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ON FACTORISATION SYSTEMS FOR ORD-ENRICHED
CATEGORIES AND CATEGORIES OF PARTIAL MAPS

LEONARDO LARIZZA

Abstract. In this work we discuss a new type of factorisation system for Ord-enriched
categories. We start by defining the new notion of lax weak orthogonality, which involves
the existence of lax diagonal morphisms for lax squares. Using the usual theory of
factorisation systems as a blueprint, we introduce a lax version of weak and functorial
factorisation systems. We provide a characterisation of lax functorial weak factorisation
systems, namely lax weak factorisation systems such that their factorisations are lax
functorial. Then, we present a particular case of such lax functorial weak factorisation
systems which are equipped with additional lax monad structures. We finally explore
some examples of these factorisation systems for categories of partial maps equipped
with natural Ord-enrichments. We will first construct a particular lax algebraic weak
factorisation system for categories of partial maps that isolates the total datum and the
partial domain of a partial map. Then we will discuss the relation between factorisation
systems on the base category and oplax factorisation systems on the induced category
of partial maps.

Introduction

Our study of lax and oplax factorisation systems stems from the introduction of a new
definition of orthogonality that encompasses diagonal liftings for lax or oplax squares,
based on an Ord-enrichment of our category.

It differs substantially from the lax orthogonal factorisation systems studied in Ord-
enriched categories in [Clementino and López Franco, 2020, López Franco, 2019], although
in both cases the orthogonality condition does not impose uniqueness of the liftings. On
one hand ours impose the existence of liftings for lax squares, and on the other hand
theirs guarantee the existence of universal liftings.

In this paper we present a new type of factorisation system for Ord-categories. This
study starts with the introduction of an orthogonality relation between morphisms that
provides diagonal morphisms also for the broader class of lax squares. On the basis of this
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new definition we rebuild the already developed theory for ordinary weak factorisation
systems introduced in [Freyd and Kelly, 1972] and described in [Adámek et al., 2020,
Garner, 2009, Riehl, 2011]. Then, we analyse these classes and the equivalences that
constitute their intersection.

We continue in the second section by presenting how these factorisations can be defined
functorially providing the definition of lax functorial factorisation systems and pointing
out the differences that arise from the ordinary case.

We follow on to the third section to describe how the former two factorisation systems
interact. We provide a characterisation of those lax functorial weak factorisation systems.
We also give a description of the two classes of morphisms of the underlying lax weak
factorisation systems.

In the fourth section we present the lax case of the algebraic weak factorisation systems
introduced in [Grandis and Tholen, 2006, Garner, 2009] and we prove that in this setting
they are lax weak and lax functorial as well.

Then we will focus on providing a broad description of the lax and oplax factorisation
systems that arise for partial maps equipped with well-known definitions of order. The
work on categories of partial maps and especially in their Ord-enrichment is also inspired
by the work of Fiore in [Fiore, 1995, Fiore, 2004].

We will first construct a particular lax algebraic weak factorisation system for cate-
gories of partial maps that isolates the total datum and the partial domain.

Then we will describe the relation between oplax factorisation systems on C and oplax
factorisation systems on the corresponding category of partial maps. We will show that
one induces the other and vice versa and that ordinary functorial weak factorisations
transfer also their functorial properties to oplax factorisations on partial maps.

1. Lax weak orthogonality and lax weak factorisation systems

In this section we introduce a new notion of orthogonality which will be the base for the
rest of the work. We denote by Ord the category of partially ordered sets with monotone
maps. Let C be an Ord-enriched category. We denote by C 2

lax the category whose objects
are morphisms in C and morphisms are squares (u, v) : f −→ g of the type

A
u

//

≥f

��

C

g

��

B v
// D.

(1.i)

We will refer to these squares as lax squares. Then we introduce an orthogonality relation
that provides lax diagonal morphisms also for these lax squares.

1.1. Definition. Two morphisms in C 2 are said to be laxly weak orthogonal, denoted
by f ∧| g, if, for every lax square (u, v) : f −→ g, there exists a morphism d : cod(f) −→



1196 LEONARDO LARIZZA

dom(g), such that

A u
//

≥

f

��

C

g

��

B

d

??

v
// D

≥

{
u ≤ d · f
g · d ≤ v.

(1.ii)

We first observe that this constitutes a generalisation of weak orthogonality as de-
scribed in [Adámek et al., 2020, Riehl, 2011]. In fact, whenever the partial order in C
is discrete, the two definitions coincide. Analogously, for any class of morphisms H we
can define its lax weak orthogonal complements as the classes containing exactly those
morphisms which are laxly weakly orthogonal to H, to the left (H∧| ) or to the right (∧| H).
Lax weak orthogonal complements are easily shown to be closed under composition.

1.2. Definition. A lax weak prefactorisation system is a pair (L,R) of classes of mor-
phisms such that R = L∧| and L = ∧| R. Furthermore, if any morphism f ∈ C 2

lax has an
(L,R)-factorisation

A
f

//

L3lf
  

B

Wf

rf∈R

>>

(1.iii)

then (L,R) is said to be a lax weak factorisation system ( lwfs).

We remark that, given a lwfs (L,R), for any lax square (u, v) : f −→ g there exists
a morphism δ as in the diagram

A

≥

u
//

lf

��

C

lg

��

Wf

≥rf

��

δ
//Wg

rg

��

B v
// D.

(1.iv)

The arrow δ is obtained by the lax weak orthogonality relation lf ∧| rg.
The first natural step is to identify those morphisms which are laxly weak orthogonal

with respect to any other morphism in the category. We recall that two morphisms
f : A → B and g : B → A constitute an adjunction f a g, if we have idA ≤ g · f and
f · g ≤ idB.
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1.3. Proposition. For a morphism f ∈ C 2
lax, the following are equivalent:

1. f ∧| f ;

2. f is a left adjoint morphism to some f ∗;

3. f ∧| C 2
lax;

4. C 2
lax ∧| f .

Proof. 1.⇒2. For a morphism that is orthogonal to itself we may consider the identity
lax square (which is actually commutative) and by self orthogonality it must admit a lax
diagonal filler. It follows that the diagonal morphism will be the right adjoint and the
two 2-cells in the two triangles will define the adjunction sought.

2.⇒3. Let (u, v) : f −→ g be a lax square. We consider δ = u·f ∗. Then the adjunction
yields {

u ≤ u · f ∗ · f = δ · f
g · δ = g · u · f ∗ ≤ v · f · f ∗.

(1.v)

Thus δ is a lax diagonal morphism for the lax square (u, v).
2.⇒4. Analogously for a lax square (u, v) : g −→ f we have that f ∗ ·v is a lax diagonal

filler.
3.⇒1. and 4.⇒1. are trivial.

As a consequence of this result, we have that left adjoint morphisms belong to any lax
weak orthogonal complement and they constitute the intersection between the two classes
of morphisms of any lax weak prefactorisation system.

We point out that uniqueness of such lax diagonal liftings is not granted in general.
In fact, given a morphism f satisfying the conditions of Proposition 1.3, we have that in
any lax square (u, v) : f −→ f both du = u · f ∗ and dv = f ∗ · v are suitable lax diagonal
morphisms.

As for ordinary factorisation systems, one can easily prove the following result.

