Indeed, in the
1-dimensional setting the resulting category Dist(B, C,D) is equivalent to Hom(B×C,D).
It is natural then to ask what the 1-morphisms and 2-morphisms are in our lax setting.
Here it is helpful to take inspiration from the category of distributive laws of monads.
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In the monad setting, distributive laws in a 2-category C may be thought of as mon-
ads in the 2-category of monads in C (see [9]). Using the correspondence with lax
functors this means that these distributive laws correspond to objects of the 2-category
Laxop(1,Laxop(1, X)). Then the process of constructing a monad on X from a distributive
law corresponds to a transformation sending objects in Laxop(1,Laxop(1, X)) to objects
in Laxop(1, X) ∼= Laxop(1×1, X). This bears a strong resemblance to the process of un-
currying. In this section we make this connection precise in our more general setting. In
doing so, light is shed on the resemblance between the conditions of distributive laws and
(op)lax transformations. This will also provide a link to related work by Nikolić [7].

4.1. Lemma. There is a bijection between the objects of Laxop(B,Laxop(C,D)) and the
set Dist(B, C,D).

Proof. Let (Q, γ, ι) : B → Laxop(C,D) be a lax functor. We shall specify the data of a
distributive law σ between families L and M .

We define the family M by MB = Q(B). Now let f : B1 → B2 be a 1-morphism in
B and consider the oplax transformation Q(f) : MB1 → MB2 . Notice that if g : C1 → C2

is a 1-morphism in C, we have a 2-morphism Q(f)g : Q(f)C2MB1(g) → MB2(g)Q(f)C1 in
D. So if LC(f) were equal to Q(f)C , we could treat Q(f)g as a candidate for σf,g. This
suggests the following definition for the family L.

Let C be an object in C and define (LC , γ
C , ιC) as follows:

� LC(B) = MB(C) = Q(B)(C) for objects B in B,

� LC(f) = Q(f)C for 1-morphisms f in B,

� LC(θ) = Q(θ)C for 2-morphisms θ in B,

� ιCB = (ιB)C : idLC(B) → LC(idB),

� γC
f2,f1

= (γf2,f1)C : LC(f2)LC(f1) → LC(f2f1).

We must show that (LC , γ
C , ιC) satisfies the conditions in the definition of a lax

functor. But this follows immediately from the fact that (Q, γ, ι) satisfies these equations
and that composition is computed componentwise.

We may now define σf,g = Q(f)g : LC2(f)MB1(g) → MB2(g)LC1(f). It remains to
show that σ satisfies the six requisite conditions.

Conditions D1, D3 and D5 are automatically satisfied as Q(f) is an oplax transforma-
tion. Conditions D2 and D4 follow from the fact that γf2,f1 and ιB are modifications and
condition D6 follows because Q(α) is a modification.

In the other direction, suppose that σ is a distributive law between families L and M .
We define a lax functor (Q, γ, ι) : B → Laxop(C,D) as follows. Firstly, for objects B in B
we set Q(B) = MB.

Next, for each 1-morphism f in B we must give an oplax transformation Q(f). It is
enough to specify it componentwise. Let Q(f)C = LC(f) and let Q(f)g = σf,g. Conditions
D1, D3 and D5 together imply that this is an oplax transformation.
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For a 2-morphism θ in B we require a modificationQ(θ), which we again define compon-
entwise by setting Q(θ)C = LC(θ). Condition D6 gives that this is indeed a modification.
Note that Q preserves composition of 2-morphisms, since each LC does.

Finally, both the compositor γ and the unitor ι should be modifications. We may
define these componentwise as (γf2,f1)C = γC

f2,f1
and (ιB)C = ιCB. These are modifications

by conditions D2 and D4 respectively.
Because each (LC , γ

C , ιC) is a lax functor, we have that γ and ι satisfy the requisite
diagrams componentwise. This is enough to deduce that (Q, γ, ι) is a lax functor.

It is apparent that these processes are inverses.

4.2. Remark. The above proof explains the resemblance between conditions D1, D3 and
D5 and the axioms for an oplax transformation.

Incidentally, there is also a ‘dual’ bijection between Dist(B, C,D) and lax functors from
C to Lax(B,D), the 2-category lax functors, lax transformations and modifications. This
correspondence explains the relation between conditions D2, D4 and D6 and the axioms
of a lax transformation.

Using similar ideas, we may now unwind the 1-morphisms and 2-morphisms in the
2-category Laxop(B,Laxop(C,D)) to produce appropriate definitions for 1-morphisms and
2-morphisms of distributive laws.