1.4. Proposition. Given a class of morphisms H ⊆ C 2, then H ⊆ ∧|
(
H∧|
)

and

H ⊆
(
∧| H
)∧|

. Moreover,
(
∧|
(
H∧|
)

;H∧|
)

and

(
∧| H;

(
∧| H
)∧| )

are lax prefactorisation

systems.

2. Lax functorial factorisations

A natural step forward is to study factorisation systems for lax arrow categories that are
functorial. To do so, we consider the composition functor applied to lax arrow categories

C 2
lax ×C C 2

lax

π1 //

(−·−) //
π2 //

C 2
lax. (2.i)
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We point out that objects in C 2
lax ×C C 2

lax are pairs of composable morphisms and the
arrows are triples of morphisms as

A

≥

a
//

f

��

A′

f ′

��

B

≥g

��

b
// B′

g′

��

C c
// C ′.

Then the following definition becomes a natural translation from the ordinary factorisation
systems.

2.1. Definition. A lax functorial factorisation system is a monotone functor F :
C 2

lax −→ C 2
lax ×C C 2

lax, such that (- · -)F = IdC 2
lax

.

A lax functorial factorisation system is then determined by a section of the composition
functor applied to C 2

lax. When composing such functor F with the projections π1 and π2

one obtains the usual functors L,R : C 2
lax −→ C 2

lax, and K : C 2
lax −→ C .

A lax functorial factorisation system induces also the natural transformations η : Id ⇒
R and ε : L⇒ Id. Differently from ordinary factorisation systems, these transformations
are not strict in general, but only oplax. In fact, considering η, for any lax square
(u, v) : f −→ g we have that

A

≥

u
//

f

��

C

g

��

Lg
//

ηg

Kg

Rg

��

B v
// D

idD

// D

≤

A

f

��

Lf
//

ηf

Kf

≥Rf

��

K(u,v)
// Kg

Rg

��

B
idB

// B v
// D,

since Lg · u ≤ K (u, v) · Lf by definition of lax functorial factorisation. This amounts to
have that ηg · (u, v) ≤ R (u, v) · ηf . Similarly one can prove that ε is an oplax natural
transformation as well.

3. Lax functorial weak factorisations

Our goal now is to interlink the two concepts as it already happens in the traditional set-
ting. An ordinary weak factorisation system (L,R) is said to underlie a functorial factori-
sation system (F,L,R,K) if every functorial factorisation is also an (L,R)-factorisation.

We already know that, if an ordinary wfs (L,R) underlies the functorial factorisation
system (F,L,R,K), then (L,R) = (L-coalg, R-alg). This means that L contains those
morphisms whose right component is a split epimorphism and R those morphisms whose



FACTORISATIONS FOR ORD-ENRICHED CATEGORIES AND PARTIAL MAPS 1199

left component is a split monomorphism (see for instance [Riehl, 2011]). On the blueprint
of this idea we want to investigate the conditions under which a lax functorial factorisation
system has an underlying lwfs and to give a description for the latter.

We fix a lax functorial factorisation system with components (F,L,R,K). We consider
the two classes

LF = {f |f ∧| Rf} RF = {f |Lf ∧| f} . (3.i)

Similarly to ordinary functorial wfs, we consider a lax functorial factorisation system
such that for every f , Lf ∈ LF and Rf ∈ RF . More precisely, we will consider lax
factorisation systems such that Lf ∧| RLf and LRf ∧| Rf for every morphism f ; we will
call such lax functorial factorisation systems predistributive. The reason for this name is
that the assumption amounts to a certain distributivity of the lax functorial factorisation
system as depicted in (3.vi).

3.1. Proposition. Let (F,L,R,K) be a lax functorial factorisation system and f any
morphism. If Rf ∈ RF , then f ∈ LF if and only if there exists a lax diagonal lifting ρf
in the square ηf . If Lf ∈ LF , then f ∈ RF if and only if there exists a lax diagonal lifting
λf in the square εf . For any f , we will denote such lax liftings by

A
Lf

//

≥

f

��

Kf

Rf

��

B

ρf

>>

idB

// B,

≥

A
idA

//

≥

Lf

��

A

f

��

Kf

λf

==

Rf
// B.

≥
(3.ii)

Proof. We prove only the first statement, since the second one follows by duality.
One direction is trivial since the existence of such a ρf is a direct consequence of

f ∧| Rf .
For the non-trivial implication, we need to prove that f ∧| Rf . We consider a lax

square and its functorial factorisation

A
u
//

≥f

��

Kf

Rf

��

B v
// B

7−→

A

≥

u
//

Lf

��

Kf

LRf

��

Kf

≥Rf

��

K(u,v)
// Kg

RRf

��

λRf

bb

B

ρf

<<

v
// B,

(3.iii)

where ρf is a diagonal morphism of ηf existing by assumption and λRf is a diagonal
morphism of εRf existing since LRf ∧| Rf .
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We consider ∆ = λRf ·K (u, v) · ρf . Keeping in mind the definitions of ρf and λRf as
lax diagonal fillers of ηf and εRf , we have that

u ≤ λRf · LRf · u ≤ λRf ·K (u, v) · Lf ≤ λRf ·K (u, v) · ρf ·Rf · Lf = ∆ · f (3.iv)

and

Rf ·∆ = RRf · LRf · λRf ·K (u, v) · ρf ≤ RRf ·K (u, v) · ρf ≤ v ·Rf · ρf ≤ v. (3.v)

This yields that ∆ is the diagonal morphism sought and f ∧| Rf .

We observe that, given a morphism f that lies in LF ∩RF , then the composition λf ·ρf
is a right adjoint to f .

According to these remarks, the choice of the name predistributive points to the exis-
tence, for any morphism f , of the following diagram

Kf
≥

LRf

��

ρLf
// KLf

RLf

��

KRf
λRf

// Kf

≥
(3.vi)

and it coincides with the assumption that for every morphism f , Rf is a lax (R, η)-
algebra (i.e. there exists α such that idRf ≤ α · ηRf , namely (λRf , idB)) and Lf is a lax
(L, ε)-coalgebra (i.e. there exists β such that εLf · β ≤ idLf , namely (idA , ρLf )).

This diagram resembles the distributivity transformation described in the next section,
even if it carries less structure. In fact, it is not in general a natural transformation
and it does not satisfy any distributivity law as described in [Bourke and Garner, 2016,
Clementino and López Franco, 2016] or in [Clementino and López Franco, 2020, Section
4].

3.2. Theorem. Let (F,L,R,K) be a predistributive lax functorial factorisation system.
Then (LF ,RF ) is a lax weak factorisation system. Furthermore, for any lax functorial
weak factorisation system (L,R) with lax functorial factorisation (F,L,R,K), (L,R) =
(LF ,RF ).

Proof. We start by proving that L ∧| R. Let f ∈ L and g ∈ R. We have that f ∧| Rf
and Lg ∧| g, by the existence of the two morphisms ρf and λg. We factorise a lax square
as

A
u

//

≥f

��

C

g

��

B v
// D

7−→

A

≥

u
//

Lf

��

C

Lg

��

Kf

≥Rf

��

K(u,v)
// Kg

Rg

��

λg

dd

B

ρf

<<

v
// D.

(3.vii)
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The morphism ∆ = λg ·K (u, v) · ρf is a lax diagonal morphism for the lax square taken
into account. In conclusion this yields that L ∧| R.

Moreover, for any f ∧| R, it follows that f ∧| Rf , since Rf ∈ R by lax predistributivity,
which induces that f ∈ L, namely R∧| ⊆ L. By an analogous argument L∧| ⊆ R holds.

For the second claim we consider (L,R) a functorial weak factorisation system. We
have that

f ∈ L ⇔ f ∈∧| R ⇒ f ∧| Rf ⇔ f ∈ LF
f ∈ R ⇔ f ∈ L∧| ⇒ Lf ∧| f ⇔ f ∈ RF

so L ⊆ LF and R ⊆ RF and since inclusion is dual for lax weak orthogonal classes, this
implies that (L,R) = (LF ,RF ).

In conclusion, the last theorem gives us a description of lax fwfs as lax algebras and
lax coalgebras of the functorial components. Moreover, it states that if every L-component
is a lax coalgebra and every R-component is a lax algebra, then they form the unique
lwfs underlying the given fwfs.

4. Lax algebraic weak factorisations

In this section we will present a class of functorial factorisation systems which satisfy the
condition above and come equipped with a richer structure close to the one of a monad.
This construction parallels in this lax context that of algebraic weak factorisation systems
as in [Grandis and Tholen, 2006, Garner, 2009, Bourke and Garner, 2016].

We recall the definition of lax monad that we reprise from [Bunge, 1974]. We define
here an Ord version of this definition and, although this work refers to lax natural trans-
formations, we remark that it is actually the same type of transformation we call oplax
according to what appears to be the most used choice in literature. The only difference
is that we will use a definition that involves usual functors and not lax functors, since it
is the particularisation that best fits our purposes.

4.1. Definition. For an Ord-enriched category C , a lax monad is a triple (T, η, µ),
such that

� T : C −→ C is a functor;

� η : Id =⇒ T is an oplax natural transformation;

� µ : RR =⇒ R is an oplax natural transformation;

and such that the following lax monads laws are satisfied

T

idT

  

Tη
//

≤

TT

µ

��

T

idT

~~

ηT
oo

≤

T

TTT

µT

��

Tµ
//

≥

TT

µ

��

TT µ
// T.

(4.i)
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We now define the factorisation systems we are interested in.

4.2. Definition. A lax algebraic weak factorisation system ( lawfs) is a functorial
factorisation system (F,L,R,K) such that (R, η) is part of a lax monad (R, η,Θ), (L, ε)
is part of a lax comonad (L, ε,Ω), and there exists a distributivity law ∆ : LR =⇒ RL of
the comonad over the monad in the sense that the following diagram commutes

LRR

LΘ

��

∆R
// RLR R∆

// RRL

ΘL

��

LR
∆

//

ΩR

��

RL

RΩ

��

LLR L∆
// LRL

∆L
// RLL.

(4.ii)

As said before, these factorisation systems constitute a subclass of lax functorial weak
factorisation systems as we prove in the following proposition.

4.3. Proposition. A lawfs (F,L,R,K) is a lax functorial weak factorisation system.

Proof. We can prove the statement by showing that (F,L,R,K) is lax predistributive.
Let f be any morphism. Then we consider the lax square given by Θf , whose defining
2-cell is Rf · θf ≤ RRf . Then, by the lax monad law idR ≤ Θ · ηR in (4.i), we can
deduce, restricting it to the domains, that idKf ≤ θf · LRf . Thus we have that θf is
a lax diagonal morphism for εRf . The same argument on the comonad yields that ωf ,
the codomain morphism of the comultiplication Ωf of the comonad, is the lax diagonal
morphism for ηLf . Now we want to check that Lf ∧| RLf and LRf ∧| Rf . We will prove
only the first one, since the arguments for the second are similar. We consider any lax
square between Lf and RLf and its factorisation

A u
//

≥Lf

��

KLf

RLf

��

Kf v
// Kf

7−→

A

≥

u
//

LLf

��

KLf

LRLf

��

KLf

≥RLf

��

K(u,v)
// KRLf

RRLf

��

θLf

aa

Kf

ωf

==

v
// Kf.

(4.iii)

Then θLf · K (u, v) · ωf is a lax diagonal morphism. In fact, due to the rules of the
monad, we have{

u ≤ θLf · LRLf · u ≤ θLf ·K (u, v) · LLf ≤ θLf ·K (u, v) · ωf ·RLf · LLf
RRf · LRLf · θLf ·K (u, v) · ωf ≤ RRLf ·K (u, v) · ωf ≤ v ·RLf · ωf ≤ v.

(4.iv)
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This implies that, for every f , we have that Lf ∧| RLf , and similarly LRf ∧| Rf . There-
fore (F,L,R,K) is lax predistributive and hence it is a lax functorial weak factorisation
system.

We remark that in general a lax predistributive functorial factorisation system does
not yield a complete distributivity law, since it is not even true that the square (3.vi) is
a natural transformation, and moreover we do not have the existence of the 2-cells in the
distributivity law (4.ii).

4.4. Remark. We observe that what we have described for C 2
lax can be expressed in a

dual fashion for C 2
oplax. We can then define orthogonality for oplax squares and oplax

factorisation systems. We remark that the equivalences for oplax weak orthogonality are
right adjoint morphisms and that, for an oplax functorial factorisation system, η and ε
are lax natural transformations and the monads involved in oplax awfs will be obviously
oplax monads. We have then an equally powerful dual set of results that can be used for
C 2

oplax. We will denote the oplax weak orthogonality relation by ∨| .

5. Categories of partial maps

This second part of the work is dedicated to the study of lax and oplax factorisation
systems for categories of partial maps. First we recall in this section some useful defini-
tions, notations and properties of categories of partial maps. Some of the features that
we present may be found in [Fiore, 2004, Robinson and Rosolini, 1988].

Let C be a category with a good notion of subobjects, i.e. a class of monomorphisms S
that is closed under composition, pullback stable, and that contains all sections (ri). We
assume that C has pullbacks along morphisms in S. Then a partial map is an equivalence
class of spans

Df
��

σf

��

ϕf

  

A �
f

// B

with σf in S and ϕf a generic morphism in C . Two spans are equivalent, if there exists
an isomorphism i between their partial domains that makes the two component arrows
commute (i.e. σ′f = σf · i and ϕ′f = ϕf · i). Composition among partial maps operates
via pullback. We will often use hereon the notation D-, σ- and ϕ- to refer to the partial
domain and the partial components of a partial map.

The category obtained will be denoted by PS (C ) or P (C ), when it cannot generate
any ambiguity. Categories of partial maps have a partial order between morphisms defined
by f � g if f is a domain restriction of g; formally if there exists s ∈ S making the following
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diagram commute:
Df
��

s

��

σf

��

ϕf

��

NDg
��

σg

��

ϕg

  

A
�f //
�
g

// B.

(5.i)

Furthermore, if there exists a partial order v among maps in C , then we can define
a partial order on partial maps induced by the one on the base category. In fact, if C is
Ord-enriched and all maps in S are full and upper-closed (a map f is full if any 2-cell
f · u v f · v yields the 2-cell u v v), then we have another order relation f ≤ g if and
only if N in (5.i) is the 2-cell ϕf v ϕg · s. These partial order relations yield two Ord-
enrichments on P (C ) as observed in [Fiore, 1995]. It is clear that if we consider a discrete
Ord-enrichment on C , then the two partial orders coincide.