Suppose we are given an oplax transformation θ̂ between lax functors Q1, Q2 : B →
Laxop(C,D). From θ̂ we will extract families of oplax transformations θB : M1

B → M2
B and

θC : L1
C → L2

C , where the families M1 and L1 and M2 and L2 have been extracted from
Q1 and Q2 respectively as in Section 4.1.

The oplax transformations θB are given by θ̂B and are evidently seen to be oplax
transformations between Q1(B) = M1

B and Q2(B) = M2
B.

On the other hand the oplax transformations θC can be defined componentwise by
(θC)B = (θ̂B)C and (θC)f = (θ̂f )C . The resulting family θC is seen to be an oplax

transformation by considering the C components of the corresponding axioms for θ̂.
By construction θBC = θCB for all B and C. Moreover, since θ̂f is a modification, we

find that the families satisfy the Yang–Baxter equation. This motivates the following
definition.

4.3. Definition. Let σ1, σ2 ∈ Dist(B, C,D) be distributive laws between families of lax
functors L1 and M1 and L2 and M2 respectively. We define a morphism of distributive
laws between them to be a pair of families of oplax transformations θC : L1

C → L2
C and

θB : M1
B → M2

B such that θCB = θBC and which satisfy the Yang–Baxter equation.

=
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We will write θ for such a morphism where the oplax transformations are denoted by
θC and θB.

Next we study 2-morphisms. Let ℶ̂ : θ̂ → ζ̂ be a modification, where θ̂, ζ̂ : Q1 → Q2

are oplax transformations in Laxop(B,Laxop(C,D)). We extract families of modifications
ℶB : θB → ζB and ℶC : θC → ζC as follows.

The modifications ℶB are simply the maps ℶ̂B : θ̂B → ζ̂B. We define the modification
ℶC componentwise by ℶC

B = (ℶ̂B)C . This definition type checks since θBC = θCB and

ζBC = ζCB and ℶC is seen to be a modification by evaluating the modification axiom of ℶ̂
componentwise. We also note that ℶB

C = ℶC
B.

4.4. Definition. Let σ1, σ2 ∈ Dist(B, C,D) be distributive laws and let θ, ζ : σ1 → σ2

be morphisms of distributive laws. We define a 2-morphism of distributive laws to be a
pair of families of modifications ℶB : θB → ζB and ℶC : θC → ζC such that ℶB

C = ℶC
B. We

will write ℶ for such a 2-morphism where the modifications are denoted by ℶB and ℶC .

These form a 2-category of distributive laws.

4.5. Definition. Let B, C and D be 2-categories. We define a 2-category Dist(B, C D)
whose objects are distributive laws of lax functors from B and C to D, whose 1-morphisms
are morphisms of distributive laws and whose 2-morphisms are 2-morphisms of distributive
laws.

Composition of 1-morphisms is computed by composing the relevant families of oplax
transformations componentwise. Vertical and horizontal composition of 2-morphisms is
computed componentwise in a similar way. It is easy to see that the relevant conditions
on these families are stable under composition and so Dist(B, C D) is indeed a 2-category.

4.6. Theorem.The 2-categories Dist(B, C,D) and Laxop(B,Laxop(C,D)) are isomorphic.

Proof. We have shown above how to transform objects, 1-morphisms and 2-morphisms
in Laxop(B,Laxop(C,D)) into objects, 1-morphisms and 2-morphisms in Dist(B, C,D). It
is not hard to see that this assignment is 2-functorial. All that remains is to show that
this process is invertible. We have already shown this on objects in Section 4.1.

Let θ : σ1 → σ2 be a morphism of distributive laws given by families θB : M1(B) →
M2(B) and θC : L1(C) → L2(C) of oplax transformations. Let Q1, Q2 : B → Laxop(C,D)
be the lax functors corresponding to σ1 and σ2 respectively as in Section 4.1.

We may define an oplax transformation θ̂ : Q1 → Q2 by setting θ̂B = θB and taking
the C component of the modification θ̂f to be θCf . As before, the Yang–Baxter equations

satisfied by the families θB and θC are precisely what is needed to show θ̂f is a modification.

To see that θ̂ is an oplax transformation it suffices to check that the necessary axioms
hold componentwise, but these reduce to the oplax transformation axioms satisfied by θC .
This is easily seen to be inverse to the construction of θ from θ̂.