5.1. Notation. We will distinguish the two order relations on a category P (C ) with
the symbols used above. Thus � will denote the order induced by equalities, while ≤ will
denote an order induced by any Ord-enrichment on C .

5.2. Notation. Given the 2-cells f ≤ g and f ′ ≤ g′ properly composable, we will denote
by o′ ∗ o the subobject morphism defining the composition 2-cell f ′ · f ≤ g′ · g. Moreover,
we will denote by v ∗ o the subobject morphism defining the composition 2-cell with an
identity 2-cell such as v · f ≤ v · g.

We will now state some facts that we will frequently evoke in the later discussion. We
recall that a partial morphism f is said to be total if its partial domain Df is the whole
domain of f .

5.3. Properties. Given a partial order on P (C ), we have the following properties:

� if f is total and f ≤ g, then g is total. Moreover, if the partial order is induced by
the discrete one, then f = g. Hence total maps are maximal elements in their own
Hom-Sets;

� for any composition of partial morphisms g · f , it is true that Dg·f � Df . Further-
more, if f · g is total, then g is total.

5.4. Adjunctions between partial maps. Since adjoint morphisms constitute the
lax equivalences related to lax factorisation systems, we proceed giving a description of
adjoint morphisms for categories of partial maps.

5.5. Proposition. Let P (C ) be a category of partial maps with C an Ord-enriched
category. A pair of morphisms in P (C ) constitute an adjunction f a g if and only if f
is total and ϕf = σg · γ, for a γ such that γ a ϕg in C .
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Proof. First we consider the adjunction f a g in P (C ). By the properties in 5.3, the
2-cell idA ≤ g · f yields that g · f is total and therefore f is total. We write explicitly the
2-cells

A
��

��

idA

��

ϕ̃f

  

idA

��

w

A
��

��

ϕf

  

Dg
��

σg

��

ϕg

  

A �
f

// B �
g

// A.

B

idB

��

idB

""

v

Dg

cc
σg
cc

��

��

ϕg

""

Dg
��

σg

��

ϕg

##

A
��

��

ϕf

##

B �
g

// A �
f

// B.

(5.ii)

The subobject morphism of the left diagram is idA due to the stated totality of f and
g · f . We notice immediately that ϕf = σg · ϕ̃f , where ϕ̃f is the pullback of ϕf along
σg. We prove that ϕ̃f is the morphism γ sought. We have the 2-cells idA v ϕg · ϕ̃f and
σg ·ϕ̃f ·ϕg = ϕf ·ϕg v σg. Since by assumption σg ∈ S is full, we deduce that ϕ̃f ·ϕg v idB.
This yields the existence of the adjunction ϕ̃f a ϕg in C . The other direction is proved
simply by calculation. In fact, due to the rules of composition among partial maps, one
obtains explicitly the diagrams in (5.ii), henceforth proving f a g in P (C ).

Hereon, whenever we will use this characterization, we will denote the morphism γ in
the statement by ϕ̃f .

If we consider an ordinary category C , we can state the following corollary.

5.6. Corollary. Let P (C ) be a category of partial morphisms equipped with the Ord-
enrichment induced by the ordinary category C . A pair of morphisms in P (C ) constitute
an adjunction f a g if and only if f = (id, σ) and g = (σ, id), for some σ ∈ S.

This is due to the fact that pairs of adjoint morphisms in a discrete category are pairs
of inverse morphisms.

We conclude this discussion on adjoint partial maps with a remark on the relation
between the adjunctions of partial maps and the adjunctions in the base Ord-category.
First we can define a partial order for adjoint pairs in P (C ) such that (f a g) ≤ (f ′ a g′)
if and only if there exists s ∈ S such that ϕf = s · ϕf ′ and σg = s · σg′ . It is straight-
forward to check that any pair of adjoint maps in C still constitutes an adjoint pair of
total maps in P (C ). Vice versa, Proposition 5.5 induces a process to obtain an adjoint
pair in C from any adjoint pair in P (C ) and in particular it preserves adjunction on
total maps. Following the notation of the Proposition it becomes easy to check that
(f a g) ≤ ((idA, ϕ̃f ) a (idB, ϕg)). It yields an adjunction between the partially ordered
sets Adj (P (C )) and Adj (C ).
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6. Domain-Total factorisation

In this section we will provide a general construction of a lax functorial weak factorisa-
tion system for any category of partial maps equipped with the general partial order ≤
described above. We consider an Ord-category C and the category of partial maps P (C )
induced by any appropriate class of subobject S. Given any partial map f in P (C ) we
can factorise it as

Df
��

σf

��

ϕf

  

A �
f

// B

=

Df
��

σf

��

idDf

  

Df
��

idDf

��

ϕf

  

A �
Lf

// Df
�

Rf
// B.

(6.i)

Our goal now will be to prove that such factorisation is a lax functorial weak factorisation
system. The first step is proving that it is a lax functorial factorisation, namely that L
and R are part of a functorial factorisation F : P (C )2

lax −→ P (C )2
lax ×P(C ) P (C )2

lax. We
consider a lax square (u, v) : f −→ g and its factorisation through L and R

A �u //

≥_f

��

C

_g

��

B �
v

// D

7−→

A

1

u
//

Lf

��

C

Lg

��

Df

2Rf

��

K(u,v)
// Dg

Rg

��

B
v

// D

where K (u, v) is

Dg·u
��

��

��

ϕu=σ∗g(ϕu)

��

Dv·f
��

��

Df
� // Dg.

(6.ii)

In the second diagram the upper square 1 is actually commutative, while one proves by a
simple calculation that the subobject morphism o : Dg·u� Dv·f defining g ·u ≤ v ·f is also
a witness that square 2 is a lax square. We consider two composable lax squares (u, v) :
f −→ g and (u′, v′) : g −→ h. We have to prove that K (u′ · u, v′ · v) = K (u′, v′) ·K (u, v).
To prove this equality one has to apply the composition rules among partial maps while
remembering the definition of K in (6.ii). Then the key argument is that the two arrows

Dh·u′ //
o

//

��

��

Dv′·g
��

��

Du′
""

""

Dg
||

||

A′

depict the same subobject equivalence class of Dh·u′ in A′ and therefore pullbacks of ϕu
along these arrows are equal. This yields our thesis and shows that L and R constitute a
lax functorial factorisation system.



FACTORISATIONS FOR ORD-ENRICHED CATEGORIES AND PARTIAL MAPS 1207

Next we discuss lax predistributivity of (F,L,R,K). We proceed giving in our setting
a particular description of the two classes.

First we show that LF is the class PLA of partial left adjoint morphisms, namely any
morphism f such that ϕf = σ · ϕf , σ ∈ S and ϕ̃f is a left adjoint in C . It is clear that if
f ∈ PLA, then Rf is a left adjoint morphism and therefore f ∧| Rf . On the other hand
if f ∈ LF , then we have a lax diagonal morphism δ for the square denoted by ηf . Writing
the 2-cells explicitly one can see easily that ϕf = σδ ·ϕf and that ϕf a ϕδ. Hence we have
that LF = PLA.

As for RF we notice first that it contains all total maps. In fact, if f is total, then
Lf is an identity, therefore Lf ∧| f . If we consider f in RF , again we have a lax diagonal
morphism δ′ for the square denoted by εf , which in particular yields that idA ≤ δ · Lf .
Hence Lf is total. This implies that RF = Tot.

Using the new characterizations of LF and RF given above, to prove lax predistribu-
tivity it is enough to notice that, for every partial map f , Lf ∈ PLA and Rf ∈ Tot,
which is trivially true. This yields that (PLA,Tot) is a lax weak factorisation system
underlying the lax functorial factorisation system above.

We conclude remarking that, if C is a discrete category, then PLA contains those
morphisms such that ϕf ∈ S. This is due to the fact that the only adjoint pairs are
isomorphisms. We denote such class of morphisms by S.

7. Oplax factorisation systems on partial maps and ordinary factorisation
systems on total maps

In the following section we will display the close link between factorisation systems on
a category C and oplax factorisation systems on P (C ). In the first paragraph we focus
on describing a procedure that extends a stable oplax weak factorisation system on C
to an oplax weak factorisation system on P (C ). Then we analyse how functoriality is
transferred to such factorisation systems, when the Ord-enrichment comes from a discrete
partial order on C . Thereafter we proceed studying how oplax weak factorisation systems
on partial maps may be restricted to factorisation systems among total maps. We conclude
observing that these two processes yield a bijective correspondence between oplax weak
factorisation systems on P (C ) and stable weak factorisation systems on C .

7.1. Oplax wfss from total maps to partial maps. We consider an Ord-category
C equipped with an oplax wfs (E ,M) such that E is S-stable, i.e. it is stable under
pullbacks along morphisms in S. Looking at P (C ) we can factorise each partial map f
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as

Df
��

σf

��

ϕf

!!

eϕf
//Mf

mϕf

��

A �
f

// B

=

Df
��

σf

��

eϕf

  

Mf
��

idMf

��

mϕf

  

A �
ef

//Mf
�

mf

// B.

(7.i)

We consider the following classes of partial morphisms

E = {f |ϕf ∈ E} M = {f |ϕf ∈M} . (7.ii)

We will prove that it constitutes an oplax weak factorisation system. First we prove that
E ∨| M. We consider f ∈ E , g ∈ M and the oplax square (u, v) : f −→ g. Writing
explicitly the oplax square, we have that σ∗v (ϕf ) is in E by the condition on stability
under pullbacks. By oplax weak orthogonality of (E ,M) there exists an oplax diagonal
filler d for the oplax square

Dv·f

v

E3σ∗v(ϕf)

��

//
o

// Dg·u
σ∗g(ϕu)

// Dg
��

ϕg∈M

��

Dv

∃d

66

ϕv
// D,

v

(7.iii)

where o is the morphism in S involved in the definition of the 2-cell v · f ≤ g · u. Then it
is straightforward to check that

Dv
��

σv

��

σg ·d

  

B �
δ

// C

(7.iv)

is an oplax diagonal morphism for the oplax square through the 2-cells in (7.iii). We
remark moreover that, if C is an ordinary category, then the lower triangle determined
by the oplax weak orthogonality is indeed commutative, i.e. v = g · δ.

Furthermore, if f ∈∨| M, then f ∨| mf which implies that there exists an oplax
diagonal morphism δ for the commutative square (ef , idB) : f −→ mf . Such oplax
diagonal morphism is total due to the properties mentioned in 5.3. Writing explicitly
the diagrams it is easy to prove that ϕδ is an oplax diagonal morphism for

(
eϕf

, idB
)

:
ϕf −→ mϕf

in C . One can prove by simple calculations that this yields that ϕf ∨| M.

Henceforth f belongs to E .
In a similar fashion we can prove that for any partial map g ∈∨| E there exists an

oplax diagonal filler δ′ for the square (idA,mg) : eg −→ g. Again writing explicitly the
compositions one can prove that ϕδ′ = σg · ϕ̃δ′ for some ϕ̃δ′ that is the oplax diagonal of
the oplax square

(
idA,mϕg

)
: eϕg −→ ϕg. This yields that ϕg lies in M, hence g ∈M.

In conclusion,
(
E ,M

)
is an oplax weak factorisation system.
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7.2. Functoriality from total factorisation systems to oplax wfs. In this
section we aim to prove that if the Ord-enrichment on C is discrete, then the property
of being functorial is carried from the factorisation system on C to the one on P (C ).

7.3. Proposition. Let C be an ordinary category, (F,L,R,K) a functorial factorisa-
tion and (E ,M) a stable wfs underlying it. Then

(
E ,M

)
underlies an oplax functorial

factorisation
(
F ,L,R,K

)
.

Proof. We can rewrite the factorisation (7.i) substituting Lϕf and Rϕf by mf and ef .
We obtain the assignments Lf = (σf , Lϕf ), Rf =

(
idKϕf

, Rϕf
)

and Kf = Kϕf . Then
our goal is to prove their functoriality. We consider two composable oplax squares

A �u //

�_f

��

C

_g

��

�u′ //

�

E

_h

��

B �
v

// D �
v′

// G.

(7.v)

We need to prove that K (u′ · u, v′ · v) = K (u′, v′) ·K (u, v).
First we reproduce the process depicted in (7.iii). We choose among the possible diag-

onal liftings k = K
(
ϕLg·u · o, ϕv·Rf

)
. This diagonal lifting fills the following commutative

diagram

Dv·f //
o

//

σ∗
v·Rf

(ϕLf)

��

Dg·u
ϕLg·u

// Kg

Rϕg

��

Dv·Rf

k

66

ϕv·Rf

// D.

(7.vi)

Then K (u, v) = (Rϕf
∗ (σv) , k). Similarly we have K (u′, v′) = (Rϕg

∗ (σv′) , k
′), where

k′ = K
(
σRh

∗ (ϕLh·u′ · o′) , ϕv′·Rg
)
. Finally we have that K (u′ · u, v′ · v) =

(
σv′·v·Rf , k

′′).
We point out that

σv′·v·Rf = Rϕf
∗ · [(ϕv · σv∗ (Rϕf ))

∗ (σv′)] (7.vii)

due to the pullback properties of subsequent composition of partial maps. Furthermore,
k′′ is the diagonal morphism chosen through K for the square

Dv′·v·f //
o∗o′

//

σ∗
v′·v·Rf

(ϕLf)

��

Dh·u′·u
ϕLh·u′·u

// Kh

Rϕh

��

Dv′·v·Rf

k′′

55

ϕv′·v·Rf

// F.

(7.viii)
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We write explicitly the composition K (u′, v′) ·K (u, v)

P
��

k∗(Rϕg
∗(σv′ ))

��

(Rϕg
∗(σv′ ))

∗(k)

##

Dv·Rf
��

Rϕf
∗(σv)

��

k

##

Dv′·Rg
��

Rϕg
∗(σv′ )

��

k′

""

Kf �
K(u,v)

// Kg �
K(u′,v′)

// Kh

(7.ix)

From (7.vi) we know that ϕv·Rf = ϕv ·σv∗ (Rϕf ) = Rϕg ·k. Hence we have the equality
of the two domains

Rϕf
∗ (σv) · k∗ (Rϕg

∗ (σv′)) = Rϕf
∗ · [(Rϕg · k)∗ (σv′)] = Rϕf

∗ · [(ϕv · σv∗ (Rϕf ))
∗ (σv′)] .

(7.x)
Thus we can write P = Dv′·v·Rf .