Now suppose ζ : σ1 → σ2 is another morphism of distributive laws and let ℶ : θ → ζ
be a 2-morphism of distributive laws. We define ℶ̂ : θ̂ → ζ̂ by ℶ̂B = ℶB. It is not hard
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to see that is a modification by working componentwise and using that ℶB
C = ℶC

B. It is

again clear this is inverse the construction of ℶ from ℶ̂.

Now that we have defined the 2-category Dist(B, C,D), we would like to extend col-
lation to a 2-functor K : Dist(B, C,D) → Laxop(B × C,D). To this end we describe the
collation of 1-morphisms and 2-morphisms of distributive laws.

4.7. Proposition. Let σ1, σ2 ∈ Dist(B, C,D) be distributive laws between families of lax
functors L1 and M1 and between families L2 and M2 respectively and let P 1 and P 2 be
the respective collated bifunctors. Let θ : σ1 → σ2 be a morphism of distributive laws.

Then we may define an oplax transformation θ : P 1 → P 2 by θB,C = θBC and with θg,f
given by M2

B(g)θ
C
f ◦ θBg L1

C(f) as depicted in the following string diagram.

Moreover, if we define θB,− : P
1(B,−) → P 2(B,−) and θ−,C : P

1(−, C) → P 2(−, C)
to be the oplax transformations obtained by restricting P 1 and P 2 in each component, then
we have θB,− ◦ κ1,B = κ2,BθB and θ−,C ◦ κ1,C = κ2,CθC, where the ‘κ’ maps are defined as
in Section 3.2.

Proof. We must check that θ as defined above is an oplax transformation. The unit and
naturality conditions follow easily, as θC and θB are individually are oplax transformations.

=

=
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The compositor condition is proved using the Yang–Baxter equation.

=

=

Finally, we must show that θB,− ◦ κ1,B = κ2,BθB and θ−,C ◦ κ1,C = κ2,CθC . We
immediately get agreement on 1-morphisms, since the 1-morphisms of each κ are identities.
They are seen to be equal on 2-morphisms by the interchange law.

4.8. Remark. Since there is a isomorphism between Laxop(Cop,Dop)op and the 2-category
Lax(C,D) of lax functors from C to D and lax transformations we can conclude a similar
result to Section 4.7 for lax transformations by duality.

The following proposition shows how to obtain modifications between oplax trans-
formations of bifunctors by collation.

4.9. Proposition. Let σ1, σ2 ∈ Dist(B, C,D) be distributive laws between families of lax
functors L1 and M1 and L2 and M2 respectively. Let θ and ζ be morphisms of distributive
laws from σ1 to σ2. Furthermore, let P 1 and P 2 be the collated bifunctors and θ and ζ
the collated oplax transformations. Finally, let ℶ : θ → ζ be a 2-morphism of distributive
laws. We may define a collated modification ℶ : θ → ζ by ℶB,C = ℶB

C = ℶC
B.

Proof. To see that ℶ so defined is a modification, consider the following series of string
diagrams.

= =
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To move from the second diagram to the third, we make use of the fact that ℶB
C = ℶC

B.

We can now upgrade the process of collation into a (strict) 2-functor from Dist(B, C,D)
to Laxop(B × C,D).

4.10. Theorem. Collation as in Sections 3.2, 4.7 and 4.9 defines a strict 2-functor
K : Dist(B, C,D) → Laxop(B × C,D).

Proof. Inspecting the collation constructions and using that composition in Dist(B, C,D)
is computed componentwise, it is easy to see that K strictly preserves identities and com-
position of 1-morphisms, as well as vertical and horizontal composition of 2-morphisms.

4.11. Remark. These ideas might also be generalised to n-ary functors. For instance,
a ‘ternary functor theorem’ would involve data which could be related to the 2-category
Laxop(B,Laxop(C,Laxop(D, E))) and compared to the iterated distributive laws of [1].

Section 4.6 allows us to compare the collation functor defined above and the ‘uncur-
rying’ functor J : Laxop(B,Laxop(C,D)) → Laxop(B × C,D) defined implicitly in [7]. We
have the following commutative diagram.

Dist(B, C,D)

Laxop(B,Laxop(C,D))

Laxop(B × C,D)

∼

K

J

In other words, collation of distributive laws is essentially uncurrying of lax bifunctors.
Since collation is not invertible in general, we have no general currying functor. In

the next section we consider how restricting to a certain full subcategory gives a setting
in which such an inverse does exist. In particular, by restricting to pseudofunctors we
obtain the exponential adjunction Hom(B × C,D) ∼= Hom(B,Hom(C,D)).