Now we consider the second component of the partial maps. We take the following
diagram

Dv′·v·f

1

//
v′∗o

//

(σv′·v·Rf)
∗
(Lϕf)

��

Dv′·g·u
σv′·g

∗(ϕu)
// Dv′·g

2

//
o′

//

(Rϕg
∗(σv′ ))

∗(Lϕg)

��

Dh·u′
ϕLh·u′

// Kh

Rϕh

��

Dv′·v·Rf (Rϕg
∗(σv′ ))

∗(k)
// Dv′·Rg σv′

∗(Rϕg)
// Dv′ ϕv′

// F.

(7.xi)

Due to the properties of pullbacks and the definition of each morphism we can prove
that the diagram and its subsquares are actually commutative. In particular we have
that 2 is the square used to deduce k′. We also point out that

(
σv′·v·Rf

)∗
(Lϕf ) and

(Rϕg
∗ (σv′))

∗ (Lϕg) are morphisms in E , therefore factorising 1 we obtain

K (σv′·g
∗ (ϕu) · (v′ ∗ o) , (Rϕg∗ (σv′))

∗ (k)) = (Rϕg
∗ (σv′))

∗ (k) . (7.xii)

Examining the definition of the arrows, we can prove that the outer square is exactly
the square that is used to define k′′ as a diagonal filler. Thus, since k′′ is chosen through
K, by functoriality we can conclude that

k′′ = k′ · (Rϕg∗ (σv′))
∗ (k) . (7.xiii)

This was the last information needed to conclude that
(
F ,L,R,K

)
is an oplax functorial

factorisation system.
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7.4. Remark. It is straightforward to verify that for a functorial wfs (F,L,R,K), if
(R, η) and (L, ε) are part of a monad and a comonad, then their oplax correspondents
carry oplax monadic and comonadic structures. In fact, left and right components work
in the same way as for total maps and satisfy the same axioms. The right component
is always total and bears no difference from the total case. The left component operates
similarly and one only has to take into account partial domains. This applies as well for
the distributivity laws that define awfs.

In conclusion, under the hypothesis that E is stable under pullbacks along morphisms
in S, an awfs (L,R) on C induces an oplax awfs

(
L,R

)
on P (C ).

7.5. Example. We consider P (Set). We know that in Set the two classes Epi and
Mono are stable under pullback. We know as well that (Mono,Epi) is a stable weak
factorisation system. This yields that

(
Mono,Epi

)
is an oplax weak factorisation system

for P (Set). We also have that (Epi,Mono) is a stable orthogonal factorisation system.
This yields that

(
Epi,Mono

)
is an oplax awfs.

7.6. From Oplax wfs on partial maps to wfs on total maps. We consider an
Ord-enriched category C , P (C ) a category of partial maps and (L,R) either a lax or
an oplax weak factorisation system on P (C ). We would like to analyse what kind of
structure it generates on C . First we prove a useful result that allows us to describe
oplax weak factorisation systems for categories of partial maps. We proceed to analyse
whether the orthogonality relations are preserved through this restriction. We aim to
prove that two total maps that are oplax weakly orthogonal (f ∨| g) in P (C ), are also
oplax weakly orthogonal in C . In particular, if the Ord-enrichment on C is discrete, then
they are weakly orthogonal (f � g) in the ordinary sense.

7.7. Proposition. Let (L,R) be an oplax weak factorisation system for P (C ), l ∈ L
and r ∈ R. Then (id,ϕl) ∈ L and (id,ϕr) ∈ R.

Proof. Let f be any morphism in R. We consider an oplax square (u, v) : (id,ϕl) −→ f .
We can write the following diagram

A

l

��

(σl,idDl)
// Dl

(idDl,ϕl)

��

u
// X

f

��

B
idB

//

δ

77

B v
// Y,

(7.xiv)

with δ being the oplax diagonal lifting of l against f . This yields the following 2-cells{
v ≤ f · δ
δ · (idDl

, ϕl) · (σl, idDl
) ≤ u · (σl, idDl

) .
(7.xv)
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Since (σl, idDl
) is trivially proved to be a full morphism in P (C ), then (7.xv) yields that

δ is an oplax diagonal morphism lifting (idDl,ϕl
) against f . Thus (idDl,ϕl

) ∈ L.
Let g be any morphism in L and (u, v) : g −→ (idDr , ϕr). We consider the following

diagram

X

≤

u
//

g

��

u′

��

Dr

(idDr ,ϕr)

��

A

≤ r

��

(σr,idDr )

>>

Y

δ

>>

v
// B

idB

// B

(7.xvi)

where u′ = (idDr , σr) · u. We recall that (σr, idDr) · (idDr , σr) = idDr . Hence it is straight-
forward that the upper triangle and the right square are commutative. We conclude
from the diagram that ∆ = (σr, idDr) · δ is an oplax diagonal morphism lifting g against
(idDr , ϕr). Henceforth (idDr , ϕr) ∈ R.

7.8. Lemma. Let (L,R) be an oplax weak factorisation system. Then (L ∩Tot) ∨|
(R∩Tot) in C .

Proof. We consider an oplax square formed by total maps and such that l ∈ L and
r ∈ R; then there exists a partial map δ that is an (op)lax diagonal morphism as

A

l

��

u
// C

r

��

B v
//

δ

>>

D.

(7.xvii)

If (L,R) is an oplax weak factorisation system, r · δ is then total and, by the rules of
composition, δ is total as well. Therefore δ is an oplax diagonal morphism in C .

7.9. Remark. If we consider in the previous lemma � as Ord-enrichment, then we have
that v � r · δ and being v a total map, it is an equality. Similarly the upper triangle must
be commutative as well and therefore the oplax weak orthogonality relation restricts to a
weak orthogonality relation for commutative squares among total maps.

7.10. Proposition. Any total morphism admits an (L,R)-factorisation composed of
total morphisms as well.

Proof. For every partial map f and its (L,R)-factorisation we want to obtain another
factorisation with a total right component, since we already know that, if f is total, then
its L-component has to be total. We can build the following diagram for any partial
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morphism f :

Df
��

σf

��

ϕf

  

A �
f

// B

7−→

Df
��

��

ϕl

  

��

σf

��

ϕf

��

Dl
��

σl

��

ϕl

!!

Dr
��

σr

��

ϕr

  

A �
lf

// K �
rf

// B

7−→

Df
��

idDf

��

ϕl

  

��

σf

��

ϕf

��

Df
��

σf

��

ϕl

  

Dr
��

idDr

��

ϕr

  

A �
lf

// Dr
�
rf

// B.

Now we must understand whether lf ∈ L and rf ∈ R. We first prove this helpful fact.

7.11. Remark. We consider the following adjoint morphisms (idDr , σr) a (σr, idDr). We
define lf = ν · lf and rf = rf · µ and by the adjunction 2-cells we obtain that{

µ · lf = µ · ν · lf ≤ lf

rf · ν = rf · µ · ν ≤ rf .

By directly computing we actually get that rf = rf · ν. Moreover, Dl = Df if and only if
lf = µ · lf .

We consider rf and we prove that it lies in R. We take l ∈ L and an oplax square
(u, v) : l −→ rf . We can build the diagram

C

l

��

u
//

µ·ν
&&

Dr

rf

��

µ
}}

K

rf
��

D v
//

δ

>>

B

where the upper and right triangles are commutative and δ is an oplax diagonal morphism
lifting l ∈ L against rf ∈ R. We consider a diagonal ν · δ. Then considering the outer
square we have {

ν · δ · l ≥ ν · µ · u = u;

rf · ν · δ = rf · δ ≤ v.

Hence ν · δ is an oplax diagonal morphism for l against rf and in conclusion rf ∈ R.
Let us consider lf . For any r ∈ R part of an oplax square as the outer diagram
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A

lf

��

u
//

lf

��

C

r

��

K

δ

>>

ν·µ
&&

ν
}}

Dr v
// D,

again the lower and left triangles are commutative and δ is a lax/oplax diagonal morphism
lifting lf ∈ L against r ∈ R. Now the diagonal morphism for the outer diagram is δ · µ
and the proof proceeds analogously. Hence we have that lf ∈ L.

7.12. Remark. As for the lax case regarding (7.xvii), we obtain u ≤ δ · l and r · δ ≤ v,
which do not imply in general that δ is total. Furthermore, we cannot deduce the commu-
tativity of any triangle in the diagram when the Ord-enrichment is �. Nonetheless one
can reproduce the same process of extracting a total factorisation from any factorisation
for total maps. This process in the lax case is in fact successful, but only for morphisms
f such that Dl = Df , which is trivially satisfied by total maps.

We conclude this section by proving the following proposition.

7.13. Proposition. Let P (C ) be a category of partial maps and (L,R) an oplax wfs.
Then (LTot,RTot) is an S-stable oplax weak factorisation system for C .

Proof. As we have seen above the oplax weak orthogonality relation restricts to an oplax
weak orthogonality relation among total maps, henceforth LTot ∨| RTot. If f is a total
map and f ∨| RTot, then f has a (LTot,RTot)-factorisation f = rf · lf . The commutative
square (lf , idB) : f −→ rf has an oplax diagonal morphism ρf , which is total as well, and
it yields the following 2-cells {

ρf · f ≤ lf ;

idB ≤ rf · ρf .
(7.xviii)

For every total oplax square (u, v) : f −→ g among morphisms in C , with g ∈ R, we can
write the following diagram

A

≤

u
//

lf

��

C

≤ g

��

Df

rf

��

δ

>>

B

ρf

BB

v
// D

(7.xix)

where δ is total and it is the oplax diagonal morphism that lifts lf against g. Then it is
straightforward to see that ∆ = δ · ρf is a total oplax diagonal morphism sought. We
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conclude that f ∈ LTot. Hence ∨| RTot = LTot. A dual argument proves, using retract
closure of R, that LTot

∨| = RTot.
We conclude the proof by checking that (LTot,RTot) is S-stable. We consider ϕl ∈

LTot. We recall that L is closed under composition with right adjoint morphisms. More-
over, (σ, id), with σ ∈ S, is a right adjoint morphism in P (C ). Thus (σ, id) · (id, ϕl) is
a morphism in L and its function component is the pullback σ∗ (ϕl), by the definition of
composition among partial maps. Henceforth by Proposition 7.7 σ∗ (ϕl) ∈ LTot, which
yields the thesis.

7.14. The bijection. We conclude illustrating the bijection between these two classes
of factorisation systems. We consider an Ord-category C and the Ord-category of partial
maps P (C ). We denote by S-WFSop (C ) the class of S-stable oplax weak factorisation
systems on C . Moreover, we denote by WFSop (P (C )) the class of oplax weak factori-
sation systems on P (C ). We have the following two functions

WFSop (P (C ))

Φ
,,

S-WFSop (C )

Ψ

ll
(7.xx)

defined as follows

Φ (L,R) =
(
L,R

)
;

Ψ (E ,M) = (ETot,MTot) .
(7.xxi)

The first is obtained as in Section 7.1 and the second as in Proposition 7.13. We proceed
to show that the two functions are inverses.

First we consider Φ (Ψ (E ,M)) =
(
ETot,MTot

)
. By construction we have that e ∈ E

if and only if (id, e) ∈ E , which is equivalent to e ∈ ETot. Hence E = ETot and similarly
M =MTot.

Then we consider Ψ (Φ (L,R)) =
(
LTot,RTot

)
. Let l ∈ L. By Proposition 7.7 we

have that (id, ϕl) ∈ L, hence ϕl ∈ LTot and therefore l ∈ LTot by construction. On the
other hand, if l ∈ LTot, then ϕl ∈ LTot and hence (id, ϕl) ∈ L. We take the right adjoint
morphism (σl, id). Then we have that l = (id, ϕl) · (σl, id) belongs to LTot. Henceforth
L = LTot and by similar arguments R = RTot.

This yields that Φ and Ψ are inverse functions. More explicitly this classifies every
oplax weak factorisation system on P (C ) as a factorisation system of the form

(
L,R

)
for some S-stable weak factorisation system (L,R) in C .

8. Factorisations for pointed categories of partial maps

Our goal for the following section is to discuss a process to obtain lax and oplax weak
factorisation systems for pointed categories of partial maps. In the first part we will show
how this process is carried out for P (Set), and then we will try to generalise it for any
pointed category of partial maps.
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8.1. Set with partial maps. In the following section we will consider the category of
partial maps among sets, together with the Ord-enrichment induced by the discrete order
in Set. In P (Set) Ø is a zero object. In fact for every pair of sets A,B we have the zero
map

Ø
��

��

  

  

A �
ØA,B

// B.

(8.i)

We define the class of morphisms

O = {ØA,B|A,B ∈ Set} . (8.ii)

We will apply Proposition 1.4 and its dual to O.

� First we consider an f ∈ ∧| O. There exists a lax diagonal morphism f ∗ for the lax
square (idA, idB) : f −→ ØA,B and hence there exists the 2-cell idA � f ∗ · f . We
notice that the existence of this 2-cell yields that f is a left adjoint to f ∗, hence the
lax factorisation system is trivial.

� We consider now f ∈ O∧| . We notice that any lax square (u, v) : Ø −→ f yields
that f · u = Ø. It is straightforward to prove that there exists a lax diagonal lifting
if and only if u = Ø. We deduce that

O∧| = {f |f · u = Ø ⇒ u = Ø} . (8.iii)

This in P (Set) is equivalent to have that f is a total map. In fact, any total map
belongs to O∧| trivially. Furthermore, if f : A→ B is not total, then any non-zero
map g whose image is a subset of A\Df , is Ø when composed with f . We conclude
that O∧| = Tot. As seen in Section 6, the factorisation system that is generated is
therefore

(
S,Tot

)
, since in P (Set) we have that PLA = S.

� Then we consider ∨| O. Similarly to the previous case, we can deduce that f ∈ ∨| O
if and only if for any morphism v, v · f = Ø implies that v = Ø, and it is equivalent
to surjectivity of f . Hence ∨| O = Epi. As discussed before in Example 7.5 Epi is
part of the oplax awfs

(
Epi,Mono

)
.

� Finally we consider f ∈ O∨| . Then in particular there exists an oplax diagonal lifting
f∗ for the oplax square (idA, idB) : Ø −→ f and the 2-cell idA � f · f∗. Moreover,
the existence of such morphism and 2-cell is easily shown to be a sufficient condition
that implies f ∈ O∨| , since f∗ is a tool to build oplax diagonal morphisms for any
other oplax squares. We observe that, in the context of P (Set), this condition is
equivalent to f ∈ Epi. Again we know that Epi is part of the oplax factorisation
system

(
Mono,Epi

)
, as shown in Example 7.5.
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8.2. Factorisations for pointed categories of partial maps. In the following
subsection, we will try to expand the process described for P (Set) and O and apply it
to other categories with similar properties.