5. A partial converse to the 2-dimensional bifunctor theorem

Let us consider for which restricted class of lax functors we might reverse the collation
procedure.

First observe that the canonical maps κB : MB → P (B,−) and κC : LC → P (−, C)
from Section 3.2 are invertible whenever all the supplied lax functors are unitary. Hence,
this gives a natural setting in which we can recover the input data from the collated lax
bifunctor. Also note that under these conditions the collated lax bifunctor is itself unitary.
In fact, the collated lax bifunctor also satisfies the following further condition.
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5.1. Definition. We say a unitary lax bifunctor (P, γ, ι) is decomposable if the compos-
itors of the form γ(id,g),(f,id) : P (id, g)P (f, id) → P (f, g) are invertible for all 1-morphisms
f and g.

Note that in particular all pseudofunctors are decomposable.

5.2. Lemma. The collation of a distributive law between unitary lax bifunctors is a decom-
posable unitary lax bifunctor. Explicitly, the inverse to γ(id,g),(f,id) is given by (MB2(g)ι

C1
B2
)∗

(ιB2
C1
LC1(f)).

Proof. The collated lax bifunctor is certainly unitary. Now consider the following equal-
ity.

=

Thus, for each f : B1 → B2 and g : C1 → C2 the compositor γ(id,g),(f,id) has a right

inverse given by (MB2(g)ι
C1
B2
) ∗ (ιB2

C1
LC1(f)), or equivalently, κB2

g ∗ κC1
f recalling the ‘κ’

maps from Section 3.2. But the unitors ιC1
B2

and ιB2
C1

are invertible by assumption and
hence so is γ(id,g),(f,id).

We are now able to show the following equivalence.

5.3. Theorem. [Unitary lax bifunctor theorem] The 2-functor K : Dist(B, C,D) → Laxop(B×
C,D) restricts to an equivalence of 2-categories K between the full sub-2-category of dis-
tributive laws between families of unitary lax functors and the full sub-2-category of de-
composable unitary lax bifunctors.

The ‘inverse’ to K can be given explicitly by a 2-functor T defined as follows.

� If (P ′, γ′, ι′) be a unitary decomposable lax bifunctor, then T (P ′) is the distributive
law given by σf,g = γ′ −1

(id,g),(f,id)γ
′
(f,id),(id,g) between families of lax functors with LC =

P ′(−, C) and MB = P ′(B,−).

� If θ′ : P ′1 → P ′2 is an oplax transformation between unitary decomposable lax bifunc-
tors, then T (θ′) is the morphism of distributive laws given by (θ′−,C)C and (θ′B,−)B.

� If ℶ′ : θ′ → ζ ′ is a modification between oplax transformations of unitary decompos-
able lax bifunctors, then T (ℶ′) is given by the families (ℶ′

−,C)C and (ℶ′
B,−)B.
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Proof. The codomain of K restricts as appropriate by Section 5.2.
Let us demonstrate that the putative inverse T is well-defined. We begin by showing

that T (P ′) satisfies the axioms of a distributive law.
The form of condition D1 that we need to prove can be written as follows, where we

use red and blue for L and M as before, but purple for P ′ more generally.

=

We will show this holds by post-composing with the invertible 2-morphism γ′
(id,g),(f,id).

=

= =

= =

Here we make repeated use of associativity of the compositors and the invertibility of
γ′
(id,g),(f,id). It is helpful to remember that the invertible compositors are those with a red

wire as their left input and a blue wire as their right input. This last string diagram is
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then the right-hand diagram above composed with γ′
(id,g),(f,id) (before cancelling with its

inverse) as required.
To prove condition D3 we again post-compose with γ′

(id,id),(f,id). Then the left-hand
side gives the following.

= =

On the other hand, the right-hand side yields the same result.

=

The condition D5 is shown in a similar way. After composing with γ′
(id,g),(f,id) we obtain

the following sequence of string diagrams.

= = =

The other conditions are dual.
Next we show that T (θ′) is a 1-morphism of distributive laws. Clearly, θ′BC = θ′CB . To

see that they satisfy the Yang–Baxter equation, we post-compose the necessary diagrams
with γ′−1

(id,g),(f,id)θ
′
B,C and observe the following equalities.
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= =

= =

This yields the Yang–Baxter equation since γ−1
(id,g),(f,id) is invertible.