Along this section we will assume that the Ord-category C has an initial object I and
that all initial morphisms iX lie in S, implying in particular that they are monomorphisms.
We notice that I is still an initial object in P (C ) and that for any A,B the partial
morphism ι = (iA, iB) is minimal in C (A,B). In fact for any partial map f , the arrow
iDf

shows that ι ≤ f . On the other hand if f ≤ ι, then there exists s : Df � I, where
s is monomorphic, which yields that f = ι. We can consider now the class of minimal
maps

O = {ι = (iA, iB) : A −→ B|A;B ∈ Ob (C )} . (8.iv)

8.3. Remark. We observe that in P (C ) the initial object I of C is a zero object whenever
I is either a zero object or a strict initial object.

This is true since the choice for the component ϕ− becomes unique when the codomain
is I under the said assumption. We recall that cartesian closed categories, such as Set,
Cat, any topos, and distributive categories have strict initial objects.

We remark that the property described in Remark 8.3 is not always needed. In fact,
we are interested in the property of minimal maps of being left or right absorbent, mean-
ing that when a minimal map is composed on the left or on the right with any other
composable morphism, then the composition is a minimal morphism in the corresponding
Hom-Set.

8.4. Lemma. For any P (C ), a minimal map f such that Df = I is right absorbent.
Whenever I is actually a zero-object, then it is both left and right absorbent.

This is trivial considering that the partial domain of the composition is a subobject
of the partial domain of the first morphism and I admits only itself as a subobject.

Henceforth the hypothesis that I is a zero-object in P (C ) is needed only while dis-
cussing the left complements ∧| O and ∨| O.

We will now apply Proposition 1.4 to the classO; this result will enable us to reproduce
the process in O in two directions for the lax case.

1. We consider ∧| O. Let f : A −→ B be a partial map laxly weakly orthogonal to
O. Then there is a lax diagonal f ∗ for the lax square (idA, idB) : f −→ 0. While
0 · f ∗ = 0 ≤ idB always exists by minimality of zero maps, the 2-cell idA ≤ f ∗ · f
does not exist in general. This property of f of having a paired arrow f ∗ such that
idA ≤ f ∗ · f is also a sufficient condition for f to be in ∧| O. In conclusion

U =∧| O = {f | idA ≤ f ∗ · f for some f} . (8.v)

Unfortunately we could not find a general description of U∧| . Still we present our:

8.5. Conjecture. The complement U∧| = {f |f · f ∗ ≤ idB for some f ∗}, the in-
tersection U∧| ∩ U being exactly the left adjoint morphisms.
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8.6. Remark. If the partial order on P (C ) is induced by the discrete partial order on
C , then we can refine the description of some complements of O. In fact, this Ord-
enrichment yields that ∧| O is actually the class of coretract partial morphisms LI, which
is the class of left adjoint morphisms. In this case the factorisation produced is the trivial
(LA,All).

2. We now consider O∧| . If (u, v) : ι −→ f is a lax square, then f · u = ι, since
zero maps are absorbent and minimal. If f ∈ O∧| , then there exists a lax diagonal
morphism δ as in

A
u

//

≥

ι

��

C

f

��

B

δ

>>

v
// D.

≥

(8.vi)

We notice that a necessary and sufficient condition for the existence of such δ is
that u = ι. So we have that

O∧| = DD = {f |f · u = ι =⇒ u = ι} . (8.vii)

The notation DD denotes those maps whose partial domain is maximal as a proper
S-subobject. Inspired by the example of topological spaces below, we chose to call
dense domain partial maps.

8.7. Remark. As we proved above, in Set we have that DD = Tot, and therefore(
∧| DD,DD

)
=
(
S,Tot

)
. In general we know that DD ⊇ Tot, but the other inclusion

is not always true. In fact, we have counterexamples of partial morphisms which are not
total, but have a dense domain:

� in Ab maps such as

Z
��

2

�� ��

Z � // Z

Z
��

i

�� ��

Q � // Z

are not total, but it is easily proved that they have dense domains.

� for the category of topological spaces equipped open maps, we have that a domain
is dense exactly when the domain is a topologically dense subobject of the domain,
so any morphism f such that σf = j : [0, 1[ −→ [0, 1] is not total and yet it has a
dense domain.

Since total maps have always a dense domain, we have that
(
S,Tot

)
≤
(
∧| DD,DD

)
.

We briefly state the two counterparts for C 2
oplax that arise in a similar fashion.
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1. The left oplax complement is

DI =∨| O = {f |v · f = ι =⇒ v = ι} , (8.viii)

where the notation DI refers to dense image maps among partial maps.

2. Considering ∨| O one can prove that

V = O∨| = {f |idB ≤ f · f∗ for some f∗} . (8.ix)

We conjecture again:

8.8. Conjecture. The complement V∨| = {f |f · f∗ ≤ idA for some f∗}, the inter-
section being exactly the right adjoint morphisms.

8.9. Remark. We consider now an f ∈ O∨| ; then there exists an oplax diagonal mor-
phism δ for the oplax square (idA, idB) : ιA,B −→ f . Since the identity is total, the lower
triangle is indeed commutative, therefore f is a split epimorphism (li). On the other hand
if f has a right inverse f ′, then in any oplax square determined by the cell v · ι ≤ f · v,
the morphism f ′ · v is an oplax diagonal morphism. This yields that O∨| = LI.

Considering the fact that the intersection of the two classes must be the class of right
adjoint morphisms, i.e. f such that ϕf is an isomorphism, we conjecture the following.

8.10. Conjecture. The oplax weak orthogonal complement ∨| LI is S.

8.11. Remark. Looking carefully at the arguments we notice that the process described
does not use specific tools for categories of partial maps. In fact the main ingredients is to
consider an Ord-enriched category such that every Hom-Set has a minimal element and
the class of such minimal elements are absorbent. The description of the complements is
essentially the same as above and can be carried out for pointed Ord-enriched categories
such that 0-maps are minimal in their Hom-Sets.

Even if it has been difficult to give a better description for such complements, we
remark that in general these classes appear to be non-trivial. To reduce to cases where
these classes are trivial we actually have to impose strong restrictions on C and S, such
as having only split epimorphisms among the arrows or similar assumptions.

Conclusion

In conclusion we have presented how the introduction of a lax weak orthogonality relation
induces new notions of factorisation systems that carry similar facets to their discrete
counterparts. We have defined the general notion of lwfs and lffs, showing how they
relate to each other and discussed examples and constructions in categories of partial
maps.

Future developments of this study will be expanding the set of examples and applica-
tions of these structures.
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Moreover, an interesting future direction is to explore the connection between this work
and the characterization of lax orthogonal factorisation systems presented by John Bourke
and Charles Walker in [Walker, 2020], in particular studying the relations between down
factorization systems, that they introduce, and the lax and oplax factorisation systems
that we have introduced; in particular some of the examples we provide that carry similar
properties to their structures.

Our work on partial morphisms is also connected to the recent [Cockett et al. 2021],
in which some similar constructions are introduced. In particular this work focuses as
well on the relation between factorisation systems on a category of partial maps and the
stable factorisation systems on the base category.
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