It is immediate that T (ℶ′) defines families of modifications that agree in the sense
necessary to give a 2-morphism of distributive laws. Moreover, it is clear that T is 2-
functorial since composition in Dist(B, C,D) is computed componentwise.

Now all that remains is to exhibit 2-natural isomorphisms λ : KT ∼= Id and κ : Id ∼=
TK. Let us start by defining the components of λ. For a unitary decomposable lax bi-
functor P ′ : B×C → D we require an oplax transformation λP ′ : KT (P ′) → P ′. Explicitly,
we have KT (P ′)(B,C) = P ′(B,C) and KT (P ′)(f, g) = P ′(id, g)P ′(f, id). Define λP ′ to
have identities as its 1-morphisms and γ′

(id,g),(f,id) as its 2-morphisms.
We prove λP ′ is indeed an oplax transformation. The unit condition for an oplax

transformation holds by the unit law for the lax functor P ′ as in the diagram below.
(Here the invisible identity wire intersects the left-hand diagram at γ′.)

=

The compositor condition is given by the following sequence of string diagrams. (Again
the topmost purple dot in the first diagram is the ‘intersection with the identity wire’,
while the rest of the diagram is the compositor for KT (P ′).)
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= =

= =

Finally, the 2-dimensional naturality condition follows immediately from the naturality
condition for the lax functor P ′.

Thus we have defined the components of λ. We claim that this is indeed a strict
2-natural transformation (i.e. it is a pseudonatural transformation where the 2-morphism
components are identities).

For each oplax transformation θ′ : P ′ → Q′ between decomposable unitary lax bifunc-
tors we require that λQ′◦KT (θ′) = θ′◦λP ′ . This is clear on 1-morphism components, since
the 1-morphisms components of λP ′ , λQ′ are identities. For the 2-morphism components,
the desired equality follows immediately from the coherence of the oplax transformation
θ′ with respect to compositors.

The 2-dimensional naturality condition for λ becomes that for each θ′, ζ ′ : P ′ → Q′

and modification ℶ′ : θ′ → ζ ′ we have λQ′KT (ℶ′) = ℶ′λP ′ . But this is clear since the
1-morphism components of λP ′ and λQ′ are identities. Moreover, λ automatically sat-
isfies the unitor and compositor conditions, since it is a strict 2-natural transformation
between strict 2-functors. Finally, the decomposability assumption gives that the (1-
morphism) components of λ are pseudonatural transformations and consequently iso-
morphisms. Hence, λ itself is a 2-natural isomorphism, as required.

Now we define the 2-natural isomorphism κ : Id ∼= TK. For each distributive law σ
between unitary lax functors we must define a morphism of distributive laws κσ : σ →
TK(σ). Let (P, γ, ι) be the collated functor K(σ). Then TK(σ) is the distributive law
between the families (P (−, C))C and (P (B,−))B given by TK(σ)f,g = γ−1

(id,g),(f,id)γ(f,id),(id,g).

We claim the component families of κσ can be given by the canonical families (κC)C and
(κB)B of oplax transformations defined in Section 3.2.

To show this defines a valid morphism of distributive laws we first note that κC
B = κB

C

since both are the identity morphism on P (B,C). We must now check that these families
satisfy the Yang–Baxter equation from Section 4.3. In our situation the desired equality
becomes that depicted by the following string diagrams. Here we have used Section 5.2
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to express the inverse of γ′
(id,g),(f,id) in terms of the unitors of the original lax functors.

=

This equality is immediately seen to hold by the unit laws.
We now check that κ is 2-natural transformation. The 1-dimensional naturality con-

dition for κ requires that for each 1-morphism of distributive laws θ : σ1 → σ2 we have
κσ2 ◦ θ = TK(θ) ◦ κσ1 , which is an immediate consequence of Section 4.7. Similarly, the
2-dimensional naturality condition asks that κσ2 ℶ = TK(ℶ)κσ1 for each 2-morphism of
distributive laws ℶ : θ → ζ, but this is immediate by inspection since the 1-morphism
components of κσ1 and κσ2 are identity morphisms. Moreover, the compositor and unitor
conditions again hold automatically as above.

Finally, note that each component of κ is an isomorphism since the unitors are invert-
ible by assumption. Hence we have proved the result.

5.4. Remark. At the end of Section 4 we discussed how collation corresponds to the
uncurrying 2-functor J composed with the equivalence between Dist(B, C D) and Laxop(B,
Laxop(C,D)) defined in Section 4.6. If we denote the category of unitary lax bifunctors
from C to D by ULaxop(C,D), then as a consequence of the above results we find that
J restricts to an equivalence J between ULaxop(B,ULaxop(C,D)) and the 2-category of
decomposable unitary lax bifunctors. The ‘inverse’ functor then allows us to curry this
class of lax bifunctors.

6. Special cases

The collation of lax functors restricts to give a number of important constructions in
category theory. We have discussed the example of distributive laws of monads throughout
this paper.

Also notice that because pseudofunctors are unitary lax functors we have the pseudo-
bifunctor theorem mentioned in the introduction as a corollary of Section 5.3.

6.1. Theorem. Let σ ∈ Dist(B, C,D) be an invertible distributive law between families
of pseudofunctors L and M . The collation of these yields a pseudo-bifunctor (P, γ, ι) : B×
C → D such that P (B,−) is canonically isomorphic to MB for each B ∈ B and P (−, C)
is canonically isomorphic to LC for each C ∈ C.

Conversely, let P ′ = (P ′, γ′, ι′) : B × C → D be a pseudo-bifunctor. Then setting
LC = P ′(−, C) and MB = P ′(B,−), we have a distributive law σf,g = γ′ −1

(id,g),(f,id)γ
′
(f,id),(id,g)

and the resulting collated pseudo-bifunctor P is pseudonaturally isomorphic to P ′.
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Moreover, the equivalence of Section 5.3 restricts to an equivalence between the sub-2-
category of invertible distributive laws of pseudofunctors and that of pseudo-bifunctors.

In fact, this pseudofunctor result can be slightly improved, since only axioms D1, D2,
D5 and D6 need to be checked.

6.2. Proposition. If the morphism σ in a distributive law is invertible, then the unit
axioms D3 and D4 follow from the other axioms.

Proof. Observe the following sequence of string diagrams.

= =

= = =

The other unit axiom is dual.

6.3. Remark. We have stated the results of this paper in terms of 2-categories for sim-
plicity, but we believe they will still hold for bicategories. In the case of pseudofunctors
it is easy to deduce this more general result from the result for 2-categories and the fact
that every bicategory is biequivalent to a strict 2-category, since pseudofunctors respect
biequivalence.

Distributive laws of pseudofunctors generalise braidings of monoidal categories. We
can now recover the following result from [3] as a special case of Section 6.1.

6.4. Proposition. Let C be a monoidal category. Braidings on C are in bijection with
strong monoidal structures on the tensor product ⊗ : C × C → C. In particular, C admits
a braiding if and only if ⊗ admits the structure of a strong monoidal functor.

Proof. We simply view C as a one-object bicategory and apply Section 6.1 with L =
M = IdC and σ given by the braiding. We need only check conditions D1, D2, D5 and
D6 by Section 6.2. Naturality of the braiding gives conditions D5 and D6, while D1 and
D2 follow from the braiding axioms.
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There are also some other possible applications which we now briefly mention, but do
not explore in detail.

Recall that a V -enriched category can be described as a lax functor from its class
of objects, viewed as an indiscrete category, to the one-object bicategory corresponding
to V . Here it is interesting to restrict to distributive laws between constant families of
enriched categories. Then collation gives a product-like operation on V -enriched categories
generalising the tensor products of V -enriched categories defined in [3] when V is equipped
with a braiding.

It is also possible to apply the construction to graded monads (lax functors from one-
object bicategories which have found application in computer science [2]). This provides a
way to combine an M -graded monad and an N -graded monad to give an (M×N)-graded
monad. We are as yet unsure of the significance of this construction.

It is shown in [8] that distributive laws of monads in the bicategory of spans correspond
to strict factorisation systems. On the other hand, general lax functors from C into Span
or strictly unitary lax functors into Prof correspond to functors into C by a version of
the Grothendieck construction due to Bénabou. It could be interesting to explore what
distributive laws of lax functors give in this setting and what our construction means in
terms of these associated functors.
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Gabriella Böhm, Wigner Research Centre for Physics: bohm.gabriella (at) wigner.mta.hu

Maria Manuel Clementino, Universidade de Coimbra: mmc.mat.uc.pt
Valeria de Paiva, Nuance Communications Inc: valeria.depaiva@gmail.com
Richard Garner, Macquarie University: richard.garner@mq.edu.au
Ezra Getzler, Northwestern University: getzler (at) northwestern(dot)edu

Dirk Hofmann, Universidade de Aveiro: dirk@ua.pt
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